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Abstract
Molecular Simulations of Lipid Bilayers and Membrane Helices Interactions
by
Ayelet Benjamini
Doctor of Philosophy in Chemistry
University of California, Berkeley

Professor Berend Smit, Chair

In this work we use mesoscopic simulations to investigate the short- and medium-ranged
interactions between transmembrane helices. First, we develop a coarse-grained model of a
generic transmembrane a-helix. We use the geometrical constraints of an a-helix, along with
a set of homogeneous hydrophobic beads. We discuss the reasoning behind this modeling
and explain why various other plausible models have failed in describing the short-range
interactions of transmembrane helices.

We subsequently study the effects of changes in the hydrophobic mismatch of these model
helices on their tilt angle. Our simulations show that helices with the same mismatch have
similar tilt angles. In addition, our calculations show that the crossing angle of two packed
transmembrane helices follows directly from the corresponding tilt angles, and hence the
hydrophobic mismatch, of the two helices. A similar analysis of a database of experimental
structures of proteins shows a similar conclusion.

We further show the effect of hydrophobic mismatch on the potential of mean force
between the helices as well as on the thickness and tilt angle of the lipids surrounding the
helices. We study a class of especially long helices, termed super-positive mismatched helices,
to which the response of the lipids differs and we explain this behavior in terms of lipid
organization around the helices.

These coarse-grained simulations are performed using the Dissipative Particle Dynamics
(DPD) scheme Performing large time and length scale simulations using this scheme is highly
CPU-time consuming. To enhance our simulation capabilities, we develop a novel, massively
parallel, simulation algorithm. We introduce this algorithm and the original concepts we
developed for parallelizing the DPD scheme. We show that this novel approach provides
up to 30 times speed up on a Graphical Processing Unit (GPU) over the non-parallel CPU
version.

Finally, we use our parallel algorithm to perform simulation on a large time and length
scale system. We investigate the effect of Cholesterol on the bending rigidity of lipid bilayers
and show the effect of a phase transition on the bending modulus. Extracting the bending



modulus from simulation requires a large system that enables long-range height fluctuations.
Using a fast, parallel simulation algorithm for such a task is therefore crucial.



To my beloved family.
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Chapter 1

Introduction

1.1 Biological Membranes

The cell is the elementary structural and functional unit of living organisms. It is typically
surrounded by a cell membrane, separating the cell’s interior from the outside environment.
The basic function of the cell membrane is to protect the cell from its surroundings. It
therefore controls the flow of substances in and out of the cell, and serves as a selectively
permeable barrier for ions as well as other organic substances. The cell membrane is also
involved in many cell processes such as ion conductivity and signaling.

The cell membrane of most living organisms is made of a lipid bilayer. The lipid bilayer
consists of two layers of lipid molecules, forming a thin flat sheet (Figure 1.1(a)). Lipids are
amphiphilic in nature. They contain a hydrophilic head group and a hydrophobic tail or
set of tails (See Figure 1.1(b)). When exposed to water, lipids self-assemble into structures
that minimize the exposure of the hydrophobic part of the lipid to water [1]. Lipid bilayer, a
structure where two lipid leaflets approach together to create an oily hydrophobic medium in
the middle, is one such structure. This oily medium is what limits the transport of many
substances through the cell membrane.

The lipid composition of the cell membrane is very diverse. The lipids differ in their head
group composition, tail length, and tail saturation. In Eukaryotic cell membranes, for example,
lipid head groups are devised of Phosphatidylecholine (PC), Phosphatidylethanolamine
(PE), Phosphatidylinositol (PI), Phosphatidylserine (PS), Diphosphatidylglycerol (DPG),
Sphyngomyelin (Sph) and others [2|. Cholesterol is also a common lipid in many cell
membranes.

The complexity of lipids in cell membranes creates a challenge in studying its function
in cellular processes. To that end, a model membrane containing one to three lipid types is
often used. Reducing the diversity of lipid composition allows one to better understand the
structural and dynamical properties of membrane processes [3, 4]. Both experimental and
simulation studies are therefore performed on model membranes. In this work, we focus on a
model membrane composed of either one lipid, DMPC (Figure 1.1(b)), or a mixture of two
lipids: DMPC and Cholesterol.
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Figure 1.1: (a) Hlustration of a lipid bilayer that is part of a cell membrane. The cell
membrane separates the cell’s interior (cytoplasm) from the outside (extracellular) environ-
ment. It may embed different proteins in it. Image from [5]. (b) A typical lipid molecule.
Dimyristoylphosphatidylcholine (DMPC) contains a polar phosphate head group and two
saturated tails, 18 long carbon chains. DMPC is a bilayer forming lipid.

1.2 Membrane Proteins

In addition to providing separation between the cell exterior and interior, the cell membrane
is also the milieu for a vast diversity of proteins. These proteins, termed Membrane Proteins
(MPs), are involved in a variety of functions crucial for organism survival [6]. For example,
MPs are involved in signaling between the cell’s internal and external environment; perform
ion transportation across the membrane; allow for cell recognition and adhesion.

Membrane Proteins are classified into three classes based on their topology and interplay
with the lipid bilayer [7]: Integral membrane proteins, Peripheral proteins, and Lipid anchored
proteins. Integral membrane proteins pass entirely through the membrane. Peripheral proteins
are located entirely on one side of the membrane and are non-covalently attached to the polar
lipid head groups. Lipid-anchored proteins are covalently bonded to a lipid in the membrane.

Integral membrane proteins constitute a large portion (20-30%) of all encoded proteins
[7]. Most of the integral membrane proteins are Transmembrane Proteins (TPs), which span
the entire biological membrane and therefore protrude both the extracellular and cytoplasmic
sides of the cell membrane. These are classified by their structure into a-helical and g-barrels.
In humans, 27% of all proteins are estimated to be a-helical [6]. They are important for
many cell processes and include transporters [8], channels [9], and receptors [10].

The functional activity of many membrane proteins depends on the properties of the
membrane, such as lipid composition and thickness [11-13]. The membrane environment is
therefore speculated to modulate the function of proteins by determining their structure and
dynamics.
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In this work, we investigate the effects of the lipid bilayer on the structure of embedded
proteins. Since a-helical proteins are an important class of TPs, we focus our attention to
the effect of the lipid bilayer on the structure of one a-helix, as well as on the structure of
paired a-helices.

Previous work [14]| showed that the hydrophobic thickness of the lipid bilayer plays an
important role in mediating the interactions between integral membrane proteins. Specifically,
the difference between the hydrophobic thickness of the membrane and that of the protein was
shown to effect the long- and medium-range interaction between proteins in the membrane.
In chapters 3 and 4 we extend these concepts by investigating the effect of hydrophobic
mismatch on the short-range interaction and configuration of packed a-helices.

1.3 Mesoscopic simulations

To study the interactions of TM proteins within the membrane we use computer sim-
ulations. Molecular dynamic simulations use the basic laws of physics to follow the time
evolution of investigated structures. It has proven to be a useful tool in many fields of
chemistry, biophysics, and material sciences [15-20].

One of the main challenges in biological science is bridging the gap in length and time
scales between experimental and computational studies. Chemical and biological processes
originate in atomic-level interactions. It would be extremely informative to reach such
resolution with experimental techniques. Current experimental techniques, however, reach
ms-ps time resolution. On the other hand, molecular dynamic techniques enable atomic-level
description of system dynamics. These simulations, however, can only reach up to few
hundred ns in time and ~ 10 nm in length.

One possible method of bridging this gap is the use of Coarse-Grained (CG) or mesoscopic
models. CG models treat sets of atoms as one group and waive the atomistic detail in favor
of reducing the number of degrees of freedom. This reduction allows faster integration and
therefore enables one to reach longer time scales and larger length scales [21-25].

Another advantage of CG model is its generality. A consequence of coarse-graining is the
depending on which property one is interested in different degrees of freedom can be important.
For example, if one focuses on the structure of a bilayer, diffusion barriers contribute very
little and one can develop very successful coarse-grained models that predict the structure of
a bilayer well but fail in giving a realistic dynamics. Similarly, a coarse-grained water model
will describe real water on a very limited temperature range, hence unless we reparameterize
our model for each temperature, such model will show an inconsistent temperature behavior.
The goal is to capture only the essential details that will describe the properties we are
interested in. Getting a hold on these important features then enables one to tune only the
important parameters and investigate the system’s response, therefore enabling discovery on
the system’s biggest leverages.

In this work we make extensive use of CG models. In chapter 2, we build on a previous
CG model [14] and change it to include characteristics that are important to short-range
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interactions of transmembrane a-helices. In chapter 5, we revise the existing algorithm for
CG simulations and present an efficient parallel algorithm for the simulation of CG models
on Graphical Processing Units. This enables us to obtain substantial speedup and explore
systems of even larger time and length scale than possible by CG models on standard CPUs.

1.4 Overview of this work

In this work, we investigate the short-range interactions between transmembrane helices
using mesoscopic simulations. We show our simulation prediction and compare these to
results from experimental model membranes as well as to experimental data of natural
structures of membrane proteins. Our results show that even the short-range packing of
transmembrane a-helices is highly effected by the lipid bilayer it is embedded in. We present
a novel algorithm for performing dissipative particle dynamics simulations with substantial
speedup. We illustrate the importance of using such algorithm on a model lipid bilayer
system with cholesterol.

In Chapter 2 we describe the basic chemistry of the system by presenting the bead types
used in our CG model. We further describe the bonded interactions maintaining the structure
and topology of this model throughout the simulation. We present the simulation technique
used and discuss the details of Dissipative Particle Dynamics and the non bonded forces it
employs on the beads in the system. We additionally discuss means to maintain constant
surface tension through means of hybrid Monte Carlo - Dissipative Particle Dynamics.

In Chapter 3 we develop a coarse-grained model of an a-helix. This model is developed
based on the concepts of describing the minimum-essential characteristics. As such, it
contains only two types of beads and the geometry of a typical a-helix. It is therefore a
good representation of a generic TM a-helix. We discuss other models that we explored and
propose rational for why these models fail to present basic properties of TM helix packing.

In this chapter we survey the concept of hydrophobic mismatch and the different ways it
might affect the configuration of a membrane protein as well as the bilayer it is embedded
in. We then present the results of our simulations using our novel CG model, revealing how
hydrophobic mismatch effects both the single helix configuration as well as the interaction
of a pair of TM a-helices. We show that the cross angle (packing angle) between those
helices is highly affected by the helices’ hydrophobic mismatch. We discuss the origin of this
effect as well as deviations from it. We additionally show that hydrophobic mismatch has an
important role in determining the potential of mean force between TM helices as well as the
tilt of the lipids around embedded helices. This chapter has previously been published in [26].

In Chapter 4 we compare our simulation predictions to experimental membrane protein
structures. These structures are expected to be more complex and diverse than model proteins
in model membranes. Yet, these experimental packing angles match our predictions and
illustrate the effect of hydrophobic mismatch on their distribution. We discuss the analysis of
these structures and their comparison to our simulation results. We discuss the similarities as
well as the deviations from our predictions and propose potential origins for these deviations.
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This chapter has previously been published in [27].

Our simulations in chapters 3 and 4 focus mainly on the interactions of two membrane
helices. Yet to fully explore the nature of membrane proteins, the interaction of far more helices
must be explored. Currently, we are limited in simulation resources. Chapter 5 is dedicated
to the development of a new massively parallel algorithm for Dissipative Particle Dynamics.
Employing this algorithm allows for substantial speedup in the simulation technique and for
the exploration of larger systems and longer time scales.

In Chapter 5 we discuss the specific challenges of adopting DPD to efficiently run on a
GPU, and how those were overcome. The base units (kernels) of the algorithm are discussed
in detail. We finally present the results for the speedup gained by employing this algorithm
in systems of both bonded as well as non-bonded species.

Finally, in Chapter 6, we utilize our novel GPU algorithm to explore the effect of
Cholesterol on the bending rigidity of DMPC bilayers. The bending modulus of various
DMPC/Cholesterol bilayers is extracted from its undulation spectrum. To obtain the full
spectrum a very large system is required, and simulation must be performed for a very large
number of time steps to avoid correlations in the lowest mode undulations. Using a fast
parallel simulation scheme is therefore crucial for obtaining the bending modulus accurately.

In this chapter we present the classical theory of obtaining the bilayer bending modulus
from its undulation spectrum. We additionally derive the theoretical basis for extracting
the bending modulus from the simulation of asymmetric (Cholesterol containing) bilayers.
We show that these asymmetric bilayers will always display an apparent surface tension
higher than its inherit surface tension. We present results for the bending modulus as a
function of Cholesterol concentration and show that a sharp increase in the bending modulus
is associated with a phase transition of the DMPC/Cholesterol system.



Chapter 2

Mesoscopic Model and Simulation
Method

In this chapter we introduce the Coarse-Gained model that was used in our simulation
studies. We discuss the types of interactions present in the model and the Hybrid Monte
Carlo - Dissipative Particle Dynamics approach that was used and discuss its details and
benefits in the context of Lipid Bilayer simulations. Finally, we discuss the use of reduced
units in our simulation, and provide estimated conversions to physical units.

2.1 Introduction

The number of simulation studies of biological systems have grown abundantly in the
last couple of decades [15-17, 20, 28, 29]. These studies provide insight into the molecular
detail of biological building blocks in their native environment. Most of these studies rely on
Molecular Dynamics (MD) techniques [30], which follow the evolution of the positions and
bonds of atoms in a modeled molecule. Forces between atoms are defined by a force-field,
adhering to the chemical interactions of the specific atoms involved. Time propagation is
then performed by integrating the equations of motion.

While MD simulations have proven useful in describing short time scale molecular motions
and smaller scale structural properties, they are limited in time and length scale. Additionally,
as it uses the specific chemical details of the atoms in each molecule, it provides an insight
only into the specific system simulated. If a phenomena captured in MD simulations is part
of a more robust characteristic of the molecules involved, it would not be directly apparent
by performing these molecule-specific simulations.

Coarse-Grained (CG) methods provide an alternative route to deal with these length
and time scale issues [21|. In CG simulations, sets of atoms are grouped together to one
bead. The bead composition, topology and interaction parameters are chosen to mimic the
inherent chemistry of the atoms. Classical time integration can be performed on the resulting
forces between the CG beads, when eliminating the stiffest bond motions [31], or alternative
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time propagation methods can be employed - such as brownian dynamics [32] or dissipative
particle dynamics [33]. Regardless of time propagation methods, bundling atoms together
into groups allows for faster computation time, and provides a method of integrating-out the
specific details of the molecules and extracting only the characteristics that are relevant for
the studied process.

CG models have therefore been extensively used to probe biologically relevant time and
length scale phenomena [14, 22, 23, 34|. These models were shown successful in predicting
bulk material properties as well as in describing molecular level phenomena.

2.2 Coarse-Grained Model of a Lipid and a-helix

In this work, we model three system components: water, lipids, and a-helices using a
coarse-grained representation of the beads. Each bead represents a set of, on average, three
heavy atoms (e.g. carbon atoms / water molecules), that are bundled together. Four types
of beads are considered:

i. a water like bead, @), representing three water molecules.

ii. a hydrophilic bead, (), used to model the lipid head group as well as the top and bottom
caps of the helix.

iii. a hydrophobic tail bead, (¥), used to model the hydrophobic lipid tail.

iv. a hydrophobic protein bead, (p), used to model the hydrophobic core of a TM helix.

