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Abstract: The increasing popularity of mHealth presents an opportunity for collecting rich datasets
using mobile phone applications (apps). Our health-monitoring mobile application uses motion
detection to track an individual’s physical activity and location. The data collected are used to
improve health outcomes, such as reducing the risk of chronic diseases and promoting healthier
lifestyles through analyzing physical activity patterns. Using smartphone motion detection sen-
sors and GPS receivers, we implemented an energy-efficient tracking algorithm that captures user
locations whenever they are in motion. To ensure security and efficiency in data collection and
storage, encryption algorithms are used with serverless and scalable cloud storage design. The
database schema is designed around Mobile Advertising ID (MAID) as a unique identifier for each
device, allowing for accurate tracking and high data quality. Our application uses Google’s Activity
Recognition Application Programming Interface (API) on Android OS or geofencing and motion
sensors on iOS to track most smartphones available. In addition, our app leverages blockchain and
traditional payments to streamline the compensations and has an intuitive user interface to encourage
participation in research. The mobile tracking app was tested for 20 days on an iPhone 14 Pro Max,
finding that it accurately captured location during movement and promptly resumed tracking after
inactivity periods, while consuming a low percentage of battery life while running in the background.

Keywords: software; mHealth; geospatial data; assisted global positioning system; mobility analysis;
location-based health services; blockchain; data integration

1. Introduction

Geolocation tracking systems can unlock valuable insights into spatial health informat-
ics by providing researchers and healthcare professionals with a rich source of health-related
data [1]. The geographic distributions of geolocation data can be used to design more
targeted and effective public health interventions, allocate resources to impoverished areas,
and develop strategies for improving health outcomes for specific communities or popula-
tions [2]. Additionally, geolocation tracking systems can facilitate real-time monitoring of
disease outbreaks and other health emergencies, allowing for more timely and effective
response efforts [3,4]. On an individual level, geolocation data can be used to develop
personalized health interventions for at-risk patients and provide well-being recommender
systems with user context information [5,6]. A previous study has demonstrated that
individual-level cell phone mobility data are an effective tool in assessing the effectiveness
of online health interventions by monitoring changes in adherence to stay-at-home orders
after exposure to targeted public health advertisements [7].

Smartphones have become an essential part of our daily lives, offering communication
and a plethora of sensors that can be used to collect accurate data. With built-in GPS,
accelerometers, gyroscopes, and other sensors, smartphones can provide detailed informa-
tion about a user’s location, movement, and environment [8]. These data can be used in
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healthcare to gather previously tricky or impossible insights. For example, smartphone
sensors can track physical activity, monitor sleep patterns, measure air quality, and detect
noise pollution [9]. Moreover, artificial intelligence and machine learning advances have
made analyzing and interpreting these data easier and more efficient [10]. For example,
a study utilized machine learning and geolocation data from smartphones to investigate
the impact of visiting locations associated with alcohol consumption, such as bars, pubs,
nightclubs, and liquor stores, on domestic violence at a neighborhood level [11].

The integration of geolocation data with environmental exposure datasets has emerged
as a vital area in environmental health and epidemiology, particularly in the context of
spatial energetics. The concept of spatial energetics highlights the revolutionary ability
to examine dynamic, high-spatiotemporal resolution data on location and time-matched
energetics through GPS, accelerometry, and GIS [12]. This approach has allowed researchers
to explore how environmental characteristics, space, and time are linked to activity-related
health behaviors, such as obesity and physical inactivity. Another article further inves-
tigated the spatial physical activity patterns among children in different socioeconomic
neighborhoods, emphasizing the importance of safe streets and access to recreational facili-
ties [13]. Moreover, GPS-based activity space measures of environmental exposure, such as
walkability and greenness, were associated with increased physical activity [14]. Soon after
the start of the COVID-19 pandemic, it became evident that geolocation data would play
an increasing role in public health, statistics, and disease outbreaks. Companies such as
Safegraph began partnering with academic institutions, and a large number of high-impact
manuscripts started being published showing the contributions of geolocation data to
public health [11]. These studies collectively underline the potential of geolocation tracking
data in linking environmental exposures such as air pollutants, NDVI, and walkability to
health outcomes. However, they also highlight the need for addressing challenges related
to technical problems, statistical methodologies, participant privacy, and security.

