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INTRODUCTION
The Delta Fish and Wildlife Protection Study was organized in 1961 to investigate the effects of future water devel-
opment on fish and wildlife resources dependent upon the Sacramento-San Joaquin River estuary, and to recom-
mend measures to protect and enhance these resources. The investigations described in this bulletin were designed to
answer a number of specific questions relevant to water development plans and also to start us toward an under-
standing of the estuary's ecology. The bulletin describes the results of about 2 years of collecting and 1 year of ana-
lysis on zooplankton, zoobenthos, and fishes of the middle or bay portion of this estuary and on zooplankton and
zoobenthos of the upper portion that is known as the Delta.

With one exception, all papers are authored by the individuals who were responsible for the work almost from its
inception in 1962. "Fishes Collected in the Carquinez Strait in 1961–1962," is the by-product of a study whose ori-
ginal purpose was to monitor downstream migrating young salmon that had been marked for an experiment of the
Marine Resources Branch of the California Department of Fish and Game. Records of the fish collected in the Car-
quinez Strait during this monitoring program fitted in so well with our description of the estuary that we asked
James Messersmith to report on it here.

The investigation of Delta benthos reported upon in the last paper in this bulletin was planned and conducted by
Charles Hazel. He had completed most of the data analysis when he left the study. I made some changes in his ana-
lysis, revised his original draft extensively, and became his co-author.

Conspicuously absent from this bulletin is a description of our investigation of the fishes of the Delta. Reports of
this work are now being completed and will be the subject of a second bulletin to be published in the near future.

The bulletin contains no reference to the practical application of the results of our investigations. To date this
practical application has been the development and acceptance of a water plan for the estuary that is compatible with
all of its uses, including the protection and enhancement of fish and wildlife.

Acknowledgments
Most of the work reported in this bulletin was done under the terms of a contract between the California Depart-
ments of Water Resources and Fish and Game. It was financed with funds made available under the California Wa-
ter Bond Act. Insofar as I know, it is the first time that those who will eventually profit by water development have
paid for the intensive investigations needed to protect fish and wildlife resources dependent upon that water.

Much of the description of physical conditions that will be used in the individual papers of this bulletin were
provided by engineers of the Delta Studies Section of the California Department of Water Resources.
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Especially we thank Gerald Cox, Cyril McRae, John Nelson, and Glenn Twitchell. Langdon Owen was especially
helpful in arranging matters so engineers and biologists could effectively cooperate.

The work in the bay could not have been done except for "Duke" Mitchell and the crew of the Department of Fish
and Game research vessel Nautilus.

Fish and Game Assistants Bob Kerr, Elvn Gunderson, and Don Severns kept the other boats running and spent
many unrewarded hours in the field. Vince Catania's superior knowledge of the estuary was of great value to all of
us.

Biologist Larry Radtke often made the collections of fish in the shallow waters of the bay.
A number of students from the University of the Pacific and San Joaquin Delta College in Stockton helped in the
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gist Don Lollock.
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1. DESCRIPTION OF THE SACRAMENTO-SAN JOAQUIN ESTUARY
D. W. KELLEY

The Sacramento and San Joaquin Rivers have a common estuary. These two streams meet in the center of Califor-
nia's central valley to form the Delta (Figure 1). A hundred years ago the Delta was an extensive tidal marsh, but it
has been almost entirely reclaimed for agriculture. The Delta now includes about 738,000 acres of land and water,
700 miles of navigable channels, and 30 large, below sea level islands. About 39,000 acres are covered by water.

Some Delta channels are edged with narrow stretches of intertidal marsh but most of them have steep banks of
mud or are covered with large cobbles to prevent erosion. They vary in width from a few hundred feet to a mile and
are seldom more than 30 to 40 feet deep. In some areas there are small "waste" islands that flood during high tides.
These waste islands and levees that surround all Delta channels are covered with an assortment of emergent aquatic
plants, grasses, forbs, shrubs, and trees.

Water heading toward the sea from the Delta passes through Suisun Bay, which is merely the wide combination
of the Sacramento and San Joaquin Rivers below the Delta. Thirty-six percent of Suisun Bay is flooded by less than
3 feet of water at mean lower-low tide, and at this stage about 3,000 acres of intertidal zone is exposed. Richard
Painter (see p. 40) has included a map of the 6-foot contour.

From Suisun Bay the water flows through the 6-mile long and up to 100 feet deep Carquinez Strait into San Pablo
Bay. Almost 60 percent of San Pablo Bay's 73,000 acres is less than 6 feet deep at mean lower-low tide. San Pablo
Bay has a much more extensive intertidal area than Suisun Bay.

San Pablo Bay water flows into San Francisco Bay and then through the narrow Golden Gate into the Pacific
Ocean. The investigations reported on in this bulletin were geographically limited to the upper and middle portions
of the estuary—from the Delta through San Pablo Bay. We have not investigated below San Pablo Bay. McCarty et
al (1962) described south San Francisco Bay, and Storrs, Selleck, and Pearson (1964) described north San Francisco
Bay. Gillian (1957) wrote an interesting and useful popular account of the entire bay.

1.1. CLIMATE
The estuary has a mild, marine climate. The influence of the sea is modified with increasing distance inland so that
Delta summers are a good deal warmer and the winters several degrees colder than those of the bay (Table 1) . Water
temperatures in the estuary reflect this difference in the climate.
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FIGURE 1. Map of the Sacramento-San Joaquin Estuary
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TABLE 1
Comparison of Air Temperature and Rainfall in Bay Area and Delta

1.2. HYDROLOGY
The runoff from 46,500 square miles of California's land surface drains into the estuary. It enters primarily from
three large rivers: the Sacramento, the San Joaquin, and the Mokelumne.

The annual mean amount of fresh water entering the Delta via these streams from 1921 through 1957 was approx-
imately 22 million acre feet (Calif. Dept. of Water Resources, 1962, Table 11). In addition, the estuary receives 14
to 20 inches of rain per year. Most of the river runoff now comes from the Sacramento River and is the result of
winter rains in the Sacramento Valley foothill region and the spring melting of the snowpack on the west slope of
the Sierra Nevada. The flow in all of these rivers is extremely variable (Table 2) .

TABLE 2
Fresh Water Inflow to the Delta During 1963 and 1964

Flows are partially controlled with an extensive series of reservoirs throughout the watershed. The summer flows
in the Sacramento are increased to repel salinity in the Delta and to furnish water to the U.S. Bureau of Reclamation
pumping plant at Tracy. Flows in the San Joaquin and Mokelumne Rivers have been greatly reduced by water diver-
sion for irrigation and municipal uses above the Delta.

Approximately 1.8 million acre feet of fresh water are consumed annually in the Delta by the irrigation of crops
and the transpiration of other vegetation (Calif. Dept. Water Resources, 1962, Tables 15 and 19), and about 1.25
million acre feet are pumped out. Most of
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the latter is taken at the U. S. Bureau of Reclamation pumping plant near Tracy and is limited to the irrigation sea-
son.

1.3. TIDES
The effect of the tide on water levels throughout the entire estuary has been thoroughly studied (Calif. Division of
Water Resources, 1931). The tide here rises and falls twice during a lunar day of about 24.8 hours. Mean tide range
is greatest in South San Francisco Bay where it is approximately 6.5 feet, and smallest in the Delta, where it is close
to 3 feet (Table 3) .

TABLE 3
Surface Area, Volume, and Tidal Ranges in the Sacramento-San Joaquin Estuary

In each lunar day there are two high phases of the tide designated as the high-high and the low-high tides, and two
low phases that are called the low-low and the high-low tides. Since the successive tidal phases are only about 6
hours apart, the tide may be rising in the lower part of the estuary and at the same time dropping in the upper part.

The water in Delta channels or in the bay may move 8 miles downstream and back on the ebb and flood of the
tide, and as it does, the environment at one location changes markedly. Storrs, Selleck, and Pearson (1964, Appendix
B-1) found that a chlorinity change of 6 [o/oo] was not unusual in San Pablo Bay between the high-high and the
low-low tide some 8 hours later. Usually the change is somewhat less in Suisun Bay. Tidal movements of water also
subject sessile animals in the Delta to different environmental conditions but, except at the western edge, not to ma-
jor changes in salinity. Any problems of pollution or dissolved oxygen deficiency move back and forth in a gradu-
ally diffusing slug of water in the Delta and can generate puzzling results for those collecting water quality informa-
tion without reference to the tidal cycle.

1.4. CURRENTS
Most of the estuary is subjected to strong currents. Currents in the bay are the result of tides modified largely by
wind and to some extent by freshwater outflow. Charts of tidal currents of San Pablo and San Francisco Bay are
available from the U. S. Coast and Geodetic Survey in Washington, D. C. These charts show that the currents in the
Golden Gate and Carquinez Strait reach 8 feet per second at
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times. Currents in the main channel of San Pablo Bay sometimes reach 5 feet per second but in the shallow waters of
the bay, they seldom exceed more than 1.5 feet per second.

Except for the "dead-end" sloughs, currents in the Delta channels are fairly strong. Velocities of 2.5 feet per
second on the ebb flow of the tide are common.

Currents in the Delta are dependent upon tidal movements, river flow, and the operation of the U. S. Bureau of
Reclamation's cross channel at Walnut Grove and pumping plant near Tracy (Figure 1). The cross channel diverts
Sacramento River water into the channels of the northern Delta. That water flows southward across the San Joaquin,
through channels of the south Delta to the pumps on Old River. Beginning in 1955, the U. S. Bureau of Reclamation
began to divert large quantities of Sacramento River water into the cross channel, and to pump 3 to 4 thousand cubic
feet per second out at Tracy. Each summer this results in a greater than normal net downstream movement of water
through the forks of the Mokelumne River and other north Delta channels and a net reversal or upstream movement
in Old and Middle Rivers of the south Delta and at times in the main San Joaquin River up to and above Stockton.

Rate and directions of flow and water quality are sometimes changed when the pumps are turned on or off. The
changes may have interrupted the normal movements of anadromous fishes (Ganssle and Kelley, 1963), reduced the
ability of the north Delta to produce zooplankton (see Turner, p. 97 to 100), and changed the distribution of Neo-
mysis awatschensis (see Turner and Heubach, p 106 to 108).

1.5. SALINITY
The salinity gradient from fresh to sea water is usually about 50 miles long, extending from the western edge of the
Delta to mid-San Francisco Bay. The gradient shortens when the Sacramento and the San Joaquin Rivers are in
flood stage and, of course, its location changes as the amount of outflow changes. The mesohaline zone of the
"Venice System" of estuarine classification (Reid, 1961; p. 204) moved upstream from San Pablo Bay through
Suisun Bay during each of the two summers of our investigations (Figure 2).

Salt water is kept out of the Delta by releases of fresh water from upstream reservoirs in the Sacramento River
system during dry summer and fall months.

This is in general a "well-mixed" estuary. Personnel from the Sanitary Engineering Research Laboratory at the
University of California, Berkeley, made a large number of measurements relevant to this subject during 1960
through 1963. They found more than 2 to 4 parts per thousand difference in top and bottom salinities only in San
Pablo Bay and San Francisco Bay during the late winter and early spring of 1963.

The U.S. Army Corps of Engineers made many measurements of salinity in September 1956 and in February and
March 1958 when freshwater inflows from the Delta into the bay were 16,000 and 95,000 cfs respectively. Their
measurements show no salinity wedge at the lower flows but a definite one at the higher flows (U.S. Army Corps of
Engineers, 1963; Figure 2).
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FIGURE 2. Changes in salinity during the study period 1963 and 1964. Figures are parts per million chlorides
The available evidence is that most of the time the bay is well mixed, but that during periods of flood a tongue of

fresh water overlies the saltier water of San Pablo and San Francisco Bays.
There is little vertical stratification in the freshwater channels of the Delta. We have measured water temperature,

conductivity and dissolved oxygen concentration of the water column in many channels at many times of the year
and rarely found more than slight and temporary differences. Winds, and especially tidal currents, are constantly
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mixing the waters of each channel and even the so-called "slack" water is quiet only on the surface.

1.6. WATER QUALITY
Quality of water in this estuary is better than in most estuaries that are surrounded by civilization. Pollution prob-
lems do exist in south San Francisco Bay, in the San Joaquin River below Stockton, and in a few other places, but
there is no general pollution. Dissolved oxygen levels throughout the estuary are usually above 80 percent of satura-
tion. Diurnal fluctuations are seldom large.

Water from the Sacramento and Mokelumne Rivers is soft, with a low dissolved solid content, and water from the
San Joaquin River is hard, with a high concentration of total dissolved solids (Table 4) . These differences reflect the
use that the water from each stream has been put to before it reaches the Delta. The differences are of measurable
biological significance.

TABLE 4
Water Quality Characteristics of the Three Main Rivers Entering the Estuary

The three kinds of water are mixed by tidal action in the channels of the Delta, and during most of the year the
water in a single Delta channel is largely from either the Sacramento or the San Joaquin River. During the summer,
the Mokelumne contributes little or nothing. Turner (see p. 100) illustrates the relationship between zoo-plankton
populations and water from the Sacramento, Mokelumne, and San Joaquin River systems as it flows through the
Delta channels.

1.7. HISTORICAL CHANGES
Extensive reclamation of the Delta tidal marsh began about 1870 and was essentially complete by 1930. Only rem-
nants of the Delta marsh remain today. Some of the tidal marshes adjacent to the bay were also leveed and used for
agriculture but as the summer availability of fresh water for irrigation declined, many reverted to marshes and are
now used mostly as wintering grounds for waterfowl, and public and private shooting areas. Some intertidal or shal-
low regions of the bay have been filled for municipal, industrial, or other uses and some of them have been leveed to
use as evaporation ponds for salt production.
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The inflow of fresh water to the Delta has been considerably altered by the storage of water in many upstream
reservoirs and diversion for upstream uses. Flood flows are of less frequency and magnitude in both the Sacramento
and San Joaquin River systems. Late summer flows in the Sacramento River have been increased to prevent salinity
intrusion into the Delta, but summer flows in the Mokelumne and San Joaquin Rivers have been reduced to insigni-
ficant quantities during all but wet years.

Consumptive use of water on lands adjacent to the estuary is probably no greater than that formerly used by the
plants of the tidal marsh (Calif. Division Water Resources, 1931), but the mean outflow of fresh water from the
Delta to the bay was reduced from 33.6 million acre feet in 1900 to 15.9 million in 1960 (Calif. Dept. Water Re-
sources, 1960).

The position of the salinity gradient in the estuary has been somewhat stabilized by all these changes. Salinities in
Suisun Bay are now usually higher than they were under natural conditions, and the invasion of the Delta by salt wa-
ter during the late summer of dry years is now prevented by the releases of fresh water from upstream storage in the
Sacramento River.

In addition to having made many changes in the environment, man has introduced a host of exotic animal and
plant species. Most of the fishes that now provide him recreation—striped bass, Roccus saxatilis, shad, Alosa sapi-
dissima, largemouth bass, Micropterus salmoides, and several other centrarchids and the white catfish, Ictalurus
catus—were introduced years ago and have done very well. The native Sacramento perch, Archoplites interruptus, is
rare. The tule perch, Hysterocarpus traski, is uncommon and the large minnows—the hitch, Lavinia exilicauda, the
hardhead, Mylopharodon conocephalus, the squawfish, Ptychocheilus grandis, the Sacramento blackfish, Orthodon
microlepidotus, and the splittail, Pogonichthys macrolepidotus—have been reduced to minority group status.

Skinner (1962) has described the past and present fish and wildlife resources in a review of the historical informa-
tion.

Two introductions, the carp, Cyprinus carpio, and the water hyacinth, Echornia crassipes, reported as harmful in
other areas have done no extensive damage here.

Recently, the threadfin shad, Dorosoma petenense, was introduced. It has become abundant in quiet water of the
Delta and is an important food of adult striped bass (Don Stevens, unpublished).

The Asiatic clam, Corbicula fluminea, is abundant in some areas. Heavy concentrations of this clam are found in
the Delta-Mendota Canal. Tons of these animals are dredged from the canal when it is drained for repairs. A small
amount of C. fluminea is collected from the Delta and sold as catfish bait.

Over five million people now live around the periphery of the estuary. They use it as a source of municipal, indus-
trial, and irrigation water, a place of recreation, for transportation, and for waste disposal.

Recreational use has increased tremendously in recent years, and although isolated areas are still fairly easy to
find, in many places a dozen or more boats are always in sight. Much of the recreational use
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is sport fishing for striped bass and white catfish. Commercial fishing for salmon, striped bass, shad, and catfish has
been outlawed. Only minor commercial fisheries for shrimp, carp, and bait remain.

1.8. FUTURE CHANGES
Future changes in the Sacramento-San Joaquin estuary will be the result of increases in human population both here
and throughout the state. The population of California is expected to double in 25 years and to quadruple in 50 (U.
S. Dept. of Commerce, 1959). The most significant changes for fish and wildlife will be the further reduction of
freshwater inflow into the Delta and into the bay, the increase in human waste and agricultural drain water, the
changes in hydraulic conditions in the Delta, and the reclamation of the remaining marsh land.

Fortunately the need to protect and improve fish and wildlife resources and the aesthetic qualities of the estuary
has clearly been recognized and there can scarcely be any doubt that these uses will be included as part of future
plans. The real question is not whether we want to protect these resources but whether we can, and at the same time
make major changes in the environment. There is certainly doubt that this is possible in an old ecosystem whose
members have actually evolved to fit the conditions of their environment. Ours is an essentially new ecosystem. The
old one has been drastically affected over the last hundred years by major changes in the environment and introduc-
tions of exotic animals. Our interest and responsibility lies in learning all we can about the ecology of that system
and in using that knowledge for the benefit of man. Fish and wildlife resources of the Sacramento-San Joaquin estu-
ary will depend to a large extent upon how well we do that.
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2. ZOOPLANKTON OF SAN PABLO AND SUISUN BAYS
RICHARD E. PAINTER

2.1. INTRODUCTION
This paper describes the zooplankton of the middle reach of the estuary of the Sacramento and San Joaquin Rivers.
The text is based upon 383 plankton samples collected over 12 consecutive months from January through December
1963.

Two copepods, Acartia clausi and Eurytemora affinis, and the opossum shrimp, Neomysis awatschensis, domin-
ated the catch of zooplankton.

The extensive shallow areas of this portion of the estuary were zones of high zooplankton standing crop.
of the several environmental factors studied, chlorinity was most responsible for species distribution.

2.2. METHODS
I collected zooplankton from the main channel of San Pablo and Suisun Bays along the long axis of the estuary, dur-
ing 1 day each month throughout 1963 (Table 1) . A second series of collections over the extensive shallow water
"flats" of both bays required several days each month because many of the stations were intertidal and could be
sampled only near high tide. Most collections were made close to the middle of each month.

2.3. COLLECTION PROCEDURE
In the deep water channel there were no fixed stations. The location of sampling each month depended on the loca-
tion of the chlorinity gradient from fresh to sea water.

Collections were made with three Clarke-Bumpus samplers fitted with number 10 bolting cloth. One sampler was
towed near the surface,

TABLE 1
Plankton Collection Schedule, 1963

Dates on Which Plankton Were Sampled During the Survey
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one at 15 feet from the surface, and another 5 feet from bottom. The procedure was as follows:

·1) Sampling from the vessel Nautilus started at high-high tide at the western end of San Pablo Bay (Figure 1).
The Clarke-Bumpus samplers were fastened to a cable and towed at about 1 knot as the boat moved upstream
into the ebbing tide.

·2) At the end of 20 minutes, zooplankton sampling ceased and the vessel stopped. Water samples were collec-
ted from the surface and 5 feet from the bottom for laboratory analysis of chlorinity and field measurement of
temperature.

·3) The vessel proceeded up-estuary. The chlorinity of the surface water was measured by hydrometer every
0.5 mile until we reached water with a chloride content of 2 parts per thousand less than that of the previous
sample.

·4) The three Clarke-Bumpus samplers were again towed upstream for 20 minutes. Surface and deep water
samples were again collected.

·5) This procedure was repeated as the Nautilus moved upstream through the salinity gradient to fresh water. In
this way the salinity gradient was thoroughly sampled at seven or more "stations" each month but of course,
only the station at the west end of San Pablo Bay was in the same location each month.

To compare the monthly geographic location of plankton concentrations in the tidal estuary, a common tide-
stage-reference is needed. Because the vessel Nautilus could not travel fast enough between stations to occupy every
station at the same tide stage, I corrected the location of all samples from the points where the samples were collec-
ted to where that particular mass of water theoretically had been at the last high-high tide. This correction was made
by comparing chlorinity gradients supplied by Department of Water Resources engineers and the chlorinities meas-
ured from water samples taken during the zooplankton collections.

In contrast with the changing locations of main channel collections, zooplankton collection was done each month
at "fixed" stations in the flats of San Pablo Bay and in the Honker and Grizzly Bay portions of

FIGURE 1. San Pablo and Suisun Bay zooplankton collection stations

19



Suisun Bay (Figure 1). Each month at every one of these stations I made one, 10-minute surface tow with a Clarke-
Bumpus sampler fitted with number 10 bolting cloth.

All zooplankton collections were preserved in 10 percent neutralized (borax) formalin with rose bengal dye added
as an organism-coloring agent. To estimate the numbers of net zooplankton per cubic meter of water sampled, a
laboratory technician siphoned excess formalin from the quart jar containing field sample, formalin, and rose bengal
dye. She poured the remaining contents of the jar into a graduated cylinder and measured the volume of formalin
and concentrated organisms. Using a Sedgwick-Rafter counting chamber, she counted the total number of animals in
at least 3 cc of this thoroughly mixed concentrate. Numerical abundance was then estimated with the following for-
mula:

FORMULA
The first 100 consecutive organisms counted were identified as specifically as possible, and the percent occur-

rence of each was applied to the estimate of total numbers to provide an estimate of the number of each species per
cubic meter.

2.4. CHANNEL ZOOPLANKTON
The concentration of zooplankton in the main channel was high at all times of the year and at all locations sampled
(Figure 2). Concentrations ranged from less than 10,000 to more than 500,000 zooplankton per cubic meter. Within
this range they were lowest where I began sampling in January, increased to a peak in May, declined some in most
areas during June and July, increased again in August, then steadily declined during October, November, and
December.

The location of the highest concentration varied during the season with the location of the salinity gradient. It was
often centered in that part of the estuary where chlorides ranged from 7 to 10[o/oo].

In the spring when floods and rising temperatures were prevalent, and in the fall and early winter when rapidly
falling temperatures occurred, a second center of abundance appeared toward the fresh water end of the chlorinity
gradient.

Adult copepods of all species regularly were more abundant in collections made near the bottom of the main
channel of both San Pablo and Suisun Bays (Figures 3a and 3d).