The lipid model used in this work was built to represent dimyristoylphosphatidylcholine
(DMPC). It was previously shown that this model reproducs the phase diagram of a bilayer-
forming lipid [35]. It includes a head group consisting of three () beads and two tails each
containing five (¥) beads. We therefore label the model A3 (t5), (See Fig. 2.1).

The CG model of a lipid was previously parametrized [14, 35]. The CG model of the
a-helix is designed and parametrized by the author of this thesis. Its details and motivation
are discussed in Section 3.3.

2.2.1 Non-Bonded Interactions

Non-bonded interactions are set to describe the basic interactions between different bead
types. Those interactions are set to mimic, for example, the fact that hydrophobic chemical
entities repel water, while hydrophilic groups attract water. All non-bonded interactions are
modeled as soft-repulsive:

= ij(L—=rij/Re) Tyy, iy < Re
) i — Llc
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(a) CG Helix HeI|x top view

(c) CG Lipid, Water

Figure 2.1: Coarse-grained model. (a) CG model of an a-helix assembled from hydrophobic
beads at the core and hydrophilic beads at both ends to keep the helix transmembrane. Helical
geometry is maintained by harmonic springs, angle springs and dihedral angle potentials
of principal helix beads (see Section 3.3.1) (b) Top view of the helix CG model shows the
helix central pole that provides excluded volume at the helix interior. (¢) CG lipid model
includes 3 hydrophilic head groups and two 5 bead hydrophobic tails. Figure 1.1(b) shows the
atomistic details. Water is represented explicitly by a single bead. All beads in the system
are of the same size and correspond to approximately 3 carbon atoms / water molecules.
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Table 2.1: Non-bonded interaction parameters between CG beads.

e ® © @

25 | 15 | 80 | 120
15 | 35 | 80 | 80
80 | 80 | 25 | 25
120 | 80 | 25 | 25

GG

Note. — Interaction pa-
rameters in units of €.

Where r;; = |r; — 7| is the distance between beads ¢ and j, and ; = (7; — 7;)/ri; is a
unit vector connecting particle 7 and particle i. The strength of the repulsion is set by the
repulsion parameter, a;; > 0. R, is the cutoff radius for the soft repulsive interaction. It is
set to R, = 1dg (dg is the reduced unit of length, see Section 2.5) in our simulations.

The use of soft repulsive non-bonded interactions is a common practice in Dissipative
Particle Dynamics (see Section 2.3). Groot et al. [33] introduced a typical value for the
self-repulsion parameter, the repulsion parameter between two identical water-like beads, to
be a = 25 €y (€ is the reduced unit of energy). In our model, we use basic parameterization
for most of the interactions. We use a smaller repulsion value for interacting beads that are
more attractive than the @) - @) interaction. This includes, for example, @) - (h) interaction
(a = 15 €¢y). We set a larger repulsion value for bead interactions that are more repulsive
than the @) - @) interaction. This includes hydrophobic beads interacting with water, such
as @ - @) and @) - (p) interactions. The protein core bead type, (p), is parametrized to
have identical interactions as the lipid tail bead, (f), within the membrane. We increase its
repulsion with the water bead, @), (from @@ = 80 €y to a@)(p) = 120 €o) to ensure the
protein core remains within the membrane.

This parametrization follows previous work by de Meyer et al. and others [14]. The
complete (symmetric) matrix of non bonded parameters is provided in Table 2.1.

2.2.2 Bonded Interactions

We apply bonded interactions between beads of the same molecule to maintain the
topology and structure of the modeled molecule. Bonded interactions are elastic in nature,
and can control the strength and flexibility of a given bond. These can be applied to control
the distance, angle and dihedral angle of same-molecule beads.

Specifically, we use the following forms of bonded interactions:
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Upona(T) = %Kb(r — Teq)2 (2.2a)
Uangle(@) = %KG(QO - Speq)Q (22b)
Udihedral(X) = %Kd[COS(X) - COS(Xeq)]2 (2.2¢)

Where Upona(rij) describes the harmonic potential controlling the distance between consecutive
beads 1, j; Uangie(ijr) describes the harmonic potential controlling the angle between beads
i, J, k; and Uginedrai(Xijii) describes the dihedral angle potential between beads i, j, k, [, as
adopted from the DLPOLY manual [36].

Bonded interaction parameters for the lipid model were obtained from all-atom MD
simulations [37]. The parameters for the harmonic distance potential (Eq. 2.2a) were globally
set to re; = 0.7dg and K}, = 100 (eo/ do?). The parameters for the harmonic angle potential
between consecutive bonds in the lipid tails were set to ¢, = 7 rad and K, = 6 ¢/ rad?,
favoring the straightening of the lipid tails, whereas ¢., = /2 rad and K, = 3 ¢/rad”
were applied for the junction angle between the lipid tails and head group, maintaining a
close-to-right angle.

Bonded interaction parameters for the helix model are described in more detail in Section
3.3.2 and Table 3.1. Bonded interaction parameters are provided in reduced length and
energy units, as described in Section 2.5.

2.3 Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD) has been introduced by Hoogerbrugge and Koelmam
[38] as a simulation technique for simulating CG models of complex fluids. It has several
advantages over Brownian Dynamics, mostly in reproducing the correct hydrodynamic
behavior of fluids. Espanol and Warren [39] showed that DPD can be represented by a
basic Fokker-Planck equation, and that one may chose parameters such that the dissipation-
fluctuation theorem is maintained throughout the simulation.

The basic elements of DPD are similar to Molecular Dynamics (MD) simulations. Particles
in the system interact and by computing the forces on each particle and solving Newton’s
equations of motion, we can follow the evolution of a system. Additionally, the use of soft
interactions allows for larger integration time steps. Combining that fact with the inherent
coarse-graining of each bead, one can reach larger time and length scales in DPD compared
with regular MD.

The forces applied on each particle include a conservative force (bonded and non-bonded),
F ¢ just like MD. Two other forces combine in DPD to account for the removal of degrees of
freedom. One is a dissipative force, FD , set to mimic the friction between two beads. The
other is a random force, F R representing the possible collisions that may occur between atoms
within each bead. All forces represent soft interactions, with finite repulsive barrier at short
distances. These interactions mimic the non-zero probability of CG beads to interpenetrate.
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While impossible for atoms, coarse-grained beads containing several atoms, may interpenetrate
in different configurations.

The dissipative force depends on the velocity difference between the two beads, as well as
on their position. Beads that are close together and have a positive relative velocity, will
have a higher chance of colliding. The dissipative force represents this possible collision with
a larger force acting on the two beads in the direction opposite to their connecting vector
(see Eq. 2.3). Both the dissipative and random forces are distance dependent, and are set to
zero beyond the beads’ inherit cutoff distance, R.. Their respective equations are:

F2(rij) = —nw (ri) (B - U5) B
FII;(TZ]) = O'QJR(TU)CZ']' f'ij (23)

Where 7;; = v; — v; is the velocity difference between particles ¢ and j. 7 is the friction
coefficient and o is the noise amplitude. ¢; ~ N(0,1) is a random number normally
distributed with mean zero and variance 1.0.

One of the requirements of DPD is the conservation of momentum [39], ensuring the
correct hydrodynamic behavior of fluids even in small length scales. This requirement manifest
it self in the requirement that:

—

Fy = —Fj,
= Gij = G (2.4)

Another key aspect of DPD is the spatial relation between the random and dissipative forces.
Espariol and Warren [39] show that the correct equilibrium density of states that corresponds
to the application of the conservative force may be recovered, with a well defined temperature,
if the folowing requirements are achieved:

WP(r) = [wh(r)]”

o? = 2nkgT
We set the noise amplitude o = 3.0, and set the friction coefficient accordingly to maintain

this requirement. For computational convenience we chose the same functional dependence
for the dissipative and random forces as for the conservative force. Namely:

wR(T): (1—7”/RC) f'ijy 7’<Rc
0, r> R,
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wD(T)—{(l_T/RC> f‘ij, r< R, (26)

0, r> R

The propagation of system components in time is done using a modified version of the
Velocity-Verlet algorithm [33|. The reason for using a modified version of the common MD
integrator arrises from the basic differences in the nature of the force between DPD and MD.
In classical MD the force on a given particle depends only on the positions of the particles
surrounding it. This allows for a separate integration of the force and velocity on a given
particle. In DPD, however, the force on a given particle depends on the positions as well as
the velocities of the particles surrounding it. Therefore, one must be careful when performing
concurrent time integration on the particles’ velocities and forces. The modified version of
the Velocity-Verlet algorithm includes the following steps of time integration:

Rt + AL) = 7 (1) + AL (L) + %Aﬂf:(t)

it + At) = T;(t) + AALS (1)

fit+At) = f; (F(t AL, Gt + At))

Bt + At) = Bi(t) + %At (Fitt) + e + ) (2.7)

These equations are identical to the original Velocity-Verlet algorithm [40] for A = 0.5 and
f (7, 7) = f (). The predicted velocity, ¥, is used to calculate the (velocity dependent) force.
The final velocity for each time step is then updated at the end of the time step based on the
force.

2.4 Monte-Carlo Approach

Lipid bilayers have several degrees of freedom to adjust to changes in their environment
(temperature, composition etc.). One of the most common changes observed are in the area
per lipid. In nature, a vesicle will expand or contract to allow such changes in areal density.
In simulation, we must use an appropriate ensemble to accommodate for such changes as well.
We therefore wish to simulate our system in an ensemble that allows for both changes in area
as well as in volume, such that the equilibration would mimic natural conditions. This is
achieved using the NP ~ Tensemble.

The free energy differential corresponding to that ensemble is achieved by a simple
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Legendre transformation [41]:
dF = =TdS + VdP — vdA + ppdNyip + p1yd Ny, (2.8)

Where v is the surface tension, and ju;y,, i, are the chemical potentials for the lipid and
water components, respectively, conjugated to the number of lipid and water molecules in
the system (Nyp, Ny).

Several approaches for simulating this ensemble have been used [42-44|. Rodgers and Smit
[41] show that to correctly sample in this ensemble, one must apply two types of moves, in V
and in L with the following acceptance criteria. (Here we refer to the simulation box length
along the surface of the bilayer as L and to the box length in the direction perpendicular to
the bilayer surface as L ).

Move 1: Move in V' holding L constant

1. Chose a change in the volume: AV € [—(Viep/2), (Vitep/2)]-
2. Calculate the resulting volume, and ensure it is positive: V,, =V, + AV.
3. Set L, =V,/ Lﬁ such that L and the area, A, are kept constant.

4. Accept this move with probability:

o

N-1
acc (V, = V,, |Lj) = min [1, (%) exp (—SPAV — SAU) (2.9)

Here V., is a simulation-specific step size for volume changes; 3 is the inverse temperature;
P is the applied pressure; N = Ny, + N,, is the total number of molecules in the system; and
AU refers to the energy change of the system after rescaling all head groups of all molecules
according to the new box size.

Move 2: Move in L holding V' constant

1. Chose a change in the box length: ALy € [—(Lstep/2), (Lstep/2)]-
2. Calculate the resulting box length, and ensure it is positive: L), = L, + AL.

3. Calculate the resulting change in area: AA = L? — L2

[[,n ll,0

=~

.Set L, =V/ Lﬁ’n such that the volume, V', is kept constant.
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5. Accept this move with probability:

Ly
acc (Lo = Lyn |V) = min [1, (L_) exp (ByYAA — BAU) (2.10)

Here Ly, is a simulation-specific step size for box length changes, and 7 is the applied surface
tension. Other symbols are defined similarly to Move 1.

When performing Move 1 or Move 2 we only scale the head groups of each molecule
(lipid/ water) while keeping the rest of the beads in the molecule bonded with the same
bond lengths and orientations. This results in changes only in the non-bonded interaction
at each proposed MC move, and increases the probability that these proposed moves are
accepted. Since only one bead out of each molecule is being rescaled, the number of particles,
N, corresponds only to the number of molecules in the system.

2.4.1 Hybrid DPD-MC

We combine the dynamical advantages of DPD with the ability of MC to equilibrate the
system in the right ensemble using a hybrid approach (25, 44, 45]. Namely, our simulation is
a Markov Chain of states. Each state is defined by its system box size. Within each state,
the system is propagated through time with the prospects of sampling typical equilibrium
configurations within that state. As part of the Markov Chain Monte Carlo (MCMC) scheme
[46], this approach, when done correctly, would provide good statistical sampling from the
system’s equilibrium distribution of configurations.

In practice, at each time step, a Move, Move i, is chosen with probability p;. The possible
moves include:

e Move 1 (Pressure move): Move in V holding L) constant.
e Move 2 (Surface tension move): Move in L; holding V' constant.
e Move 3 (DPD move): A DPD trajectory of Nppp substeps.

Moves 1 and 2 are described above. To maintain detailed balance in performing Move 3,
we ensure the number of DPD substeps is chosen at random, Nppp ~ U[0,50). A typical
trajectory in the NP~ T ensemble will perform pressure moves with probability p; = 0.2,
surface tension moves with probability p, = 0.2 and DPD moves with probability ps = 0.6.

2.5 Reduced Units

A typical approach within the realm of molecular simulations is to use reduced units [45].
In CG simulations, the conversion between reduced and physical units is non trivial. One
origin for this difficulty is the fact that the mapping of atoms into beads is not exact. In our
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model, for example, we bundle every three heavy (non-Hydrogen) atoms into a bead. These
may result in beads of different masses.

We approach this difficulty by setting a standard bead mass, and aligning all other units
accordingly. In that, we follow Groot and Rabone [47], and set our mass and length reduced
units according to the size of three water molecules. Yet the reader must remember that
small discrepancies in the units conversion may arise because of slightly different choices in
the coarse-graining procedure. These differences are usually later revisited when matched
with experimental thermodynamic data.

Mass

The reduced unit for mass is set to be the mass of one bead. The standard bead is defined
to be the one representing N,, = 3 water molecule. This therefore sets the reduced unit of
mass, m* to be N,, - mu,0 =~ 9-1072° kg.

Length

The length scale for the simulation is determined by the volume occupied by the beads at
a fixed temperature T* = 1.0. A cube of unit volume, 1d3, represents pN,, water molecules,
where p is the number density (number of beads per unit of volume). We set p to be 3.0 in
our simulations. Using the fact that a water molecule occupies an approximate volume of
30 A” we have:

d? = pN,, - 30 A°
= dy = 6.4633 A (2.11)

Temperature

There are different methods to derive the mapping of reduced temperature to physical units
scale. As we are interested in providing qualitative structural description of biological bilayers,
mapping the temperature scale to the thermodynamic properties of bilayers would be the
best approach. Here we assume linear scaling between the reduced and physical temperature,
and estimate the regression parameters from the main and pre-transition temperatures of
DMPC bilayer. See more details in ref. [14].