Tracking participants is challenging in many contexts, including healthcare studies
and large-scale surveys. One of the biggest challenges is ensuring the security and privacy
of the data collected. Participants may be concerned about who can access their personal
information and how it will be used. Another challenge is power constraints, especially
for precise location monitoring, which requires GPS receivers. GPS receivers consume a
relatively large amount of power; thus, over-using or keeping them on for long periods will
significantly affect the battery life of smartphones [15]. This can be especially problematic
when tracking participants in longitudinal health studies over extended periods. Previous
apps, such as Beiwe [16], bear similarities to this contribution, but did not focus solely
on collecting geolocation data or evaluated the quality of the data collected. Another
similar app called CareConekta [17] focused on the feasibility of using an app to collect
GPS location. This app only collected two GPS heartbeats per day and the location accuracy
was approximately 1km; however, our app continuously collects precise GPS data while
the user is moving. Other studies have attempted to evaluate the accuracy of geolocation
data collected from smartphones but they did not account for energy consumption or
private data handling [18,19]. Finally, software scalability is another major issue when
tracking large numbers of participants. As the number of participants grows, managing
and analyzing the data collected becomes increasingly difficult. Addressing these chal-
lenges requires combining technical and organizational solutions, such as improving data
encryption and security measures, developing more efficient tracking algorithms, and
implementing effective data management strategies that can handle large volumes of data.

We present a design for a mobile phone application that aims to utilize advances
in modern smartphone software and hardware to create a reliable tracking solution for
researchers interested in collecting geolocation data. Researchers can use the collected data
to analyze the trajectories of patients and identify patterns that can help predict health
outcomes. Our design considers the previously mentioned constraints and attempts to
create a private and efficient way of collecting geolocation data for use in research. Our
contributions are:
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• Battery-efficient tracking logic that uses smartphone sensors to monitor physical
activity and collect geolocation data.

• Scalable cloud architecture for sending and storing geolocation data while managing cost.
• Using Mobile Ads ID (MAID) to ensure data privacy, integrity, and usability in health-

care research.

2. Materials and Methods

This section outlines the development of an app designed to record users’ locations,
focusing on both accuracy and energy efficiency. A novel algorithm is implemented to
switch the GPS receiver’s power on and off based on the phone’s motion status, ensuring
continuous tracking while conserving battery life. In addition, we describe a cloud-based
database architecture to securely store large volumes of data and allow authorized entities
to access it for analysis. Finally, we present a description of a built-in rewards system
that utilizes a payment Application Programming Interface (API) and cryptocurrencies.
Figure 1 shows a summary of the methods.
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2.1. Energy-Efficient Geotracking Logic

The primary purpose of the app is to record the location of subjects. It is always
essential that location tracking works when the user is moving. The collected trajectory
could be used in location-based services such as matching the location data with Points
of Interest (POIs) data to obtain a history of locations that the user visited. The history
is used to research relationships between visiting specific locations and health outcomes;
for example, visiting HIV clinics can help predict if the user has a sexually transmitted
disease [20]. Gaps in the trajectory will lead to inaccurate measures of the visits; thus, the
missing behavioral data points about users [21,22].

Another important requirement when it comes to collecting location records is accuracy.
Modern smartphones contain GPS receivers that can detect location with 1–10 m accuracy
via measuring the arrival time of signals from four or more satellites that orbit the Earth [23].
Latitude and longitude from GPS are often assisted with WIFI and cellular tower locations,
known as Assisted GPS (AGPS). WIFI location is derived from nearby networks and can
improve location accuracy (combined with GPS) indoors [24]. Cellular tower locations rely
on triangulation between cell phone towers and have the lowest accuracy of all sensors [25].
Table 1 shows the accuracy of different sensors in smartphones. WIFI and cellular location
can only narrow down location to 10 m. This needs to be more precise as POIs can be
smaller and thus require more precision in the location data. However, GPS receivers use a



Sensors 2023, 23, 7917 4 of 19

large amount of energy, which is often a limitation for smartphones. In Table 1, low energy
uses refers to sensors that have minimal impact on the device’s battery life, allowing it
to last for several hours or even days of normal use without requiring a recharge. High
energy use, on the other hand, refers to sensors that have a more substantial impact on the
device’s battery life and might noticeably decrease the battery life of the device [26]. With
high-performing CPUs and memories, energy-optimizing techniques are implemented in
smartphones to balance the different needs of the user. GPS receivers consume significant
power when they actively receive and process satellite signals. By turning the GPS receiver
on and off based on usage, smartphones can optimize their battery usage and extend the
time between charges. When an app or system service requires location information, the
GPS receiver can be temporarily activated to provide the needed data and then deactivated
once the location has been determined [27].

Table 1. Comparison between accuracy and energy consumption of different location sensors
in smartphones.

Sensor Accuracy Energy

Cellular 100 m Low
WIFI 10–50 m Low

GPS 5–10 m (outdoors)
10–20 m (indoors) High

Given the energy constraints and the need to track users constantly, we use other
phone sensors such as motion detection, accelerometer, gyroscope, and magnetometer to
meet the requirements. These sensors use significantly less energy than GPS [28], and they
can be used to implement a logic to switch the power of the GPS receiver based on the
motion status of the phone. The Algorithm 1 shows how we use these sensors to optimize
energy consumption while always tracking.