Both nauplii and copepodids were usually more abundant in collections made near the bottom of San Pablo Bay
channels (Figure 3b, 3c). This was not true of collections from the Suisun Bay channel (Figure 3e, 3f). There was no
consistent pattern of these younger stages being distributed according to depth in Suisun Bay.

Two species of Copepoda, Acartia clausi and Eurytemora affinis, and the mysid shrimp, Neomysis awatschensis,
made up the bulk of the adult zooplankton. Cyclops spp., Diaptomus, novamexicanus,
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FIGURE 2. Seasonal changes in the distribution and abundance of total net zooplankton in the main channel of the
estuary. Depth is shown as percent of the total depth of the channel
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FIGURE 3. Vertical distribution of copepods during the year in the channel of San Pablo and Suisun Bays. Solid
lines connect monthly means of all surface collections. Broken lines connect monthly means of collections five feet

off bottom
Clausocalanus arcuicornis, Oithona sp., and Euterpina sp., persisted throughout the survey but were low in numbers.
Other species were present or even abundant on occasion, but only the species cited were sampled during most
cruises (Table 2) .

Monthly changes in population levels, centers of abundance, and distributions by depth and chlorinity of these
principal taxa are documented in this paper with isopleths of population densities (Figures 4 5 6 7 8 9 10 11). Each
isopleth is based on monthly mean numbers of each taxa per cubic meter of water collected from three depths at sev-
en or more stations in the channels. Each monthly isopleth is therefore drawn by graphic interpolation of 21 or more
points.

2.4.1. Acartia clausi
The large calanoid copepod, A. clausi, was the most abundant species collected in most parts of San Pablo and
Suisun Bays. In deep water I took more than 1000 m3 at most stations and during most months of the year (Figure
4). Highest concentrations appeared in May, June, and July throughout eastern San Pablo Bay, the Carquinez Strait,
and western Suisun Bay. During May and June, most of the samples I collected below the surface layer of the study
area contained more than 10,000 A. clausi per cubic meter of water. The notable
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TABLE 2
Zooplankters Collected in the Channel
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exception to otherwise almost universal abundance of A. clausi occurred in the Chipps Island reach of Suisun Bay in
the winter and spring and in all of Suisun Bay down to the Carquinez Strait in April. This reduction corresponded
with the increase in net outflow of fresh water from the Delta and subsequent reduction of chlorinity in the area to
less than 2[o/oo].

2.4.2. Eurytemora affinis
Always most abundant near fresh water, E. affinis was distributed along the estuary to 6 to 9[o/oo] chloride concen-
tration (Figure 5). In the Suisun Bay portion of the study area, this calanoid copepod was present in substantial num-
bers in all seasons. Maximum numbers occurred in February in the Chipps Island reach of Suisun Bay when 16,900
animals per cubic meter were enumerated. The only months 100 or more E. affinis per cubic meter occurred in San
Pablo Bay were February, April, and May. During these months, increased outflow of fresh water moved the 6 to
9[o/oo] chlorides seaward through the Carquinez Strait into eastern San Pablo Bay. Among the entomostraca, this
species is second only to A. clausi in numbers of animals caught.

2.4.3. Clausocalanus arcuicornis
This calanoid copepod occurred in greatest numbers in the western portion of San Pablo Bay during the winter
months (Figure 6). From a January maximum of 1600 per cubic meter, the population level fell to a minimum in
May and June when none was counted. Standing crops were low east of the Carquinez Strait during most cruises.
Only during January and December did I find 100 or more C. arcuicornis per cubic meter as far east as Point Edith
in Suisun Bay.

2.4.4. Neomysis awatschensis
The opossum shrimp, N. awatschensis, is the most important invertebrate in the diet of young-of-the-year fish
(Heubach, Toth, and McCready, 1963; Ganssle, see p. 92). Population levels of 10 or more N. awatschensis per cu-
bic meter were associated with chlorinities of 1 to 7 parts per thousand and were confined to Suisun Bay every
month except April, a freshwater flood month (Figure 7). Each month standing crops of N. awatschensis increased at
all depths toward fresh water. Highest population levels were always found in the bottom samples at the freshest wa-
ter station where 100 to 500 animals per cubic meter were collected each month from June through December.

2.4.5. Euterpina sp
This harpacticoid copepod was persistent but never very abundant (Figure 8). Excluding flood months when low
chlorinity water was in San Pablo Bay, the 100 organisms-per-cubic-meter contour was associated with a chlorinity
range of 7.5 to 11.0[o/oo] or a 10-month average of 8.3[o/oo]. Every month Euterpina sp. was most abundant toward
the seaward end of the study area. August, September, and October, the months of maximum chlorinity intrusion in-
to the estuary, were the only months when 100 or more Euterpina per cubic meter were sampled in Suisun Bay.
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FIGURE 4. Seasonal changes in the distribution and abundance of Acartia clausi in the main channel of the estu-
ary. Depth is shown as percent of the total depth of the channel
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FIGURE 5. Seasonal changes in the distribution and abundance of Eurytemora affinis in the main channel of the es-
tuary. Depth is shown as percent of the total depth of the channel
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FIGURE 6. Seasonal changes in the distribution and abundance of Clausocalanus arcuicornis in the main channel
of the estuary. Depth is shown as percent of the total depth of the channel
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FIGURE 7. Seasonal changes in the distribution and abundance of Neomysis awatschensis (mercedis) in the main
channel of the estuary. Depth is shown as percent of the total depth of the channel
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FIGURE 8. Seasonal changes in the distribution and abundance of Euterpina sp. in the main channel of the estuary.
Depth is shown as percent of the total depth of the channel
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2.4.6. Cyclops spp
I recognized several species of Cyclopoida in regular plankton collections but grouped them together for discussion.
Since they were relatively low in numbers in the total zooplankton and are typical animals from the freshwater en-
vironment, I made no attempt to identify them beyond genus. As expected, these organisms were most numerous to-
ward the freshwater end of the estuary (Figure 9). Only during flood season were any Cyclopoida found in San
Pablo Bay.

2.4.7. Diaptomus spp
Like the Cyclopoida, the several species of Diaptomus encountered during the survey were typical freshwater inhab-
itants and were carried into the middle estuary from upstream. Pennak (1953) states that the Diaptomidae are con-
fined to fresh water, and that there are no near marine relatives. D. novamexicanus, D. siciloides, and a third species
not identified were taken during the year. Always found in greatest abundance near fresh water (Figure 10), no
Diaptomus were taken seaward of Suisun Bay.

2.4.8. Oithona sp
This copepod was sampled most months but was not present in large concentrations. In winter, it was sampled
throughout San Pablo Bay (Figure 11), but it disappeared from the study area in spring and early summer. This spe-
cies was always most abundant in San Pablo Bay at the seaward-most collection station. Only during February and
April, flood months, were any Oithona sampled in water less than 7[o/oo] chlorides.

2.5. ZOOPLANKTON IN SHALLOW WATERS
The extensive shallow areas of San Pablo and Suisun Bays were zones of high zooplankton standing crop; much
higher than in nearby deep water. San Pablo Bay shallows were especially high in total numbers of zooplankton.
The average total zooplankton concentration per cubic meter at shallow water stations L1, L2, and L2A (Figure 1)
was higher every month of the survey than was the zooplankton concentrations near the surface of the closest chan-
nel station (Figure 12a). Also in San Pablo Bay, the average total zooplankton of shallow water stations L3, L4, and
L5 (Figure 1) surpassed the number of zooplankton at the nearest surface channel station in all months but July and
August (Figure 12b).

Zooplankton collections from Grizzly Bay shallow water stations, while lower in total numbers than the San
Pablo flats, were regularly higher than nearby surface channel waters (Figure 13a). Only in April (a flood month),
May, and July were shallow areas lower in total zooplankton than the surface waters of the nearby channel. Honker
Bay, however, had the reverse situation. For most months, surface samples in the channel stations had greater zo-
oplankton concentrations than did shallow Honker Bay (Figure 13b).
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FIGURE 9. Seasonal changes in the distribution and abundance of Cyclops spp. in the main channel of the estuary.
Depth is shown as percent of the total depth of the channel
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FIGURE 10. Seasonal changes in the distribution and abundance of Diaptomus spp. in the main channel of the estu-
ary. Depth is shown as percent of the total depth of the channel
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FIGURE 11. Seasonal changes in the distribution and abundance of Oithona sp. in the main channel of the estuary.
Depth is shown as percent of the total depth of the channel
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FIGURE 12. Monthly concentrations of total net zooplankton from the shallow flats of San Pablo Bay and a nearby
surface channel station. The broken lines connect the monthly means of three contiguous "flats" stations. Solid lines

connect the monthly concentration at the nearest surface channel station

FIGURE 13. Monthly concentrations of total net zooplankton from the shallow flats of Grizzly and Honker Bays and
from a nearby surface channel station. The broken lines connect the monthly means of two "flats" stations. Solid

lines connect the monthly concentration at the nearest surface channel station

2.5.1. Major Species
All of the 26 species or taxa collected over the shallow "flats" (Table 3) were also collected from the channel. Four-
teen taxa present in the deep channel collections were not found in those from the "flats." All of these were of mar-
ine origin.

With the exception of Clausocalanus arcuicornis, the same species that were dominant in the deep channel plank-
ton collections were also present and abundant over the shallow lateral areas.

Dominant zooplankters again distributed themselves in the estuary according to chlorinity. Acartia clausi were
found over the more saline water of "flats" in San Pablo Bay. Brackish and freshwater
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TABLE 3
Lateral Area Zooplankton Species List

species, typically Eurytemora affinis, Diaptomus novamexicanus, Cyclops sp., and Neomysis awatschensis, were
persistent in Grizzly and Honker Bays.

Because distribution and abundance of major species followed the same pattern demonstrated in deep channel
sampling, I will discuss only the mysid shrimp separately.

2.5.2. Mysid Shrimp
I sampled two species of mysid shrimp in shallow "flats" zooplankton tows. Acanthomysis macropsis was obtained
only in small numbers during winter and early spring over the San Pablo flats. Neomysis awatschensis was taken
someplace in the shallow survey area every month but September.

Neomysis awatschensis was numerous in San Pablo Bay only during the months of June and July (Table 4) . In
Grizzly and Honker Bays, however, mysids were present from spring through summer but declined abruptly during
September.
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TABLE 4
Number of Neomysis and Acanthomysis per Cubic Meter Collected Each Month at Lateral Stations

2.6. DISCUSSION
2.6.1. Species Composition
The only publications on zooplankton from San Francisco Bay are reports of collections from the steamer Albatross'
1912–14 expedition. Esterly (1924) described the copepods taken in that survey and Tattersall (1932) wrote of the
Mysidacea collected.

Esterly (1924) reported 11 copepod species from San Francisco Bay and he found 8 of these in San Pablo Bay. I
collected seven of the eight species reported by Esterly from San Pablo Bay and 4 additional species that he did not
describe anywhere in the San Francisco Bay area.

Besides an increase in number of species from that noted in 1912–13, there has been a significant shift in relative
abundance of the various species present. Epilabidocera amphitrites was the dominant copepod 50 years ago in San
Pablo Bay. Acartia clausi was second in total numbers and frequency of occurrence in hauls. My collections were al-
most devoid of Epilabidocera amphitrites, and Acartia clausi was the most abundant species present throughout the
year.

Tattersall (1932) recorded five species of mysid shrimp from San Pablo Bay. Acanthomysis macropsis was the
most abundant followed by Neomysis awatschensis and Neomysis franciscorum. Neomysis kadiakensis and Neo-
mysis costata were rarely taken. Only two of these species were collected during the course of this investiga-
tion—Neomysis awatschensis and Acanthomysis macropsis—and Neomysis awatschensis was the most abundant
species.

2.6.2. Depth
The importance of depth in the distribution of zooplankton is well documented. Diurnal migrations have been noted
in many species. Phototropism was reported to be the cause of diurnal migration in one case (Loeb, 1894) and pho-
totaxis and geotaxis (Parker, 1902; Dice, 1914; and Esterly, 1917, 1919) in another. Optimum light intensity
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is cited by Russell (1926) and Cushing (1951) as a cause for vertical migration, while color responses are suggested
as factors by Baylor and Smith (1953).

In this investigation, channel zooplankton increased in numbers, with depth. Copepods, the most abundant anim-
als in the zooplankton, exhibited some change in distribution between life history stages and between areas of the es-
tuary. The adults seemed to prefer deeper water while immature forms were more randomly distributed at all depths.
Differences in distribution between adults, copepodids, and nauplii may be a reflection of differing abilities to swim,
a real change in depth preference, or both. Differences between areas may be caused by changes in turbidity (as a
general rule the estuary becomes less turbid toward the ocean).

Surface concentrations of zooplankton in the channel were often less than concentrations over the shallow "flats."
The reason for this difference is unknown. Turner (see p. 99) found larger zooplankton concentrations in the Delta to
be correlated with longer residence times of water in certain channels. Similar conditions may be operating over the
middle bay "flats." Water remains over large portions of the "flats" many days longer than water remains in a given
area in the deep channel (U. S. Corps of Engineers, 1963).

2.6.3. Chlorinity
Many authors state that chlorinity is the major factor controlling distribution and abundance of zooplankton in estu-
aries (Esterly, 1924; Tattersall, 1932; Alexander, Southgate, and Bassindale, 1935; Hulburt, 1957; Reid, 1957;
Cronin, Daiber, and Hulburt, 1962).

Chlorinity was the prime factor that determined the longitudinal distribution of zooplankton in the estuary. The
common genera can be divided into three groups based on chlorinities: (i) those genera most abundant near the west-
ern or seaward end of the study area; (ii) those genera in greatest abundance toward the freshwater end of the
chlorinity spectrum; (iii) those genera present over a broad chlorinity range. These three categories fit roughly the
chlorinity zones expressed by the "Venice" system of saline water classification (Beadle, 1958). Clausocalanus ar-
cuicornis, Euterpina sp., Calanus finmarchicus and Oithona sp. all were most abundant near the most saline water
sampled each month or in the euhaline zone. Cyclops spp. and Diaptomus spp. occurred in highest numbers consist-
ently toward fresh water or the oligohaline zone. Acartia clausi and to some extent Eurytemora affinis and Neomysis
awatschensis were present over a wide chlorinity range. Acartia is a polyhaline-mesohaline species while
Eurytemora and Neomysis are mesohaline-oligohaline forms. A strict chlorinity-taxa classification breaks down
with euryhaline forms such as Acartia and Eurytemora because by definition they can occur over a wide chlorinity
range.

2.7. SUMMARY
1) During 1963, 383 plankton samples were taken in the main channel and over the shallow flats of San Pablo and
Suisun Bays. Collections were made once each month with Clarke-Bumpus samplers fitted with number 10 mesh
bolting cloth.
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2) The concentration of zooplankton ranged from 10,000 to 500,000 animals per cubic meter in the main channel
and was high at all seasons of the year and at all locations in the estuary. Highest concentrations were usually associ-
ated with 7 to 10[o/oo] chlorides and near fresh water.

3) Adult copepods were always most abundant in the deepest water sampled at a station. Immature copepods were
more random in distribution with respect to depth.

4) The shallow "flat" areas of San Pablo and Grizzly Bays support more net-zooplankton than comparable depths
over deep water.

5) Acartia clausi, Eurytemora affinis, and Neomysis awatschensis made up the bulk of the net-zooplankton in this
portion of the estuary.

6) Chlorinity was the prime factor that determined the longitudinal distribution of zooplankton.
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3. ZOOBENTHOS OF SAN PABLO AND SUISUN BAYS
RICHARD E. PAINTER

This chapter describes the invertebrate bottom fauna of the middle reach of the Sacramento-San Joaquin River estu-
ary and some of the physical and chemical factors that control faunal distribution there. Emphasis is placed upon
those animals that were most persistent and abundant or those that were known to be important in the diets of fish
and game species in the area.

Samples were taken each month during 1963. Physical and chemical information from representative stations and
1107 benthic samples were collected and analyzed.

of the several environmental factors studied, chlorinity was the prime cause of differences in species distribution.

3.1. METHODS
3.1.1. Station Location
The sites of monthly collections were along eight transects at right angles to the longitudinal axis of the estuary,
from the western edge of the Delta near Antioch to the western end of San Pablo Bay (Figure 1). Most transects
were about 5 miles apart and included four stations at different depths. Each transect had one deep station in the
main channel, usually on "sandy" bottom, one station on the 15-foot depth contour, and one station in 6 to 8 feet of
water with clayey-mud or muddy-clay bottom. Most transects had a fourth station in the intertidal-mud zone. Two
transects in Suisun Bay and one in the lower Sacramento River did not have an intertidal station.

3.1.2. Sampling Procedure
From January through June, I collected two, 1-square-foot bottom samples from each station with a Peterson dredge.
Each sample was processed in the following manner:

FIGURE 1. Location of zoobenthos collection stations
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·1) The sample was washed through an eight meshes per inch screen, which caught the larger invertebrates and
debris, and then through a 50 meshes per inch screen, which retained most organisms visible to the naked eye.

·2) The organisms and debris left on each screen were washed into a jar (jars).

·3) Ten percent formalin containing rose-bengal dye was added to the samples as a preservative and organism-
coloring agent.

From July through December, after determining that using an intermediate mesh size decreased field washing
time without significant loss of benthic animals, I used only one screen of 30 meshes per inch to separate animals
from sediment. This saving in time enabled an additional sample per station to be taken.

3.1.3. Laboratory Procedure
Field samples were rewashed through a 12" x 12" screen with 50 meshes/inch until June, and 30 meshes/inch every
month thereafter. Large animals were removed by hand and placed in a petri dish. The remaining sample was ex-
amined, a tablespoon full at a time, in an enameled pan to which a few cc of water had been added. The animals
were removed from these small subsamples and placed in a petri dish for identification and enumeration. Biomass of
selected species in each sample was determined by water displacement.

The abundance and distribution of selected species is illustrated in this paper by isopleths of abundance drawn for
each of four depths common to most transects. The isopleths of abundance, for every depth except the intertidal
zone, were drawn on a grid of 96 points. Each point represented the mean number of animals collected per square
foot at each station each month. This mean was based on two, 1-square-foot bottom samples collected each month at
each station from January to June and three samples per month collected at each station from July through Decem-
ber. The intertidal zone had a 72 point grid because two transects did not have intertidal stations.

3.1.4. Chlorinity
To describe the bottom chlorinity conditions during most months, I used monthly averages of chlorinity measured
near high-high tide, every 4th day, at Department of Water Resources sampling stations close to my transects
(Figure 2). These are surface measurements but except for flood periods, the chloride content of near bottom water
samples is only 1 or 2[o/oo] greater than those collected on the surface (see Kelley, p. 12). In my opinion they rep-
resent a more accurate description of bottom salinity conditions than can be obtained from examining my bottom sa-
linity measurements which were made at different times during the tidal cycle.

During the flood months, however, the high chloride concentrations at the bottom in San Pablo. Bay were overrid-
den with a surface layer of relatively fresh water (Figure 3) and a strong bottom chlorinity wedge extended upstream
into the Carquinez Strait. The surface and bottom chloride concentrations in Suisun Bay during high fresh water run-
off were nearly identical. For the description of chlorinity conditions
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FIGURE 2. Surface isopleths of chlorides drawn from monthly averages of California Department of Water Re-
sources four-day chlorinity observations 1963

on the bottom during the flood months (February through May), I used my own measurements of the bottom
chlorinity obtained 1 day each month at various locations in the main channel along the entire length of the study
area (Figure 3). These bottom chlorinity values were obtained at different ebb-tide stages and are lower than the con-
centrations would have been if measurements could have been made at high-high tide.
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The same problem arises when trying to describe the bottom chlorinity conditions in the "flats" of the bay. It was
impossible to sample at all stations at the same tide stage and during a tidal cycle the chlorinity may change as much
as 6[o/oo]. Fortunately the bottom chlorinity conditions in the flats were within a few ppt of the concentration on the
surface of the adjacent channel (Table 1) . I have therefore used monthly averages of the channel surface chloride con-
centrations at high-high tide as an approximation of chlorinity conditions near the bottom in the "flats."

Monthly averages of surface salinity based on samples collected every 4 days from the channel served then as an
approximation of the bottom salinities in the "flats" and in the channels as well during all but the February through
March period. Bottom salinities in the channel during these "flood" months were much higher than surface

FIGURE 3. Bottom isopleths of chlorides drawn through concentrations measured one day each month, 1963
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TABLE 1
High-High Tide Chlorinity in San Pablo Bay One Day Each Month During 1963 at the Surface Near Point Pi-

nole and Over Shallow Water Near Station 21
salinities, and my description of them is based upon single samples taken at various tide stages.

Based on both surface and bottom chlorinities, the extent of chlorinity encroachment up the estuary varied season-
ally (Figure 2). During a winter flood, in late January and early February, and during an early spring flood, in April,
water of 1[o/oo] chlorides was temporarily displaced to the Carquinez Strait. Chlorinity encroachment into Suisun
Bay went on throughout the summer with maximum penetration in August when 1[o/oo] chlorides reached the Pitts-
burg area. A slow retreat seaward by the chlorinity gradient in the estuary occurred through fall and winter.

3.1.5. Sediments
Sediments were classified as either sand, silt, silt-clay, or clay by a simple qualitative examination (Table 2 . The deep
channel water in San Pablo Bay (Stations 1 and 2) had a silt or clay bottom while the bottom of the Suisun Bay
channel (Stations 4 through 8) was of sand. The bottoms of San Pablo Bay flats were of clay or silt-clay. Grizzly and
Honker Bay flats had silt bottom sediments. Carquinez Strait channel (Station 3) had a sand substrate and resembled
channel stations in Suisun Bay while the substrate in flats adjacent to the Strait (Southampton Bay) were clay and re-
sembled those of shallow areas in San Pablo Bay.

3.2. RESULTS
I collected benthic animals belonging to more than 40 taxa (Table 3) . Those animals that were numerous and/or are of
known importance as fish and wildlife food are discussed in detail. Macoma inconspicua, Synidotea laticauda, Nas-
sarius obsoletus, Tapes semidecussata and

TABLE 2
Principal Sediment Type at Zoobenthic Collection Stations
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TABLE 3
List of Benthic Species Taken During the Survey

Gemma gemma are important food of diving ducks (Calif. Dept. Fish and Game, unpublished). Ganssle (see p. ) lists
Macoma inconspicua, Photis californica and Synidotea laticauda as important fish food in the estuary. Corophium
spp. and Nereis (Neanthes) spp. are a part of the diet of young-of-the-year striped bass (Heubach, Toth, and Mc-
Cready, 1963).