The resulting temperature scale is:

T(°C) = 108.75 T* — 8.7 (2.12)

We set the mapping of energy 1 ¢y = 1kgT to physical units, to follow from this temperature
conversion. See Table 2.2.
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Table 2.2: Conversion of reduced units to physical units.

Unit Symbol ~ Unit Name  Value  Conversion to SI units

m* Mass 3-mm,0 9-10726 kg
do Length 6.46 A 6.46 - 10710
€o Energy 1kgT 5.15-1072t J
T Time - ~ 2.7-10712 sec

Time

One may conceive different mapping criteria for the unit of time. The straight-forward
approach would be to derive it based on its inherit relationship with other units of the system.
Meaning;:

7 = doy/m* /€ (2.13)

The advantages of defining the unit of time in such a way is the consistency it provides between
all the different reduced units. We use this method to determine the value of 7 in Table 2.2.
The caveats in this approach originate in the mismatch between dynamical and structural
properties. It has been shown that using CG model parametrized by thermodynamic data
results in faster diffusion time compared to the times measured in physical systems [48].
Another approach for setting the mapping of the reduced time is therefore using the diffusion
constants of the system components. Groot et al., used the experimental value for the self
diffusion of water to set the time unit [33]. This yields a reduced time unit of 7 ~ 5 ps, almost
twice as fast.
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Chapter 3

Molecular Simulation study of
Membrane Helices Interactions

In this chapter we study the influence of a membrane environment on the packing of
Transmembrane (TM) helices. Using a coarse-grained (CG) model that captures the essential
structure and interactions of membrane a-helices we show that the inter-helical crossing angle
is mostly impacted by the tendency of the membrane to decrease the distance of the two
helix tips in the plain of the membrane. Combined with a hydrophobic related driving force
to tilt the helix in the membrane, a non-trivial crossing angle distribution is formed. As we
use a model that only captures the structure of a helix and its hydrophobic nature, we gain
insight into the influence of the membrane on the interaction of two helices, without the
effect of specific residues.

3.1 Introduction

Association of Transmembrane (TM) a-helices is the basis of many cell processes. Among
the membrane proteins (MPs) that require helix-assembly to function are ion channels [49],
GPCR membrane receptors [50], and integrins [51]. To probe the complex association of many
a-helices, the dimerization of two a-helices is typically used as a case study. Understanding
the factors determining helix-helix packing has therefore been the aim of several studies
[52-60].

Most models developed to explain helix-helix packing rely on specific residue interactions
between the helices [56-60]. These theories predict that specific residue interactions control
the packing angle between the two a-helices in a TM helix pair. In most of these models the
role of the membrane is limited to constraining the proteins diffusion in the two-dimensional
plane of the membrane. It is, however, well-known that the membrane plays an important
role determining the tilt of TM helices [11, 34, 61-65] and also in mediating the interactions
between TM helices [14, 63, 66-70|. Tt is reasonable to expect that the membrane also plays
a role in the helix-helix packing.
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Previous CG models developed in our group showed the importance of lipid mediated
interactions in controlling the long and medium range interaction of TM proteins [14]. These
models were able to predict the potential of mean force between a pair of TM proteins
embedded in a lipid bilayer based on the protein’s hydrophobic length. Using these model
for short range interactions might however lead to false conclusions on the packing of TM
helices, due to the simplified nature of these models.

Here, we develop a more detailed CG model of an a-helix, that will allow us to simulate
the short range interactions of TM helices. Our model relies on the previous model by de
Meyer et al. [14] in its basic parameterization, while providing more geometric details. This
type of modeling enables us to capture both the short range packing of TM helices as well as
longer range lipid mediated interactions.

3.2 Hydrophobic Mismatch

TM a-helices are characterized by a long sequence of hydrophobic residues. The interaction
of TM a-helices with the membrane they are embedded is influenced by the hydrophobic core
of the helix. To a first order, the hydrophobicity of the helix core is what enables it to be a
TM protein, and distinguishes it from a water-soluble protein. There is a strong tendency to
shield the hydrophobic helix residues from the water environment on both sides of the lipid
bilayer, and therefore there is a driving force for the helix to be embedded in the bilayer.

Those same driving forces that cause the helix to be a TM helix (i.e. shielding its
hydrophobic core from the water) are causing other, second order effects, which may be
thought of as a size dependent perturbation. These effects relate to the Hydrophobic Mismatch
between a helix and the surrounding membrane. The hydrophobic mismatch is defined as the
difference between the hydrophobic length of the helix, dy, and the hydrophobic thickness of
a membrane, dy,:

Ad = dy — dy, (3.1)

The concept of hydrophobic mismatch as well as the helix hydrophobic length and membrane
hydrophobic thickness are illustrated in Figure 3.1. When dy = dp, (Ad = 0), we say that
there is zero hydrophobic mismatch. The size of the helix then fits the membrane perfectly
(Figure 3.1(b)). When dy > dp, (Ad > 0), we say that there is a positive hydrophobic
mismatch. In positive mismatch situations, as a generalization, the system would search
for alternative means to shield the hydrophobic parts of the helix core that are exposed to
water (Figure 3.1(c)). When dy < di, (Ad < 0), we say that there is a negative hydrophobic
mismatch. In negative mismatch situations, the system would search for means to shield the
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(a) Negative (b) Zero (c) Positive
Mismatch Mismatch Mismatch

Figure 3.1: Illustration of Hydrophobic Mismatch. (a) Negative mismatch, dy < dy, (b) Zero
Mismatch, dg = dy, (c¢) Positive Mismatch, dg > di,. The membrane is represented by a
continuous hydrophobic layer of tails (grey) and two layers of hydrophilic head groups (red).
The helices are represented by a hydrophobic core (green) and two hydrophilic caps (yellow).

lipid tails that are exposed to the water (Figure 3.1(a)). These three distinct situations have
a great effect on the configurations of TM proteins.

Hydrophobic mismatch has been studied extensively, both in experiments of synthetic
peptides and in simulations. It was shown to be an important factor in helical tilt within the
membrane [11, 61-65| and have an impact on oligamerization of helical peptides [14, 63, 66—
70]. In general, three major degrees of freedom have been shown to be important in the
presence of hydrophobicly mismatched helices:

(a) Changes in single helix configuration. A helix might tilt, bend, stretch, kink, or otherwise
change its orientation in the membrane as to better fit the mismatched conditions.
(Figure 3.2(b,c,d,h))

(b) Helix aggregation. Helices may bundle together into bigger clusters. (Figure 3.2(e,i))

(c) Bilayer deformation. The lipid bilayer around a helix might stretch or compress to
accommodate different mismatch conditions. (Figure 3.2(fj))

As a schematic representation, we distinguish between several major effects of hydrophobic
mismatch. Based on this schematic differentiation we can predict a-priori which of the above
mentioned conditions might come into play in each case. We describe these prediction for
each mismatch case in the following sections 3.2.1, 3.2.2, and 3.2.3.
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(a) No (b) Tilt (c) Bend (d) Kink (e) Aggregation (f) Membrane
Adjustment Stretch

(g) No (h) Stretch (i) Aggregation (j) Membrane
Adjustment Compression

Figure 3.2: Possible adjustments to hydrophobic mismatch for positive (a-f) and negative (g-j)
hydrophobic mismatched helices. (a) Shows the configuration of a positive mismatched helix
with no adjustments. In response to the mismatch, this helix might tilt (b), bend (c), form a
kink (d), or aggregate with other helices (e). Additionally, the membrane can stretch around
it (f). (g) Shows the configuration of a negative mismatched helix with no adjustments. In
response to the mismatch, this helix might stretch (h) or aggregate with other helices (i).
Additionally, the membrane can compress around it (j). In practice, a combination of several
possible adjustments might be the resulting configuration
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3.2.1 Zero Hydrophobic Mismatch

Zero mismatched helices are illustrated in Figure 3.1(b). In this scenario a helix is
embedded in a membrane whose hydrophobic thickness matches the hydrophobic thickness
of the helix. There is therefore perfect shielding of the helix core from the hydrophilic head
groups of the membrane and the water. The lipid tails are also shielded from the water by
the presence of a hydrophobic helix. We therefore expect none of the three accommodation
methods described above to be important.

In experiments and simulations of zero mismatched helices, very small tendency towards
helix tilt is observed [11, 62]. Sparr et al. [68] has also shown that there is very small tendency
towards oligamerization in near-zero mismatched synthetic peptides.

3.2.2 Positive Hydrophobic Mismatch

Positive mismatched helices are illustrated in Figure 3.1(c). A positively mismatched helix
is embedded in a membrane whose hydrophobic thickness is smaller than the hydrophobic
length of the helix. As a result, part of the helix’ hydrophobic core is exposed to the
hydrophilic head groups of the lipids and to water. Several of the mechanism described above
might resolve this unfavorable exposure:

1. The helix might tilt. Tilting may decrease the length of the helix that is exposed to
water. Helix tilt angles were indeed observed to be correlated with positive mismatch
in several synthetic peptides [11, 65].

2. The helix might kink or bend to decrease its length. Kinks are more common in TM
helices than they are in water soluble helices, and are often produced by a Proline
residue [71].

3. Helices may aggregate. Aggregation of helices may decrease the area of exposed
hydrophobic helix cores. It may also decrease the line tension between helices and
the surrounding bilayer. This process is envisioned to be similar to the well known
Hydrophobic Effect [72| in which hydrophobic substances aggregate in water driven
by the tendency to decrease the area of exposed hydrophobic surface. Aggregation of
synthetic WALP peptides has been experimentally observed for positive mismatched
peptides [68].

4. The membrane may thicken. The lipids around a positively mismatched helix may
change their configuration to better shield the exposed areas of the helix.

3.2.3 Negative Hydrophobic Mismatch

Negative mismatched helices are illustrated in Figure 3.1(a). A negatively mismatched
helix is embedded in a membrane whose hydrophobic thickness is larger than that of the
helix. Several hydrophobic lipid tails might therefore become exposed to hydrophilic residues
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or water. Several hydrophilic helix residues might additionally become exposed to the
hydrophobic core of the membrane. We envision several accommodation solutions out of the
possible arrangements described :

1. The helix might stretch. Artificial lengthening of the helix core might reduce the
mismatch with the surrounding lipids. However, the secondary structure of an a-helix
tends to be fairly stable and not much stretching is typically observed.

2. Helices might aggregate. As with positively mismatched helices, aggregation of negative
mismatched helices might localize the perturbation and minimize the line tension with
the surrounding lipids.

3. The membrane may shrink. The lipids around a negatively mismatched helix may
change their configuration to shield their tails from being exposed to water.

In our model described below, we take into account the importance of hydrophobic
mismatch and study its effect on the direct and lipid mediated packing of TM helices. Most
existing models for studying helix-helix packing focus solely on the interacting residues on the
surface of the two interacting helices. Our approach focusses on obtaining an understanding
of the interplay between helix interactions and the embedded bilayer.
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3.3 Mesoscopic Model of a-helix

A mesoscopic model of an a-helix was derived based on the reductionist approach,
starting with the minimum building blocks that describe the characteristics of a TM helix.
A cylindrical model by Venturoli et al. [25] successfully described medium and long range
interactions between TM helices [14]. The model includes a representation of each TM a-helix
as a cylinder, with hydrophilic core and two hydrophilic caps. This model, however, is not
successful in describing the short range interactions between TM helices. In section 3.7 we
describe in more detail the results that led us to modify the cylinder model. Here, it is suffice
to say that we have learned that the helical geometry is a crucial factor in the short range
interactions of TM a-helices. Our mesoscopic model was therefore extended beyond the
cylindrical model to include hydrophobic beads laid out in a helical geometry at the core of a
modeled a-helix.

3.3.1 Helix Model Topology

Our transmembrane helix model contains three structural features:

i. N, principal beads (P) that follow the outer radius structure of an a-helix backbone,
represented in Figure 2.1(a) by opaque beads. All structural bonds are associated with
those beads.

ii. Ny = N, — 1 secondary beads (S) located in between every adjacent pair of principal
beads and provide excluded volume along the helix exterior. These are represented in
Figure 2.1(a) by transparent beads.

ili. No = N,/3 central beads (C) located along the central axis of the helix and provide
excluded volume at the helix interior. These are shown in the center of Figure 2.1(b).

To build our TM helix model we use the geometric parameters of a typical a-helix, by
positioning our beads at the outer core of the helix. This mimics the helical structure by
focussing on the surface accessible for interaction with other helices. We use a typical outer
radius of R, = 6 A [73]. The angle and height pitch between consecutive principal beads
follow the typical a-helix parameters: Anp = 100°; AZ = 1.5 A [74].

To generate the positions of N, principal helix beads we chose an initial angle n, at
random. We then place the first bead of the helix at position

7o = (Ru x cos(im), Bu x sin(m), 0).

The position of each principal bead thereafter, P;—;. n,_,, is subsequently determined by

7= <Rh x cos(no + An i), Ry x sin(no + An - i), AZ - Z>
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We next position the secondary beads in between each pair of adjacent principal beads such
that for each bead, S;j—o._n. ,;

- | . o1 o1

= (Rh x cos(io + A1+ ( + 5)), B < sin(go + An - (7 + 5)), AZ - (j + 5))
Lastly, the central beads are positioned along the main axis of the helix. A central bead’s
z-component is determined by the average position of the three principal beads it is adjacent
to. This yields for each central bead Cy—o n._,

7= (0,0,A2 (36 + 1))

Helix bead types are assigned such that the core of the helix consists of hydrophobic (p)
beads, and its edges are hydrophilic () beads. This assignment ensures that both edges of
the protein remain in the water or membrane head group phase, thus preventing unphysical
configurations such as a helix lying within the membrane perpendicular to the membrane
normal. Each hydrophilic edge of the helix consists of three principal beads, two secondary
beads, and one central bead.

3.3.2 Helix Model Bonded Interactions

Harmonic bond forces, derived from Upy,q (2.2a), describe the force used to control the
inter-bead distance. These are applied between:

i. each principal bead P; and its two adjacent secondary beads S;—;_1 ;
ii. each two adjacent central beads C; and Cgyq
iii. each central bead C; and its three adjacent principal beads P;—si 3k+1 3%+2, and

iv. between each principal bead P; and its consecutive P;,, thus mimicking a-helix hydrogen
bonding.

Harmonic bond constants are globally assigned to Kj; = 100 ¢y/do? continuing our assign-
ment of bonded interaction parameters in the lipid model (reduced units of energy (€y) and
length (do) are defined in Section 2.5). Equilibrium distances are derived from the helical
structure and can be found in Table 3.1. Since the role of central beads is to provide excluded
volume and not constrain structure, interactions coupling the central pole and the helical
structure have a decreased force constant of K;, = 20 ¢q/ do?. The equilibrium distance for
this interaction changes based on the position of the principle bead, as described in Table 3.1.

Harmonic-angle forces, derived from Uppge (2.2b), are used to control the stiffness of the
helical structure. These are applied between:

i. each three consecutive principal beads: (P;, Pii1, Pii2)

ii. each three principal beads surrounding a hydrogen bond: (P;, P;.4,P;15), and
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Table 3.1: Bonded interaction parameters in the coarse-grained TM helix model.