Algorithm 1. Enhanced Motion-Assisted GPS Location Tracking

1. Initialize the tracking system
2. Set t0 = current time
3. While (tracking is not terminated):

3.1. Query movement_status from the Operating System
3.2. If movement_status = STATIC:

3.2.1. Wait for ∆t = 5 min
3.2.2. Deactivate GPS data requests
3.2.3. Monitor for changes in movement_status

3.3. Else if movement_status = IN_MOTITION:
3.3.1. Activate GPS data requests
3.3.2. Store GPS data in GPS_location_data
3.3.3. Monitor for changes in movement_status

3.4. Set t0 = current time

Our algorithm is based on the React Native Background Geolocation framework [29].
The framework supports distance-based filtering of location in iOS. Similarly, our algorithm
uses distance-based filtering as a standard for both iOS and Android, to ensure similar
data quality in both platforms. Motion sensors can detect different motion statuses such
as stationary, walking, driving, etc. When motion changes from static to another state, we
start the tracking with the highest possible accuracy (AGPS). We then filter out locations
based on 5 m intervals. Motion detection is performed differently based on the operating
system of the phone. The proposed algorithm is efficient because it does not use energy
when the mobile device is static. Once the movement status changes, the app will start
requesting data from the GPS receiver sensor.
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For iPhones, motion detection is performed by the M-series chips (M7, M8, M9, and
M10), also known as motion coprocessors. The motion coprocessor’s function always
collects and processes sensor data, even when the iPhone sleeps. Motion coprocessors
are used to keep track of the motion status and physical activity without engaging the
main processor, thus, conserving energy by ensuring high-energy consumption hardware
components (such as GPS receiver and processor) are only used when users move. The
motion status of the phone is constantly being monitored using the CMMotionActivityMan-
ager API [30]. Once the motion status is changed from static to in-motion, the algorithm
will start utilizing GPS and record location, and vice versa. After being static for a long
time, iOS requires the phone to move outside a “stationary geofence” (approximately
200 m). iOS has more restrictions in the limitations section of the discussion. Android OS
employs a similar technique for monitoring the motion status and physical activity using
ActivityRecognitionClient API [31]. However, the hardware components vary between
different manufacturers.

We also account for other edge cases that might halt the tracking due to OS restrictions.
These cases include terminating the app or restarting the phone. iOS and Android allow
apps to ask user permission to fetch location even when terminated. In iOS, this is achieved
via BGAppRefreshTask [32], which periodically fetches data and performs small tasks in
the background. In Android OS, the app operates by starting a foreground service [33].
This means the app can continue monitoring motion status and fetch geolocation at the
same rate as before termination. It becomes immune to the OS, terminating it to free up
resources. Moreover, apps can also start automatically in the background after the phone
restarts without action from the user. iOS still requires the phone to move approximately
200 m after the restart to resume tracking.

2.2. Cloud Architecture

Geolocation data have high frequency and volume and are very sensitive as they can
be used to infer personal addresses and workplaces. While data are collected via the app,
a scalable cloud architecture is crucial to handle the data safely and securely. Our cloud
architecture is built on Amazon Web Services (AWS), but it can be easily replicated using
the alternative services on Google Cloud Platform (GCP), Microsoft Azure, or Cloudflare.
Figure 2 illustrates the main components of our suggested cloud architecture of the app:
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and writes it into the database. Due to the large volume and frequency of geolocation data,
geolocation data are sent in batches of 250 points. Each point contains latitude, longitude,
altitude, and accuracy. If the batch is successfully recorded into the database, the API will
send a success message to the app (also referred to as frontend). The API will send an error
message to the app if an error happens. The data that failed to be written into the database
will be saved in the app locally in an SQLite database. The app will retry to send the data
records at a later time to ensure no records of the geolocation data are lost. Possible reasons
for the failure of sending data could be loss of internet connection (from the phone side) or
high load on the API server or database.

We use Domain Name Service (DNS) and Hypertext Transfer Protocol Secure (HTTPS)
protocols which play a crucial role in protecting the privacy of the transmitted data over
the internet. DNS-over-HTTPS (DoH) adds an extra layer of encryption to DNS queries,
preventing eavesdropping and tampering [34]. HTTPS, on the other hand, secures data
transmission between the user’s browser and the website server by encrypting the data
with Secure Sockets Layer (SSL) certificates [35]. By combining the secure features of
both protocols, users can maintain their privacy and reduce the risk of cyberattacks or
unauthorized access to their sensitive information.

Furthermore, our implementation of load-balancing and autoscaling groups greatly
enhances the scalability of our API, effectively addressing potential challenges posed
by a large user base. When the server experiences an increase in load due to a high
number of users, the effective use of autoscaling groups can dynamically adjust server
capacity to accommodate this demand. The load balancing, on the other hand, distributes
incoming traffic evenly across multiple servers, preventing any single server from becoming
overwhelmed. This ensures optimal performance and fault tolerance if a server fails or
experiences issues. Together, load-balancing and autoscaling groups enable the system to
handle increased traffic seamlessly and optimize resource utilization. This translates to cost
efficiency, as we can balance server capacity and operational costs. Instead of consistently
running many servers, which can be expensive, we can dynamically allocate resources as
needed, ensuring that we only pay for the capacity we require.