There was a large difference in zoobenthic biomass from one end of the study area to the other. The total biomass
of those animals that were numerous or important as fish and game food was much larger in San Pablo Bay transects
than in any Suisun Bay transects (Figure 4). This disparity between the two areas was especially evident in the Mol-
lusca. Mollusca averaged 3.6 cc/ft2 sample in the most seaward transect in San Pablo Bay and less than 0.1 cc
sample in transect four in eastern Suisun Bay.

The biomass of arthropods important in the diets of fish and game species was also highest in San Pablo Bay. An-
nelid biomass was low in transects at each end of the chlorinity gradient but had no apparent trend in the survey
area.

Eleven species were abundant enough to warrant a description of their distribution (Figures 5 6 7 8 9 10 11 12 13
14 15).

3.2.1. Tapes semidecussata
The Japanese littleneck clam was the most numerous pelecypod found in deep water in the study area. I found them
only in the main channel through San Pablo Bay and in Carquinez Strait (Figure 5).

Bottom chlorinities in San Pablo Bay where T. semidecussata was most abundant ranged from about 7 to
16[o/oo]. Maximum numbers occurred in the summer and fall when the highest chlorinities were recorded in the
bay. The apparent summer increase in population probably was not due to the summer increase in chlorinity; it may
have been the result of sampling errors in the spring, recruitment of young clams into the catch, or both.

I did not take T. semidecussata upstream from the Carquinez Strait and only rarely did I find it at stations 6 feet or
less in depth. The bay pollution study conducted by the University of California (McCarty et al., 1962) reported T.
semidecussata in 5 percent of their samples from Suisun Bay. Filice (1958) observed the species from
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FIGURE 4. Average monthly biomass of fish and wildlife food organisms from eight transects in San Pablo and
Suisun Bays

FIGURE 5. Average numbers of Tapes semidecussata per square foot sample each month at four depths along eight
transects in the study area
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8.8[o/oo] chlorides seaward. He concluded that they showed a preference for water shallower than 6 feet, but I found
it only in my deep water collections.

3.2.2. Gemma gemma
This small pelecypod was the most numerous clam collected in shallow water in San Pablo Bay (Figure 6). It was
collected at all four shallow-water stations there from clay and silt-clay bottom types. I found G. gemma only on
three occasions upstream from the Carquinez Strait.

FIGURE 6. Average numbers of Gemma gemma per square foot sample each month at four depths along eight tran-
sects in the study area

The chlorinity through which G. gemma was found ranged from about 1.5 to 16[o/oo]. Except for the two fresh-
water floods, however, water of low chlorinity did not enter the shallow "flats" of San Pablo Bay where G. gemma
was abundant. Most of the year, water of 8[o/oo] chlorides or more covered the stations where population levels for
G. gemma were high.

3.2.3. Macoma inconspicua
This clam was abundant at intertidal stations in San Pablo and Southampton Bays (Figure 7). The seawardmost in-
tertidal station (Station 31) always provided a large sample of M. inconspicua. Their numbers ranged from 10 to 46
clams per square foot per sample during

FIGURE 7. Average numbers of Macoma inconspicua per square foot sample each month at four depths along eight
transects in the study area
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the year. Station 33 in the Southampton Bay flat provided low numbers of M. inconspicua in the spring but up to 27
per sample in September.

While the increased numbers of M. inconspicua in the fall coincides with maximum chlorinity incursion, in-
creased population levels probably are not caused by the increase in chlorinity. Variance of sampling (sampling er-
ror) and recruitment of small clams into the samples probably explain the increase.

M. inconspicua was never taken from the intertidal stations in Grizzly and Honker Bays, but it was collected in
small numbers at 6- to 8-foot and 16- to 18-foot stations.

The bottom chlorinity over the area where population levels were high probably ranged from less than 2 to
16[o/oo]. For 8 months of the survey, however, the chlorinity was greater than 6.0[o/oo] in these areas (Figure 3).

My results agree with those of Filice (1958) who reported that M. inconspicua preferred mud and avoided sand or
heavier sediments. The University of California pollution study (McCarty et al., 1962) found M. inconspicua in ap-
proximately 20 percent of their samples as far east as the Antioch Bridge. In my study I found no specimens up-
stream from Stake Point (Figure 1).

3.2.4. Mya arenaria
I found the clam M. arenaria from the seaward end of the study area to Point Edith in Suisun Bay (Figure 8). Few,
however, were collected upstream from the Carquinez Strait. Most were taken from stations at 6 to 18 feet of water
in San Pablo Bay and the Carquinez Strait transect. I estimate that the bottom chlorinity where population levels
were high ranged from 5 to 16[o/oo]. Except for the flood months, when low chlorinity water was present at all
depths in the Carquinez Strait, the bottom water was above 8[o/oo].

Filice (1958) found M. arenaria in all substrates and at all levels but with a preference for mud substrate between
datum (mean-lower-low-water) and 18 feet. He found them in water as low as 5.2[o/oo] chlorides. The University of
California study (McCarty et al., 1962) found this species in 27 percent of their samples from San Pablo Bay and in
21 percent from Suisun Bay. Except that I found some

FIGURE 8. Average numbers of Mya arenaria per square foot sample each month at four depths along eight tran-
sects in the study area
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Mya in lower chlorinity water than did Filice, the results of these two surveys agree with mine.

3.2.5. Photis californica
This small abundant amphipod was present during most months at all depths in San Pablo Bay (Figure 9). It was
most abundant at the deep stations. I collected P. californica infrequently in Suisun Bay.

FIGURE 9. Average numbers of Photis californica per square foot sample each month at four depths along eight
transects in the study area

In all San Pablo Bay stations, wide fluctuations in concentration or the absence of Photis corresponded to the
spring flood period. Not until late-summer chlorinity encroachment was well underway did numbers of Photis ap-
pear at the Carquinez Strait. At this time, an average of 1500 animals per square-foot sample, the maximum number
of P. californica at any station for the year, was taken at the seawardmost deep station.

Filice (1958) did not report this species from the area. Storrs, Selleck, and Pearson (1963) described distribution
similar to the one I found.

3.2.6. Corophium spp
I sampled three species of these small amphipods during the survey. Corophium acherusicum was found throughout
San Pablo Bay at all stations and substrates, but the greatest concentrations were at stations 16 feet and deeper
(Figure 10). It did not appear in any Suisun Bay
FIGURE 10. Average numbers of Corophium acherusicum per square foot sample each month at four depths along

eight transects in the study area
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samples until fall when maximum chlorinity encroachment took place. Like Photis californica, the appearance of
large concentrations of C. acherusicum in the Carquinez Strait coincided with the presence of 10[o/oo] chlorides in
that area.

C. spinicorne and C. stimpsoni, the other two members of the genus taken during my study, are treated fully by
Hazel and Kelley (see p. 113 to 133). They analyzed the distributions of these animals from Hazel's and my samples
and found a seaward limit for both species centered near Port Chicago. Only during flood conditions did I collect C.
spinicorne and C. stimpsoni in San Pablo Bay.

3.2.7. Synidotea laticauda
This large brown isopod was taken from several stations in San Pablo Bay in January and infrequently thereafter un-
til fall (Figure 11).

FIGURE 11. Average numbers of Synidotea laticauda per square foot sample each month at four depths along eight
transects in the study area

In August and September, the period of maximum chlorinity incursion, S. laticauda was found as far up estuary as
Honker Bay. Never taken in the intertidal zone, this isopod was most abundant at 6-foot and deeper stations. Filice
(1958) took only one specimen in his collections.

The University of California study (Storrs et al., 1963) found them in seven percent of their samples in San Pablo
Bay and in only one percent in Suisun Bay.

3.2.8. Neanthes succinea
I collected this polychaete from all substrates and depths but found them in large concentrations most often in the 6-
to 8-foot and intertidal zone stations (Figure 12). High population levels were present every month at the Carquinez
Strait shallow stations. I collected great numbers of N. succinea from the intertidal zone of Southampton Bay. Both
seaward and toward fresh water, N. succinea were less abundant. A few specimens were found as far up estuary as
Honker Bay.

Specimens were collected from water with a probable chlorinity range of from 16 to less than 0.1[o/oo]. However,
high population levels occurred only where chlorinity concentration was above 6.0[o/oo] for 8 of the 12 months I
sampled.

A preference for mud substrates and a chlorinity range of 13.8 to 0.6[o/oo] was demonstrated by Filice (1958) for
this species. Storrs et al.,
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FIGURE 12. Average numbers of Neanthes succinea per square foot sample each month at four depths along eight
transects in the study area

(1963) reported them from one end of the study area to the other as far up estuary as the vicinity of the Antioch
Bridge.

3.2.9. Glycinde armigera
This polychaete was never very numerous but was persistent in occurrence at the deep San Pablo Bay stations
(Figure 13). G. armigera was not taken from the intertidal zone stations or up estuary from the Benicia Bridge. Es-
timated bottom chlorinities in the area where G. armigera was collected ranged from 16 to 5[o/oo].

FIGURE 13. Average numbers of Glycinde armigera per square foot sample each month at four depths along eight
transects in the study area

Filice (1958) found this species in all substrates. Storrs et al., (1963) reported G. armigera as the most common
animal in the sediments from San Pablo Bay and abundant to the Carquinez Bridge.

3.2.10. Streblospio benedicti
I found this spionid worm abundant throughout San Pablo Bay at all depths (Figure 14). Few specimens were taken
east of the Carquinez Strait. Over the area where S. benedicti concentrations were high, I estimate that the chlorinity
ranged from 16 to 0.1[o/oo]. Most months the chloride concentrations were over 6.0[o/oo].
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FIGURE 14. Average numbers of Streblospio benedicti per square foot sample each month at four depths along
eight transects in the study area

Filice (1958) found S. benedicti between datum level and 6 feet below, adverse to the intertidal and sand, and
over a chlorinity range of 13.3 to 9.1[o/oo] chlorides. I am unable to determine why Filice did not find S. benedicti
abundant at other depths. Storrs et al., (1963) found this species in San Pablo and lower Suisun Bays.

3.2.11. Polydora uncata
Another spionid worm, Polydora uncata, was distributed throughout the survey area and was found at all stations ex-
cept Stations 5 and 25 (Figure 1) sometime during the year (Figure 15). Abundance, however, was centered in 16- to
18-foot and deeper stations in Suisun

FIGURE 15. Average numbers of Polydora uncata per square foot sample each month at four depths along eight
transects in the study area

Bay. Few specimens were taken from deep stations seaward of Port Chicago. Instead, P. uncata was found in small
concentrations from the 8-foot and shallower stations. P. uncata may have avoided deep water in San Pablo Bay be-
cause this water typically is 1 of 2 ppt chlorides higher than is shallow water (Table 1). I found P. uncata in places
where I estimate the bottom salinities ranged from 16 to less than 0.1[o/oo], but most specimens were collected
where chlorides were 9[o/oo] or less.

52



The Peterson dredge is not a good sampler of invertebrates such as crabs and shrimp that are capable of rapid
movement. I sampled only two shrimp species, Crago franciscorum and Crago nigracauda. Both species were taken
in San Pablo Bay from deep-water stations. Three crabs, Rhithropanopeus harrisii (six specimens), Cancer magister
(one specimen), and Pinnixia sp. (two specimens), were obtained from San Pablo Bay.

Several sedentary species were collected only at one or two stations infrequently during the year. Pectinaria cali-
forniensis, a polychaete, was taken only at the two most seaward stations of 18 feet and greater depths during five
cruises. I found the polychaete Nereis brandti only twice, both times at 16- to 18-foot stations in San Pablo Bay. An-
other polychaete, Haploscoloplos elongata, was taken infrequently from deep stations, 30 feet or greater, at the sea-
ward end of San Pablo Bay. The ghost shrimp Callianassa californiensis was occasionally taken from the seaward-
most stations.

Some species were found at a great number of stations but were never abundant. Nassarius obsoletus, the common
bay snail, was collected from seven of eight San Pablo stations sometime during the year. Only on three occasions,
however, were there more than one snail per square foot sample. The mussel, Modiolus senhousei, was collected at
least once during the survey from six of eight San Pablo Bay stations. The numbers of M. senhousei ranged from 1
to 10 and averaged two per square foot sample when it was present.

3.3. DISCUSSION
3.3.1. Substrate-Depth
The influence of depth and substrate on the distribution of any species cannot be separated because these two vari-
ables are often functions of each other; i.e., certain depths have certain substrates and no others. The shallow stations
in Honker and Grizzly Bays have silt substrates. The deep channel substrates are sand. Thus in Suisun Bay, benthic
animals have a choice of bottom types but not at all depths.

In contrast, there was little difference in substrate types at San Pablo Bay stations. Shallow water collections were
from clay and silt-clays; deep collections were silt and clays. In San Pablo Bay, the few bottom types present were at
all depths. Coarse sediments, however, were lacking at all of the San Pablo Bay stations. A few species were abund-
ant only on one bottom type (Table 4) . Gemma gemma was numerous only in clay sediments while Tapes semidecus-
sata was in silt bottom types. All other species had high population levels on two or more substrates. With each spe-
cies, however, a question remains: Did these species prefer these substrates, or did the animals exist there because
chlorinity, depth, or some other factor was more favorable? I cannot answer this question satisfactorily with the res-
ults from this investigation.

It was possible from my survey to demonstrate where species had high population levels with respect to depth
(Table 4). Three species, Macoma inconspicua, Neanthes succinea, and Gemma gemma, had large concentrations
only in water 8 feet or less in depth. Four species, Corophium acherusicum, Glycinde armigera, Polydora uncata,
and Tapes semidecussata, had concentrations in water greater than 16 feet deep.

53



TABLE 4
Bottom Type and Depth at Stations Where Selected Species Were Most Abundant

Three species, Mya arenaria, Photis californica, and Streblospio benedicti, were ubiquitous in abundance with re-
spect to depth. With each species a question still remains: Were these species found at certain depths because of a
preference for that depth or because of the presence of some other favorable environmental factor, e.g., bottom type
or chlorinity?

3.3.2. Chlorinity
of the many environmental and biological factors in combination that determined the distribution of zoobenthic an-
imals in this estuary, chlorinity was the easiest to identify. The influence of chlorinity could to a large degree be sep-
arated from the influence of depth and substrate. Most species were collected over a wide chlorinity range but usu-
ally there was a chlorinity concentration outside of which members of a given species were reduced or lacking in
numbers (Figure 16). Most of the important fish and game food organisms discussed previously had large concentra-
tions in San Pablo Bay where chlorinities at the bottom were higher and fluctuations less severe and of shorter dura-
tion than in Suisun Bay.

Filice (1958) described a "faunal break" in eastern Carquinez Strait. My collections illustrate the same change
there. Animals that had high population levels seaward from this area were marine and euryhaline species. Toward
fresh water, animals with large concentrations were euryhaline and freshwater species.

3.3.3. Limitations
It was difficult to make positive statements about distributions and abundance of all the species encountered in the
survey. In some instances the distribution of a particular species was not random, and I could not determine if this
non-randomness was the result of a contagious distribution on the bottom or was caused by some micro-en-
vironmental fluctuation. It was especially discouraging when one sample at a station would have a hundred animals
and consecutive samples contained
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FIGURE 16. Range of chlorinity in which animals were taken (line length) and yearly average range of chlorinity
where population levels were highest (bar length)

few or none. A lack of time and manpower precluded rigorous sampling procedures to resolve such distributions.
For this reason, only the most obvious of conclusions was made and reported on, and only the most numerous

and/or most "important" animals were discussed.
It is obvious that much more study is needed to describe properly the zoobenthos here. More stations, more

samples at a station, comprehensive bottom type analyses, frequent chemical information in as well as near the bot-
tom—all these things and more need to be done to achieve a complete understanding of the ecology of the estuary.

3.4. SUMMARY
1. Monthly zoobenthic collections at 27 stations were made during 1963. Physical and chemical information and a
total of 1107 benthic samples were collected and analyzed.

2. The extent of chlorinity encroachment varied seasonally. Water of 1[o/oo] chlorides was displaced to the Car-
quinez Strait during late winter and early spring floods but 1[o/oo] chlorides encroached about 15 miles upestuary to
the Pittsburg-Antioch area by August.

3. There is a gross difference in bottom types between San Pablo and Suisun Bays. The deep channel has silt or
clay sediments in San Pablo Bay and is primarily sand in Suisun Bay. The extensive shallow flats are clay or silt-
clays in San Pablo Bay and are silts in Suisun Bay.

4. More than 40 benthic taxa were recognized of which 11 were of principal importance as fish and game food or
were very numerous. The distribution and abundance of these 11 species was discussed in detail.

55



5. I was not able to separate the effects of substrate and depth on the distribution of zoobenthic species because
these two factors were frequently related to each other or to other factors.

6. Chlorinity was the factor contributing most to the distribution of zoobenthos. There was a distinct faunal break,
caused by chlorinity, in the eastern Carquinez Strait. Marine and estuarine forms predominated to the west of this
area, while estuarine and freshwater species occurred eastward.
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4. FISHES COLLECTED IN CARQUINEZ STRAIT IN 1961–1962
JAMES MESSERSMITH

California Department of Fish and Game
Marine Resources Operations

4.1. INTRODUCTION
During 1961 and 1962, in conjunction with a salmon marking experiment, the Marine Resources Branch of the Cali-
fornia Department of Fish and Game conducted periodic midwater trawling in the Carquinez Strait.

Forty-eight species of fish, representing 25 families, were caught (Table 1) . The trawl catches serve as a rough in-
dex to the concentration of fish residing in the Strait or migrating between Suisun and San Pablo Bay.

4.2. METHODS
Trawling was done from the California Department of Fish and Game research vessel Nautilus with two square-
mouthed midwater trawls. One measured 25 feet on a side and fished with an opening of about 16 by 16 feet. The
other was 15 feet on a side and fished with an opening of about 10 by 10 feet. In all, 1,233 20-minute tows were
completed (Table 1). Only 233 tows were made with the small trawl, and all but 22 tows were from the surface to
the effective fishing depth of the net. During the 22 "deep" tows, the net fished someplace between the surface and
85 feet.

Fishes were identified, counted, and on occasion measured. Numbers were estimated if the catch was extremely
large.

Seasonal change in concentration of selected species in the Strait was studied by converting catches to a standard
unit of effort—the number of fish per 100 tows. The smaller trawl was used only occasionally except during June
when the larger trawl was not available. There were no clear differences in species composition or total catch of the
large and small trawls.

4.3. RESULTS
The northern anchovy, Engraulis mordax, was by far the most abundant species taken. of the more than 750,000 fish
caught, 63 percent were anchovies (Table 1). Anchovies were most densely concentrated in Carquinez Strait from
June through August (Figure 1).

The Pacific herring, Clupea pallasi, was the second most abundant species, comprising 27 percent of the total
(Table 1). Practically all the herring were caught between March and July (Figure 1).

Over 9 percent of the total catch consisted of Sacramento smelt, Spirinchus thaleichthys, jacksmelt, Atherinopsis
californiensis, striped bass, Roccus saxatilis, and American shad, Alosa sapidissima, in that order (Table 1).

The remaining 42 species of fish made up less than 1 percent of the total catch.
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TABLE 1
Monthly Midwater Trawl Catch in Carquinez Strait
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TABLE 1—Cont'd.
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TABLE 1
Monthly Midwater Trawl Catch in Carquinez Strait
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FIGURE 1. Seasonal changes in the Carquinez Strait trawl catch of selected species, September 1961–October
1962. Height of the bars represents percent of total annual catch taken each month.

The Sacramento smelt was common in the Strait from January through July, but rare in our catches during the
other months (Figure 1).

Jacksmelt were absent or scarce until midsummer, when they became quite common (Figure 1).
Young striped bass were caught in all months, and although their numbers were highest in June, no apparent sea-

sonal pattern of distribution was evident (Figure 1).
Young American shad were caught at low rates during winter, spring and summer (Figure 1). They were most

densely concentrated in Carquinez Strait in the fall of both 1961 and 1962.
Downstream migrant king salmon, Oncorhynchus tshawytscha, were caught in all months, but the largest catches

were recorded between February and June (Figure 1). A second but smaller group passed through the Strait in the
fall.
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4.4. DISCUSSION
During the survey, the monthly rainfall in central California was average or below average in all but 3 months. In
February, March, and April 1962, precipitation was above "normal," river outflow was high, minor flooding oc-
curred, and the chlorinity at Crockett dropped from 11[o/oo] on February 6 to 1[o/oo] on February 18. Chlorinity re-
mained at 5[o/oo] or less through early April.

During these floods, a few freshwater species were caught (Table 1). A smelt, Hypomesus, was taken periodically
throughout the survey, but in far greater quantities during February 1962. This fish was recorded as the surf smelt,
Hypomesus pretiosus, but probably was the freshwater pond smelt, H. transpacificus, known to inhabit the freshwa-
ter end of the estuary (Kimsey and Fisk, 1964). H. pretiosus is primarly marine, and it seems unlikely that it would
be found in any great numbers in our February 1962 collections. Therefore, I have assumed that the pond smelt was
present (at least during February) in Carquinez Strait.

Several unexpected or unusual occurrences were noted during the study.
A Pacific saury, Cololabis saira, (29 cm fork length) was caught on August 22, 1962. The saury, a schooling fish

normally found in the open ocean, is uncommon in inshore waters and except for one specimen "... taken October
18, 1931, in brackish water in the Ain River, ... Massett Inlet, Queen Charlotte Islands," is unreported in estuarine
areas (Pritchard, 1933).

A Pacific hake, Merluccius productus (58 cm. fork length), was caught on May 16, 1962. The hake, normally
found in ocean waters, has been reported in Puget Sound (Barnhart, 1936) and in brackish water within the
Columbia River estuary (Best, 1963).

During February and March 1962, about 100 live king salmon yolk sac fry were collected. By February and
March, most king salmon fry have emerged from the gravel of their natal streams and such flows as were experi-
enced during those months in 1962 could sweep them downstream in a very short time. The mouth of the American
River, the nearest spawning tributary of the Sacramento River, is about 75 miles above the Carquinez Strait and the
mouth of the Molelumne River, the nearest spawning tributary of the San Joaquin River, is 41 miles above the Strait.

Nine lingcod, Ophiodon elongatus, were caught during April and May 1962. The lingcod is usually associated
with the open coast and rocky bottom, so its presence in the estuary was a little surprising.
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5. FISHES AND DECAPODS OF SAN PABLO AND SUISUN BAYS
DAVID GANSSLE

5.1. INTRODUCTION
The distribution and abundance of the fishes in the 25-mile section of the Sacramento-San Joaquin River estuary,
from San Pablo Bay to the Delta, varies greatly with the changing season and the accompanying changes in freshwa-
ter outflow and salinity.