Interaction Interacting Beads Force constant | Equilibrium value
Ubond Kb (GU/dOZ) Teq (dU)
P, Si 100 0.7936
P, S; 100 0.7936
P, P 100 1.1241
Cr Crpa 100 0.6960
Cr Psg 20 0.9575
Cr P31 20 0.9290
Cr Psgao 20 0.9575
Uangle K, (GO/TGdQ) Peq (°)
Pi Pi—i—l Pi+2 600 81.2
Pi Pi+4 Pi+5 100 108.9
Cr Cirr Crao 20 180.0
Udihedral Kd (60) Xeq (O)
Pi Pi—i—l PZ'+2 Pi+3 1000 21.7
Note. — Interaction energies are calculated as described in Eq. 2.2.

iii. each three consecutive central beads: (Cg, Cxi1, Cpr2).

Harmonic angle force constants are assigned to a large K, = 600 ¢y/rad® for angles
between consecutive principal beads as those are the most important for maintaining the
helical structure. Supporting angle contributions, such as angles around hydrogen bonds are
assigned an intermediate value of K, = 100 ¢y/rad®. Angles involving central beads, which
should only have a minor contribution to structural stability, are assigned a small value of
K,=20¢/ rad?. Values for eq can be found in Table 3.1.

Dihedral angle forces, derived from Ugpearar (2.2¢), regulate distortions in helix structure
and prevent the helix from unfolding. Therefore, changes in the protein’s secondary structure
are not described by this model. Those dihedral forces are applied between all sets of
consecutive principal beads: (P;,P;i1,P;i2,P;r3). Note that helix structure features are
controlled almost exclusively by interactions of principal beads. secondary and central beads
are positioned to serve as exclusive volume and are only weakly bonded to ensure they stay
in close proximity to the helical structure.
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3.4 Simulation Details

We study the configurations of TM helices using the hybrid Dissipative Particle Dynamics
- Monte Carlo (DPD-MC) simulation technique described in Section 2.4.1. To simulate the
tensionless state of unconstrained lipid bilayers [75] we set the bilayer surface tension, v to
be zero while the normal pressure, P, is set to equal the bulk water pressure (P* = 22.3 in
reduced units). The temperature used throughout the simulations is kgT* = 0.7 ¢y in which
the lipid bilayer is well within the L, phase (~ 65°C, see temperature scale in Eq. 2.12).

The number of lipids was approximately 2000 lipids. Initially, we equilibrate a bilayer of
2024 lipids. We then make room for each helix (either one or two helices were simulated) by
removing any lipids within Ry, (helix radius) distance from the point of helix insertion. To
avoid unphysical biases in surface tension between the leaflets we remove an equal number of
lipids from both bilayer leaflets. We then insert a helix of a given size into the bilayer (helix
major axis parallel to bilayer normal). For a system with only a single helix, we simulate for
8 - 10* cycles, equivalent to ~ 100 ns. For a system of two helices we prepare 30 separate
copies of the system, to gain a larger ensemble of configurations to sample from. We simulate
each copy of the system for 2 - 10* cycles.

3.5 Sampling helix properties

We sample various characteristics of the helix and the helical-dimer structure. For most
properties investigated (e.g. cross angle, tilt angle) we need to define the helix major axis.
That allows us to treat the helix as one unit and consistently measure its properties. In this
section we discuss how the helix major vector is determined and how other properties are
determined thereafter.

3.5.1 Helix Main Axis

Our goal was to determine an instantaneous, per time-frame, vector that will describe the
orientation of the helix. Several characteristics of our model has made this pursuit non-trivial.
First, the fact that the helix is not a rigid body, but rather a collection of bonded beads,
means that there will be inherit fluctuations in this property. Second, a helix is by its nature
non symmetric around its main axis. The mass distribution of beads around the major axis
is uneven, and only approaches an even distribution at infinite length helices. This means
there is an inherit bias from the true major axis of the helix.

We have considered and compared several approaches for constructing the helix major
axis, described below.

Principal axis analysis

A rigid body’s principal axis may be constructed by finding the eigenvectors of its moment
of inertia tensor. The principal axis then defines the best linear representation for the axis
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around which the mass is evenly distributed.

We compute the moment of inertia tensor from all backbone beads, assuming all beads
have an equal mass. The individual tensor components can be computed by summing over
the mass distributions around the different axes. NV, is the number of principal beads:

Np NP
2 2
Im:zyi + 2z Iyz:Izy:_Zini
=1 =1
Np Np
2 2
L, = 5 x; + 2 Loy =T, = — g T2
i=1 =1
Np Np
2 2
Izz = E Ty +Y; Ixy = Iyx = - E T
i=1 =1

The helix vector H is then defined as the eigenvector of Z corressponding to the highest
eigenvalue. ZTH = \{H where \y > \,VI=1---3.

Mean End Points

Another approach is to determine the helix axis based on its two extreme ends. We can
find the center of mass of the n extreme principal beads at both ends of the helix. We can
then define the helix vector, H , as the vector connecting those top and bottom end points (T
and B, respectively) at each step in time.

In determining n, one must take into account a balanced distribution of beads around
the helix. An a-helix contains 3.6 residues (beads) per span. We therefore tried using both
n = 3 and n = 4 as the number of average principal beads at each end point.

Comparison of Methods

We created a model system of helices to test the different methods for determining helix
axis. We test several helix sizes. For each helix size, we build the helix around the main
axis: (0,0,1). We then tilt the helix by a random predetermined angle. We use the methods
described above to find the resulting helix axis and estimate the current tilt angle of the helix.
A good method for determining the helix main axis is expected to yield small differences
between the applied and estimated tilt angle of a helix.

Figure 3.3 shows the results for selected helix sizes 10-27. Each figure shows the difference
between the applied tilt angle (x-axis) and the estimated tilt angle (y-axis) in any one of the
three method described above. One may observe that none of the methods yields a perfect
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Figure 3.3: Comparison of predicted tilt angle (y-axis) with applied helix tilt angle (x-axis)
in three various methods: Principal axis analysis (red), 3-Bead Mean End Points (green) and
4-Bead Mean End Points (blue). Black lines represent slope of 1, for convenience. Number of
principal beads in each helix is described by the title.
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Figure 3.4: Comparison of methods to determining helix main axis as a function of helix
length. Each point shows the root mean square error in tilt angle estimation for a given

method and helix length.
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match with the applied tilt angle, but all method converge to the a match as the helix size
increases.

We calculated the root mean square error (RMS) of each method and each helix size and
present these results in Figure 3.4. The comparison shows that calculating the mean end
points, with n = 4 beads defining the center of mass of each end point, gives the least errors.
It is interesting to note that the principal axis approach yields the minimum number of errors
for large helix sizes. However, since the typical sizes of helices are within the N, = 15---45
range, we prefer the method that consistently performs better in that range.

We therefore chose to define the helix vector, H as the vector connecting the bottom
and top end points, B and T'. These are defined as the center of mass of the first (or last) 4
principal beads of the helix. We use this definition of the helix axis from now on.

3.5.2 Helix Radius

We calculate the instantaneous radius of the simulated helix to monitor the stability of
the helical structure. The instantaneous helix radius, Ry, is defined as the average distance
between each principal bead and the helix main axis. The distance between the beads and
the helix main axis is calculated based on the canonical formula [76]:

(B —7i) x (T' = B)|

d; =

(T = B)|
_ (B —7i) x H]

|H|

NP

A helix with a well maintained structure is expected to maintain its radius, such that
(Ry) =~ Ry, throughout the simulation.

3.5.3 Helix Order Parameter

The helix model is not a rigid body, but rather a network of harmonic bonds. We wish
to probe its structural rigidity by determining how well it maintains its order along the
helix main axis. For that end we calculate an order parameter for the helix. A good order
parameter should distinguish between helices that bend during a simulation and ones who
remain elongated along the helix main axis.

We use a common order parameter from the field of liquid crystals [77] to determine the
helix order parameter. The order parameter is based on the average of the second Legendre

Polynomial: S = (P)(cosf)) = <3C°52ﬂ>
To obtain the helix order parameter we divide the helix into vertebrae. For an ordered
helix, the vector connecting each vertebra to the next is expected to align with the helix
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main axis. The instantaneous order parameter of a helix is therefore an average over the
individual order parameter of each of the vertebrae connecting vectors.

Each vertebra, Vk, in the helix is defined by the position of the central bead it corresponds
two. The vector connecting adjacent central beads, Vk = (Cyy1—Cg) is used for the calculation
of the instantaneous order parameter.

The helix order parameter is therefore calculated as follows:

cos?(0y) = — (‘ik}p
(Vi - Vi)(H - H)
1 2
Sy = 5(3008 (0r) — 1)
| N
S =7 ; St

If the helix was to maintain an ordered structure, such that the central beads are aligned
with the helix main axes, we expect the order parameter to yield S ~ 1.0. If, however, the
helix was to bend and obtain an unordered structure, its order parameter will average at
S ~ 0.0. For an anti-ordered structure, we expect to find S = —1/.

3.5.4 Distance between helices

Calculating the distance between helices can be done in several ways. One canonical
approach is to calculate the distance between the center of mass of both helices. This approach
gives a clear estimate on the distance of the helices if all helices are parallel. The method
becomes problematic, however, when treating helices of different sizes that might tilt within
the membrane. In that scenario, we might calculate a large distance between centers of mass
of helices, when in fact those helices are tilted in the membrane and are in contact (see
illustration in Figure 3.5).

Instead, we calculate the distance between a pair of helices using the Point of Closest
Approach algorithm following the procedure provided by Sunday [78|. In this method we
first find a vector, w,., connecting the two helices lines:

Ll(S) :Bl—i‘S'ﬁl
L2<t) - Bg—i-tﬁg

As many such connecting vectors exist we chose the vector with the shortest size connecting
the points of the helices that are in closest approach. Namely, we find the parameters (s, t.)
for which |W,| = |Li(s.) — La(t.)| is minimized. The distance between the helices is then
defined as the size of the connecting vector, r;, = |w.|. We confine (s, t.) to the range
0 < s, t. <1, forcing the point of closest approach to be a physical point on each helix. This
ensures the calculated distance is the closest physical distance between the helices.
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PCA Dlistance

Figure 3.5: Comparison between the Center-of-Mass-Distance (COM Distance) approach, in
which the distance between helices is defined as the distance between their respective centers
of mass, and the Point-of-Closest-Contact-Distance (PCA Distance) approach, in which the
distance is defined at the point in which the helices’” major axes are in closest approach.
Large discrepancies between the two approaches might arise when the helices are tilted in
the membrane.

3.5.5 Helix Angles

Tilt angles for each TM helix, as well as cross and projection angle for each helix pair
were defined based on the helices major axes.
Tilt Angle

The tilt angle, 0, is defined as the angle between the helix major axis and the normal to
the bilayer, +2. The helix major axis is always defined as pointing towards the +Z direction,
therefore limiting 6 to the range [0°, 90°).

Cross Angle

The inter-helical cross angle, €, is defined as the 3D angle between the two helices major
axes, () = arccos (H; - Hs). It is limited to the range [0°, 180°).
Projection Angle

The inter-helical projection angle, v, is defined as the 2D angle between the two helices
major axes along the plane of the membrane (X — §). It is limited to the range [0°, 180°).
These angles are displayed in Figure 3.6
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Figure 3.6: Coarse-grained helix pair and angle definitions. (a) Shows two positive mismatched
helices in a typical crossed configuration. Water particles are not displayed for clarity. (b)
The tilt angle, 0, of a helix is defined as the angle between the helix major axis (blue arrow)
and the bilayer normal, +2. (c) The cross angle, €, is defined as the dihedral angle between
the major axes of the two helices (blue and orange arrows). (d) The projection angle, -, is
defined as the angle between the major helix axes along the plain of the bilayer (X — §).

3.5.6 Helix Hydrophobic Mismatch

The hydrophobic mismatch of each helix was calculated based on the hydrophobic length of
the helix (dy) and that of the membrane (dy,), using Eq. 3.1. The number of CG hydrophobic
beads determines the hydrophobic length of the helix. Each hydrophobic bead corresponds
to one helix residue with a distance of 1.5 A between each consecutive residues. To calculate
the hydrophobic length we add half a bond length (0.75 A) in each direction such that the
cutoff of hydrophobic residues is in the middle of the bond between the hydrophobic and
hydrophilic size of the membrane. dy is therefore equal to dg = Nyg-1.5 A where N HB 18
the number of hydrophobic beads in the helix, or dy = (N, — 6) - 1.5 A, where N, is the
number of principal beads in the helix.

We calculate the membrane hydrophobic thickness (dy,) by fitting the density profile of
the hydrophobic beads to a Gaussian error function. This has become the standard method
for determining the membrane hydrophobic thickness [79]. The bilayer thickness in our model
was calculated to be dy, = 26.77 A or 28.12 A for a lipid model of 5 or 6 beads, respectively.
Density profile along with the fitted Gaussian error function is displayed in Figure 3.7.

We simulate 11 different helix sizes. The number of principal beads in each helix as well
as the corresponding hydrophobic mismatch can be found in Table 3.2.
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Figure 3.7: Density profile of a pure bilayer simulation. Solid lines show the volume fraction
of the various components in the simulation: lipid head beads (head group), lipid tail
beads and water. Red dashed line corresponds to the symmetric error function: Pye(z) =
1 lerf(z, —zuc, onc) — erf(z, zpc, onc)] as defined by Eq. 3 in Kucerka et al. [79]. Fit
values correspond to zgc = 13.385 and opc = 2.85 yielding a hydrophobic thickness of
dr, = 26.77 .
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# Principal Beads ‘ Hydrophobic Mismatch (A)

15 -13.27
18 -8.77
21 -4.27
24 0.23
27 4.73
30 9.23
33 13.73
36 18.23
39 22.73
42 27.23
45 31.72

Table 3.2: Number of principal beads (N,) and the hydrophobic mismatch (Ad) of each of
the simulated helices.

3.6 Simulation Results

3.6.1 Helix Structure

We have performed several test simulations using different parameters for the bond length,
angle and dihedral angles. At certain parameter sets the helix structure starts falling apart
and does not stay true to its helical nature. In all other parameter sets explored, which
maintain the helix structure stability, we see consistent results for the tilt and cross angle
distributions, in response to varying the hydrophobic mismatch.

To further test the validity of our bonded interaction parameters, we compared the
fluctuation in our model helix’s length to that of a natural helix, simulated in a membrane
environment using all atoms simulations. To that end we use the helix structure 1SPF,
provided in the RCSB database [80]. We inserted the helix to a pre-equilibrated bilayer of
DPPC lipids and preformed initial equilibration using the CHARMM-GUI program [81]. We
then simulated the membrane embedded helix for a total of 5ns in the NP« Tensemble, and
obtain a histogram of its natural length fluctuations. Ensemble parameters were chosen to
match those in our CG simulation. These fluctuations in helix length were then compared
to the length fluctuations of a CG helix of similar size (containing 27 residues). Results are
presented in Figure 3.8.