We use AWS Dynamo DB, a non-SQL scalable serverless database. Using a non-SQL
database provides flexibility for storing different data formats. This is helpful because geolo-
cation data records might be formatted differently across different platforms (iOS/Android).
Moreover, using a serverless database reduces the cost of storing data on the cloud com-
pared to traditional SQL databases. Traditional databases consume fixed computational
resources allocated to the server that executes queries. On the other hand, serverless
databases provide a cost-effective and efficient solution for managing high-volume re-
quests. Unlike traditional database solutions, DynamoDB charges only for the actual
number of reads and writes, reducing costs during periods of low query activity. This
pay-per-use model ensures that we only pay for the resources we consume. During periods
of high request volume, DynamoDB is designed to automatically scale its capacity to meet
the increased demand, alleviate pressure on the database and maintain consistent perfor-
mance. In addition, DynamoDB has scalable storage space. The storage cost is based on
consumption; thus, the cost is only based on the volume of data stored in the database.

The third component of the cloud architecture is automated remote notification jobs.
The purpose of this component is to send notifications to remind and encourage users to
take the necessary actions needed to ensure data collection for the study. Notifications are
typically sent based on a predetermined schedule, which could be daily, weekly, or at other
specific intervals, depending on the requirements of the study. Algorithm 2 illustrates the
logic used in automated notifications.
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Algorithm 2. Automated Remote Notification for User Engagement

1. Query user IDs and the last notification time from the database and store it in
user_information_list
2. For Each User u in user_information_list:

2.1. Query number of events that belong to u and store it in events
2.2. For event e in events

2.2.1. If e.event_type = PERMISSIONS_UPDATE
2.2.1.1. If e.values = true

2.2.1.1.1. Remove user u from notification table
2.2.1.2. If e.values = false

2.2.1.2.1. Set t0 = current time
2.2.1.2.2. Set t1 = last notification time for the user
2.2.1.2.3. If ∆t ≥ user’s notification interval:

2.2.1.2.3.1. Set t = u.token
2.2.1.2.3.2. Send notification using Firebase
2.2.1.2.3.3. Update the database with the new notification information

(i.e., date and time sent)

To automate the execution of the algorithm and send remote notifications, we use
Apache Airflow, an open-source platform for orchestrating complex workflows. Airflow
enables us to schedule, monitor, and manage the remote notification algorithm more
efficiently and reliably.

Lastly, the automated jobs for rewards aim to send incentives to users’ accounts
upon completing their participation in the studies. The incentives are in the form of
cryptocurrencies or payments made through payment APIs in exchange for the data
contributed by users. Rewards are also automated using Apache Airflow. Algorithm 3
illustrates the logic used to compensate users.

Algorithm 3. Automated Rewards for user compensation

1. Query user IDs and balance from the database and store it in user_information_list
2. For Each User u in user_information_list:

2.1. Query number of events that belong to u and store it in events
2.2. For event e in events

2.2.1. If e.event_type = START_TRACKING
2.2.1.1. Set t0 = current time
2.2.1.2. Set t1 = e.timestamp
2.2.1.3. Set t2 = number of days required by the study
2.2.1.4. If t0 − t1 ≥ t2

2.2.1.4.1. Obtain the user-preferred payment method
2.2.1.4.2. Update user balance
2.2.1.4.1. If user preferred payment method is CYPTO

2.2.1.4.1 Execute smart contract
2.2.1.4.2. Else

2.2.1.4.1. Call PAYMENT_API

2.3. Data Quality and Privacy

Given that the app’s primary purpose is collecting geolocation data for research, it
is crucial to design a data schema that ensures ease of access, scalability, and privacy
protection. An effective data schema indexes geolocation data using latitude and longitude,
a method widely used in Geographic Information Systems (GISs) and recommended by
data management practices for geolocation data [36]. This approach facilitates efficient
retrieval and analysis, seamlessly integrating the collected data with other geospatial
datasets or tools [37].

The schema should separate personally identifiable information (PII) from geolocation
data to preserve user privacy. This practice is in line with the privacy by design principle
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outlined in the General Data Protection Regulation (GDPR), and it is achieved using Mobile
Advertiser IDs (MAIDs), an anonymized identifier unique to each device, linking the PII
and geolocation data [38]. Through this design, researchers can access the geolocation
data without directly exposing any sensitive information, thereby ensuring user privacy
is maintained following established privacy standards [39]. Table 2 shows the proposed
database schema.

Table 2. Database schema.