During a 2-year survey of the area, 60 species of fish were recorded. of these, 31 were typically saltwater forms, 5
were euryhaline but generally associated with the marine environment, 3 were euryhaline but generally associated
with the freshwater environment, 13 were freshwater species, and 8 were anadromous.

Freshwater fishes were generally few in number and restricted to the upper end of the estuary. Marine fishes were
generally restricted to the lower end of the estuary, and the abundance of several marine species fluctuated widely
with season.

The middle portion of the area was characterized by the presence of anadromous and euryhaline species and sea-
sonal immigrations and emigrations of marine and freshwater forms. There appeared to be few resident species.

Ocean salt moved farther upstream during the second year (1964) of the survey and the number of marine species
increased. Some species taken in both years moved upstream earlier and farther in 1964 than in 1963.

The food habits of several species were investigated and although many organisms were utilized, one mysid
shrimp, Neomysis awatschensis, formed an important and probably critical link in their food chain.

5.2. METHODS
The survey started in January 1963 and ended in December 1964.

Sampling in 15 to 40 feet of water was conducted from the 50-foot California Department of Fish and Game re-
search vessel Nautilus. A 25-foot square-mouthed midwater trawl with a cod-end of ½-inch stretched mesh was
towed at the surface, and an otter trawl with a 25-foot cork line and a cod-end of ¾-inch stretched mesh was towed
on the bottom. Tows were usually 20 minutes long, and when possible were made alternately with and against the
current. Because of variations in weather and tidal or river conditions, it was impossible always to follow the same
procedures or sample with equal intensity from month to month (Table 1) . During the first 6 months, while sampling
and gear handling techniques were perfected, we did not survey the entire area. Routine coverage started in June
1963, and 1 week per month was devoted to the survey until December 1964.
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TABLE 1
Number of 10-Minute Trawl Tows and Hours of Gill Net Fishing

Data describing the catch of the more important species were combined to show the monthly catch per 10 minutes
of trawling with each net in five areas. The areas were 5 to 6 miles long. One area could usually be sampled in a day
and each area, with the exception of west San Pablo Bay, contained a California Department of Water Resources
chlorinity recording station. They were centered near the towns of Pittsburg, Port Chicago, Martinez, Crockett, and
Pinole (Figure 1). Data from the two San Pablo Bay areas were usually combined, as were the data from Port Chica-
go and Martinez.
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FIGURE 1. Location of sampling areas
Midwater trawl tows were made outside the ship channel marker buoys. Otter trawl tows were made outside the

marker buoys where level, obstruction-free bottom was known to exist. Such bottom conditions were not common in
the deep-water portions of Suisun Bay, but it was possible to find favorable otter trawling conditions in most of San
Pablo Bay in water 15 to 40 feet deep.

The extensive shallow areas in Honker Bay, Grizzly Bay, western Suisun Bay, and northeastern San Pablo Bay
were sampled from a 19-foot launch with an otter trawl and a gill net (Figure 1). The gill net was 450 feet long, 12
feet deep, and had nine, 50-foot sections of different sized (2½- to 7-inch stretched) mesh. The gill net was usually
set in early or midmorning and recovered in early or midafternoon. The otter trawl had a 16-foot cork line, and a
½-inch stretched mesh cod-end and was towed for 10 or 20 minutes. Sampling with the 16-foot otter trawl and gill
net started routinely in June 1963 and was stopped in May 1964 (Table 1). Data describing the catch of the more im-
portant species were combined to show the monthly catch per 10-minute tow and per 1 hour of gill netting.

In the field, specimens were identified, counted or numbers estimated, and the stomach contents of the more im-
portant or abundant species were examined. Stomach samples were not measured volumetrically.

5.3. RESULTS
The following discussion of the occurrence and distribution of the animals taken during the survey is, in some cases,
based on my impressions and observations. Some of the animals were not vulnerable to our gear and were taken in-
cidentally or in small quantities. Some were quite susceptible to the nets at one size but not at another, so accurate
quantitative comparisons were not possible.

The animals are listed in systematic order, and alphabetically by common name within major groups. Following
the name of each species, a short summary including the habitat it is usually associated with, total number caught,
gear with which the animal was caught, area, date, and size range is given. The more abundant or economically im-
portant species are dealt with in more detail, and where appropriate, more data are presented.
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5.3.1. Invertebrates
5.3.1.1. Colonial hydroid, Hydrozoa. Freshwater
Taken incidentally by otter trawl throughout Suisun Bay, never in San Pablo Bay. Not identified, but presumed to be
Cordylophora lacustris which is known to be in the lower Delta (Aldrich, 1961).

5.3.1.2. Small jellyfish, Scyphozoa. Marine
Incidentally in midwater trawl in San Pablo Bay year-round; a few from Martinez to Pittsburg in spring, summer,
and fall.

5.3.1.3. Comb jelly, Ctenophora. Marine
About 200. San Pablo Bay, April 1964.

5.3.1.4. Bay snail, Nassarius obsoletus. Marine
Common, often abundant in San Pablo Bay, but rare east of Carquinez Strait.

5.3.1.5. Asiatic clam, Corbicula fluminea. Freshwater. Introduced
Occasionally at Pittsburg, Honker Bay, Martinez.

This clam is abundant in the freshwater portion of the Sacramento-San Joaquin Delta, where at times, it forms
large beds and becomes a problem in irrigation and drainage works.

5.3.1.6. Basket cockle, Clinocardium nuttalli. Marine
Occasionally, San Pablo Bay.

5.3.1.7. Bent-nose clam, Macoma nasuta. Marine
Occasionally, San Pablo Bay.

5.3.1.8. Mud clam, Macoma inconspicua. Marine
Occasionally, San Pablo Bay.

5.3.1.9. Japanese littleneck, Tapes semidecussata. Marine. Introduced
Occasionally, San Pablo Bay.

5.3.1.10. Mussel, Modiolus sp. Marine
Occasionally, San Pablo Bay.

5.3.1.11. Native oyster, Ostrea lurida. Marine
Occasionally, San Pablo Bay.

5.3.1.12. Soft-shell clam, Mya arenaria. Marine. Introduced
Occasionally, San Pablo Bay.

5.3.1.13. Isopod, Synidotea laticauda. Marine
A few at Pittsburg and Crockett, but most abundant at Port Chicago and Martinez in spring and summer of 1964.

5.3.1.14. Opossum shrimp, Neomysis awatschensis. Euryhaline
This mysid, although too small to be properly sampled by our nets, was at times so abundant that thousands were re-
tained in the webbing or mixed in with the catches of the midwater trawl. Heavy concentrations were observed off
Martinez in March 1963 and off Pittsburg, Port Chicago, and Martinez in April and May 1964. Lesser numbers were
taken at Crockett during March 1963 and May 1964.

5.3.1.15. Oriental shrimp, Paleomon macrodactylus. Euryhaline. Introduced
No one knows when or by whom this shrimp was introduced into California. Although never common, it was taken
most often in Suisun Bay during April, September, and October and in San Pablo Bay
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during March and April. Many more were taken in Suisun Bay than in San Pablo Bay. In the spring, small shrimp
predominated. In the fall, larger individuals and some egg-carrying females were observed.

5.3.1.16. Bay shrimp, Crago. Marine-Euryhaline
Bay shrimp, at one time, supported a large commercial fishery in San Francisco Bay. Two species, Crago franciscor-
um, and Crago nigracauda, made up almost all of the commercial catch. A third species, Crago nigromaculata, was
of little importance to the fishery (Bonnot, 1931; Skinner, 1962).

Israel (1936) studied the life histories of the three species from June 1931 to June 1933. He found that C. francis-
corum was the most tolerant of fresh water and was found 70 miles from the Golden Gate in the San Joaquin River.
He also found that both C. franciscorum and C. nigracauda moved toward the ocean as the spawning season ap-
proached and the eggs hatched in water of high salinity. Both species reproduced at the end of their first year, C.
franciscorum from December to June, and C. nigracauda from April to September. Young shrimp were found at
some distance from the ocean in water of reduced salinity.

Our nets caught C. franciscorum almost exclusively. C. nigracauda was caught in small numbers only during May
and June 1964 in San Pablo Bay. C. nigromaculata was never knowingly taken.

We caught no bay shrimp above Carquinez Strait from February through April 1963, and only relatively small
numbers in San Pablo Bay (Figure 2). From August through December 1963, shrimp were present throughout the
survey area. Abundance was lowest off Pittsburg.

FIGURE 2. Monthly trawl catch of bay shrimp, Crago
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A few bay shrimp remained in San Pablo Bay and western Suisun Bay from February to May 1964. We caught
none off Pittsburg during that period.

In contrast to the summer of 1963, C. franciscorum was abundant off Pittsburg during the summer of 1964.
Catches were somewhat smaller than in 1963 at Martinez and Port Chicago.

From September to December 1964, shrimp all but disappeared from San Pablo Bay. Although catches were vari-
able in Suisun Bay, shrimp remained there until the end of the survey.

We kept no record of the size composition of the catch. But it is my opinion that small shrimp were more com-
mon in Suisun Bay than in San Pablo Bay.

5.3.1.17. Market crab, Cancer magister. Marine
From July to December 1963, 33 small (4 to 10 cm) C. magister were caught in the San Pablo Bay otter trawl.
Between May and December of 1964, over 2,000, in the same size range, were caught in the same area. At times
they were taken at a rate of more than 200 per 10-minute tow.

No crabs were taken above Carquinez Strait in 1963 but 56 individuals 4 to 14 cm wide were caught near Mar-
tinez from July to December 1964.

5.3.1.18. Ascidian, Molgula verrucifera. Marine
At times M. verrucifera was so abundant in San Pablo Bay bottom tows that it was impossible to haul the trawl
aboard by hand. We never found it east of Crockett.

5.3.2. FISHES
5.3.2. Pacific lamprey, Entosphenus tridentatus. Anadromous
Total—3. Midwater trawl. Martinez: April 1964; 66 cm.

San Pablo Bay: May 1963; 59 to 64 cm.
The Pacific lamprey is found in nearly all California streams which enter the ocean, unless blocked by barriers or

low flows. Adults often start their spawning migration into fresh water in the fall and in some rivers these migrations
continue into the spring, when masses of lampreys are seen ascending obstructions and fish ladders (Kimsey and
Fisk, 1964).

After spending 3 or 4 years in their natal stream, young Pacific lampreys, when about 15 cm long, migrate to sea.
The Pacific lamprey parasitizes other fishes, but apparently without the disastrous result attributed to the sea

lamprey of the Atlantic.

5.3.2.1. Unidentified lamprey. Anadromous
Total—6. Midwater trawl. Suisun Bay: November 1963–May 1964; 11 to 18 cm. San Pablo Bay: October
1963–May 1964; 15 to 18 cm.

These were either downstream migrant Pacific lampreys or river lampreys, Lampetra ayresi. Little is known about
the habits and behavior of the river lamprey, but it is found in central California streams and is probably responsible
for most of the attacks on fish in California streams (Kimsey and Fisk, 1964).
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5.3.2.2. Brown smoothhound, Triakis henlei. Marine
Total—42. Otter trawl. San Pablo Bay.

This shark was taken from late spring to late summer in both years. About 60 percent of those taken were 22 to 35
cm long and 40 percent were 40 to 69 cm long.

One individual containing identifiable food had been eating Crago franciscorum.

5.3.2.3. Dogfish, Squalus acanthias. Marine
Total—4. Gill net. San Pablo Bay: April 1964. Females, 75 to 87 cm long, all containing well developed embryos.

5.3.2.4. Big skate, Raja binoculata. Marine
Total—47. Otter trawl. San Pablo Bay.

Skates were caught in September and November 1963 and February, March, May, June, October, and December
1964. Over 70 percent were 10 to 20 cm wide, and the rest were from 25 to 60 cm.

5.3.2.5. Bat ray, Myliobatis californicus. Marine
Total—1. Otter trawl. San Pablo Bay: July 1964; 70 cm wide.

5.3.2.6. Green sturgeon, Acipenser medirostris. Anadromous
Total—34. Gill net, otter trawl. Suisun Bay, San Pablo Bay.

Almost nothing is known about the life history and behavior of the green sturgeon in California.
The greatest gill net catch was recorded in September, in San Pablo Bay. Otter trawl tows showed no particular

pattern of distribution or abundance. However, in Suisun Bay, 67 percent of the green sturgeon were 27 to 35 cm
long, and 33 percent were 40 to 48 cm long, while in San Pablo Bay, 1 fish (5 percent) was 25 cm long and 95 per-
cent were between 40 and 74 cm long.

Five sturgeon stomachs collected in Suisun Bay contained identifiable material, which included: Corophium sp.,
annelid worms, Crago franciscorum, and Neomysis awatchensis.

Eight stomachs from San Pablo Bay contained: Crago franciscorum, Macoma sp., the amphipod Photis califor-
nica, Corophium sp., Synidotea laticauda, unindentified crab, and fish.

5.3.2.7. White sturgeon, Acipenser transmontanus. Anadromous
Total—146. Gill net, otter trawl. Suisun Bay, San Pablo Bay.

The white sturgeon was once fished commercially in the estuary but has been protected since 1917. A minor but
growing sport fishery exists with most catches recorded in late summer and fall in San Pablo Bay (Skinner, 1962).
The results of a tagging program conducted in 1954–55 suggest a winter or spring upstream migration and a summer
downstream migration of large white sturgeon in the estuary (Pycha, 1956).

We took the greatest number of large white sturgeon in San Pablo Bay in October and November 1963. Sturgeon
were common enough at that time that several were taken in the 16-foot otter trawl. Although catches were never
large in Suisun Bay, gill netting was most successful there in April, May, and June.

In Suisun Bay, 71 percent of the fish were between 23 and 35 cm long and 29 percent were 40 to 90 cm long. In
San Pablo Bay, 3
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percent were between 23 and 35 cm, and 97 percent were from 60 to 120 cm long.
Thirty-nine white sturgeon stomachs collected from Suisun Bay contained identifiable food. In order of their fre-

quency of occurrence, the following organisms were found: Neomysis awatschensis, Corophium sp., Crago francis-
corum, Paleomon macrodactylus, Synidotea laticauda, clam remains, and annelid worms.

In San Pablo Bay, 25 stomachs contained identifiable food. It included clams (mostly Macoma sp.), annelid
worms, Synidotea laticauda, Crago franciscorum, fish eggs, Corophium sp., Photis californica and unidentifiable
crab.

5.3.2.8. American shad, Alosa sapidissima. Anadromous. Introduced
Total—about 6,200. Gill net 188, midwater trawl 5,872, otter trawl 200. Suisun Bay, San Pablo Bay.

American shad were introduced into California in 1871. Within a few years a commercial gill net fishery had de-
veloped and the fish were so abundant that they were considered a nuisance. The estuary was closed to commercial
fishing in 1957 (Skinner, 1962).

Shad spend most of their life at sea and little is known of their movements there. Adults enter the estuary in early
spring and proceed upstream to spawn in fresh water. Skinner (1955) analyzed the commercial shad fishing records
for the 9-year period of 1946–1954. He found that 88 percent of the shad caught between Martinez and Pittsburg
were landed during the 7-week period from April 10 to May 29.

Ripe or ripening adult shad were taken in our gill nets from February through June. An occasional adult was
caught by midwater trawl during the same months. In Grizzly Bay in September 1963, 11 adults with "spent" gonads
were caught. No one knows how many (if any) shad in California survive spawning and return to the ocean. This fall
catch of spent shad suggests that some do.

We examined 72 adult shad stomachs which contained identifiable food. They held, in order of the frequency of
occurrence, Neomysis awatschensis, copepods, Crago franciscorum, larval fish, and Corophium sp. Hatton (1940)
found after examining 109 adult shad stomachs from fish taken in Suisun Bay that two-thirds of them contained
Neomysis awatschensis and one-third copepods.

Shad spawn upstream from our survey area. Hatton (1940) observed spawning shad in the upper Delta and the
streams flowing into it. He reported spawning along the entire length of the Sacramento River and far upstream in
some of its tributaries. Hatton believed that even though shad did move into the San Joaquin River, it was not used
extensively as a spawning area.

The results of studies by the California Department of Fish and Game as well as the consensus among residents of
the area indicates that most spawning now takes place in the Sacramento River and its tributaries above the Delta.

In California, shad spawn in the spring and summer. Eggs or small larvae have been found in the Delta as early as
April and as late as October Erkkila et al., 1950; Chadwick, 1958). Hatton (1940) first collected young shad at his
Martinez station on May 4, 1939. He further reported that the "migration" continued until January 1940.
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At Pittsburg, we first took young of the 1963 year-class in August of that year (Figure 3). A peak was reached in
November, and following a decline in December, catches of small shad were low until August 1964 when young of
the 1964 year-class were caught. While apparently not as abundant at Pittsburg as the 1963 year-class, the 1964
year-class was taken in moderate numbers until the end of our survey.

FIGURE 3. Monthly trawl catch of young-of-the-year American shad, Alosa sapidissima
At Port Chicago and Martinez almost no small shad were caught until August and September 1963. The 1963

year-class reached a low peak of abundance in November. After that, catches were generally low until July 1964,
when the 1964 year-class appeared. That year-class reached a peak in November and was commonly taken in
December.

In San Pablo Bay, low numbers of the 1962 year-class (6 to 12 months old) were taken from February through
June 1963 (Figure 3). In September, a few 1963 year-class shad appeared and a low peak was reached in November.
Some small shad were caught in San Pablo Bay until the end of the survey, but only a few 1964 year-class fish were
found.

Identifiable food was found in 59 young-of-the-year shad. Food items, in the order of their occurrence, were:
Neomysis awatschensis, copepods, larval fish, and Corophium sp.

Many of the trawl tows, in addition to young-of-the-year shad, yielded a few larger fish that were in their second
year of life. Although no accurate record of the occurrence of these yearlings was kept, they were recorded from all
areas and at times made up as much as 10 percent of the catch.

Nine yearlings contained identifiable food which consisted of Neomysis awatschensis and copepods.

5.3.2.9. Pacific herring, Clupea pallasi. Marine
Total—about 100,000. Midwater trawl, Suisun Bay, San Pablo Bay.

Adult herring enter San Francisco Bay in the winter and spring, spawn, and return to the sea immediately. Most
spawning takes place in San Francisco Bay near Tiburon and Sausalito. However, during past dry periods spawning
has been reported in San Pablo Bay and Carquinez Strait. It is generally believed that reduced salinity limits up-
stream spawning (Miller and Schmidtke, 1956).
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In San Pablo Bay, we caught small numbers (less than one fish per tow) of ripe or ripening adult herring in Febru-
ary 1963. No adults were found at Pittsburg that year but occasionally they were taken near Martinez. Newly-
hatched herring appeared in San Pablo Bay in February and March 1963 (Figure 4). They increased in number to a
peak of several hundred per tow in May and June. A few were caught in August and young-of-the-year were almost
totally absent from September 1963 on. A few (less than one per tow) young of the 1963 year-class were taken near
Martinez and Port Chicago in June and August 1963.

FIGURE 4. Monthly trawl catch of young-of-the-year Pacific herring, Clupea pallasi
Unlike 1963, when almost no young herring were found east of Carquinez Strait, many were caught in 1964,

throughout Suisun Bay. These fish were 3 to 6 cm long and were most abundant in the upstream areas off Pittsburg
and Port Chicago. They were caught during April and May 1964 and then abruptly disappeared.

In 1964, adult herring, although few in number, were caught during January, February, and March in San Pablo
Bay. Young of the 1964 spawning appeared in San Pablo Bay in April, May, and June but were not as plentiful as
the 1963 year-class (Figure 4).

5.3.2.10. Threadfin shad, Dorosoma petenense. Fresh water—Euryhaline. In-
troduced
Total—2,050. Midwater trawl. Suisun Bay, San Pablo Bay.

The threadfin shad was introduced into California, from Tennessee, in 1953. It is present in many central Califor-
nia reservoirs and has, in recent years, become established in the Sacramento-San Joaquin Delta. It has become an
important food of larger fishes in many areas. The threadfin shad spawns at intervals after the water temperature
reaches
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about 21° C. and ceases in the fall when the temperature drops below this (Kimsey and Fisk, 1964).
During September, October, and November of 1963 and 1964, threadfin shad were commonly caught off Pitts-

burg and Port Chicago. Peak catches of from 50 to 80 fish per tow were reached in November. Smaller catches were
made off Martinez during the same months.

No threadfin shad were found in San Pablo Bay until November and December of 1963, when 3 to 5 fish per tow
were caught. In November and December of 1964, threadfin shad were again caught at low rates.

5.3.2.11. Northern anchovy, Engraulis mordax. Marine
Total—about 120,000. Midwater trawl.

Anchovies enter San Francisco Bay in spring and summer, but little is known about the amount of spawning that
takes place in the bay. World wide, anchovies spawn over a broad range of conditions from oceanic to estuarine.

A smaller "brackish water" subspecies of E. mordax was reported in San Francisco Bay (Roedel, 1953), but we
made no attempt to identify or separate it.

In late spring and summer of both 1963 and 1964, many anchovies entered San Pablo Bay (Figure 5). All ages, in-
cluding many ripe and ripening adults up to 17 cm in length, were caught. As summer progressed, the proportion of
large fish decreased until, in the fall and early winter, only recently-born and some 1- or 2-year-old fish were found.

Fewer anchovies were caught above Carquinez Strait but the proportion of young to adults was about the same as
in San Pablo Bay. No anchovies were taken in the Pittsburg area until August 1964.

Only seven anchovies containing identifiable food were examined. All had been feeding on the copepod Acartia
clausi.

FIGURE 5. Monthly trawl catch of northern anchovy, Engraulis mordax
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5.3.2.12. King salmon, Oncorhynchus tshawytscha. Anadromous
Total—682. Gill net, midwater trawl. Suisun Bay, San Pablo Bay.

The Sacramento-San Joaquin River run of king salmon is one of the largest on the Pacific Coast. In the past 15
years, estimates of spawning adults have ranged from 100,000 to 500,000 annually. Most mature fish move up-
stream in the fall, but there is a smaller spring run and a still smaller winter run (Fry, 1961; Skinner, 1962). Some
mature king salmon are probably in the estuary during all months of the year.

The general movement of upstream migrant salmon in the estuary is well understood. We made no special effort
to catch them and our nets were not designed or set to do so. During the survey, we caught only 20 adult or preco-
cious male king salmon, all in Suisun Bay. Most (18) were fall-run fish and were taken between August and Novem-
ber. One was caught in May and one in June.

It is generally accepted that mature salmon do not feed while in fresh water. The stomachs of all those we caught
were empty.

Young salmon move downstream soon after they emerge from the gravel. In the past, the peak of the downstream
migration has been observed from February to April (Rutter, 1903; Hatton, 1940; Erkkila et al., 1950).