We do not expect a perfect match between these distributions, for several reasons: 1. These
are not identical helices; 2. The nature of CG models is such that finer structural details
cannot be resolved, and so wider fluctuations are expected; and finally 3. The helix simulated
in all-atom simulations included hydrophilic residues only on one end, while the CG model
contains hydrophilic residues on both ends. Different driving forces for stretching and
shrinking are therefore expected. Despite all these differences, we see a reasonable agreement
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in the distribution of helix length, with more flexibility in the CG helix model. The all-atoms
helix length corresponds to Hi4 = 35.7A + 0.54A, while the coarse grained helix length
corresponds to HYY = 34.2A + 0.71A. In Figure 3.8 we present the deviations around the
mean helix length for easier comparison.

Another test to check the structural stability of the helix model is probing the helix radius
and order parameter. A high order parameter (S — 1) suggests a highly ordered structure
approaching a rigid body. We present the simulated order parameter in Figure 3.9 as a
function of helix size. The order parameter is on average 0.94 with a small fluctuation of
0.02. This suggest a stable rather rigid structure and ensures our helix does not change its
helicity during the simulation.

The helix radius was also measured throughout the simulation. We see that that radius
remains fluctuating around an average of 5.5 A, with a standard deviation of 0.2 A. The small
deviation (3.4%) suggests again that the helix structure remains rather stable throughout
the simulation, and for different helix sizes. The average radius is smaller than the imposed
Ry, = 6 A, as a consequence of the other imposed structural bonds. Nonetheless, the radius is
very close to representing the radius of the helix residues.

3.6.2 Tilt angles And Effective Hydrophobic Mismatch

To understand the configuration of packed helices, one must first understand the config-
uration of a single TM helix imbedded in a lipid bilayer. The tilt angle of a helix, 6, is an
important characteristic of single helix configuration. We measured the tilt angle for each
helix as a function of its hydrophobic mismatch, Ad. Mean and standard deviation values
of tilt angles are shown in Fig. 3.10(a). We observe three regimes in the behavior of tilt
angles with respect to hydrophobic mismatch, which we refer to as: Negative, Positive, and
Super-Positive mismatches. It is interesting to compare the observed results in light of our
estimated means of adjustments to hydrophobic mismatch (Section 3.2).

For negative mismatched helices (Ad < 0 A), we observe a plateau of () ~ 10° in
the tilt angle. This effect was previously seen for synthetic peptides [34, 62, 65|. In those
helices, tilting would decrease the effective hydrophobic size of the helix along the membrane
normal, making it energetically unfavorable. The helix is therefore expected to tilt as little
as entropically possible [62].

For positive mismatched helices, Ad € (0, 20] A, we observe an increase in the tilt angle of
the helices as a function of hydrophobic mismatch. This increase matches previously reported
results [34, 62]. In super-positive mismatched helices (Ad > 20A) we observe a change in
the slope of tilt angle, as helices tend to adopt a higher tilt angle. This effect has not been
observed before as, to the best of our knowledge, this range of hydrophobic mismatches had
not been explored previously. See Section 3.6.8 for further discussion on this regime.

The tilt of positive mismatched helices is the response of the system to decrease the
hydrophobic mismatch. If a helix of hydrophobic size dy adopts a non-zero tilt angle,
0, its effective hydrophobic length along the bilayer normal direction would decrease to
d¢f = dy - cos(f), approaching the membrane hydrophobic thickness, dr,. We define the
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Figure 3.8: Comparison of helix length distribution of a model coarse grained (CG) helix of
27 residues (grey boxes) and a helix structure from the PDB database (1SPF), simulated
with all-atoms (AA) simulation technique (blue line). The histograms are aligned around the
mean value of each simulated helix, which correspond to Hi4 = 35.7 A for the all-atom helix
and HES = 34.2A for the coarse grained helix. These distributions show the fluctuations in
helix length in both simulation techniques are substantial. The CG model captures fairly well
the inherent fluctuations in helix length, showing a tendency towards a broader distribution.
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Figure 3.9: Helix radius and order parameter for various helix lengths. Helix radius (a)
remains fluctuating around an average (Ry) = 0.85 £ 0.03 dg = 5.5+ 0.2 A for all helix sizes.
The helix order parameter (b) remains very close to 1.0 ({S) = 0.94 & 0.02), suggesting a
very ordered structure. The x-axis represents the number of principal beads in the helix, N,.
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Figure 3.10: Helix tilt angle (a) and effective hydrophobic mismatch (b) as a function of
hydrophobic mismatch for single helices. We observe three regimes of hydrophobic mismatch.
For Ad < 0A, the tilt angle plateaus and the effective hydrophobic mismatch matches the
hydrophobic mismatch, with a slope of 0.94 (dashed line in (b) represents a slope of 1.0, for
reference). For Ad € (0,20] A the tilt angle increases monotonically, and the slope of the
effective mismatch decreases to 0.59; For Ad > 20A the effective mismatch stays constant
at Ad*™ ~ 6A while tilt angles increase. Solid lines in (b) represent linear fit of effective
mismatch for each of the three regimes. Whiskers in both (a) and (b) represent one standard
deviation.



3.6. SIMULATION RESULTS 40

effective hydrophobic mismatch as the difference between the helix effective hydrophobic
length and the bilayer hydrophobic thickness, Ad®T = d§ff — dy, = dy - cos() — dy,. It is a
measure of the degree to which the hydrophobic mismatch strain is reduced by the tilting
of a helix. If the helix was to tilt fully to match the membrane hydrophobic thickness, its
effective mismatch would be Ad*® = 0A, yielding a tilt angle of § = arccos(/ay).

The effective hydrophobic mismatch of our simulated TM helices is displayed in Fig. 3.10(b).
Again, we observe differences between the three major regimes. For negative-mismatched
helices, the effective mismatch is nearly identical to the hydrophobic mismatch (Ad°T o
0.94 - Ad). It is energetically unfavorable for these helices to decrease their hydrophobic
length and so they preserve their length almost fully. Deviations from a slope of 1.0 originates
in entropic contributions.

For positive-mismatched helices we observe a smaller slope, Ad*f o 0.59 - Ad. In this
range, there is an energetic balance between the adjustment of the helix, by tilting, and that
of the membrane, by expanding its hydrophobic thickness around the helix (see Section 3.6.5).
We observe that the degree to which the helix reduces its hydrophobic size is fixed (60% of
its mismatch) in the positive mismatch regime.

For super positive-mismatched helices, though, we observe a significant drop in the effective
mismatch. Irrespective of the hydrophobic mismatch, the helices tilt to reach an effective
mismatch of Ad® ~ 6A. We observe a complimentary trend in the membrane thickness
around super positive mismatched helices as well. The membrane thickness linearly increases
with the hydrophobic mismatch of the embedded helix until it drops to a plateau for helices of
super positive mismatch (see Section 3.6.5). This suggests a shift in the balance of energetic
contributions, and might point to a different arrangement of lipids around a super-positive
mismatched helix. We discuss these results further in Section 3.6.8.

3.6.3 Cross Angles

Traditionally, the cross angle of packed helices is thought to be determined by specific
residue interactions. The fit between 'groves’ of one helix and the 'ridges’ of its counter pair
is believed to lock the packed configuration into the ’correct’ cross angle. In contrast, in our
model specific residues are not present as all beads are equivalent. This allows us to explore
the role of the membrane in determining the cross-angle distribution in the absence of specific
residue interactions.

We calculated the distribution of cross angle, (€2), defined as the angle between the two
helices major axes (see Section 3.5.5), for helix pairs. Our results show a relation between
cross angle and hydrophobic mismatch. Cross-angle distributions of homogenous helix pairs
are presented in Fig. 3.11. These show clear dependence of the cross-angle distribution on
the helices hydrophobic mismatch. The mean cross angle value as well as the width of the
distribution increases with increasing mismatch.

The relation between cross angle and hydrophobic mismatch might be surprising at first
sight. Careful consideration though leads to the realization that the cross angle, (2, and the
helices tilt angle #,,05 are not independent, even if the two helices do not interact with
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Figure 3.11: Cross-angle distribution of homogeneous helix pairs. Each line represents the
probability density of cross angles for one of six characteristic helix mismatches (see legend).
Cross angles were collected only from packed configurations (inter-helical distance < 15A).
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each other. Simple geometric consideration lead to the following relationship between the
aforementioned angles along with v, the projection angle (see angle definitions in Section 3.5.5):

(1+cos7) - cos(fy —6) + (1 — cos7y) - cos(6y + 62)
2

cosf) = (3.2)

This is a key relationship determining the cross angle of TM helix pairs. According to this
relationship, for fixed tilt angles, 0/, 85, the cross angle, 2, would be confined to the range
|07 — 05 < Q < |6) + 6]. The distribution of cross angles within that range would be
non-uniform arcsine-like (see Fig. 3.12, dashed line).

TM helices do not have a fixed tilt angle, but rather a distribution of tilt angles. The
overall cross-angle distribution of two such helices is therefore expected to be a weighted
average of fixed tilt angle histograms. One such representative reference distribution is shown
in Fig. 3.12 (solid line).

Based on the reference distribution, we expect the cross-angle distribution of two helices,
even when far apart in the membrane, to display non-uniform distribution. Since the cross
angle is confined by the sum and difference of the individual tilt angles, we expect the
cross-angle distribution to be wider for helices with large tilt angles and less wide for helices
with small tilt angles. Additionally, for pairs of helices with very different tilt angles (6; ~ 65)
we expect to see fewer small cross angles.

Taking the correlation between hydrophobic mismatch and tilt into account, many
characteristics of the distributions in Fig. 3.11 follow these expected behaviors. This suggests
that the main dependence of the cross angle in the hydrophobic mismatch is through its
effect on the tilt angles. We hypothesize that the hydrophobic mismatch controls the tilt of
the individual helices, and that in turn confines the cross angle between those helices. This
view matches our observations that the mean and spread of cross angles of homogeneous
helix pairs grows with hydrophobic mismatch.

The effect of hydrophobic mismatch on the cross-angle distribution can be further ob-
served in Fig. 3.13. Here we compared the cross-angle distribution of both homogenous
and heterogenous pairs of helix mismatch with their reference distribution. The reference
distribution for each helix pair was obtained by random sampling of tilt angles and projection
angles. The resulting cross angle was calculated according to Eq. 3.2. Tilt angles were
sampled from a normal distribution, with mean and standard deviation corresponding to the
helix hydrophobic mismatch (as presented in Fig. 3.10(a)). Projection angles were sampled
uniformly in the range [0°, 180°). The reference distribution is therefore the distribution of
cross angles for non-interacting helices, where each helix samples configurations as if it was
alone in the membrane.

Figure 3.13 shows a surprisingly good match between the simulation and reference cross-
angle distribution. In both cases, reference and simulation, it is clear that the spread of the
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Figure 3.12: Reference cross-angle distribution. Dashed line corresponds to the reference
cross-angle distribution of two non-interacting helices with fixed tilt angles, 6] and 6, and
random projection angle, ; Solid line corresponds to the reference cross-angle distribution
of two helices with normally distributed tilt angles with mean 6}, 65 and standard deviation
01, 09, respectively. These mean and standard deviation values correspond to the observed
tilt angles for helices with hydrophobic mismatches Ad; = 9A, Ady, = 14A, respectively.
These amount to 0] = 25.7°, 0, = 30.8°,01 = 5.9° and 05 = 6.5°. The shaded area around
the reference distribution represents 90% confidence intervals.
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Figure 3.13: Comparison of simulated cross-angle distributions (filled box-and-whisker dia-
grams) with their corresponding reference distributions (empty box-and-whisker). Each box
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collected only from packed configurations (inter-helical distance < 15A). Helix pairs are
segregated by vertical lines into four groups, depending on the mismatch of each helix in the
pair, as represented in the group titles (’SuperP’ refers to super-positive mismatched helices).
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distribution, as well as the median cross angle, increases with mismatch. We define four
groups of helix pairs, based on the hydrophobic mismatch of each of the paired helices (see
Fig. 3.13 titles for group definitions). The agreement with the reference case is particularly
good in the first two groups, I and II, of helix pairs who are both negative mismatched (or
zero) and helix pairs who are both positive mismatched. The difference in the median cross
angle (represented by the thick horizontal lines) from the reference distributions, is on average
only 2.3°.

The spread of the simulated cross angles, as represented by the total height of the box,
also seems to follow the same trend as the reference distribution, though it is consistently
smaller in our simulated results (average 20% decrease). This effect is coupled with the bias
in projection angles discussed in Section 3.6.4.

This particularly good agreement with reference distributions in the majority of helices
(negative and positive mismatched) suggests the following. As the tilt angle is a dominant
factor in determining the cross angle, and the tilt angle is set by the hydrophobic mismatch, in
the majority of helices it is sufficient to understand the effect of the hydrophobic mismatch on
the individual tilt angles of the two helices, to obtain the effect on the cross-angle distribution.

For the latter groups (III and IV), containing super-positive mismatched helices, the
agreement is not as good. The spread of the simulated distribution decreases by 33% on
average compared to the reference distributions, and the difference in the median cross angle
increases to 19.7°. This suggests a different response of the super-positive helices to the
presence of another helix. We discuss this effect further in the Section 3.6.8.

These effects, where the cross-angle distribution depends on the hydrophobic mismatch of
individual helices suggests a robust mechanism for determining the cross angle between TM
helices. The hydrophobic mismatch of a helix in a membrane will determine to a large extent
its relative orientation to other helices. Experimentally it has been observed that changes in
membrane thickness lead to changes in protein structure and function [13|. While the cross
angle of two helices is a very simplistic model for protein structure, our observations show
that changes in the membrane hydrophobic thickness can modulate the cross angle of packed
helices. Combining these observations is a tempting suggestion, which we feel merits further
studies.

3.6.4 Deviations from the reference distribution

The reference distribution of cross angles corresponds to a configuration of non-interacting,
far-away helices. Deviations from the reference distribution are expected when helices are
allowed to interact. In particular, three assumption are made when constructing the reference
distribution, and each can be invalidated for interacting helices:

(a) Projection angles are uniformly distributed between 0° and 180°;
(b) Tilt angles of both helices are uncorrelated;

(c) The distribution of helix tilt angles is equivalent to that of a single helix in membrane.
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These assumptions are not independent, but the extent to which each one holds in a given
pair can shed light on the way these helices interact. In this section we discuss the validity of
each of these assumptions in simulated helix pairs. The results presented here refer only to
packed configurations where the inter-helical distance is less than 15A.

Projection angle

For a pair of helices with fixed tilt angles, the projection angle, v, is the independent
variable determining the cross angle of the pair. A-priori, there is no reason to expect one
projection angle to be more favorable than others. The reference distribution of projection
angles is therefore a uniform distribution: v ~ ¢/(0°, 180°).