Table Column Description Example

User Metadata

MAID Mobile Advertising ID, unique identifier for
each phone (primary key)

C3F0267B-CA56-4541-929D-
E2BAC4979AC2

Email Email address of the user
Phone Metadata Operating system type and version number

IP Address Internet Protocol Address
Firebase Token Unique token for each device

Geolocation
Rewards

UUID Universally Unique ID for each location
(primary key)

964D5405-BD8D-4E9C-A221-
442C5E92ED81

MAID Unique identifier for each phone
(foreign key)

Study ID Study Code (foreign key)

Timestamp Time, data, and the time zone
when location was recorded

Activity The type of motion detected
when location was recorded

still, on_foot, walking,
running, in_vehicle,

on_bicycle, unknown

Battery Percent of battery charge
when the location was recorded

Coordinates Latitude, longitude, altitude, and accuracy of
the location

Odometer Distance moved

Events

UUID Universally Unique ID for each event
(primary key)

MAID Unique identifier for each phone
(foreign key)

Event Type Code that corresponds to internal use PERMISSIONS_UPDATE,
TRACKING_STARTED

Values Metadata about the event, such as timestamp
or Boolean values

Studies
Study ID Study Code (primary key)

Metadata Description of the study, start/end dates, and
other requirements

MAID Unique identifier for each phone
(foreign key)

Notifications Timestamp Time when row was last updated
Notification Type Code that corresponds to internal use

MAID Unique identifier for each phone
(foreign key)

Rewards Balance Value of rewards sent to the user

The design follows the star schema, widely used due to its simplicity, consistency,
efficiency in handling large datasets, and ease of integration with other data sources. The
central table in the schema is the User Metadata. Each user/device has one row in that
table which stores the Mobile Advertising ID (MAID). MAID is used as a foreign key in
most of the other tables to ensure that the data are easily accessible to researchers. The
Geolocation Records table contains all the collected location data and can be indexed using
the coordinates to increase the efficiency of spatial queries [40]. The Events table includes
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status updates from the app that are used internally to keep track of the study progress
and the status of the permissions provided to the app. The Rewards and Notifications
tables keep track of the data needed to run the automated jobs to compensate users and
send remote notifications in case any actions are needed. Finally, the Studies table includes
metadata that are presented on the User Interface (UI).

Using the MAID as the anonymized identifier for geolocation data collection in an
app offers several advantages. The mobile operating system generates MAIDs and they
are unique to each device, ensuring a consistent and distinct identifier for each user.
This uniqueness is essential for accurately linking geolocation data with user-specific
information while maintaining anonymity. The app prompts users to share their MAID
according to the latest privacy updates on iOS and Android using a framework designed
for this use case [41].

2.4. User Engagement and Usability

To ensure that the app collects the data required for the studies, it is crucial to have a
friendly user experience [42]. A friendly user experience encompasses several key elements.
Firstly, it is important to ensure that the app requests the necessary permissions to collect
location data [43]. This involves making it easy for users to grant these permissions with a
transparent explanation of why the app needs them. By being transparent and providing a
rationale, users may be more likely to feel comfortable sharing their location data. Secondly,
the app should keep users informed about the status of the studies [44]. This can be
achieved by providing real-time updates on the progress of the studies, including the
number of days left for data collection and any milestones reached. This information
is displayed to ensure that users are always aware of how their data contributes to the
research. Lastly, to preserve user privacy and comfort, the app must offer an option for
users to disable location tracking as needed. This feature should be easily accessible and
visible within the app, allowing users to maintain control over their data and build trust in
the app’s commitment to respecting their privacy. Figure 3 shows the features that were
taken into consideration when designing the UI.
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Figure 4. Screenshots from the app UI: (a) Dashboard showing the status of the study and active
studies that the user is enrolled in; (b) Settings page that provides feedback on the needed permissions,
privacy policy, and options to pause tracking or exit the study; (c) example of error messages when
required permissions are not granted along with action items for the user to complete to ensure that
their data are being collected.

After signing into the app, the user is presented with four pages. First, the Dashboard
shows the progress of the studies in which the user is enrolled. Second, the Data page is
where the user can view metrics on the geodata collected; for example, they can visualize
the data on a map. Third, the Rewards page lets the user view previous or pending
compensations. Fourth, the Settings page is where the user can view all given or pending
permissions required by the app to collect geolocation data and exit the study.

2.5. Rewards System
2.5.1. Blockchain

The first method of rewarding participants for sharing their geolocation data is
blockchain. Using smart contracts on a decentralized platform, users can receive incentives
from Non-Fungible Tokens (NFTs) or cryptocurrencies. When users share their geolocation
data with a research app, this system triggers a smart contract, automatically verifying
the information. Previous studies have highlighted that blockchain can provide a secure
environment for sensor data exchange, particularly in Internet of Things (IoT) networks,
due to its cryptographic validation processes [45]. Moreover, another study has shown
how blockchain can incentivize data sharing from vehicle sensors in a transparent and
tamper-proof manner [46].