Downstream migrants were present in almost all months and apparent peaks of abundance were reached during
April, May, or June and November (Figure 6). In the spring, these young fish were from 6 to 10 cm long while in the
fall, they were 10 to 17 cm long.

FIGURE 6. Monthly trawl catch of downstream migrant young-of-the-year king salmon, Oncorhynchus tshawytscha
In Suisun Bay, the stomachs of 37 small (7 to 15 cm) salmon held identifiable food. Terrestrial insects and spiders

were present in 32, Neomysis awatschensis in 14, Synidotea laticauda in 1, and Corophium sp. in 1.
In San Pablo Bay, 25 downstream migrants contained identifiable food. of these, 17 had been eating terrestrial in-

sects or spiders. Neomysis awatschensis was found in 5, "fish" in 4, and Crago franciscorum in 1.
Rutter (1903) and N. B. Scofield (1913) found insects to be the most important food item in the diet of down-

stream migrant king salmon.
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5.3.2.13. Steelhead rainbow trout, Salmo gairdneri. Andromous
Total—26. Gill net, midwater trawl. Suisun Bay.

After hatching, steelhead trout remain in fresh water for 2 or more years. Little is known of their habits in the
ocean. In a large river such as the Sacramento, upstream and downstream migrants are present at all times but the
bulk of the spawning fish move upstream in the winter and spring (Shapovalov and Taft, 1954).

We caught steelhead in every month but June, July, November, and December. Their size ranged from 24 to 64
cm.

Only two steelhead containing identifiable food were examined, each had been eating insects and Synidotea lati-
cauda.

5.3.2.14. Night smelt, Spirinchus starksi. Marine
Total—7. Midwater trawl. San Pablo Bay. February–March 1963.

5.3.2.15. Pond smelt, Hypomesus transpacificus. Fresh water—Euryhaline
Total—about 7,100. Midwater trawl. Suisun Bay, San Pablo Bay.

Almost all pond smelt were found in Suisun Bay (Figure 7). Highest catches were made in summer and fall at
Pittsburg. Small fish, 2 to 5 cm long, appeared in June and July and very few individuals greater than 8 or 9 cm were
ever caught.

FIGURE 7. Monthly trawl catch of pond smelt, Hypomesus transpacificus

5.3.2.16. Sacramento smelt, Spirinchus thaleichthys. Marine-Euryhaline
Total—at least 20,000. Midwater trawl, otter trawl. Suisun Bay, San Pablo Bay.

Ripening adults (8–10 cm) were found in San Pablo Bay and western Suisun Bay in March and April 1963
(Figure 8). In May, a large number of 2 to 6 cm smelt appeared in the Crockett-Pinole area. It was not possible to
count or estimate the catch reliably at this time because many of the small fish were not retained in our nets.
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FIGURE 8. Monthly trawl catch of Sacramento smelt, Spirinchus thaleichthys
By August 1963 almost all Sacramento smelt had disappeared from San Pablo Bay. They were caught in Suisun

Bay where they remained through the winter.
Small S. thaleichthys, 2 to 6 cm long, were abundant off Pittsburg, Port Chicago, and Martinez during April and

May 1964, but were relatively uncommon in San Pablo Bay. Again, many of the fish passed through our nets and re-
liable counts were not possible. After a summer decrease, catches increased in October, November, and December.
At that time, two sizes of smelt were in evidence; one group at 6 to 8 cm, and another of ripening adults at 10 to 13
cm.

5.3.2.17. Surf smelt, Hypomesus pretiosus. Marine
Total—8. Midwater trawl. Suisun Bay : March-April 1964, 12 to 19 cm. San Pablo Bay : March 1963, 8 cm; Febru-
ary-March 1964, 8 to 12 cm.

5.3.2.18. Whitebait, Allosmerus elongatus. Marine
Total—2. Midwater trawl. San Pablo Bay : May 1963, 12 cm; February 1964, 7 cm.

5.3.2.19. Carp, Cyprinus carpio. Fresh water. Introduced
Total—458. Gill net, midwater trawl, otter trawl. Suisun Bay.

The largest catches of carp were made in the shallows of Honker and Grizzly Bays during spring months.
However, one otter trawl tow off Port Chicago in September 1963 yielded 25 large carp.

5.3.2.20. Goldfish, Carassius auratus. Fresh water. Introduced
Total—1. Gill net. Honker Bay : November 1963, 20 cm.
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5.3.2.21. Sacramento blackfish, Orthodon microlepidotus. Fresh water
Total—4. Gill net, otter trawl. Honker Bay, Grizzly Bay, Martinez: March, April 1963 and 1964, 25 to 42 cm.

5.3.2.22. Sacramento squawfish, Ptychocheilus grandis. Fresh water
Total—6. Gill net, midwater trawl. Pittsburg, Honker Bay, Grizzly Bay : June, September 1963, February 1964, 39
to 52 cm.

One squawfish with identifiable food had been eating small striped bass.

5.3.2.23. Splittail, Pogonichthys macrolepidotus. Fresh water
Total—291. Gill net, midwater trawl, otter trawl. Suisun Bay, San Pablo Bay.

Splittail were distributed much the same as carp. Highest catches were made in Honker and Grizzly Bays, but two
fish were caught in San Pablo Bay. Two size groups, one between 10 and 15 cm and one with a mean length of 25
cm, were about equally represented.

5.3.2.24. Sacramento western sucker, Catostomus occidentalis. Fresh water
Total—3. Gill net, otter trawl. Honker Bay : June, October 1963, February 1964, 39 to 47 cm.

5.3.2.25. Black bullhead, Ictalurus melas. Fresh water. Introduced
Total—1. Gill net. Honker Bay : February 1964, 29 cm.

5.3.2.26. Brown bullhead, Ictalurus nebulosus. Fresh water. Introduced
Total—1. Otter trawl. Grizzly Bay : March 1964, 15 cm.

5.3.2.27. White catfish, Ictalurus catus. Fresh water. Introduced
Total—53. Gill net, midwater trawl, otter trawl. Suisun Bay.

White catfish were found all over Suisun Bay, with the best catches recorded in Honker Bay. Most were between
20 and 40 cm long but a few as small as 15 cm long were taken.

We examined the stomachs of 28 white catfish containing identifiable food. Neomysis awatschensis was found in
24, Corophium sp. in 14, Crago franciscorum in 6, and Paleomon macrodactylus, annelid, clam and fish in each.

5.3.2.28. Pacific tomcod, Microgadus proximus. Marine
Total—259. Midwater trawl, otter trawl. Suisun Bay, San Pablo Bay.

Over 80 percent of the tomcod were taken in San Pablo Bay. All but one (caught at Port Chicago) of the re-
mainder were found near Martinez. The fish ranged from 7 to 23 cm in length. No particular pattern of seasonal dis-
tribution or abundance was apparent.

Only one specimen containing food was examined; it had been feeding on Crago franciscorum.

5.3.2.29. Threespine stickleback, Gasterosteus aculeatus. Fresh wa-
ter—Euryhaline
Total—11. Midwater trawl, otter trawl. Suisun Bay, San Pablo Bay : March, May, August 1963, April, May, July
1964, 2 to 3 cm.

5.3.2.30. Bay pipefish, Syngnathus griseolineatus. Marine
Total—2. Midwater trawl. San Pablo Bay : March 1963, February 1964, 20 to 23 cm.

5.3.2.31. Striped Bass, Roccus saxatilis. Anadromous. Introduced
Total—About 16,000. Gill net, midwater trawl, otter trawl. Suisun Bay, San Pablo Bay.
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Striped bass were introduced into California in 1879. They soon became established in the Sacramento-San Joa-
quin River system, and in a few years supported large commercial and sport fisheries (Skinner, 1962). Commercial
fishing was outlawed in 1935, but the sport fishery is still the most important in the area.

Striped bass are migratory fish. As they pass through various stages of their life history, they travel to different
areas within the Sacramento-San Joaquin River system.

Calhoun (1952), after analyzing the results of tagging studies conducted in 1947, 1950, and 1951, felt that in the
summer months, adult bass are distributed mainly in San Francisco Bay and the ocean. In the fall and winter most of
them move upstream to San Pablo Bay, Suisun Bay, and the Delta. In the spring the spawning population moves
farther upstream where they spawn, mostly during May and June, in fresh water of 15°C or higher. After spawning,
most large fish return to the lower bays and the ocean (Calhoun, 1952).

We did not feel that our gear sampled the adult population adequately. However, our limited catches did indicate
that large bass were generally most abundant in Suisun Bay in the summer and fall and in San Pablo Bay in the fall
and winter (Figure 9). The large catch of February 1963 was based on a ½-hour experimental gill net set.

Striped bass eggs are free-floating and hatch in 2 or 3 days. The larvae are feeble swimmers and for 1 or 2 weeks
are at the mercy of the current. In the Sacramento-San Joaquin River system they are carried downstream to the
Delta and upper bays at a rate depending on the magnitude of river outflow (Calhoun and Woodhull, 1948; Erkkila
et al., 1950). Scofield and Bryant (1926) reported that young bass were plentiful in San Francisco Bay and the upper
bays until the cold of winter set in. They believed that at this time a seaward migration took place.

Our survey started when the 1962 year-class of striped bass was 7 to 9 months old. That year-class was rare in
Suisun Bay but relatively common in the San Pablo Bay channel in the winter and spring of 1963 (Figure 10).

Young of the 1963 year-class were first caught off Pittsburg and in Honker and Grizzly Bays during August 1963.
Catches reached a peak in Honker and Grizzly Bays in September and started to decline in October. Only a few fish
were caught in January 1964. In deeper water off Pittsburg, concentrations were high from September, when most
fish were caught in the otter trawl, to November, when most fish were caught in the midwater trawl. A decline took
place in December. Concentrations in all three areas were generally low from January through May 1964. But, a
slight spring increase in catch occurred in all three areas. This increase could have reflected the entrance into Suisun
Bay of young-of-the-year that had remaind upstream and were moving downstream with the increased spring flows.

off Port Chicago and Martinez, the concentration of 1963 year-class fish, compared to the upstream area, was
generally uniform and low.

No 1963 year-class fish were taken in San Pablo Bay until September 1963 (Figure 10). Abundance was high in
October, and although declining
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FIGURE 9. Monthly catch of 3-year-old or older striped bass, Roccus saxatilis
during November and December, remained relatively high during those months. Young bass were still present in
February, March, and April 1964, but were absent in May.

The 1964 year-class started to appear off Pittsburg in June 1964. High abundance was reached in July and from
August on the catch fluctuated to a low in December (Figure 10).

At Port Chicago and Martinez, young bass seemed to be present in about the same-small quantities as the preced-
ing year.

Few 1964 year-class fish were caught in San Pablo Bay (Figure 10).
At times, the highest catches of young striped bass were made with the 16-foot otter trawl in Honker and Grizzly

Bays (Figure 10). The high catches of young-of-the-year fish with this small trawl in the shallows of Suisun Bay led
me to believe that such areas are preferred by young bass in their first few months of life.
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The migration and distribution of juvenile striped bass (1 to 3 years old) is not well documented. Scofield and
Bryant (1926) felt that juveniles as well as young-of-the-year left San Francisco Bay in the winter and spread up and
down the coast. Tagging studies by G. H. Clark (1936) did not indicate a migratory pattern, but simply a diffusion
from the point of tagging. Calhoun (1949) showed a distribution of 2- to 3-pound bass throughout the Sacramento-
San Joaquin system, except for upper and lower San Francisco Bay. Especially heavy catches were made in Suisun
Bay during summer and fall.

We took yearling bass during most months in most places where we collected (Figure 11). They were especially
concentrated in the Crockett-Pinole area during the winter months. There did not seem to be any particular pattern of
distribution in Suisun Bay.

FIGURE 10. Monthly trawl catch of young-of-the-year striped bass, Roccus saxatilis

81



FIGURE 11. Monthly catch of yearling striped bass, Roccus saxatilis
The food habits of striped bass have been investigated on and off throughout the years, but no detailed study has

been conducted in Suisun or San Pablo Bays.
E. C. Scofield (1928, 1931) reported on random examinations of stomachs taken throughout the year in San Fran-

cisco, San Pablo, and Suisun Bays. He found that striped bass fed on periwinkles and "small crustaceans" when in
the flats at high tide and on bay shrimp, anchovy, herring, "smelt," splittail, and their own young when in deeper wa-
ter. He summed up his observations by saying that practically every marine form common to the San Francisco Bay
region had been found in striped bass stomachs.

Hatton (1940) found that the stomachs of 57 young-of-the-year and yearling bass taken at Martinez in September
and November 1939 contained,
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in order of the frequency of occurrence, "amphipods," Synidotea laticauda, "fish," and Crago sp. He found, after the
water had freshened considerably, that 100 percent of the identifiable organisms in the stomachs of 45 young-
of-the-year bass taken at Martinez in February and March 1940 were Neomysis awatschensis. Hatton also examined
the stomachs of approximately 100 adult striped bass taken in Suisun Bay between March and May 1939. About 75
percent contained: "unidentified fish," "clupeoids," "osmerids," "split-tails," "lampreys," "atherinids," and "catfish or
sculpins." "Shrimp or crab" were found in 25 percent of the stomachs.

Johnson and Calhoun (1952) found that the food of 229 adult and juvenile striped bass, caught during the summer
in San Pablo Bay, consisted primarily of bay shrimp and northern anchovy.

Heubach, Toth, and McCready (1963) examined the stomachs of 355 young-of-the-year striped bass caught in the
years 1956–1961 between Carquinez Strait and Pittsburg. They found that in the summer, 85 percent contained Neo-
mysis awatschensis. Copepods and Corophium sp. were present in 19 and 18 percent. In the fall, 77 percent ate Neo-
mysis awatschensis and 45 and 19 percent ate copepods and Corophium sp.

In the course of our 2-year survey, we examined the stomachs of 739 young-of-the-year striped bass, 602
yearlings, and 492 fish over 2 years of age, that contained identifiable food.

In eastern Suisun Bay, young-of-the-year striped bass fed almost entirely on Neomysis awatschensis and Corophi-
um sp. (Figure 12). At times, the rate of occurrence of Corophium was fairly high but numbers were low and we
considered their volumetric contribution to be negligible.

Young-of-the-year bass in middle and western Suisun Bay, although eating Neomysis awatschensis and Corophi-
um sp. at about the same rate as fish upstream, began feeding on small Crago franciscorum, small fish and Synidotea
laticauda (Figure 12). Unlike Corophium sp., these organisms, because of their size, did contribute significantly to
the volume of food ingested, but Neomysis awatschensis was still dominant.

Neomysis awatschensis became less important in the diet of small bass in San Pablo Bay, and Corophium sp. al-
though still present was augmented by its marine counterpart Photis californica (Figure 12). Small fish, annelid
worms, bay shrimp, and Synidotea laticauda began to play an increasingly important role.

In the Pittsburg area, Neomysis awatschensis continued to be the predominant food organism utilized by yearling
bass, being present in 77 to 100 percent of the stomachs. Small fish, shrimp, and isopods made up the remainder.
Yearling bass at Port Chicago, Martinez, and in San Pablo Bay began to depend more on fish, shrimp, and isopods.

Neomysis awatschensis were frequently found in the stomachs of 3-year-old or older bass, but contributed little to
the total food consumed. These adults depended almost entirely on Crago franciscorum and fish.

The fish diet of the striped bass varied with the size of the individual and the season. The occurrence of a given
species of fish in the diet generally reflected the abundance of that species in the trawl tows.
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All the common species, including young striped bass and king salmon were utilized at one time or another.
I am indebted to John Thomas, of the Inland Fisheries Branch of the California Department of Fish and Game,

who analyzed the stomach contents of most of the large bass during 1964.

FIGURE 12. Occurrence of various food items in the stomachs of striped bass of different age groups at different
seasons in different areas. Columns above months represent 100 percent of all occurrences; i.e., if all of 100 stom-

achs contained Crago and all contained "fish," column would show; Crago—50 percent, "fish"—50 percent
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5.3.2.32. Black crappie, Pomoxis nigromaculatus. Fresh water. Introduced
Total—1. Midwater trawl. Martinez: June 1963; 23 cm. Stomach contained one Neomysis awatschensis.

5.3.2.33. Bluegill, Lepomis macrochirus. Fresh water. Introduced
Total—2. Midwater trawl, otter trawl. Pittsburg: February 1963; 4 cm. San Pablo Bay: February 1963; 4 cm.

5.3.2.34. White croaker, Genyonemus lineatus. Marine
Total—994. Gill net, otter trawl. Martinez, San Pablo Bay.

A few white croakers were caught at Martinez between March and December 1964, but 955 were taken in San
Pablo Bay from April to August 1964. Most were 3 to 10 cm long. About 15 fish were 15 to 30 cm long.

5.3.2.35. Barred surfperch, Amphisticus argenteus. Marine
Total—1. Otter trawl. San Pablo Bay: June 1964; 6 cm.

5.3.2.36. Black perch, Embiotoca jacksoni. Marine
Total—25. Otter trawl. San Pablo Bay: July 1964; 5 to 7 cm.

5.3.2.37. Pile perch, Rhacochilus vacca. Marine
Total—33. Otter trawl. San Pablo Bay: June–July 1964; 8 to 33 cm.

5.3.2.38. Shiner perch, Cymatogaster aggregata. Marine
Total—188. Midwater trawl, otter trawl. San Pablo Bay.

A few shiner perch were caught between February and May 1963, but the majority (177) were taken between May
and December 1964. All were from 8 to 14 cm long.

5.3.2.39. Tule perch, Hysterocarpus traski. Fresh water
Total—2. Midwater trawl, otter trawl. Pittsburg: April 1963; 9 cm. Honker Bay: January 1964; 13 cm.

5.3.2.40. Walleye surfperch, Hyperprosopon argenteum. Marine
Total—3. Otter trawl. San Pablo Bay: June 1964; 7 to 9 cm.

5.3.2.41. White seaperch, Phanerodon furcatus. Marine
Total—7. Otter trawl. San Pablo Bay: May–September 1963; 12 to 16 cm. October–December 1964; 27 to 28 cm.

5.3.2.42. Gobies. Marine–Euryhaline
Total—72. Midwater trawl, otter trawl.

Although both the arrow goby, Clevlandia ios, and the bay goby, Lepidogobius lepidus were identified, catches
were usually recorded only as "gobies."

Most (61) gobies were caught in San Pablo Bay from May to October 1964. Four were taken off Pittsburg in May
and June 1964, and four were caught in San Pablo Bay between May and August 1963. All were 3 to 8 cm long.

5.3.2.43. Brown rockfish, Sebastodes auriculatus. Marine
Total—41. Otter trawl. San Pablo Bay: June–July 1964; 5 to 7 cm.

5.3.2.44. Lingcod, Ophiodon elongatus. Marine
Total—31. Midwater trawl, otter trawl. San Pablo Bay: April–July 1964; 8 to 9 cm.
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5.3.2.45. Prickly sculpin, Cottus asper. Fresh water
Total—2. Otter trawl. Martinez: March and December 1964; 14 and 16 cm.

5.3.2.46. Staghorn sculpin, Leptocottus armatus. Marine–Euryhaline
Total—2,644. Midwater trawl, otter trawl.

Jones (1962) studied the biology of the staghorn sculpin in Tomales Bay and San Francisco Bay, for 2 years. He
concluded that spawning takes place between October and March and that small juveniles are most tolerant of low
salinity. Small juveniles migrated into fresh water in spring, were confined to highly saline areas in the summer,
and, for the most part, had moved into marine water by autumn.

We caught sculpins in all areas in most months. They reached their greatest abundance in San Pablo Bay in June,
July, and August, and at Martinez in the fall. Size ranged from 3 to 22 cm. Small fish, up to 7 cm, were common in
the winter and spring, particularly in the flats of San Pablo and western Suisun Bay. Ripe adults 20 cm long were
taken in San Pablo Bay in April 1964.

About 85 percent of the sculpins were taken in San Pablo Bay, 13 percent at Martinez or in Grizzly Bay and 2
percent at Pittsburg or in Honker Bay.

Jones (1962) found that the principal food items utilized by 87 adult staghorn sculpins taken in San Francisco Bay
were: bay shrimp, the blue mud shrimp, Upogebia pugettensis, and the northern anchovy. The principal food organ-
isms eaten by 101 juvenile sculpins in Tomales Bay were: Corophium spinicorne, C. stimpsoni, and the annelid Ne-
anthes limnicola.

In Suisun Bay, we examined two sculpin stomachs with identifiable food. One contained bay shrimp, the other,
annelid worms. In San Pablo Bay, three specimens contained bay shrimp.

5.3.2.47. California pompano, Palometa simillima. Marine
Total—11. Midwater trawl. San Pablo Bay: May 1963, May 1964; 10 to 14 cm.

5.3.2.48. Atherinids. Marine
Total—1,292. Gill net, midwater trawl. Martinez, San Pablo Bay.

Both the jacksmelt, Atherinopsis californiensis, and the topsmelt, Atherinops affinis, were in our catches. When
small individuals appeared, it was not practical to separate the two species. However, the presence of ripe and ripen-
ing jacksmelt in San Pablo Bay led us to believe that most of the small fish were that species.

The jacksmelt reaches a length of more than 50 cm, matures at the age of about 2 years at a length of about 15 cm,
and spawns from October to March (F. N. Clark, 1929; Roedel, 1953).

Over 98 percent of the atherinids we caught were in San Pablo Bay. The remainder, eight adults 20 to 36 cm long,
and 10 young, 6 to 9 cm long, were caught off Martinez.

Ripening and ripe adults were found from September to April, but the largest catches were composed of fish
between 5 and 12 cm and were recorded from July to December in both 1963 and 1964.

5.3.2.49. California halibut, Paralichthys californicus. Marine
Total—2. Otter trawl. San Pablo Bay: May 1963; 34 cm. May 1964; 80 cm.
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5.3.2.50. Pacific sandab, Citharichthys sordidus. Marine
Total—50. Otter trawl. San Pablo Bay.

More than 90 percent were caught in June and July 1964. All were between 5 and 11 cm long.

5.3.2.51. Diamond turbot, Hypsopsetta guttulata. Marine
Total—15. Otter trawl. San Pablo Bay.

In 1963, turbots were caught between August and December. In 1964, from May to December. All were 23 to 42
cm long.

5.3.2.52. English sole, Parophrys vetulus. Marine
Total—1,050. Otter trawl. San Pablo Bay.

In 1963, only one English sole was caught (December; 24 cm). In 1964, small sole were common during some
months. From May through July, 1,000 sole 4 to 10 cm long, were taken and from August through December, 49
between 7 and 18 cm, were caught.