We compared the distribution of simulated helix pairs to a reference uniform distribution
in Fig. 3.14(a). The results vary based on the pair mismatch group. For a pair of two positive
mismatched helices (group II), as well as for the zero-mismatched pair, we see good agreement
with the reference distribution, with a tendency towards marginally higher projection angles.
The average median projection angle among this group is () = 94.7° 4+ 5.8° (compared to
a reference (y) = 90°). For other helix pairs (groups I, III, IV), we observe the opposite
trend. The projection angle is biased towards lower values, with a median projection angle of
(7) = 60.0° £ 15.1°. The spread of the distribution, measured here by the size of the box is
similar in all groups and amounts to (Avy) = 80.8° 4 4.5° (excluding the outlier (27A,27A)
pair). This value is somewhat smaller than that of the reference distribution ((Avy) = 90°).

One explanation for non-uniform projection angles and the tendency towards (y) < 90°
could originate from the frustration of lipid configurations. The number of lipids found
between the ends of the two helices in a pair is directly proportional to v. We show in
Section 3.6.7, that the presence of a helix in the membrane is energetically unfavorable for the
lipids. When confined by two helices, the lipids can be more constrained, which results in a
driving force towards minimizing the number of lipids confined between the helices. A smaller
projection angle decreases the number of lipids between helix ends. This might therefore
explain the observed tendency towards lower projection angles.

Tilt Correlation

Another means of measuring the deviation from the reference, non-interacting case is by
comparing the tilt angles of the two helices in a pair. The non-interacting case assumes the
tilt angles of both helices are independent, with correlation coefficient of 0. We calculated
the correlation of tilt angles throughout the simulation and present the results in Fig. 3.14(b)
(open circles). For groups I - III the correlation coefficient is smaller than 0.2, with an average
of 0.07, suggesting no significant correlation between the tilt of both helices. For group IV,
containing pairs of helices who are both super-positive mismatched, the correlation is much
larger, reaching 0.37 & 0.15 for pair (23A,23A) and 0.50 4 0.22 for pair (27A,27A). This
suggests cooperative tilting for pairs of super positive mismatched helices.

Another interesting observation relates to the average correlation coefficient in all pairs
considered. Although in theory the full range of tilt correlation [—1.0,1.0] is accessible, in
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Figure 3.14: Deviations from the reference distribution. (a) Shows the distribution of projected
angles. Simulated helix pairs are represented by grey filled box-and-whisker diagrams. The
white diagram represents the reference distribution of a uniform projection angle. Horizontal
solid line corresponds to the mean projection angle of the reference distribution, v = 90.0°;
horizontal dotted lines corresponds to the 25% and 75% percentiles of the reference distribution
v =90.0° £ 45°. (b) Shows the tilt correlation and change in tilt distribution in helix pairs.
Empty circles represent the correlation in the tilt angles between both helices in the simulated
pair, with standard error of 0.03. The size of the x symbol on each circle is proportional to
the scaled mean distance (Z) of helix tilt angles, based on their distribution when isolated in
the membrane (see legend and Table 3.3). The bigger the symbol, the larger the difference is
between the tilt angles of helices in a packed configuration compared to their individual tilt
angle distributions. Group definitions are identical to Fig. 3.13.



3.6. SIMULATION RESULTS 48

practice, the average correlation was positive in all pairs considered. Even though the average
correlation in group I-III was rather small, the overall effect of having only positive correlation
coefficient suggests somewhat cooperative tilting of all helices. Namely, if one helix tilted to
a greater extent than its average tilt angle, so did the other helix, and vice versa.

Tilt Distribution

When calculating the reference distribution we assume each helix samples tilt angles
based on its single-helix distribution. This distribution corresponds to results presented in
Figure 3.10(a) where each helix is simulated alone in the membrane. In practice, the average
tilt angles observed for each helix in a packed configuration are always smaller than their
respective single-helix distribution. Detailed values are presented in Table 3.3.

We calculate the differences in the distribution of tilt angles in paired versus single helix
configuration, by determining the scaled mean distance (Z) for each helix pair (see caption
of Table 3.3 for details). A value of Z = 0 means the distribution of tilt angles in the paired
configuration is identical to the single-helix distribution. The larger the absolute value of Z,
the larger the difference is between these distributions.

Results are presented by the x symbols in Figure 3.14(b). These show small differences in
tilt angles for groups I-11, with average Z-score of -0.25 (in units of standard deviation). This
suggests that although tilt angles are smaller, the deviation from the single-helix histogram
is not very large. For helix pairs with super-positive mismatched helices the deviation from
the single-helix distribution is much larger. The average Z-score in groups III-IV, comes out
to -1.5 (in units of standard deviation).

The observations on tilt correlation and changes in tilt angle distribution when helices are
paired present the following picture. The helices are by-enlarge independently tilting, with a
small tendency towards cooperative tilting. This results in an overall small but positive tilt
correlation coefficient throughout all simulations. The presence of another helix shields some
of the constraint originating in the hydrophobic mismatch, causing the helices to tilt less
than when isolated in the membrane. When super-positive helices are present, the proposed
shielding is enhanced, and both helices tilt significantly less than their respective single
helix distribution. If two super-positive helices are in a packed configuration, the change in
helix tilt becomes noticeably more cooperative. Combining these findings with the tendency
towards small projection angles suggests that group IV helices adopt a tight, closer to parallel
configuration where they behave as a single larger peptide and tilt together.

3.6.5 Membrane Thickness Surrounding Helices

In Section 3.2 we envision several adjustments that might be caused by hydrophobic
mismatch. So far we have focus on the helix itself, and its response to hydrophobic mismatch
conditions. The system, however, includes both the helix and the surrounding lipids. It is

fair to expect changes in the lipids surrounding the inclusion of a hyrophobically mismatched
helix.
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Pair Mismatch (A) Single () (°) Single 0y(°) Pair (§) (°) z-value Z-Score

(-13/9) -13.27 11.19 5.89 11.19 0.00

-8.77 9.47 4.93 9.08 -0.08  -0.04
(-9-9) -8.77 9.47 193 8.98 -0.10

-8.77 9.47 4.93 8.95 0.11  -0.10
0,0) 023 16.66 6.72 15.96 -0.10

0.23 16.66 6.72 15.78 0.13  -0.12
(55) 473 19.99 7.61 19.55 -0.06

4.73 19.99 7.61 19.69 0.04  -0.05
(5.9) 473 19.99 7.61 19.34 -0.09

9.23 25.66 7.28 24.55 0.15  -0.12
(5,14)  4.73 19.99 7.61 19.20 -0.10

13.73 30.84 7.97 29.31 0.19  -0.15
99 9.23 25.66 7.28 22.27 047

9.23 25.66 7.28 22.06 049  -0.48
(9,14) 923 25.66 7.28 20.61 -0.69

13.73 30.84 7.97 24.55 079 -0.74
(9,18) 9.23 25.66 7.28 20.19 -0.75

18.23 32.97 7.18 31.19 025  -0.50
(14,23) 13.73 30.84 7.97 20.28 1.32

22.73 48.27 4.69 42,61 121 -1.27
(18,23) 18.23 32.97 7.18 24.59 117

22.73 48.27 4.69 38.09 217 -1.67
(23.23) 22.73 4827 4.69 39.22 “1.93

22.73 48.27 4.69 39.45 188 -1.90
(27,27 27.23 52.96 151 4753 “1.19

27.23 52.96 451 4754 120 -1.20

Table 3.3: Tilt angles of interacting helices. For each pair in Fig. 6 of the main text, we
compare the helix average tilt angle when paired to another helix (Pair (0) = (0)7) to the
helix average and standard deviation in tilt angle when isolated in the membrane (Single
(0) = (0)°, Single 0y = ol respectively). Based on the single helix distribution of tilt
angles, we calculate the z-value of the observed mean tilt angle in the paired configuration
(zi = % ,i =1,2). We then obtain the scaled mean distance of the pair, Z = (214 22).

This Z-Score provides a measurement of how likely is it, in units of standard deviation, that
the tilt angles of helices in a pair were obtained from the single helix tilt angle distribution.
Pair configurations where the tilt angle of each helix remains the same as when isolated
correspond to small absolute value Z-score. Pair configurations where the tilt angle of each
helix differs greatly from the single helix configuration correspond to large absolute value
Z-score.
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We sample the membrane thickness around a single TM helix. Thickness was calculated
based on the positions of the second head-group bead in the lipid model, in both top and
bottom leaflets. This is equivalent to calculating the membrane Phosphorous-to-Phosphorous
distance.

Figure 3.15 shows the change in membrane thickness as a function of the distance from the
helix center. These results show that the membrane thickness remains mostly unperturbed
for zero mismatch helices. For all other helices, negative and positive mismatched, we see a
long range adjustment of the membrane thickness to the helix perturbation.
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Figure 3.15: Membrane thickness as a function of distance from the helix center. Helix
hydrophobic mismatch represented by line color - see legend. Horizontal black line represents
the unperturbed membrane thickness (PoP).

From Figure 3.15 we can extrapolate the thickness of the membrane at the helix center,
as a function of the hydrophobic distance. Results are shown in Figure 3.16. These results
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show that the membrane thickness at r = 0 is roughly linearly increasing with hydrophobic
mismatch. A change in this trend is apparent for super-positive mismatched helices, where
the membrane thickness reaches a plateau of dy = 46.25A + 0.09A. This value corresponds
to d; + 7.2A.

The linear increase in membrane thickness for negative, zero and positive mismatched
helices suggests a robust response. The membrane responses linearly to the perturbation.
The lipids surrounding the helix stretch or shrink to accommodate that perturbation, but in
a non-cooperative way (hence the linearity). The rest of the adjustment has to come from
the helix, that must now change its configuration to be shielded.
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Figure 3.16: Membrane thickness (dy;) around a single TM helix. Filled squares represent
extrapolated membrane thickness at zero distance (r = 0) from the helix. Whiskers represent
one standard deviation in thickness. The unperturbed membrane thickness (dY;) is represented
by the solid horizontal line at 39.1A.

It is interesting to compare the change in membrane thickness (Figure 3.16) with the
change in effective hydrophobic mismatch (Figure 3.10(b)). While the effect in the membrane
is linear with respect to the hydrophobic mismatch, the effective hydrophobic mismatch shows
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distinct regimes (negative and positive) in which the response changes. This originates in the
fact that while the lipids have degrees of freedom to both decrease and increase the membrane
thickness, the helix is more limited in the available degrees of freedom to accommodate
hydrophobic mismatch conditions.

The comparison of these two complimentary results additionally shows why positive
mismatched helices do not tilt fully to maintain a 0 effective hydrophobic mismatch. Rather,
they display a slope of 0.59 between the effective and physical hydrophobic mismatch. This
slope is explained by the fact that the rest of the shielding comes from the membrane linearly
increasing its thickness around the helix. Therefore, ~ 60% of the adjustment in positive
mismatched helices originates in the helix and ~ 40% originates in the membrane.

In super-positive mismatched helices this balance breaks. The membrane maintains a
fixed thickness while the helices maintain a fixed effective hydrophobic mismatch. We discuss
this effect further in Section 3.6.8.

Interestingly, Figure 3.15 shows that in all helix mismatches we see a similar distance from
the helix is needed for the membrane to recover its unperturbed thickness. The membrane
thickness seem to universally follow an initial decay, followed by a recoil. We can therefore fit
the membrane thickness trend to an underdamped oscillator curve (here r refers to the radial
distance from the helix center):

dy = d¥ + A x e F7 cos(wr + ¢) (3.3)

For zero mismatched helices, the underdamping behavior disappears and we see only damping.
We can therefore fit those results to the following curve:

dy = dd + A x e Fr (3.4)

To determine which curve fits better, we use the Akaike’s Information Criteria [82]. This
criteria takes into account the residuals of the fit as well as the difference in the number of
fitting parameters.

We have fitted the curve of membrane thickness as a function of distance from helix center
to either Eq. 3.3 or Eq. 3.4 for several different temperatures. The unperturbed membrane
thickness, d;, was determined separately for each temperature, by the average plateau value
of the thickness of all helix sizes.

Figure 3.17(a) shows the fitted A parameters for a simulated system of one helix at
different temperatures, as a function of hydrophobic mismatch. We see that the trend
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Figure 3.17: Fitted amplitude, frequency and exponent of membrane thickness as a function
of hydrophobic mismatch. We fit the curve of membrane thickness as a function of distance
from helix center to equations 3.3, 3.4 for several simulation temperatures. The fitted
parameters of each system is represented by a single point. (a) shows the fitted amplitude, A.
(b) shows the fitted frequency, w. (c) shows the fitted exponent, k. Black lines represent the
LOESS [83] fit of negative and positive mismatch values, respectively.
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observed by a simple fit of the thickness at » = 0 persists even when fitted more rigorously to
the equations 3.3, 3.4, and across different temperatures. The thickness amplitude matches
the hydrophobic mismatch in a linear trend that breaks for super positive mismatched helices.

Figures 3.17(b), 3.17(c) shows the fitted frequency, w, and exponent, k, for various helix
sizes and temperatures, respectively. Both parameters follow a tangent-like curve and diverge
at zero mismatch. The mean values of both parameters are similar ((w) = 0.415 £ 0.04 1 /nm,
(k) = 0.385 4 0.11 /nm). These parameters are influenced by the response distance within
the membrane. The fact that those average match and are of small spread suggests that
the responses distance is robust and is affected mainly by the lipids, robust to the size of
the embedded helix. The response distance is therefore the inverse of those mean values

(ﬁ = 2.4 nm, ﬁ = 2.6 nm).

3.6.6 Lipid Tilt Surrounding Helices

Another mean of investigating the influence of embedding a helix in a lipid bilayer is by
retracting the changes in lipid tilt. In the course of our CG simulation, we sample the tilt of
lipids in the vicinity of TM helices. The lipid tilt angle is defined by the position of lipid
tails, as shown in Figure 3.18(b). We define a vector connecting the center-of-mass of the
first two tail beads (first out of five beads in each tail) to the center-of-mass of the two last
tail beads (fifth out of five beads in each tail). The lipid tilt is then defined as the angle
between the constructed vector and the the 42 direction.

To obtain the tilt angle of lipids around one inserted TM helix, we sample lipids as a
function of their radial distance from the helix (see Figure 3.18(c,d)). In each time frame, we
loop over several radii away from the helix center-of-mass (r; = {1,2,...,10} dy). For each
radii bin, ¢, we maintain all lipids within the range r € [r; — 1.0, 7;) of the helix center-of-mass.
As the number of lipids in each bin grows with the radius, we randomly chose a subset of the
lipids in each bin, such that all bins will contain approximately the same number of samples.
To that end we chose to sample a lipid with probability P(r;) = 1/(2r; — 1). Note that all
the lipids in the bin r; = 1.0d, are sampled, and all consequitive bins will contain a similar
number of lipids.

Results for the distribution of lipid tilt angle as a function of distance away from the TM
helix center are presented in Figure 3.19. For negative mismatch helices we observe a large
lipid tilt angle close to the helix center, followed by an exponential decay to a plateau level
of Creoo = 24.1°.