Using blockchain-based smart contracts for rewarding geolocation data sharing comes
with several advantages. Firstly, it has faster processing times, especially for compensating
international participants who might not be able to receive bank transfers. International
bank transfers are also subject to transfer rates that might change during the study period
and lead to an increase in the study budget or a decrease in the compensation received
by the user [47]. Secondly, it creates secure and anonymous transactions, giving users
confidence in the system’s integrity and reducing the PII provided to the app. Furthermore,
cryptocurrencies can be easily exchanged for other digital assets or physical currencies,
increasing the utility of the incentives [48].

However, there are also potential drawbacks to consider. One concern is the variable
fees associated with sending payments using the blockchain. Fees might vary depending
on the cryptocurrency’s price and time of the day. Additionally, the fluctuating value
of cryptocurrencies may deter some users from participating due to concerns about the
stability of their rewards [49]. Moreover, users might not be familiar with blockchain or
might not trust in their value. The participants need to own a cryptocurrency wallet to
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receive compensation in the form of NFTs or cryptocurrencies. Additionally, participants
need a stable internet connection and knowledge of how to accept and spend their digital
assets. Lastly, the deanonymization of public blockchain transactions could lead to others
knowing the identity of the study participants [50].

2.5.2. Payment APIs

Another alternative is integrating payment APIs into the app, which can provide a
seamless and efficient way to reward users for sharing their geolocation data. Payment
APIs facilitate secure and instant transactions between the app and its users. The imple-
mentation of payment APIs in research apps streamlines the rewarding process. Once users
share their geolocation data, the backend system verifies the information and triggers a
payment transaction through the chosen payment API. The API then communicates with
the payment processor to complete the transaction, transferring the rewards directly to the
user’s bank account.

Payment APIs automatically distribute rewards quickly and efficiently. Users can
select their preferred payment methods, which enhances convenience and encourages
participation. It also reduces researchers’ time and effort to hand out the rewards.

However, there are potential disadvantages to consider. Transaction fees may be
incurred when using payment APIs, which could impact the overall budget for user
rewards. Moreover, the app’s dependency on third-party payment processors introduces
potential risks, such as service disruptions or changes in fee structures, which can impact
the stability of the reward system.

3. Results

The app was installed on an iPhone 14 Pro Max and tested for 20 consecutive days.
Next, the collected data were retrieved from the database by querying all records with
matching email and MAID. Figure 5 shows the total distance traveled by the phone owner.
Moreover, we have used the activity recognition field which describes the state of the phone
holder (still, walking, in vehicle) to calculate the valid tracking minutes per day shown
in Figure 5. Valid tracking minutes per day are defined as the sum of the time difference
between consecutive timestamps when the phone’s motion status is in motion.
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3.1. Accuracy of Geolocation Data

The user’s location data are overlayed on the OpenStreetMap (OSM) data, a community-
driven mapping platform known for its detailed, up-to-date spatial datasets. Each geoloca-
tion point is assigned an ‘indoors’ or ‘outdoors’ classification depending on its position
relative to the footprint of buildings mapped on OSM. This classification is carried out
through a computational geometry method known as point-in-polygon, where each point
is checked to see if it lies within the polygon that represents a building. A total of 6% of the
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data received from the database was indoor data. We then employ the location accuracy
metadata provided by the iPhone’s built-in GPS and location services to assess the precision
of indoor vs. outdoor points. Table 3 compares the accuracy of collected geolocation data in
indoor versus outdoor settings. As seen in Table 1, outdoor accuracy was on average 8.29 m,
which is slightly higher than the maximum GPS accuracy (5 m). The difference can be due
to signal blockage by buildings or trees and atmospheric conditions. Indoor accuracy had
an average of 30.6 m, with the 25th percentile at 3.1 m, the 50th percentile at 14.2 m, and the
75th percentile at 35 m. The difference in accuracy can be largely attributed to the variability
in WIFI and cellular service strength, impacting the precision of the location data.

Table 3. Distribution of the geolocation data accuracy reported in iPhone location metadata.

Indoor Outdoor

Number of data points 1415 24,191
Mean 30.6 m 8.29 m

Standard Deviation 33.58 109.44
25th percentile 3.1 m 4.7 m
50th percentile 14.2 m 4.7 m
75th percentile 35 m 4.7 m

3.2. Activity Recognition

Next, we evaluated the proficiency of the activity recognition algorithm in detecting
and tracking user movement. Considering that the tracking algorithm automatically ceases
to record data after five minutes of inactivity, our team focused on identifying gaps in
the data—instances where timestamps were more than five minutes apart. These gaps
imply periods of presumed inactivity, followed by the recommencement of movement. To
investigate the algorithm’s responsiveness further, we measured the geographic distance
between the last recorded location before the tracking was paused and the first location
registered when it resumed. This allowed us to assess how promptly the algorithm initiates
tracking once the user begins moving again. The distances the user moves before the
algorithm resumes tracking are plotted in Figure 6. As shown in Figure 6, when our
tracking stops and restarts again, the user has moved less than 200 m. That confirms that the
tracking restarts within the stationary geofence of iOS as described in the methods section.
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3.3. Battery Consumption

Moreover, we recorded the daily battery usage (in percentage) and background activity
(in minutes) from the iPhone Settings app. Figure 7 shows the recorded battery usage
values. As shown in Figure 7, the number of hours reported by the iPhone Settings App
was consistent with the number of valid tracking minutes reported in Figure 5.