5.3.2.53. Sand sole, Psettichthys melanosticus. Marine
Total—12. Otter trawl. Martinez, San Pablo Bay.

Two sand sole were caught off Martinez (May, December 1964), 10 in San Pablo Bay (no particular seasonal pat-
tern). Sizes ranged from 5 to 28 cm.

5.3.2.54. Slender sole, Lyopsetta exilis. Marine
Total—2. Otter trawl. San Pablo Bay: April 1964; 15 and 22 cm.

5.3.2.55. Starry flounder, Platichthys stellatus. Marine–Euryhaline
Total—about 1,000. Gill net, midwater trawl, otter trawl. San Pablo Bay to Pittsburg.

The starry flounder is found in bays and from very shallow water to about 150 fathoms over all types of bottom
but rock. In central California, the fish spawn once a year during winter months. Males mature in their 2nd year
when about 30 cm long; females in their 3rd year when about 35 cm long (Orcutt, 1950). The starry flounder is a rel-
atively minor component of the commercial flatfish catch but is an important sport fish in central California (Roedel,
1953).

P. stellatus is known to move far upstream into completely fresh water. It has been taken 75 miles up the
Columbia River (Gunter, 1942), and during the fish survey of the Delta in 1963, a small starry flounder was caught
at Mossdale on the San Joaquin River. Mossdale is about 90 nautical miles from the Golden Gate and is near the
limit of tidal effect. Even in periods of drought, ocean salts are absent there.

We caught about 77 percent of our starry flounders in San Pablo Bay, about 14 percent off Martinez or in Grizzly
Bay, and about 9 percent off Port Chicago, Pittsburg, or in Honker Bay.

Although one of the largest (44 cm) fish was caught off Pittsburg, size (and age) generally decreased with dis-
tance upstream. Small (4 to 15 cm) flounders comprised about 90 percent of the catch off Pittsburg, Port Chicago
and in Honker and Grizzly Bays. off Martinez, about 50 percent were of that size and in San Pablo Bay 20 to 40 per-
cent. Small fish were most abundant in summer and fall but were scattered throughout the estuary year-round.

Larger (20 to 44 cm) fish were common during most months in San Pablo Bay. An increase in numbers was ob-
served in the spring and
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summer, and the late summer and fall population seemed to be quite high.
In Suisun Bay, we examined 18 stomachs containing identifiable food. Ten had eaten "clam" (mostly Macoma

sp.), 5 contained Corophium sp., 2 Synidotea laticauda, and 1 Neomysis awatschensis.
In San Pablo Bay, 47 stomachs contained identifiable food: 39 clam (mostly Macoma sp.), 8 Synidotea laticauda,

4 annelid, 1 Photis californica, and 1 unidentified crab.

5.3.2.56. California tonguefish, Symphurus atricauda. Marine
Total—5. Otter trawl. San Pablo Bay: July, August, October 1964; 9 to 13 cm.

5.3.2.57. Northern midshipman, Porichthys notatus. Marine
Total—about 700. Midwater trawl, otter trawl. Suisun Bay, San Pablo Bay.

The northern midshipman was most abundant from April to August in both 1963 and 1964. Over 90 percent of the
total catch was accounted for during those periods in San Pablo Bay. During the spring and summer months, sizes
ranged from 9 to 31 cm, and many of the females contained large, well-developed eggs. From September through
the winter months, fish of that size were not common but 3 to 6 cm midshipmen were scattered throughout the bay.

In May and June 1964, three midshipmen were taken near Pittsburg and a few others were scattered throughout
Suisun Bay between May and December of both years.

5.4. DISCUSSION
The 1962–1963 water year (July to June) was a "wet year" with above-normal precipitation recorded. However, av-
erage or below-average rainfall was experienced in the fall and winter and salinity, while steadily decreasing, did not
vary widely. In February, March, and April, over 70 percent of the total rainfall was recorded. Heaviest rainfall oc-
curred in February and April, moderate flooding was experienced, and salinity varied abruptly (Figure 13).

The highest average monthly chlorinity recorded at Pittsburg during 1963 was 1[o/oo] in August. For all practical
purposes, the water at Pittsburg was fresh during the entire year.

The 1963–1964 water year was a "dry year" with below-normal rainfall recorded. Only in October and November
1963 was above-average precipitation experienced.

At Pittsburg, chlorinity reached 1[o/oo] in May 1964 and a high of more than 3[o/oo] was recorded in August.
Chlorinity at Crockett decreased slowly to 5[o/oo] in January 1964 then slowly rose to a high of 14[o/oo] in Au-

gust (Figure 13). The fall of 1964 was dry and the chlorinity decreased slowly. The average reading in mid Decem-
ber was between 8 and 9[o/oo]. However, 1 week after our survey ended, California was struck by one of the worst
storms in its history. On December 22, 1964, the chlorinity at Crockett was 10.7[o/oo]; 4 days later the water was
completely fresh.

In only 1 of the 24 months of our survey did the average chlorinity at Pittsburg exceed 2.5[o/oo] (Figure 13).
The average chlorinity at Port Chicago was between 0 and 2.5[o/oo] for 7 months, between 2.5 and 9.0[o/oo] for

15 months, and over 9.0[o/oo]
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FIGURE 13. Average monthly temperature and chlorinity. Temperature is monthly average of all areas
for 2 months. At Martinez, chlorinity was 0 to 2.5[o/oo] for 2 months, 2.5 to 9.0[o/oo] for 14 months, and over
9.0[o/oo] for 8 months.

The average monthly chlorinity at Crockett was 9.0[o/oo] or more for 13 months, between 2.5 and 9.0[o/oo] for 9
months and was 2.5[o/oo] or less only during the 2 flood months of February and April 1963.

The estuary is not a static system. The effects of changes (sometimes abrupt) in inflow, two complete tidal cycles
of considerable and changing amplitude each day, as well as the effects of wind-driven waves on its large, shallow
bays make it a constantly changing dynamic system. Consequently, any classification of an area within the estuary
would only be valid for a brief period of time. However, based on the chlorinity readings of 2 years, I feel that it can
be divided into three broad zones based on the Venice System of Estuarine Classification (see Kelley, p. 12; Painter,
p. 37). They are: an oligohaline or "freshwater" zone centered near Pittsburg, a mesohaline or "brackish" zone
centered between Port Chicago and Martinez, and a polyhaline or somewhat less than "marine" zone centered in San
Pablo Bay just west of Crockett.

Hedgpeth (1957) stated: "As regions of transition and sharp gradients, estuaries support a fauna recruited princip-
ally from the sea, but with a few components from fresh-water environments . . . ."

of the many species of fish we encountered, most were of marine origin and those decreased in number rapidly or
disappeared completely as sampling moved upstream.

Two of the most commonly found so-called euryhaline species of fish, the starry flounder and the staghorn
sculpin, though capable of inhabiting waters of a wide salinity range are nevertheless, generally
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associated with the marine environment. This is also true of the bay shrimp.
Only 3 of the 13 freshwater species, the carp, the splittail, and the white catfish, were taken with any regularity.

The others were rarely caught and in some cases only one was recorded during the entire survey.
Only two species of fish, the Sacramento smelt and the pond smelt, appear to be truly "resident" forms. The Sac-

ramento smelt seems to favor the high end of the salinity gradient, and the pond smelt the low. However, little is
known about the life history and behavior of these species in central California, and both warrant further investiga-
tion.

Gunter (1945), after a survey of the fish fauna of a Texas estuary, concluded that: ". . . the temperature cycle is
chiefly responsible for the seasonal movements and other recurrent cyclic activities of the fishes. In a few instances
there were indications that either temperature or salinity was clearly more operative than the other factor in influen-
cing the movements or presence of a species in a given environment at a given time, but mass movements coincide
with the temperature cycle. Both salinity and temperature have definite limiting and differential effects which are
difficult to separate by observation. . . . During the fall most fishes in the bays began to move toward the Gulf of
Mexico. The absence of a species was generally first noticed in the upstream areas. In the spring and summer, the
fishes return to the bays."

In our study area, the water temperature (which closely follows air temperature) ranged from 6° C. in January
1963 and 1964 to 21° C. in August of both years (Figure 13). Except for changes caused by flood flows, the salinity
increased and decreased in much the same pattern (Figure 13). The general abundance of fish also rose and fell in
the same way.

It was not possible to separate the effects of temperature and salinity on the obvious seasonal migrations and
changes in abundance of such species as the king salmon, American shad, jacksmelt, striped bass, Sacramento smelt,
Pacific herring, and northern anchovy, but the general agreement between my data from Crockett and Martinez and
those presented by Messersmith (see p. 57) indicates that the seasonal changes in the concentrations of those species
are consistent and predictable. However, the effect of salinity on the degree of penetration into the estuary of some
of the marine and marine-euryhaline species can be demonstrated.

The average chlorinity at Crockett for the 6-month period from January through June 1963 was 5[o/oo] and for
the first 6 months of 1964, 9[o/oo]. At Port Chicago, chlorinity was 1.1[o/oo] from January through June 1963 and
4.5[o/oo] in 1964. This means that the estuary was not subjected to abrupt and violent changes in outflow and salin-
ity in the winter and spring of 1964 as it was in 1963, and that a given isohaline was obviously more stable in posi-
tion and occurred several miles farther upstream in 1964.

In "dry" 1964, the northern anchovy and Pacific herring moved farther up the estuary and the center of abundance
of young Sacramento smelt shifted from San Pablo Bay in 1963 to middle Suisun Bay in 1964.
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Small bay shrimp appeared in Suisun Bay earlier and in greater numbers, and market crabs, almost totally absent
in 1963, were common in San Pablo Bay and present at Martinez.

Several marine forms were caught in San Pablo Bay only in 1964, and some that were not numerous in 1963 were
common in 1964.

Since there was no real difference in seasonal temperature between the 2 years, it would seem that variations in
outflow and salinity were the dominant factors controlling longitudinal distribution of animals within the estuary.

In the future, with increased upstream development and control of water, extremes of flow will be reduced. Such
conditions would allow the transient and seasonal marine and anadromous populations to enter and leave the estuary
without being subjected to as many violent and sometimes lethal chemical and physical changes, such as probably
occurred in the spring of 1963 and in the winter (after our survey ended) of 1964. Such conditions would probably
favor the establishment of more stable and permanent estuarine populations.

5.5. SUMMARY
From January 1963 to December 1964, a 25-mile section of the Sacramento-San Joaquin River estuary, from the
confluence of the two rivers to San Pablo Bay, was regularly sampled with trawls and gill nets. We were particularly
interested in determining the distribution, general abundance, and food habits of the fishes within the salinity gradi-
ent.

Sixty species of fish were recorded. of these, 31 were saltwater forms, 8 were euryhaline, 13 were freshwater spe-
cies, and 8 were anadromous. Freshwater species were generally few in number and restricted to the upper end of
the survey area. Marine forms were generally restricted to the lower end. The abundance of several marine species
fluctuated widely with season.

The middle portion of the survey area was characterized by the presence of anadromous and euryhaline species
and seasonal immigrations and emigrations of marine and freshwater forms. There appeared to be few resident spe-
cies.

Ocean salt moved farther upstream during the 2nd year (1964) of the survey and the number of marine species in-
creased. Some species taken in both years moved upstream earlier and farther in 1964 than in 1963.

Bay shrimp, Crago spp., were common during the summer and fall, and were important in the diets of large
striped bass. Bay shrimp were more heavily concentrated in Suisun Bay and were abundant farther up the estuary in
1964 than in 1963.

Pacific herring, Clupea pallasi, entered the estuary each year. They produced millions of young which were
abundant in San Pablo Bay during May and June of 1963 and upstream throughout Suisun Bay during April and
May of 1964. Except for this short time in the spring, herring were rare in, or absent from, our catches.

The northern anchovy, Engraulis mordax, entered the estuary in large numbers during the spring and summer. All
sizes from 17 cm adults to newly-hatched larvae were present. Their numbers declined in the fall and winter months
and adults were rare or absent. I found
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them farther upstream in 1964, and they were more abundant in San Pablo Bay that year.
Young-of-the-year striped bass moved downstream from the Delta and were particularly abundant throughout

Suisun Bay from August through November of both years. They were abundant in San Pablo Bay in October,
November, and December of 1963 but were scarce there in 1964. Our high catches of young-of-the-year bass with
relatively inefficient trawling gear in the "flats" of Suisun Bay suggest that these areas are probably of great import-
ance to the young bass.

King salmon, Oncorhynchus tshawytscha, young-of-the-year were most abundant during their downstream migra-
tions in April, May, and November.

Adult American shad were most common in our catches in the spring, during their upstream spawning migration.
Some young-of-the-year and yearling shad were always present in the estuary but the numbers of these were greatest
in the fall. Eleven adults with "spent" gonads were caught in September 1963, suggesting that some adult shad
spawn and return to the sea.

The pond smelt, Hypomesus transpacificus, was restricted to the low end of the salinity gradient.
The Sacramento smelt, Spirinchus thaleichthys, was found throughout the estuary and seemed to move upstream

with increased salinity. Young Sacramento smelt were abundant in April and May.
The food habits of several fishes were investigated, and although many organisms were utilized, the opossum

shrimp, Neomysis awatschensis, formed an important and probably critical link in their food chain. Striped bass in
their 1st and 2nd year of life fed intensively on Neomysis awatschensis. Older bass ate a variety of small fish and
shrimp. The composition of their food varied with season and location within the estuary. American shad of all sizes
fed almost entirely on copepods and opossum shrimp.

Most of the fishes and shrimp that inhabit the Suisun-San Pablo Bay section of this estuary migrate up or down-
stream as they grow and as the seasons change. The pattern of migration was similar during the two seasons studied
but the extent of movement—especially that of marine forms upstream—was different. This is probably because of
different salinity conditions during the 2 years.
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6. SEASONAL DISTRIBUTION OF CRUSTACEAN PLANKTERS IN THE
SACRAMENTOSAN JOAQUIN DELTA

JERRY L. TURNER

6.1. INTRODUCTION
Zooplankton collections in the Delta were made over a 12-month period from March 1963 to February 1964. This
report describes the standing crop of crustacean plankters and some of the physical and chemical factors that affect
their distribution and abundance.

Seasonal variation in concentration of crustacean plankters was correlated with seasonal variation in water tem-
perature. "Residence time" of water in a channel was an important factor influencing abundance in channels contain-
ing water of the same river system. Differences in dissolved solids appeared to be the major cause of differences in
the zooplankton abundance of the different river systems within the Delta.

6.1.1. Field Methods
Zooplankton samples were collected once a month from 20 Delta stations which had contrasting conditions of flow,
water quality, and temperature.

Collections were made with a Clarke-Bumpus sampler fitted with a number 10 net (109 meshes to the linear
inch). Ricker (1938) demonstrated that a number 10 net sampled adult crustaceans in proportion to their abundance.

The sampler was towed near the surface behind a power boat moving at approximately 3 feet per second relative
to the current speed for 10 to 15 minutes. The sampler metered the volume of water strained through the net.
Samples were usually collected from stations in the San Joaquin River and south Delta on one day and from the Sac-
ramento River and Mokelumne River region of the Delta on the following day. They were preserved with formalin.
Rose bengal dye was added to facilitate visual separation of animals from detritus.

At the time of sampling, the surface water temperature was recorded and a sample of water was collected so that
its electrical conductivity could be measured. Measurements were made with an AC wheatstone bridge and were
used to help distinguish the origin of water.

The Department of Water Resources provided estimates of mean net flows and cross-sectional areas of the chan-
nel at each station for days samples were collected. These estimates were based upon their daily measurements of in-
flow to the Delta and past studies of the relationships between these inflows and the net flows and cross-sectional
areas of the separate Delta channels (Calif. Dept. Water Resources, 1962a). They were used to compute "mean net
velocities"

TABLE
as an index of the time a given amount of water remains in a channel.
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6.1.2. Laboratory Methods
In the laboratory, each zooplankton sample was allowed to settle for several hours so that excess water could be
siphoned off without loss of plankters. The volume of the remaining sample was measured, the sample thoroughly
mixed, and 1 cc of this concentrate was transferred to a Sedgewick-Rafter counting chamber. A total count was
made of the zooplankters on two or three Sedgewick-Rafter cells. Kutkuhn (1958) demonstrated that accurate total
counts of macroplankton species could be secured by examining three Sedgewick-Rafter cells per sample of concen-
trate. A subsample of the first 100 organisms counted in each sample was identified to genus if possible. Total nu-
merical abundance of each genus and/or all copepods and cladocerans per cubic meter of water was then calculated.

6.2. DISTRIBUTION AND RELATIVE ABUNDANCE
The concentration of cladocerans and copepods in my samples varied greatly (i) as the seasons changed, (ii) in Delta
water from the different river systems, and (iii) at various stations within the same river system (Figure 1). Zo-
oplankton populations were uniformly low in the Delta in the spring; the one exception being a slightly higher con-
centration in the San Joaquin River below Stockton. The total population of zooplankton increased greatly in the en-
tire Delta during the summer with the highest concentration again being in the San Joaquin River below Stockton.
Larger concentrations of zooplankton were found in the central Delta than in the upstream areas of the inflowing
rivers. The fall distribution was similar with high concentrations in the San Joaquin River below Stockton, medium
concentrations in the central Delta, and low concentrations in the inflowing rivers. A great reduction in zooplankton
occurred during the winter. During the winter, concentrations in the central Delta were only slightly greater than
those in the inflowing rivers.

6.2.1. Seasonal Differences
The standing crop of both cladocerans and copepods varied with the time of the year (Figure 2). The peak of abund-
ance occurred from August through October; populations were lowest during December and January. A notable dip
in the concentration took place during May and June. High flows of more than 10,000 cfs occurred in the San Joa-
quin River just preceding our sampling during those months.

Copepods were more abundant than cladocerans during most of the months sampled. Very low numbers of clado-
cerans were present from December through February. The most common cladocerans were Bosmina longirostris,
Daphnia sp., and Diaphanosoma brachyurum. The most common forms of copepods were Cyclops sp. and Diap-
tomus sp. The population of most genera increased in the late summer and fall and decreased in the winter (Figure
3). Diaphanosoma brachyurum disappeared completely from our sampling from December through April.
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FIGURE 1. Concentration of crustacean plankters in the Sacramento-San Joaquin Delta from March 1963 to Feb-
ruary 1964. The area of each circle is proportional to the concentration of plankters at each station with the largest

circle (below Stockton, September–November) equal to 120,000 per cubic meter

6.2.2. Effect of Water Quality
The concentrations of total dissolved solids in the three rivers entering the Delta are very different (Figure 4). For in-
stance, during the 5 years 1960 through 1964, the Mokelumne River had a range of total dissolved solids in parts per
million of 24 to 51; the Sacramento River, a range of 37 to 145; and the San Joaquin River, a range of 75 to 826
(Calif. Dept. Water Resources, 1960–1964). In the Delta,

97



FIGURE 2. Comparison of the average concentration of crustacean plankters with the average temperature for all
sampling stations in the Sacramento-San Joaquin Delta from March 1963 to February 1964

FIGURE 3. The numbers of major crustacean plankters caught each month from March 1963 to February 1964 in
the Sacramento-San Joaquin Delta. The width of each line at each sampling period is proportional to the numbers

of that species caught
low mineral content water of the Sacramento River joins the even lower mineral content water of the Mokelumne
River by flowing through the man-made Delta cross channel at Walnut Grove. These combined waters flow down
the forks of the Mokelumne to join the nutrient-rich water of the San Joaquin. During the irrigation season, great
amounts of Sacramento River water released from upstream reservoirs
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flow southward across the Delta to be pumped at the Tracy pumping plant, mostly for irrigation service from the
Delta-Mendota Canal. From early summer to late fall, most Delta channels contain water that originated in the Sac-
ramento River.

FIGURE 4. Total dissolved solids concentration of water in the Sacramento River at Walnut Grove, the Mokelumne
River at Woodbridge, and the San Joaquin River at Mossdale from 1960 to 1964 (data from Calif. Dept. Water Re-

sources, 1960–1964)
I separated the zooplankton data into two parts: one describing collections from the Sacramento-Mokelumne

River water, and one describing collections from water of the San Joaquin River. The separation was made on the
basis of the electrical conductivity measurements of the water and information about Delta hydraulics supplied by
the Department of Water Resources.

During most of the year, and throughout most of the Delta, the collections from San Joaquin River water con-
tained almost twice as many copepods and cladocerans per sample as collections from the Sacramento-Mokelumne
River water (Figure 5). This was not true of the collections from the more river-like stations on the edge of the Delta
where net velocities were relatively high. Zooplankton concentrations at these stations were uniformly low.

6.2.3. Effect of Rate of Flow
The standing crop of copepods and cladocerans varied among stations with the same river water. Greater concentra-
tions occurred at all stations with low "net velocities of flow" than at stations with high "net velocities of flow"
(Figure 5). "Net velocity of flow" is an estimate of the mean rate of downstream (or in a few cases upstream) move-
ment of the water mass in a channel. It really has no relationship to the true velocity of water at any time during a
tidal cycle. The
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FIGURE 5. Average numbers of crustacean plankters each season in various rivers in the Sacramento-San Joaquin
Delta at different net water velocities. Solid columns indicate plankters collected in the San Joaquin River and the

stippled columns the plankters collected in the Sacramento-Mokelumne Rivers
"net velocity" is therefore only an index of resident time of water in the channel.

The influence of "net velocity" or resident time appeared to be much greater in the richer waters of the San Joa-
quin River than in the lower mineral waters of the Sacramento-Mokelumne River, and much greater in both systems
during summer and fall months.

In general, as each channel approaches the bay, there is an increase in its cross-sectional area with a resulting de-
crease in the "net velocity of flow." There are high "net velocities" in the river areas with narrow channels such as
on the Sacramento River above Isleton, on the Mokelumne River above New Hope Landing, and on the San Joaquin
River above Stockton. There are low "net velocities" as the rivers divide into numerous channels of larger cross-
sectional areas in the central Delta. During our sampling period, the stations with the lowest "net velocities" were al-
ways located in the central Delta with the two stations below Stockton having the lowest rate.

6.3. DEAD-END SLOUGHS
In addition to the monthly samples collected from the 20 Delta stations, I made six tows to collect zooplankton from
the "dead end" Sycamore Slough in June and December 1963. During both sampling periods, the concentrations of
cladocerans and copepods were greater toward the closed-end of the slough (Figure 6). This was not true of the up-
permost stations in December. The average concentration of cladocerans and copepods at each individual station in
June was much higher than at the same station in December.