For positive mismatched helices we observe a different behavior. Close to the helix center
(r < 3 nm) we note an exponential decay. Interestingly we see a decay even when the initial
value of the lipid tilt angle is small than the plateau value, (,—y < (; . The range of this
initial decay matches the range of recross to the plateau value in membrane thickness, as seen
in Figure 3.15. This initial decay is followed by an increase in the average lipid tilt angle,
until an intermediate distance r ~ 5 nm. This trend suggests a different lipid response in the
short (r < 3 nm) and intermediate (3 nm < r < 5 nm). The intersection between these lipid
tilt regions may result in a line tension.
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Figure 3.18: Schematic representation of lipid tilt calculation. (a) A model lipid is represented
by equally sized beads. Three hydrophilic beads assemble the lipid head group, bonded to
two 5-bead hydrophobic tails. (b) The lipid tilt angle, (, is definesd as the angle between the
vector connecting the first two tail beads with the last two tail beads and the +Z direction.
A schematic picture of a membrane helix inserted into a bilayer is shown in subfigure (c¢). We
analyze the tilt angle of lipid around the inserted helix as a function of the radial distance
from the helix center, as shown in (d). The helix core is represented by a black circle while
the lipid head groups are represented by grey circles.
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Figure 3.19: Average lipid tilt angle as a function of distance from the center of an embedded
helix. Lipid tilt angle is shown for different helix hydrophobic mismatches (see legend).
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In super positive mismatched helices we see similar trend as in positive mismatched
helices. Namely, an initial decay in lipid tilt angle followed by an increase to the plateau
level at intermediate distances. The initial tilt angle, however, is higher. While for positive
mismatched helices (,—o decreases with increasing mismatch, this trend breaks when super
positive mismatched helices are embedded. We discuss these results further in Section 3.6.8.

3.6.7 Potential of Mean Force

We calculate the potential of mean force (PMF) between pairs of TM helices as a function
of the inter-helical distance. To that end we use the traditional umbrella sampling method
[84] with a heavy-harmonic biasing potential. That is, we split the entire examined range
into overlapping windows specified by a range (£;,&s). The biasing potential for each window
corresponds to:

iK
Upias(§) = ¢ O <& (3.5)
1K

Since we sample in the NP~ T ensemble, in which the area constantly changes, we preform
umbrella sampling in scaled units, i.e. £ =r/L, where L, = L, is the instantaneous box-size
along the plane of the membrane and r is the inter-helical distance. We simulate & values
ranging from &,,;, = 0.035 up to &, = 0.5 in windows of size A¢ = 0.006. For some helix
pairs, containing super positive mismatched helices, a smaller &,,;, = 0.029 was used, as these
helices tend to approach closer to one another. In real units this roughly corresponds to
range (8 A, 120 A) with windows of size ~ 1.5 A. The biasing potential constant is set to
K ~50.0 €/do? = 78500 ¢ /[€]*.

We simulate the system in each window for 20000 cycles. We then unbias and combine
the results of each window using the Weighted Histogram Analysis Method (WHAM) [85] to
obtain the PMF. We normalize the results to account for the metric jacobian. We reiterate
this procedure by adding the inverse of the PMF we obtained in the previous iteration to
the biasing potential, until we obtain uniform sampling throughout the entire range. Finally
we convert the scaled £ coordinates to the reduced units by multiplying over by the average
box-size: r =& - (Ly,).

The results depend greatly on the mismatch of the two helices in the pair, as shown in
Figures 3.20, 3.21. For negative mismatched helices (Figure 3.20(a)), we observe a short-range
attraction followed by an intermediate-range repulsion. The strength of attraction, as well
as the size of the barrier in intermediate distances, decreases with increasing mismatch
(decreasing absolute mismatch). When the two helices are zero-mismatched the barrier
diminishes and we observe only a very shallow (~ 0.6 kgT) attraction well.

In positive mismatched helices we observe the reverse trend (Figure 3.20(b)). The depth
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of the attractive well increases with growing mismatch. This can be viewed as the same
effect as in negative mismatched helices, with respect to growing further from zero mismatch.
Namely, the strength of attraction grows with the absolute value of the mismatch. The
barrier in intermediated distances, however, is noticeably smaller for positive mismatched
helices reaching a shear ~ 0.6 kgT. Additionally, the width of the attractive wells is wider for
positive mismatched pairs, crossing the 0.0 potential line only at rg ~ 33A for pair (QA, 9A)
compared to a smaller ry ~ 28A for pair (—9A, —9A).

Previous theoretical and simulation studies [14, 86-88| showed that the range of attraction
between TM proteins is fairly large, extending over several layers of lipid solvation shells,
followed by an intermediate range repulsion. This characteristic potential profile is hypothe-
sized to originate in the line-tension forces of the liquid medium (lipid bilayer). Namely, the
presence of proteins perturbs the membrane and creates a curved thickness profile. If the
proteins are fairly close, it will be favorable to bring them together than to have two centers
of perturbation.
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Figure 3.20: Potential of mean force (PMF) between TM helices. Each line corresponds to a
pair of helices. Mismatch values for both helices are provided in the legend in units of (A, A)
Line colors correspond to the absolute sum of hydrophobic mismatch of both helices (see
legend in bottom right corner) (a) Shows the PMF of helix pairs who are both negative or
zero mismatched; (b) both positive mismatched; (c¢) both super-positive mismatched, and (d)
pairs of mixed mismatch groups. See Fig. 3.21 for detailed error bars.

We see evidence for this behavior in our model as well. The fact that the attraction strength
increases with the absolute mismatch, corresponding to larger deformation in the membrane
thickness (Fig. 3.16), enforces that hypothesis. If the helices are at intermediate (~ 40 — 50A)
distance from one another, the membrane thickness deformation at the intersection between
the two helices has decreased. Bringing the helices closer together in this configuration will
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Figure 3.21: Potential of Mean Force for helix pairs with detailed error bars. Each helix pair
is displayed in a separate plot with the according error bars. The hydrophobic mismatch
values of the helices in the pair are displayed in units of (A, A) in the legend of each plot.
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create larger line tension and would therefore be unfavorable, resulting in a potential barrier.
At large distances the membrane thickness completely relaxes and so the helices do not feel
each other’s presence. We observe a plateau at the PMF in those ranges.

The potential of mean force for super-positive mismatched helices is provided in Fig-
ure 3.20(c). The strength of attraction for these helices does not grow with mismatch,
and is smaller than for the largest positive mismatched pair considered ((18A,18A)). This
observation fits the assumption that the potential of mean force between TM helices is greatly
determined by the membrane thickness. As we show in Figure 3.16, the membrane thickness
at r = 0 distance from the helix decreases and plateaus for super-positive mismatched helices.
It is therefore expected that the strength of attraction between a pair of such helices, will be
smaller than that of positive mismatched helices.

In the last group considered, heterogenous pairs of TM helices (Fig. 3.20(d)), we observe a
wide and shallow attractive well. In all three cases examined the depth of the attractive well
is smaller than that of the corresponding homogenous pairs. This suggests that TM helices
tend to associate with helices of similar mismatch. If the helices are of different mismatch,
causing different deformations to the bilayer, there would still be a driving force to localize
this disturbance. But, if the deformations are different in nature (negative mismatched helix
with positive or super-positive mismatched helix, for example), the attraction would not be
very large, reaching at most —1.6 kgT for pair (—9A, 23A).

3.6.8 Super-Positive Mismatched Helices

The results presented in previous sections imply on the existence of a special class of
helices, super-positive mismatched. Though rare; some natural TM helices with hydrophobic
mismatch greater than 19A can be found (to be precise, 21 TM helices out of the currently
resolved structures, see Table 3.4). Additionally, understanding the driving forces that
control the configurations of super-positive mismatched helices can shed light on the forces
acting on regular positive mismatched helices. It is therefore important to understand the
characteristics of this class of helices.

For super-positive mismatched helices we observe a break-down of the trend between
mismatch and tilt angle. It seems that when helices reach that large of a mismatch, the
balance between the membrane and the helix energetics is disrupted. It becomes more
favorable for the helix to tilt to a greater extent (Figure 3.10(a)), while the membrane
thickness drops to a smaller value, closer to the bulk thickness (Figure 3.16) and the lipid
tilt angle remains closer to its bulk value (Figure 3.19). The picture that emerges from our
simulation analysis is presented in Fig. 3.22. For positive mismatched helices (Fig. 3.22(a),(c)),
the lipids accommodate the tilting helix by shielding its hydrophobic core from both top and
bottom leaflets. This creates a frustrated lipid configuration as the density of lipid tails and
heads deviates from its bulk value. As the helix grows larger so does its tilt angle, and the
lipids on both leaflets get further frustrated. When the helix reaches a certain mismatch,
it becomes more favorable for the helix to tilt to a greater degree, while the lipids shield
it only from one leaflet. Namely, the face of the super-positive mismatched helix pointing
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(a) (b)

X 555

(d)

Figure 3.22: Lipid configurations around positive mismatched ((a),(c)) and super-positive
mismatched ((b),(d)) helices. (a),(b) Shows a cartoon of lipid orientation around TM helices.
(c),(d) Shows snapshots from simulations of helices with mismatch Ad = 13.73A,27.23A,
respectively. Lower leaflet lipids are shaded blue and upper leaflet lipids are shaded red or

clarity.
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"down’ (—z) would be mostly shielded by lipids from the bottom leaflet; the face of the helix
pointing 'up’ (4+2z) would be mostly shielded by lipids from the top leaflet. This alleviates
the tension between lipid heads and tails.

Super-positive mismatched helices also tend to display a small projection angle and a
large correlation of tilt angles when paired with other helices. This indicates a tendency
towards tighter configurations, where the helices are bundled together to form one larger
peptide.

These phenomena imply an entropic origin. We hypothesize the following scenario. For
super-positive mismatched helices, representing a large volume exclusion, it is more favorable
for the lipids to minimize the volume of inclusion and maximize the volume available for the
lipids. This is done by pushing super-positive mismatched helices closer together into a tight
configuration. In positive mismatched helices, the balance is reversed. The entropy of the
helices, represented by their ability to explore a larger range of configurations (and projection
angles), is greater than that of the lipids. This results in a configuration of rather-freely
moving helices displaying a large set of projection angles and rather frustrated lipids in the
vicinity of the helix pair.

3.7 Other Protein Models

3.7.1 Cylinder Model

We explored the cross angles of a cylindrical model identical to what is described by
de Meyer et al. [14]. The peptide is modeled by seven bonded chains, each containing ny,
hydrophobic beads at the core and 3 hydrophilic beads at each end. The radius of the cylinder
is 6.8A which corresponds to the radius of an a-helix and to the radius of our CG helical
model. This cylindrical model of TM peptides was shown to produce realistic tilt angles [25]
and a PMF similar in trends to the one observed here [14, 86].

We have sampled the cross angle in homogeneous pairs of cylinders. The results for cross
angle distribution in pairs of ny, = 4,5,8,9 and 10 are presented in Figure 3.24. These chain
lengths correspond to hydrophobic mismatch Ad = —10.0A, —5.5A, 8.0A, 12.6A and 17.1A,
respectively. Pairs of ny, = 6,7 (Ad = —1.0A, 3.5A) did not stay in a packed configuration
and are therefore not presented. The results show that in all hydrophobic mismatches
considered, the mean cross angle distribution was smaller than that of the helical model,
averaging on only (Q) ~ 14.7°. This behavior is in contrary to the cross angles typically
observed in natural helices [60], where (Q) ~ 32° and can reach as high as Q = 120°. The
cylinders tend to adopt a tight parallel configuration and not cross. This model is therefore
not suitable to describe the short range packing of TM helices.

Typical packed configurations are presented in Figures 3.23(a),3.23(b).
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51.64
50.89
56.43
07.14
56.04
95.90
49.89
96.39
56.22
96.15
54.76
24.76
52.32
51.71
57.08
03.14
08.54
58.53
50.14
50.11
49.93

21.04
20.19
20.03
20.74
19.64
19.50
19.29
25.89
25.72
23.45
24.16
24.16
21.72
24.01
26.98
23.04
29.04
29.03
20.74
20.71
20.53

Table 3.4: Natural super-positive mismatched helices. Natural helices with hydrophobic
mismatch greater than 19A are described by the PDB entry and chain they are present in, at
a certain residue range. Helix hydrophobic length and hydrophobic mismatch are calculated
following the analysis in Section 4.2.
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3.7.2 Charged Cylinders

We expected the existence of a permanent dipole moment in a-helices to support a crossed
configuration of the peptides, rather than a parallel one [89]. We therefore further modified
the cylinder model to include partial charges. These charges were chosen to mimic the dipole
moment in a-helices, which is a result of all carbonyl groups pointing in the direction of the
helix major axis. To that end we added partial charges to beads in the cylindrical model (see
Figure 3.23(c)). In DPD, soft repulsive forces are applied between the CG beads. There is
therefore no explicit hard core interaction and special care needs to be taken when applying
electrostatic forces to avoid divergence at zero distances. We followed the method developed
by Groot [90] for adding electrostatics in DPD simulations, and use a smeared-out charge in
the center of charged beads.

As we were interested in exploring the local effect of charges on the packing of a pair
of peptides, we made some simplifications in our simulation. We applied charges only on a
small set of beads along the surface of the cylinder model. We did not model charges on
other system components such as water and lipid head groups as these are accounted for
explicitly in the un-bonded interaction parameters of those beads [25]. Additionally, we did
not account for interaction with the nearest image as we focused on the local interaction of
peptides. We therefore calculated the force resulting in electrostatic interactions explicitly by
adding the short range contribution. Furthermore, we have assumed that all charges interact
through the hydrophobic membrane medium (dielectric constant € = 2 as per Groot|90]),
and not screened through the water medium. This assumption represents the extreme case
of stronger electrostatic interactions. Based on these simplifications, we are hesitant to say
that this model captures the full effect of partial charges along the surface of the peptide.
However, we do believe that we have captured the first-order effect of such charges and we
don’t expect our results to change qualitatively had we done more extensive changes.

We added partial charges along the surface of the cylinder model, in a helical manner
(see Figure 3.23(c)). The charges were added such that the total dipole of 0.5 electron charge
[91, 92| is spread out along the surface of the helix. We sampled the cross angle distribution
of homogenous pairs of charged cylinders with ny, = 5,6,8,9 and 10. Charged cylinders with
Ny, = 4,7 did not remain in packed configurations and were therefore not accounted for in
cross angle distribution calculations.

Results for these simulations are presented by the blue filled box-and-whisker diagrams in
Fig. 3.24. Even in the presence of partial charges the configuration of paired peptides remained
roughly parallel. We observe a slight increase in the average cross angle to (2) ~ 15.6°, but
cross angle values were still much lower than typical cross angles in natural TM helices. The
configuration remained parallel, shifting the peptide surface such that positively partially
charged beads of one peptide faced the negatively partially charged beads of the paired
peptide.
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3.7.3 Model: Conclusions

The cylinder model, even in the presence of a dipole moment, did not display any crossed
configurations. The helical model, containing the same non-bonded interaction parameters
but different geometry, however, did display configurations with a cross angle close to the
experimentally observed angles (see for example Figure 3.6(a)). These observations suggest
that the helical geometry of beads is crucial for displaying a crossed configuration of TM
peptides.