Sensors 2023, 23, 7917 13 of 19

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

To investigate the algorithm’s responsiveness further, we measured the geographic dis-
tance between the last recorded location before the tracking was paused and the first lo-
cation registered when it resumed. This allowed us to assess how promptly the algorithm 
initiates tracking once the user begins moving again. The distances the user moves before 
the algorithm resumes tracking are plotted in Figure 6. As shown in Figure 6, when our 
tracking stops and restarts again, the user has moved less than 200 m. That confirms that 
the tracking restarts within the stationary geofence of iOS as described in the methods 
section. 

 
Figure 6. Length of distance traveled by the user before tracking resumed. 

3.3. Battery Consumption 
Moreover, we recorded the daily battery usage (in percentage) and background ac-

tivity (in minutes) from the iPhone Settings app. Figure 7 shows the recorded battery us-
age values. As shown in Figure 7, the number of hours reported by the iPhone Settings 
App was consistent with the number of valid tracking minutes reported in Figure 5. 

 
Figure 7. Energy consumed by the app as reported in the iPhone Settings app. 

  

Figure 7. Energy consumed by the app as reported in the iPhone Settings app.

4. Discussion
4.1. App Novelty in the mHealth Field

Our app introduces an energy-efficient tracking feature, allowing for continuous and
seamless monitoring of users’ geolocation data without draining the battery life of their
devices. By employing intelligent algorithms and state-of-the-art energy management
techniques, this innovative approach ensures that researchers can gather accurate and
extensive data while minimizing the impact on users’ daily activities.

In a novel application of MAID, our app harnesses the power of big data and ad-
vanced machine learning techniques to analyze geolocation data and identify patterns of
human interactions in various settings. This innovative approach enables researchers to
better understand disease transmission dynamics, social networks, and human behavior in
relation to health outcomes.

In addition, our app integrates blockchain technology to offer a streamlined rewards
system for participants and incentivize their engagement in research studies. By leveraging
the tamper-proof nature of blockchain, our app ensures that users are fairly compensated
for their contributions while maintaining the integrity of research data. This reward
mechanism encourages participation and could be a new way to crowdsource a valuable
data source, ultimately enhancing the quality and impact of mHealth research.

Moreover, the app features a robust and user-friendly software tool to facilitate geoloca-
tion data collection, analysis, and visualization for research purposes. This comprehensive
platform allows researchers to easily manage large datasets, generate insightful reports,
and extract meaningful information to inform public health decision making.

4.2. Use Cases of Geolocation Data in Health

Geolocation data could be a rich source of insights for researchers in healthcare,
public health, and other fields. When combined with other data sources, geolocation
provides information about behavioral activities, socio-economic status, and exposure to
certain activities. For example, POIs data (location name, NAICS code, polygon shape,
and working hours) infer the activities performed in certain locations. Using geocoding
techniques, POIs and geolocation data can be combined to obtain a history of the locations
visited during the day, also known as the trajectory. Figure 8 shows an application of
geolocation data in analyzing the relationship between trajectories and health outcomes
using a pipeline for merging POIs and geolocation data to generate the trajectories.
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In the depicted process, the initial step involves integrating geolocation information
with POIs using geofencing or point-in-polygon overlay techniques [51]. Subsequently, the
locations visited are merged with medical health records or health outcomes documented
during a study. This approach can be further developed to identify high-risk individuals re-
quiring medical interventions. Previous studies have shown promising results using similar
methods to study human behavior and health outcomes using geolocation data [7,52,53].

The utilization of geospatial methods in behavioral research, particularly in the context
of public health, could be extended beyond simple overlaying of geolocations with POIs
using the point-to-polygon method. The scikit-mobility library provides a comprehensive
framework for analyzing and simulating human mobility, encompassing collective and
individual human mobility models such as gravity and radiation models, and the spatiotem-
poral clustering algorithms which help uncover visit durations, frequency and accuracy [54].
Furthermore, integrating socioeconomic datasets, such as Census, allows researchers to
explore environmental features and contribute to a more sophisticated understanding of
geolocation data in public health research [55,56].

Another potential application of the data gathered by our software involves utiliz-
ing MAIDs to combine geolocation data with other data sources while ensuring that no
personally identifiable information is disclosed. For instance, MAIDs can facilitate the
collection of details about online behavior, including purchases, browsing history, social
media usage, and other interests. Additionally, MAIDs can send surveys or advertisements
to study participants via mobile devices. This allows a streamlined method of gather-
ing information from individuals located remotely and providing health interventions
using advertisements.