In a dead-end slough there is a movement of water back and forth due to tidal action but no net flow through the
slough except when water is pumped into or out of the channel for irrigation or drainage. An exchange of water does
occur between the river and slough during tidal changes. In a dye tracer study of Sycamore Slough, the California
Department of Water Resources (yet unpublished) demonstrated an increase
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FIGURE 6. Average number of crustacean plankters at various stations in Sycamore Slough in June and December
1963

in retention time of the mass of water with increasing distance into the slough.
During both of my sampling periods, the electrical conductance of the water was progressively higher as I collec-

ted toward the upper end of the slough (Table 1) . The water temperature was highest in the head of the slough
(Station 6) in June, but the opposite was true in December. The amount of dissolved oxygen was lowest in the upper
end of the slough in December.

6.4. DISCUSSION
In this study I measured only the more obvious factors that others have found to influence zooplankton populations.

Water temperature appeared to be the major factor affecting the seasonal variation in the standing crop of clado-
cerans and copepods in the Sacramento-San Joaquin Delta. Except during May and June,

TABLE 1
Environmental Characteristics of Sycamore Slough for June 10 and December 17, 1963
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there was a close correlation between average water temperature and concentration of zooplankters. Allen (1920)
found that temperature, within certain limits, was the factor determining seasonal trends of plankton in the San Joa-
quin River. Roach (1932), in the Hocking River in Ohio, found a close correlation between temperature and total
plankton abundance, but the zooplankton population showed a rather oscillatory movement. The California Depart-
ment of Water Resources (1962b), in a study of the Sacramento River, concluded that water temperature was the
single most important factor affecting total plankton production.

During my study, there was a widespread decline in the standing crop of zooplankton during May and June. This
was probably due to high flow conditions in the inflowing rivers just prior to our sampling. The San Joaquin River
was particularly affected at that time as the fresh water inflow reduced both the total dissolved solids and the resid-
ence time of water. Blum (1956) summarized several references which showed that flood waters could bring about a
sharp decline in total plankton.

Average "net velocity" of flow, an expression of residence time of water, appeared to be the major factor account-
ing for differences in zooplankton abundance between stations containing water of the same river system. In all
three river systems there was an increase in total numbers of cladocerans and copepods at the stations in the central
Delta where the river slowed down. A reduction in net velocity of flow apparently creates a more stabilized environ-
ment and results in an increased population of plankton.

Residence time of water was one of the first factors considered by many to have a direct effect on plankton pro-
duction. Kofoid (1903) concluded from his study on the Illinois River that the quantity of plankton, within certain
limits, was directly proportional to the "age" of water (length of time for plankton development). The "age" of water
is determined by velocity; it decreases with high velocity and increases with low velocity. Eddy (1934) stated that
"... velocity is one of the important factors controlling the age of water and corresponding conditions of stability ne-
cessary for production of plankton." In his study of the San Joaquin River at Stockton, Allen (1920) found that water
currents above a moderate rate were inimical to plankton development. Neel (1951) found that both photosynthesis
and decomposition exert their greatest effect upon plankton under slow water conditions.

The larger concentrations of copepods and cladocerans in the San Joaquin River could be due to the amount of
dissolved solids in the water. Pennak (1946) stated that in a broad sense, there are greater numbers of plankton
where there are larger quantities of dissolved nutrients. Northcote and Larkin (1956) found a positive correlation
between plankton abundance and total dissolved solids for British Columbia lakes with greatly differing dissolved
mineral content. Ward (1957) found a positive correlation between cladoceran and copepod abundance and total dis-
solved solids at several stations in Shuswap Lake, British Columbia. He believed that the concentration of total dis-
solved solids was the major factor contributing to station differences, although extreme
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water temperatures control the upper and lower limits of seasonal zooplankton abundance.
The effect of different residence times, water temperatures, and dissolved solid concentrations on the zooplankton

population was demonstrated by the collections and measurements from Sycamore Slough. December zooplankton
populations were predictably low in Sycamore Slough as they were throughout the Delta. Within this low range,
they were greatest in samples collected from the center and upper-middle reaches of the slough where residence time
and dissolved solids were high. In June, water temperature, total dissolved solid concentration, residence time, and
zooplankton concentrations were all progressively greater as I sampled toward the upper end of Sycamore Slough.
At that time, water temperatures were high enough to allow the other variables of residence time and total dissolved
solids to affect the zooplankton population in a more positive way.

In Sycamore Slough, I cannot separate the effects of higher dissolved solid concentration, higher residence time
or higher water temperature toward the upper end of the slough. The important point is that these are all influential
factors. In Sycamore Slough as in the entire Delta, it is their combined effects that affect the zooplankton population.

Throughout the Delta channels, the wide variations in residence time and dissolved solids combine to create major
differences in the standing crops of zooplankton. River-like conditions of high net velocities limit zooplankton pop-
ulations in the San Joaquin River above Stockton and Grant Line Canal, in the Sacramento River above Rio Vista
and the forks of the Mokelumne River. The slower net velocities of the central Delta result in varying concentrations
of zooplankton depending on the source and quality of the water. The heaviest concentrations were in the San Joa-
quin River below Stockton where total dissolved solid concentrations were very high and net flows were very low.

6.5. SUMMARY
1) Zooplankton samples were collected from the Sacramento-San Joaquin Delta from March 1963 to February 1964
in order to investigate relationships between crustacean plankters and their environment.

2) The distribution and concentration of cladocerans and copepods varied seasonally, by river system, and within
the waters of each river system.

3) The monthly standing crop of zooplankton was closely related to water temperature except for a short period in
May and June following flood waters when a reduction in total numbers occurred.

4) The concentrations of each common genera increased in late summer and fall and decreased in the winter ex-
cept for Diaphanosoma which disappeared completely from our sampling from December to April.

5) Besides water temperature, zooplankton concentrations were influenced by "net velocity of flow" (resident
time) and total dissolved solid concentrations.

6) "Net velocity of flow" is an index of residence time of water in a channel. Water from the same river produced
more zooplankton in
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areas where this residence time was greater. "Net velocities" of more than 0.3 feet/second were always associated
with low zooplankton populations.

7) Under similar conditions of low "net velocity" and high temperature, zooplankton concentrations in the San
Joaquin River waters were about double those in the Sacramento-Mokelumne River waters. Total dissolved solid
concentrations were consistently more than three times as great in the San Joaquin waters.
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7. DISTRIBUTION AND CONCENTRATION OF NEOMYSIS
AWATSCHENSIS IN THE SACRAMENTO-SAN JOAQUIN DELTA

JERRY L. TURNER and WILLIAM HEUBACH

7.1. INTRODUCTION
This report describes our present knowledge of the opossum shrimp, Neomysis awatschensis (formerly Neomysis
mercedis) , in the Sacramento-San Joaquin River Delta. N. awatschensis is an important fish food in the Delta
(Heubach, Toth and McCready, 1963; Ganssle, see p. 92), and major changes in its population could affect the popu-
lations of many fishes.

We have found populations of N. awatschensis to be highest in the western Delta during the summer but low at
most other places and times. Seasonal and geographical variations in the concentration of N. awatschensis may be
due to changes or differences in salinity and the rates of reproduction. There is also some evidence that depth, rate of
water flow, and dissolved oxygen levels influence its distribution in the Delta.

7.2. METHODS
The study was conducted as a part of the zooplankton investigation reported in the previous chapter, and collection
methods were essentially the same. Twenty-two stations in the Delta were sampled monthly from March 1963 to
February 1964. In addition, 15 of the stations were sampled monthly from March to August 1964.

Collections were made with a Clarke-Bumpus sampler fitted with number 000 net (25 meshes to the inch). The
sampler was towed behind a power boat traveling against the current for 10 to 15 minutes at a velocity through the
water of approximately 3 feet per second. Samples were preserved with formalin. Rose bengal dye was added to
stain the animals red and make them easier to separate from detritus.

The mean net water velocity in feet per second for the sampling day was determined by dividing the net water
flow (total outflow minus total tidal inflow) by the cross-sectional area at each station. This information was sup-
plied by the California Department of Water Resources.

Estimates of locations of the 0.1[o/oo] chlorinity concentrations were based on measurements of chlorides taken
every 4 days by the California Department of Water Resources.

All N. awatschensis in each sample were counted. From July 1963 to February 1964, the juveniles (sex character-
istics not developed), males, females, and gravid females from the entire sample or from 100 randomly selected spe-
cimens were counted.
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7.3. GEOGRAPHICAL DISTRIBUTION AND CONCENTRATION
The concentration of N. awatschensis was low throughout most of the Delta in the spring of 1963 (Figure 1). The
species was not found in the Sacramento River above Isleton, the Mokelumne River above Terminous, or the San
Joaquin River above Stockton. In the summer there was a great increase in the concentration of N. awatschensis in
the western Delta, but few were taken in the Sacramento River above Rio Vista, the Mokelumne River, and the San
Joaquin River above the Mokelumne River. In the fall there was a decrease in the high concentrations of the western
Delta.

FIGURE 1. Seasonal and geographical distribution and concentration of Neomysis awatschensis in the Sacramento-
San Joaquin Delta, March 1963 to August 1964. The areas of the circles are proportional to the number of mysids
per cubic meter. The smallest represents a concentration of 0.1–3.0/M3 and the largest represents a concentration

of 500/M3
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There was a further decrease in N. awatschensis in the Sacramento River and Cache Slough in the winter of
1963–64. The following spring the concentrations were about the same as in the fall, but just below Stockton the
population had apparently increased. In the summer of 1964, there were again large concentrations of N. awatschen-
sis in the western Delta and comparatively few elsewhere.

7.3.1. Salinity
The largest concentrations of N. awatschensis were found in the western Delta during the summer when salinity in-
cursion was the greatest (Figure 1). During the remainder of the year, when the water was only slightly salty or es-
sentially fresh, the density of mysids in the western Delta was relatively low.

Painter (see p. 133) found N. awatschensis most abundant at the freshwater end of the salinity gradient, and sug-
gested that salinity was the most important environmental factor affecting its distribution in Suisun and San Pablo
Bays. A large concentration of N. awatschensis in the low salinity range could explain, in part, the increase in the
western Delta as salinity incursion occurred and the decrease when the water was fresh.

7.3.2. Rate of Water Flow
Rate of water flow is an important environmental factor affecting the distribution of N. awatschensis. We found very
low concentrations of N. awatchensis upstream from areas where the net water velocity exceeded 0.3 fps, and never
found it where the net water velocity exceeded 0.4 fps (Figure 1).

The apparent influence of net water velocity on N. awatschensis was demonstrated in the Sacramento River at Is-
leton and the North Fork of the Mokelumne River, which are connected by the cross Delta canal at Walnut Grove.
The net water flows in the Sacramento River at Isleton and in the North Fork of the Mokelumne River are partly reg-
ulated by the opening and closing of the Delta cross canal. When the canal is open, water from the Sacramento River
is diverted through it and down the North Fork of the Mokelumne River where the water velocity is thereby in-
creased (Figure 2). At the same time, the net water velocity in the Sacramento River is reduced.

N. awatschensis was present in the North Fork of the Mokelumne River in March and April of 1963 when the
canal was closed and net water velocities were below 0.3 fps (Figure 2). At the same time we did not find mysids in
the Sacramento River at Isleton where the net velocities were high. During the heavy spring runoff in May 1963,
water velocities were high in both the Sacramento River and the North Fork of the Mokelumne River and we did not
find N. awatschensis in either area.

In June 1963 the canal was opened and high flows were maintained in the North Fork of the Mokelumne River all
summer, and we did not find N. awatschensis. By August the net water velocity in the Sacramento River at Isleton
was approximately 0.25 fps and N. awatschensis were present. In October the net water velocity in the Sacramento
River was more than 0.4 fps, and again we did not find N. awatschensis. In November 1963 the canal was closed.
By December the net flow in the North Fork of the Mokelumne River was reduced to 0.1 fps, and we
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FIGURE 2. Neomysis awatschensis per cubic meter and the net water velocity in the Sacramento River at Isleton
and the North Fork of the Mokelumne River, March 1963 to February 1964

collected a few mysids. We did not find them there in January and February even though the net velocity was under
0.3 fps.

In Cache Slough, Old River, and in the San Joaquin River at the mouth of the Mokelumne River, the net water ve-
locity was less than 0.3 fps most of the year (Figure 1). The increase in the density of N. awatschensis in these areas
of low velocities during the summer may be due to an intrusion from the relatively large concentration of mysids in
the western Delta. The changes in the concentration in these areas cannot be attributed to changes in salinity, as the
water there was fresh throughout the investigation.

7.3.3. Depth
The depth of the channel also had an important effect on the concentration of N. awatschensis (Figure 3). We found
greater concentrations

FIGURE 3. Neomysis awatschensis per cubic meter in relation to net water velocity and depth, Sacramento-San
Joaquin Delta. Number above figure is sample size
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in deeper water at all net flows. Low numbers were present at most stations where the channel depth was 15 feet or
less.

On August 8, 1963 in mid-afternoon, we made single tows at three different channel depths in the San Joaquin
River at Antioch, and at two channel depths at the mouth of the Mokelumne River. At both stations the highest con-
centration of N. awatschensis was in the deepest part of the channel (Table 1) .

TABLE 1
Concentration of Neomysis awatschensis at Various Channel Depths in the San Joaquin River at Antioch and the

Mouth of the Mokelumne River

7.3.4. Oxygen
The low concentration of N. awatschensis in the San Joaquin River just below Stockton in the summer may be due
to low dissolved oxygen concentrations. In August 1963, two 24-hour surveys of dissolved oxygen concentrations
were made at our station just below Stockton. The highest dissolved oxygen level recorded was 5.3 ppm while the
lowest was 2.4 ppm. The water temperature was 22°C.

In laboratory experiments, Croft and Turner (unpublished) found that N. awatschensis began dying when the dis-
solved oxygen concentration was reduced to under 5.0 ppm and 100 percent mortality occurred when the dissolved
oxygen was lowered to 2 ppm. These experiments were conducted in water temperatures of 10 to 17°C. In other ex-
periments, the temperature was gradually increased while the dissolved oxygen level was held constant. The results
indicated that N. awatschensis required even higher dissolved oxygen levels at higher temperatures.

7.3.5. Reproduction
From July 1963 to February 1964, there was an increase in the mean length of N. awatschensis and a decrease in the
percent of gravid females (Figure 4). This probably indicated a higher reproduction rate

FIGURE 4. Mean length of Neomysis awatschensis and percentage of gravid females in Sacramento-San Joaquin
Delta, July 1963 to February 1964
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in the summer months. Except in October 1963, we always found a higher percentage of juveniles in the San Joa-
quin River at Antioch or the mouth of the Mokelumne River than in the San Joaquin River just below Stockton
(Figure 5). This may indicate that reproduction was greater in the western Delta.

7.4. DISCUSSION
Population studies of mysids in other areas show that salinity, water velocity, depth, dissolved oxygen, and temper-
ature can affect their distribution. The problems of evaluating these influences are compounded in an estuary where
tidal action and other water movements occur. While we cannot separate the effects of these variables with our exist-
ing data, the results of our investigation indicate that some of them affect the distribution of N. awatschensis.

N. awatschensis was most abundant in the western Delta and in the summer. This may have been due to a large
concentration of N. awatschensis intruding with water of low salinity, or an increased reproduction rate, or both.

Other members of the genus Neomysis are affected by salinity. Percival (1929) found Neomysis vulgaris in sea
water and upstream to a salinity of 0.1[o/oo] in the estuary of the Tamar and Lynher Rivers. The upstream limit of
Neomysis americana in the estuary of the Delaware River was usually just above the 4[o/oo] isohaline (Hulburt,
1957). He suggested that the principal source of N. americana in the estuary was the coastal waters outside the bay.

The consistently higher percentage of juveniles in the San Joaquin River west of the mouth of the Mokelumne
River also suggests that the amount of reproduction is greatest in the western Delta, accounting in part for greater
numbers in that area.

Based on studies in southern British waters and the English Channel, Tattersall and Tattersall (1951) concluded
that mysids in temperate regions reproduce all year, though more slowly in winter than in summer.

FIGURE 5. Percentage of juvenile Neomysis awatschensis in the San Joaquin River at Antioch (A); mouth of the
Mokelumne River (B); and just below Stockton (C); July 1963 to February 1964
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N. awatschensis was rarely taken where the net water velocities were high and the channel was shallow. Ricker
(1959) states that Mysis relicta has never been observed in the field to swim against any considerable current. He
states further that Holmquist (1959) found in laboratory experiments that mysids would turn against a gentle current
and take refuge in bottom materials. Strong currents washed them away.

Many biologists have found other species of mysids to be negatively phototrophic or positively geotrophic in
light. This may explain why N. awatschensis is more abundant in relatively deep areas. In laboratory experiments,
Foxon (1940) found that normal Hemimysis lamornae would always go to the bottom, regardless of the direction of
a light source. With their statocyst removed, they would turn their dorsal sides toward the light and move away from
it. Herman (1963) found Neomysis americana on the surface of Narragansett Bay only at night. In the daytime, it
was found on the bottom or immediately above it. He concluded light was the most important single factor govern-
ing vertical migration.

The distribution of N. awatschensis in the Delta may also be restricted by low dissolved oxygen and high temper-
atures. According to Tattersall and Tattersall (1951), Jorgensen (1929) found that pollution which resulted in a low
dissolved oxygen concentration reduced the number of Neomysis integer in the estuary of the Tyne and Coquet
Rivers.

Our investigations of N. awatschensis in the Sacramento-San Joaquin Delta and estuary showed that the popula-
tion extends generally from Port Chicago upstream to Rio Vista in the Sacramento River and to Stockton in the San
Joaquin River. Downstream it appears to be restricted by high salinities while upstream it seems to be limited by net
water velocities over 0.3 fps. Shallow depths and low dissolved oxygen levels also seem to reduce the concentra-
tions of N. awatschensis. Annual cycles in the over-all population size are probably due to changes in the reproduc-
tion rate.

Further studies are now being conducted to test these hypotheses and to determine how changes in the environ-
ment will affect N. awatschensis in the estuary.
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8. ZOOBENTHOS OF THE SACRAMENTO-SAN JOAQUIN DELTA
CHARLES R. HAZEL and D. W. KELLEY

8.1. INTRODUCTION
Examination of the bottom fauna of the Delta channels revealed that only a few animals are abundant and that their
distribution is influenced by substrate types, net flows, and factors we could not identify. High net flows and shifting
sand bottoms yielded the poorest samples of fauna.

8.2. METHODS
Bottom samples were collected at the same 25 fixed stations used by Turner (see p. 97) to collect zooplankton
throughout the Delta. All of these stations were always in fresh water. A few special collections were made in June
and December along a transect up the center of dead-end Sycamore Slough.

Samples were collected with a weighted Peterson dredge lowered from a boat. The bite of the dredge on a flat sur-
face covered approximately 1 square foot. During most months, six samples were collected in a transect across the
channel at each station.

As each sample was collected, it was classified according to the predominant substrate type by the way it looked
and felt. If the sample appeared to have no predominant substrate type, we classed it as "mixed." The accuracy of
this field classification was tested by having 12 samples analyzed mechanically (Table 1) . It appeared accurate
enough for a rough classification, and Hazel's classification of individual samples was used to estimate the percent
composition of the substrate in Delta channels (Table 2) .

TABLE 1
Comparison of Substrate Classification by Sight and Touch Used During this Study with Conventional Mechan-

ical Analysis
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TABLE 2
Percent Composition of Substrates in Delta Channels and Mean Net Velocities June 1963–June 1964
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Each sample brought aboard the boat was washed through a No. 30 screen with a pore size of 0.59 mm. Small oli-
gochaetes and other small organisms including many Corophium less than about 2.6 mm long were washed through
this screen and therefore not counted.

To make laboratory sorting easier, 1 gram of rose bengal dye was added to each gallon of formalin used to pre-
serve these samples. Most animals were thereby dyed pink or red.

Whenever an estimate of all species was needed, the preserved and dyed sample was sorted, a tablespoonful at a
time, in our laboratory at Stockton. Such total estimates of macrofauna were made on 597 samples. Whenever only
Corophium were needed, they were floated off by immersing the sample in a sugar solution of 1.11 specific gravity.
The method was similar to that used by Anderson (1959). It proved as accurate as hand sorting Corophium and took
far less time. One hundred and thirty-nine of the samples were counted this way.

When any sample contained more than about 300 organisms, aliquots of ¼ or ½ of the sample were counted. Ex-
amples of our Corophium collections are deposited at the U. S. National Museum and the California Academy of
Sciences. The collection of other benthic animals is available for further study at the California Academy of Sci-
ences, San Francisco.

8.3. RESULTS
Most of our collecting with the Peterson dredge sampled the bottom of the Delta channels but not the steep intertidal
sides, the rare beds of aquatic vegetation, or the communities on piling or posts. These specialized habitats will re-
quire further investigation before the fauna of the Delta can be fully described.

Animals belonging to 35 taxa were collected. Only the amphipods, Corophium spinicorne and Corophium
stimpsoni, the Asiatic clam Corbicula fluminea, unidentified Tendipedae, and Oligochaeta were in any sense abund-
ant. These were the only animals collected consistently enough to permit analysis of their distribution. Other animals
were taken inconsistently and in small quantities. Only their presence in the Delta can be noted.

Sponges of the genus Spongilla were collected in the Sacramento River above Walnut Grove. The hydroid,
Cordylophora lacustris, was taken at most Sacramento and San Joaquin River stations. Unidentified turbellaria, nem-
atodes, and leeches were occasionally found in samples from many areas.

The polychaete worm, Neanthes limnicola, was collected in small numbers in most channels except those of the
southwestern Delta. N. limnicola was often found on substrates of peat and decaying tree limbs and near shore.

A tube-dwelling polychaete, Manayunkia speciosa, was collected several times in sand substrate of the lower end
of the Mokelumne River. This genus has been previously reported only from the eastern United States (Hartman,
1959; Pennak, 1953). The specimens were identified by Dustin Chivers, California Academy of Sciences, and are
deposited in the systematic collections at the Academy in San Francisco.

Most of the amphipods were Corophium but occasionally a representative of the genus Gammarus appeared in the
samples.
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The isopods Asellus tomalensis and Exosphaeroma oregonensis were occasionally found in samples collected
from several areas of the Delta. The marine isopods Synidotea, the introduced crab Rhithropanopeus harrisii, and the
barnacle Balanus, appeared only in samples from the western edge of the Delta.

Crayfish are common in the Delta but can usually avoid the Peterson dredge. Both the native Pacifastacus lenius-
culus and the introduced Procambarus clarkii have been regularly taken with otter trawls in the San Joaquin, Sacra-
mento, and Mokelumne Rivers during the course of our other work.

Neomysis awatschensis was regularly taken with the dredge but was better sampled with nets.
Except for the tendipedids, aquatic insects rarely appeared in the benthic samples. A few specimens of the dragon-

fly Gomphus olivaceous, the mayfly Hexagenia limbata, an unidentified caddisfly Polycentropis sp., a few simulids,
ceratopognoids, and Chaoborinae, were collected only at scattered points.

A few snails of the families Physidae and Lancidae and the clam Anodonta californiensis were collected from
scattered parts of the Delta. The clam Gonidea angulata was collected with an otter trawl fished in the Mokelumne
River but none was collected with the Peterson dredge. These clams were identified by John DeMartini, Humboldt
State College, and Allyn Smith, California Academy of Sciences.

Casual observations often revealed the isopod Exosphaeroma oregonensis and leeches on the undersides of rocks
placed along the shore for erosion control.

8.3.1. Corophium
The two most abundant macro-organisms collected from the bottom of Delta channels were two amphipods,
Corophium spinicorne and C. stimpsoni. Their identity was confirmed by Thomas E. Bowman, Associate Curator,
Division of Marine Invertebrates, U.S. National Muesum.

Heubach, Toth and McCready (1963) reported the genus Corophium as the most important bottom food of young
striped bass in the Delta. Stevens (unpublished) has recently examined the stomachs of more than 15,000 fishes from
the Delta and has found Corophium to be the principal benthic food of fishes there.

During our study, large concentrations of C. spinicorne and C. stimpsoni were limited to the freshwater, upstream
part of the estuary. We did not sample below the Delta but we examined Painter's collections of Corophium from the
salinity gradient in the bay. We found both species in significant numbers in collections made as far downstream as
Honker Bay, but not in those made far below there (Figure 1). Only 10 C. spinicorne and 119 C. stimpsoni were col-
lected in the 228 Peterson dredge hauls made by Painter in six transects below Honker Bay. The lowest transect
where he collected either C. spinicorne or C. stimpsoni in numbers comparable to the Delta stations was in Honker
Bay.

In the fresh water of the Delta we collected both species in every channel sampled. The mean number of each spe-
cies collected with the Peterson dredge at the 25 stations provides a very rough estimate of their concentrations
throughout the Delta (Figure 2). In general
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FIGURE 1. Distribution of three species of Corophium through the reach of changing salinity. Plotted points rep-
resent the numbers in individual Peterson dredge samples collected from the transects shown on the map. Open

circles represent C. stimpsoni; open triangles, C. spinicorne; and blackened circles, C. atcherusicum. The curves
represent the means of all (281) samples collected on each transect during July–September 1963

117



FIGURE 2. Mean numbers of Corophium spinicorne and C. stimpsoni in Peterson dredge collections at each of 25
Delta stations from August 1963–June 1964

C. stimpsoni was most abundant in the broad tidal channels of the Delta. C. spinicorne was most abundant along the
upstream edge of the Delta, especially in the San Joaquin River. Populations of both species were low in the Moke-
lumne River region.

Within each channel, we usually found C. spinicorne more concentrated near the banks in water between the low
tide mark and 10 feet deep (Figure 3). C. stimpsoni were usually more abundant in deeper water. Many samples con-
tained both C. stimpsoni and C. spinicorne, but ordinarily where one species was abundant in a sample, the other
was relatively rare. This affinity for different habitats was obvious
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throughout the Delta. It may be related to the distinct substrate preferences of the two species.
Our conclusions about substrate preferences of C. spinicorne and C. stimpsoni are based upon a comparison of the

concentration of each species in 729 Peterson dredge hauls that were classified according to their predominant sedi-
ment type. C. spinicorne were usually only abundant in samples that included some solid surface (Figure 4). Such
samples were usually classed as cobble, peat, or "mixed."

Throughout the Delta we found C. spinicorne inhabiting small, mucous-silt tubes fastened onto solid surfaces of
submerged logs or rocks. These tubes were especially abundant on the cobble that has been

FIGURE 3. Typical distribution of Corophium spinicorne and C. stimpsoni in Delta tidal channels. The fractions
shown above the bottom of the chonnel indicate the number of C. spinicorne (as the numerator) and C. stimpsoni (as

the denominator) in each Peterson dredge sample. C. spinicorne were usually more abundant near shore; C.
stimpsoni were usually more abundant in deep water
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FIGURE 4. Substrate preferences of Corophium spinicorne. Each graph illustrates the mean number of C. spini-
corne collected per dredge sample from a different substrate. Vertical lines illustrate the 95 percent confidence in-

terval
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laid to protect some levees from erosion and on submerged logs and piling that were not sampled with the dredge.
Samples that contained a large proportion of cobble often contained more than 300 C. spinicorne. Samples from

peat or "mixed" substrates seldom contained more than 100 individuals. Not all samples from these "preferred" sub-
strates held large numbers of C. spinicorne. often, what appeared to be ideal substrate was collected without a single
specimen. The confidence limits shown in Figure 4 are therefore very wide.

C. spinicorne had such a well defined "preference" for the cobble, peat, or "mixed" substrates that we expected its
concentration at different parts of the Delta to be a function of the concentration of the "preferred" substrates there.
To test this we plotted the mean number of C. spinicorne per dredge sample at each station against the percent of
dredge samples from that station that were classed as the "preferred" substrates (Figure 5). Many of the plotted
points lay far outside of any imaginary band that would illustrate a correlation.

FIGURE 5. Poor association between the concentration of gravel-cobble, peat, or "mixed" substrate and the con-
centration of Corophium spinicorne in the Delta

For such a correlation to exist, the mean concentration of C. spinicorne in "preferred" substrates would have to be
similar throughout the Delta. Such is not the case (Table 3) . Concentration were consistently high on solid substrates
of the San Joaquin River stations and particularly low at two Sacramento River stations, the Mokelumne River at
New Hope Landing, and the quiet waters of Sycamore Slough, Hog Slough, Frank's Tract, and Victoria Canal. Prob-
ably some conditions other than substrate type have a great influence on the distribution of C. spinicorne in the
Delta.

C. stimpsoni occurred in samples of every kind of substrate taken from the Delta, but they were most abundant on
substrates of fine sand and
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TABLE 3
Mean Concentrations of Corophium spinicorne and Corophium stimpsoni on All Substrates and on "Preferred"

Substrates
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a mixture of fine and medium sand (Figure 6). Very few were found in samples classed as medium sand.
The distribution of C. stimpsoni like that of C. spinicorne was apparently neither a simple function of, nor was it

well correlated with the concentration of its "preferred" substrate in different parts of the Delta. A graph of the mean
catch of C. stimpsoni for each station plotted against the percent of the samples from that station classified as fine
and fine-medium sand substrate illustrates no correlation (Figure 7.) The plotted points on that graph do create an in-
teresting pattern of four groups of stations that help to describe the habitat of C. stimpsoni.

First, there is a group of four stations from which the highest concentrations of C. stimpsoni were collected. This
group includes the Empire Tract and Bouldin Island stations on the San Joaquin River; the Orwood Tract station on
Old River; and the Rio Vista station on the Sacramento River (Stations 63, 64, 54, and 82). All are wide tidal chan-
nels with low net flows. Collections from these stations contained both high numbers of C. stimpsoni (greater than
89 per sample) and a high proportion of substrate classed as fine and medium sand (greater than 45 percent).

Dredge samples from the second group of stations contained just as much of the "preferred" substrate as those
from the first group but the concentrations of C. stimpsoni were always less than half as great. These stations are
widespread geographically and do not appear to be at all similar. The group includes the Holland Tract station on
Old River; the station in the Grant Line Canal; the station on the San Joaquin River at Antioch; and the station on
the Sacramento River at Isleton (Stations 52, 58, 65, and 77).

Stations of the third group provided no substrate samples that were classed as the fine sand or the fine and medi-
um sand "preferred" by C. stimpsoni. These are the quiet-water stations scattered throughout the Delta. Their bot-
toms are of peat and silt. Samples from these stations contained moderate numbers of C. stimpsoni.

The fourth group of stations are those with relatively small amounts of fine or medium sand and low numbers of
C. stimpsoni. These are all the more river-like stations on the eastern edge of the Delta. All are subject to tidal flows
but are characterized by net flows that are relatively high.

Inspection of the environmental conditions at these four groups of stations suggested that some characteristic as-
sociated with water flow had a major influence on the concentration of C. stimpsoni in them. Turner (see p. 95) used
the "net velocity" as an index of residence time and showed that it had a significant effect on zooplankton popula-
tions. To test its relationship to C. stimpsoni, we plotted the mean number of C. stimpsoni taken at each station
against the July 1963–April 1964 average of the mean monthly "net velocities" of each channel at that station
(Figure 8). The concentration of C. stimpsoni appears related to the net velocity. The highest concentrations were
found in stations where the velocities were above 0.05 feet per second and below 0.2 feet per second. Only moderate
numbers were found in the stations with net velocities too low to measure or higher than 0.3 feet per second.
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FIGURE 6. Substrate preferences of Corophium stimpsoni. Each graph illustrates the mean number of C. stimpsoni
collected per dredge sample from a different substrate. Vertical lines illustrate the 95 percent confidence interval
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FIGURE 7. Association between the concentrations of fine and fine-medium sand and Corophium stimpsoni in the
Delta

FIGURE 8. The association between net water velocity and the concentration of Corophium stimpsoni in Delta
channels. "Net water velocity" is the mean net downstream flow water expressed in cubic feet per second divided by
the area of a typical cross section of the channel. It has little relationship to real velocities of the water but rather is

an index of "residence" time
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Not all of the stations in the range between 0.05 and 0.2 feet per second provided samples with large numbers of
C. stimpsoni. The low numbers in station 62 may be the result of low dissolved oxygen conditions that frequently
occur in the reach of the San Joaquin River below the City of Stockton, and the low numbers in station 65 may be
the result of waste disposal from the industrialized Pittsburg-Antioch area.

8.3.2. Oligochaeta
Oligochaete worms were collected at all of the benthic sampling stations in the Delta. They were more abundant at
the upstream stations (Figure 9) where a high percentage of the samples were classed as silt or fine sand (Table 2).
Oligochaetes were least abundant at stations of the central Delta where substrates include more peat or coarse organ-
ic detritus.

Oligochaetes are usually burrowing deposit feeders. We found them to be more abundant in samples with sub-
strates that were of smaller particle size, rich in organic matter, and not very compact (Figure 10).

8.3.3. Tendipedidae
Tendipedids were not as abundant in the bottom samples as either species of Corophium or as oligochaetes. The
only stations with more than a few tendipedids were those in the San Joaquin River at or above Stockton (Stations
60, 61, 61.5); one in the Sacramento River at Courtland (Station 79); and one in the Mokelumne River at New Hope
Landing (Station 72) (Figure 9).

These include all of the stations on the edge of the tidal basin, and their most distinguishing characteristic is that
each has some period in the spring when river currents overwhelm the ebb and flood of the tide.

The substrate at these stations ranges from sand to fine organic silt. There is little to distinguish them from many
other stations except that all of these stations did contain some "medium" sand (Table 2). Several other stations (78,
62, 69, 70) had substrates with equal or more amounts of "medium sand" but had few or no tendipedids.

8.3.4. Corbicula fluminea
The Asiatic clam Corbicula fluminea is abundant in many parts of the Delta. It is especially abundant on some tule
berms and nearshore areas where it is gathered by anglers and on a limited commercial basis for catfish bait. Large
populations occur in the Delta Mendota Canal which draws water from the south Delta. Our sampling methods were
not designed to measure C. fluminea populations and we have not learned much about their distribution. They were
present in every Delta channel we sampled. Painter (unpublished) collected young C. fluminea regularly throughout
Suisun Bay during 1963 but found none in San Pablo Bay. The young are regularly collected in zooplankton nets in
the Delta during the spring (Farley, unpublished). Our late fall and winter collections suggest a downstream move-
ment of young (Figure 11).

8.3.5. Sycamore Slough
Some special collecting was done in Sycamore Slough, a short channel tributary to the North Fork of the Moke-
lumne as it flows through the north Delta. Sycamore Slough is reasonably typical of the Delta's
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FIGURE 9. Mean concentrations of Oligochaeta and Tendipedidae at 25 Delta sampling stations from July 1963
through November 1963 and in February 1964

"dead-end" sloughs. It is almost 5 miles long, varies in width from about 700 feet near the mouth to less than 100
near the upper end, and in depth from 18 feet near the mouth to 3 feet and less at the very upper end. Mean tidal
range is about 3.6 feet. It has no real inlet or outlet except its mouth which joins with the North Fork of the Moke-
lumne. Small amounts of water are siphoned from it to irrigate the adjacent islands.

Six stations spaced along the length of Sycamore Slough were sampled with the Peterson dredge on June 10 and
again on December 17, 1963. Two samples were collected at each station on each day. These
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FIGURE 10. Concentrations of Oligochaetes in different substrates of the Delta. Graph shows mean number of an-
imals per sample and 95 percent confidence limits

FIGURE 11. Late fall and winter collection of young (less than 5 mm) Corbicula fluminea. Numbers on the maps
are the mean number of C. fluminea collected during the month

are the same stations where Turner sampled zooplankton (see p. 101).
Tendipedids were the most abundant invertebrates in the dredge samples collected on June 10. They were numer-

ous only from the upper half of the slough (Figure 12).
Oligochaetes were similarly distributed. They were uncommon in the lower end of Sycamore Slough and increas-

ingly abundant in samples collected from the upper end.
On June 10, Corophium were reasonably numerous (34 per sample) in the mixed silt and sand bottom about 0.5

mile inside the mouth of Sycamore Slough. They were less than one-third as abundant in similar bottom types up-
stream 1.5 miles. Only a few were found above there. All Corophium were collected within 3.0 miles of the mouth
of the slough.
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FIGURE 12. Concentrations of benthic macrofauna along the longitudinal axis of Sycamore Slough
In June 1963 we had not realized that two species of Corophium existed in the Delta. Those collected were all

labeled C. spinicorne. Because they were collected almost entirely from the sand and silt substrate in deep water, we
believe that most of them were C. stimpsoni.

The June samples from the central part of Sycamore Slough also contained a few young Corbicula fluminea.
The collections made the following December 17 contained fewer tendipedids, and many more oligochaetes,

Corophium sp., and young Corbicula fluminea.
During both periods, tendipedids and oligochaetes were most abundant in the soft organic mud of the upper

slough. Corophium sp. were most abundant on the silt-sand of the central and lower portions of the slough.

8.4. DISCUSSION
The distribution and abundance of benthos in the Delta is the result of a combination of a number of environmental
conditions some of which we have identified. Corophium stimpsoni, for instance, is an animal of fine and fine-
medium sand bottoms of the deeper water where the predominant currents are the ebb and flow of tides. Its abund-
ance appeared to be limited downstream by the beginning of the salinity gradient and upstream by high net velocit-
ies of the rivers entering the Delta. It does not flourish in quiet water.

The tube builder Corophium spinicorne is almost entirely restricted to sediments with some solid substrate like
rock, logs, peat, or organic detritus. It is very unevenly distributed and we have been unable to define the factors that
affect its distribution on these preferred sustrates except that it too appeared limited downstream by salinity.

There are undoubtedly a number of species of oligochaetes in our samples. They prefer the finer and more organic
substrates and are not
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abundant in the central Delta where substrates and are predominantly shifting sand. They are common in the up-
stream areas.

There are probably several species of tendipedids in our collections and detailed analysis of their distribtuion
without identification to species is unwarranted. As a group, they were found in significant numbers only in those
stations along the edge of the tidal basin where reverse flows either are not present or are very slight during some
period in the spring.

of all the environments sampled, those with bottoms of "medium" sand were the least productive of macrofauna.
Such bottoms are not common in the Delta but were occasionally encountered in the upstream reaches of the San
Joaquin River, the Mokelumne River at New Hope Landing, Sacramento River at Walnut Grove and above, and in
Hog and Sycamore Slough. The presence of large amounts of this "medium" sand suggests that portions of the sub-
strate may be moving with the current and the finer materials being washed out. This is unlikely to be the case in Sy-
camore or Hog Slough or in the San Joaquin River below Stockton, but is probably true in the San Joaquin River
above Stockton, the Mokelumne at New Hope Landing, and in the Sacramento River at and above Walnut Grove.
The bottom fauna of these areas consists largely of Corophium spinicorne on cobble laid along the banks to prevent
erosion, on tree limbs, logs, and piling.

In general we can say that high net velocities and shifting sand bottoms are detrimental to the macrofauna of the
Delta and that the maintenance or addition of some solid substrate, whether it be submerged tree limbs, dock piling,
or rock laid along the bank, provides additional and valuable habitat for Corophium spinicorne and undoubtedly in-
creases its total population.

Sand has generally been considered to be the least productive of all substrates. Medium or coarse sand of the
Delta channels is unproductive but the fine or a mixture of fine and medium sands are the preferred substrates of
Corophium stimpsoni—one of the two must abundant bottom animals there.

There is some confusion about the distribution of Corophium spiniicorne and C. stimpsoni in the literature. It may
be largely due to misidentification of these two species that look very much alike.

Filice (1954a, 1954b, 1958, 1959) collected 375 samples with an Ekman dredge through most of the salinity
gradient from West Island above Antioch, to the lower end of San Pablo Bay, between September 1951 and April
1952. He does not report collecting either C. stimpsoni or C. acherusicum. He reported taking only a few C. spini-
corne below Port Chicago. He described collecting C. spinicorne at depths below 18 feet more often than was ac-
counted for by chance and concluded that it preferred a sandy substrate. These two criteria correspond well with our
definition of the environmental preferences of C. stimpsoni but not with those of C. spinicorne.

Aldrich (1961) collected about 300 samples with a Peterson dredge from the lower San Joaquin River at West Is-
land (our station 65) and 11 miles upstream. He reported, "... that C. spinicorne at all times either attained or ex-
ceeded expected numbers in sand; in clay when it was available. This was usually true for gravel also. The data def-
initely indicates an aversion to peaty substrate throughout the
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area and to mud when mud became a major component of the substrate." These conclusions do not agree with ours
that C. spinicorne prefers peat and cobble substrates and is seldom found in large numbers elsewhere. Our evidence
is that C. stimpsoni prefers the fine and fine-medium sand bottoms. Aldrich did not identify any of his Corophium as
C. stimpsoni. Our conclusions about environmental requirements would agree if he merely failed to distinguish C.
stimpsoni from C. spinicorne.

The California Department of Water Resources (1962) collected monthly or bi-monthly zoobenthos samples from
April 1960 through June 1961 at 29 stations on the Sacramento River from its junction with the San Joaquin to
Shasta Dam. About 50 Peterson dredge samples were collected in that portion of the river flowing through the Delta.
The authors report collecting the largest number of C. spinicorne in the lower Sacramento River just above its junc-
tion with the San Joaquin. They did not mention C. stimpsoni. We have examined their preserved collections and
found that most of the Corophium identified from this region as C. spinicorne were actually C. stimpsoni. We found
no C. stimpsoni in their collections from above Walnut Grove. They collected C. spinicorne from the Sacramento
River 80 miles above tidewater.

Investigators from the Sanitary Engineering Research Laboratory of the University of California have recently
collected many benthic samples from the estuary up to and including our station 65 on the San Joaquin River. The
SERL Study never collected C. spinicorne in San Pablo Bay, but C. acherusicum was regularly taken there and in
north San Francisco Bay. Their report (Storrs, Selleck, and Pearson, 1964) of the distribution of C. spinicorne cor-
responds with our description of C. spinicorne and C. stimpsoni. They also report a fourth species, Corophium insi-
diosum from south San Francisco Bay.

The virtual absence of C. spinicorne and C. Stimpsoni from Painter's and the SERL samples collected far below
Chipps Island, strongly suggests that both species are either intolerant of salinity or cannot successfully co-exist
with other animals that inhabit the salinity gradient. The apparent downstream limit to large populations of both spe-
cies according to Painter's collections, corresponded to the location of 3[o/oo] chloride concentration at high-high
tide in August, the month of maximum salinity intrusion up the estuary. These findings differ from those of Jones
(1961) who regularly collected both C. acherusicum and C. stimpsoni from San Francisco Bay off Point Richmond
from January into the fall of 1955.

It should also be noted that Shoemaker (1941) originally described C. stimpsoni from specimens collected from
the Albatross in San Francisco Bay in 1912, from Elkhorn Slough off Monterey Bay and from "very fine specimens
taken at Dillon Beach"—all of these are thought to be essentially marine environments. Later Shoemaker (1949), in
this comprehensive description of the genus, reported that C. stimpsoni, C. brevis, C. acherusicum, C. insidiosum,
and C. oaklandense had all been collected in San Francisco Bay, and that C. spinicorne was collected from the fresh
water of Lake Merced and the Sacramento River. We hope to reconcile these apparent differences in future reports.
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8.5. SUMMARY
1) The collection of substrate samples at monthly intervals from many of the Delta channels revealed that most of
the macrofauna on the bottom consisted of two amphipods, Corophium spinicorne and Corophium stimpsoni, the
Asiatic clam Corbicula fluminea, a polychaete, Neanthes limnicola, and unidentified Tendipedidae and Oligo-
chaetea.

2) Corophium stimpsoni and C. spinicorne were by far the most abundant animals and were present in every chan-
nel we sampled in the Delta. Examination of Painter's collection shows them to be abundant downstream in the estu-
ary to the brackish waters of Honker Bay, but not below there.

3) In the Delta the habitat of Corophium spinicorne is on solid surfaces like rock, sticks, logs, or peat. C. spini-
corne is usually more abundant in shallow water near the shore.

4) The habitat of Corophium stimpsoni in the Delta is the fine and fine-medium sand found on the bottom of most
Delta tidal channels.

5) The concentrations of Corophium spinicorne and C. stimpsoni were only partly associated with our measures
of the distribution of their preferred substrates. No factor other than substrate preference was identified as influen-
cing the distribution of C. spinicorne. The concentrations of C. stimpsoni were most abundant in channels with the
slow yet distinguishable net flow down stream. C. stimpsoni were never abundant in the river-like channels with
mean net velocities of more than 0.3 feet per second.

6) Oligochaetes were most abundant in the upstream channels with substrates of silt or fine sand.
7) Tendipedidae were present in significant numbers only in the more river-like environments of the upstream

Delta.
8) Collections of bottom samples in a dead-end slough illustrated some of the major influences on the distribution

of important macrofauna. Corophium sp. (probably stimpsoni) were abundant in the lower end of the center of the
slough where the bottom was of sand and a mixture of sand and silt. Oligochaetes were abundant in the upper ends
of the slough where the currents were less and the bottoms were soft organic mud. Tendipedidae were absent from
the lower half of the slough where the tidal currents changed directions but were abundant in the upper end where
tidal currents are much reduced.

9) Medium-size sand—its composition probably reflecting a moving bed load—was the poorest producer of mac-
rofauna in the Delta.
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