4.3. Ethical Considerations for Using Geolocation Data in Public Health Research

Even with data privacy measures and encryption technologies in place, the privacy
concerns of using geolocation data in research are still an active research topic. Several
methods have been used to protect the privacy of data and address the related ethical
concerns. For example, deidentified geolocation data have been widely adopted to ensure
that individuals’ personal information is protected [57–61]. Moreover, representative
datasets from diverse groups and geographical locations are crucial in using mobility data
for healthcare research [62–65]. Collecting larger datasets using this app will allow for
more studies to utilize geolocation data to investigate the effects of mobility on health
outcomes and reduce the barriers, effort, and time needed by different groups to participate
in research. In the proposed application, we ensure that users know the purpose and
methods used in the studies by showing the users the student consent app before collecting
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geolocation data. Moreover, the app provides data visualization features so the users can
keep track of what data have been collected about them.

In the context of research, public health researchers, who utilize this app to gather
research data, are responsible to inform subjects of potential effects and ethical considera-
tions, especially for individual users. This app, like the ones used for contact tracing during
the COVID 19 pandemic or personalized exposure assessment, provides opportunities to
collect real time data on movement, health status, and environmental exposures [66,67].
Certain features have been implemented in the app to ensure that the users are informed
about potential risks of using the app, such as the study’s consent form and ability to stop
tracking temporarily. However, the decision to implement apps for data collection needs
consideration of the potential risks and benefits for individual users [68]. The impact on
individuals may involve increased surveillance and control measures, potential privacy
risks, and the chance of misinterpreting data which could lead to unintended harms to data
owners [69]. Ethical considerations should also be a priority in terms of transparency in app
usage plans, decision-making processes regarding implementation, informing individuals
about risks or benefits they may face, as well as measures to ensure confidentiality and
consent when handling collected data [70]. Given the nature of data collection through
apps, it is crucial to establish a strong ethical framework that respects individual autonomy
while maximizing technology’s potential benefits [71].

4.4. Limitations and Future Work

There are limitations with this paper that warrant discussion. The most prominent
of these limitations is connected to the architecture of the iOS operating system itself. For
privacy and battery life considerations, iOS is designed to control background processes
strictly. Consequently, our application cannot run background jobs when the user has
terminated it, making it impossible to verify if tracking services are active without user
intervention consistently. Another limitation is the accuracy of geolocation data indoors,
which can lead to misattributed POI visits. Error in the location coordinates must be
considered in the analysis phase using lower geocoding constraints or probabilistic visits
attribution. Future applications of our methodology must include a detailed analysis of
data quality, specific to the group’s characteristics and the cohort in question. For instance,
if applied to a cohort with depression and limited mobility, the analysis may focus on
indoor geolocation tracking accuracy, consider variations in smartphone technology, and
tailor additional analyses to factors such as different socioeconomic statuses or physical
activity levels. In addition, the data presented in the Section 3 were collected from an iOS
device, which might not be representative of the diverse range of operating systems and
hardware configurations. Future research will be required to explore the discrepancies and
effects across various operating systems and devices, as the current test may have neglected
differences that could influence the functionality and results. Comparing the data collected
by the app to the subjects’ self-reports would also strengthen this work.

In light of the limitations outlined above, there are several potential directions for
future research and development to explore. A key aspect of our future work will be
the focus on enhancing the privacy features of our application. One strategy we are
considering is the implementation of Advanced Encryption Standard (AES) for location
data. AES is a symmetric encryption algorithm that has become the industry standard for
data security. Applying this encryption to location data would provide robust protection
against unauthorized access and significantly enhance the system’s privacy.

5. Conclusions

Passive data collection of geolocation data using mobile devices has the potential to
revolutionize healthcare. It provides valuable insights into patient health and behavior,
allowing for an in-depth understanding of public health epidemics, including substance
abuse and sexually transmitted diseases. Using personal devices as a source of new datasets,
healthcare researchers could unlock opportunities to study their subjects’ daily activities



Sensors 2023, 23, 7917 16 of 19

without intervening or reducing study budgets. Geolocation data could allow the study
of socioeconomic and behavioral factors on health outcomes. Integrating health records
with geolocation data allows researchers to examine the relationships between the type and
frequency of locations visited and their effect on the patient’s health condition. This method
allows researchers to tap into the geographical contexts that may interfere with or facilitate
receiving healthcare services. Moreover, geolocation data could also facilitate the discovery
of patterns linking similar health outcomes in patients who frequent similar locations, thus
enabling a closer identification and understanding of their specific needs. Although still
in its infancy, research using geolocation data holds promise in being able to improve the
surveillance and delivery of public health and medicine rapidly and profoundly.
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to the user when they click on the required permissions in the Settings page.
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