These observations present the following picture. The interface between two cylinders
allows "locking’ of the beads in both cylinders. Since the surface of these cylinders is smooth,
this locking mechanism is a cumulative sum of contributions from all beads along the surface.
It therefore favors a parallel configuration where all beads can be ’locked’, over a crossed
configuration. In a helix, on the other hand, a similar "locking” mechanism is frustrated. The
packing of beads in both helices is only apparent in a small part of the helix. The helices
can not, by geometric constrains, be locked to each other through more than a few residues,
unless the helix flexes (as in coiled coils). We therefore hypothesize that the geometry of a
helix, in opposed to a cylinder, supports the crossing of helices by minimizing the number
of locked residues along the surface of the packed helices. In the remainder of this work we
focus on the helical model.

Figure 3.23: Cylinder model of TM peptide. (a) and (b) Show a typical crossed configuration
of cylinder model peptides from front and side view, respectively. A crossed configuration
of cylinder peptides presents a much lower cross angle than that of helical peptides, as can
be seen in Figure 3.24. (¢) Shows the distribution of charges along the surface of a cylinder
model.
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Figure 3.24: Cross angle distribution of homogenous TM peptides as a function of hydrophobic
mismatch. Only packed configurations (inter-peptide distance < 15A) were considered. Filled
box-and-whisker diagrams represent the cross angle distribution in the cylinder model of de
Meyer et al. [14], with (blue) and without (grey) partial charges. Empty box-and-whisker
diagrams represent the cross angle distribution in the helix model presented in this work. Black
points represent the hydrophobic mismatch for each box-and-whisker diagrams. Charged and
uncharged cylinder model have identical hydrophobic mismatch.
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3.8 Conclusions

In this work we explored the effect of hydrophobic mismatch on the cross-angle distribution,
as well as other configurational parameters, of TM helices. We show that, even in the full
range of hydrophobic mismatches, the cross-angle distribution of model TM helices is non-
uniform and depends, both in mean and in spread, on the hydrophobic mismatch of helices.
We additionally show that the cross-angle distribution of simulated helices matches to a great
extent that of two non-interacting helices. Deviations from that distribution are hypothesized
to result from membrane mediated forces pushing the helices towards smaller projection
angle, for example. Membrane mediate forces also induces association of TM helices.

These results have important implications on understanding the driving forces for helical
packing. In our model, we do not define any specific residues. Yet we get a large deviation in
cross-angle distribution when presented a different mismatch. This observation is in contrary
to current belief that specific residue interaction determine the cross angle. Our results
suggest that when attributing a cross angle between helices to a specific residue interaction,
one must account for all system components. Hydrophobic mismatch, through its effect on
the tilt angle of both helices, might to a large extent explain the cross-angle distribution.
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Chapter 4

Membrane Helices Interactions -
Experimental Results

The packing structures of transmembrane helices are traditionally attributed to patterns
in residues along the contact surface. In this view, besides keeping the helices confined in the
membrane, the bilayer has only a minor effect on the helices structure. In this chapter, we
show that the lipid environment has a crucial effect in determining the cross angle distribution
of packed helices, even in natural helices. We analyzed structural data of a membrane
proteins database. We show that the distribution of cross angles of helix pairs in this database
is statistically indistinguishable from the cross angle distribution of two non-interacting
helices imbedded in the membrane. These results support our previous chapter conclusions
that the cross angle is, to a large extent, determined by the tilt angle of the individual
helices. Our results indicate that hydrophobic mismatch is the dominant factor guiding the
transmembrane helix packing. Other short-range forces might then fine-tune the structure to
its final configuration.

4.1 Introduction

Membrane Proteins (MPs) are crucial players in many cellular processes, including the
transport of ions across cell membranes as well as numerous signaling pathways. The folding
of membrane proteins into functioning units has been proposed to proceed in two stages [93].
In the first stage, secondary structure elements of the protein, comprising mostly of stable
transmembrane (TM) a-helices, are generated by ribosomes and inserted into the membrane
through the translocon complex [94]. The second stage involves packing of these a-helices
into their tertiary and quaternary structures inside the membrane environment.

One of the simplest structural characteristics that form in the second stage of the folding
process is the helix-helix pairwise packing. Several studies have shown that the packing
of TM helices could have functional consequences for membrane proteins [53-55], which
has motivated theoretical research to give a molecular explanation of this packing. Most
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theoretical models explain the observed packing in terms of steric "surface matching"; the
residues of one a-helix fit into the 'holes’ left between the residues of the paired a-helix
[95, 96]. This steric fit determines the cross angle between the helices” major axes. Motifs of
repeating small residues along the surface of TM helices, which would provide a characteristic
pattern of "holes’, were thought to support this idea [56-59]. Walters et al. [60] further showed
that two-thirds of TM helix pairs found in the protein database classify into a small set of
subcategories, with each subcategory having a characteristic side-chain packing motif. On the
basis of this observation, Walters et al. concluded that specific residue interactions control
the helix -helix cross angle.

These previous theories explain the TM helix packing angles on the basis of protein-
protein interactions alone and assume that the surrounding membrane has little to no role in
shaping the structure of MPs. Recent studies have indicated, however, that the functional
activity of many membrane proteins depends on the properties of the membrane, such as lipid
composition and thickness [11, 12]. Examples include the nicotinic acetylcholine receptor
[97], the thermosensor protein DesK [98, 99], the cation/sugar symporter MelB [100] as well
as other proteins (see Table 1 in Andersen et al. [13]). These results suggest that various
characteristics of the membrane environment could modulate the function of proteins by
determining their structure and dynamics. Based on the examples presented in [97-100], Holt
& Killian [11] propose that MPs have an optimal bilayer thickness for their functioning. A
non-optimal thickness, hey hypothesize, can lead to changes in the structure and orientation
of transmembrane units, which can, in turn, lead to changes in protein functionality.

At present, we have very little understanding of the role of the membrane on helix-helix
packing. Hydrophobic mismatch, the difference in length between the hydrophobic medium
of the lipid bilayer and the hydrophobic span of the protein, has been proposed as a major
determinant of TM helix configurations. In general, this feature determines the extent to
which the membrane is perturbed by the presence of a protein. If a protein in the membrane
has a positive hydrophobic mismatch, for example, either the membrane locally thickens
or the protein tilts to minimize the hydrophobic interactions. Studies have shown that
hydrophobic mismatch is also a good indicator of the driving force of the oligomerization
of helical peptides [14, 63, 66-70|. In addition, hydrophobic mismatch is also an important
determinant of the helical tilt within the membrane [11, 61-65]. Studies show that proteins
with a large hydrophobic mismatch have a larger tilt angle with respect to the normal of the
bilayer. Proteins with a negative mismatch behave differently. In these cases it is important
to distinguish between proteins that are truly transmembrane, i.e., the hydrophilic ends are
in contact with water, and those that are fully in the hydrophobic region of the membrane.
For the first group the tilt will be close to zero [62], while for the latter the orientation will
be random.

These findings show that lipid-protein interactions can have a large effect on the tilt angles
and interactions of membrane a-helices. At present, however, we have very little insight
regarding the role of the membrane in the details of the folding process. In this article we
study the role of the surrounding membrane in the formation of the TM helix-helix packing.
Inspired by the importance of hydrophobic mismatch in describing helix-helix interactions, we
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analyze an extensive database (Orientations of Proteins in Membranes, OPM) [101] containing
a large number of experimental MP structures to investigate whether or not helix packing
angles are correlated to the hydrophobic mismatch. Surprisingly, our analysis shows that
packing angles of TM helices can be explained sufficiently by the hydrophobic mismatch.
This indicates that even in the absence of any specific protein-protein interactions the TM
helix packing is dictated by the hydrophobic mismatch of the proteins.

We compare these experimental structures with our CG model of TM helices described in
Chapter 3. By comparing our simulation results with the experimental results of the OPM
database, we obtain more insights on the relative importance of these membrane mediated
interaction and the direct interactions between the proteins.

4.2 OPM Database Analysis

For the experimental TM helix packing we use the recently established Orientations of
Proteins in Membranes (OPM) database [101]. This database provides information not only
on the protein structures, but also on the thickness of the membranes in which they were
embedded (see Figure 4.1).

4.2.1 Extracting experimental helices

Our analysis of the OPM database consists of the following steps. For each protein we first
identify all transmembrane segments. For those TM segments that have a helical structure
we then define their orientation and the hydrophobic mismatch. Finally, we identify those
transmembrane helices that are in direct contact (neighboring pairs). For these pairs we can
then determine the cross angle. From a total of 261 MPs we determined a little over 2300
cross angles.

In more details, the extraction of experimental helix structure data from the OPM
database included the following steps:

1. We refine the database to include only proteins with TM helices. This includes alpha-
helical polytopic and alpha-helical bitopic OPM classes as of September 2011 (357 TM
proteins, 261 unique). The full list of MPs is available in Table 4.1.

2. We extract the structure of each such protein from the database.

3. We extract other supporting information on the protein such as the hydrophobic thick-
ness of the membrane surrounding it (dy,) and the list of the protein’s transmembrane
segments.

4. For each TM segment of the protein we analyze the secondary structure of its residues
using DSSP [103] to determine whether it has a range of residues with helical geometry.
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Figure 4.1: A Sample of structure 2J8C (Photosynthetic reaction center from Rhodobacter
sphaeroides) in the OPM Database. Structure was obtained by 1.87 A resolution X-Ray
diffraction [102]. OPM shows information on the hydrophobic thickness of the membrane
the protein is embedded in (a) as well as on the transmembrane subunits the protein is
constructed from (b). We extract this information automatically from the OPM database to

(b)

retrieve the set of TM helices and their hydrophobic mismatch.
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d.

For each TM helix we determine the range of residues that span its hydrophobic core.
The original TM segment is therefore extended if it includes more hydrophobic-scored
helical residues at either end or shortened if it includes hydrophilic-scored helical
residues at either end. Details on the hydrophobicity scoring function is available in
Section 4.2.2.

By the aforementioned process we obtained a list of hydrophobic helix cores for each
membrane protein. We further analyze each hydrophobic helix core with the following steps:

1.

We refine the set of TM core helices to include only helices with more than 9 residues,
as was done by Walters et al. [60].

. We analyze the structure of each helix core to define its major axis using the HELANAL

[104] algorithm available through the MDAnalysis [105] package.

. We obtain the length of the hydrophilic part of the helix, dy, by projecting the C,

positions (origins) onto the obtained helix axis vector.

. We define the hydrophobic mismatch of each helix by subtracting the thickness of the

membrane (Ad = dy — dy,) for each helix.

. We refine the set to analyze helices that are in the bulk range (96%) of hydrophobic

mismatch (—10 A < Ad < 35 A ) and have a reasonable length per residue (in range
[1.25,1.8] A /residue; theoretical length per residue is 1.5 A /residue).

. We eliminate kinked helices by screening helices that are not centered around the bilayer

center. Helices whose center-of-mass distance from the bilayer center (z = 0) in the
bilayer normal direction (z) exceeded 20% of the helix length were defined as part of a
kinked helix and were not used in further analysis.

. We define each helix as unique / non-unique based on its similarity in sequence and

TM segment range to other helices in the same MP. Therefore if a protein was in fact a
dimer of two smaller subunits, only helices of the first monomer were defined as unique
while the other helices were tagged as non-unique.

Contacts between same-protein helices were calculated following the analysis in Gimpelev
et al. [106]. Two helices were defined to be a neighboring pair if they contained at least three
residues in contact. Residues were defined to be in contact if the distance between any two of
their atoms was within 0.6 A of the sum of their van der Waals radii [107], as calculated by
Li & Nussinov [108]. Helix pairs were restricted to pairs in which at least one of the helices
is unique, thereby eliminating over-counting of helix pairs. The number of contacts each
helix has with other same-protein helices was also used as a measure of how influenced the
helix is by other surrounding helices. Helices with less than one contact per helix residue
(average 0.57 contacts / residue) were defined as peripheral helices with minimal helix-helix
interactions.



4.2. OPM DATABASE ANALYSIS 73

By the aforementioned process we extract 3002 helices from 261 unique transmembrane
proteins in the OPM database. Of this set, 1542 were defined as unique with 224 of these
defined as peripheral helices. We obtained a total number of 17695 pairs of helices, with 2328
of them (13%) as neighboring pairs.

4.2.2 Hydrophobic mismatch calculations

We define hydrophobic mismatch, Ad, as the difference between the hydrophobic length
of a helix, dy, and the hydrophobic thickness of a membrane, dy,, following Equation 3.1.

For all MPs obtained from the OPM database, we used the effective membrane hydrophobic
thickness as reported in the database. We therefore rely on the membrane thickness estimations
made by Lomize et al. [109, 110]. In their calculations, Lomize et al. used the free energy of
transferring a protein between water and a hydrophobic region to construct the membrane
hydrophobic thickness around a given protein. It is important to note that most experimental
structures for MPs required the usage of a detergent that is necessary for the crystallization
process. These detergents are assumed to maintain the protein structure. We therefore
used the membrane hydrophobic thickness as reported in OPM to determine the effective
membrane hydrophobic thickness. This provides a reasonable representation of the membrane
environment of the protein at equilibrium, rather than the temporary detergent environment.

To determine the helix hydrophobic length of OPM extracted helices, we use a non-
local hydrophobicity score. First, for each residue ¢ in a TM helix we calculate a local
hydrophobicity score, s, based on the Kyte and Doolittle hydrophobicity scale [111]. We
then calculate the non-local hydrophobicity score for each residue by a weighted average of
the local scores in a window of five surrounding residues (including the current residue and
the two adjacent residues on either side). The weights were calculated by a Gaussian of mean
zero and standard deviation of one residue. The non-local score of residue 7, s%;, is therefore
computed by si; = 0.054 - 572 +0.242 - 571 +0.399 - 5% +0.242 - 5571 + 0.054 - 5472, This
non-local score prevents a single isolated hydrophilic residue in the middle of the helix from
being seen as a hydrophilic end.

We define the hydrophobic helix core by extending or decreasing the range of helical
residues to include only hydrophobic-scored (s, > —0.02) residues at both ends. The total
range of residues in the hydrophobic core of the helix determines the helix hydrophobic length,
dy. This length is determined by the HELANAL algorithm for analyzing helix structures
[104].

We note here that the membrane hydrophobic thickness, dy, is different for each protein
and therefore the hydrophobic mismatch of each helix, Ad, differs from the helix length, dy.
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4.3 Database Analysis Results

4.3.1 Tilt angles

For the 1542 unique helix structures in the OPM database we computed the tilt angle as a
function of the hydrophobic mismatch. The tilt angle, 8, was calculated as the angle between
the helix major axis and the bilayer normal vector, +Z (see Figure 3.6(b)). For a given value
of the hydrophobic mismatch we observe a distribution of different angles. In Figure 4.2(a) we
represent this distribution by plotting the average and standard deviation. We additionally
compare these result with the result of our CG model, described in the previous chapter.

For positive mismatch we observe that the tilt increases with hydrophobic mismatch. Such
a trend has also been observed for WALP and KALP peptides [11, 34, 62] and in simulations
of our course grained model (see Figure 4.2).

For negative mismatch the OPM data shows a minima for a mismatch of Ad ~ —2A .
These results disagree with our CG simulations and simulation of KALP peptides for negative
mismatch. At this point it is important to recall that in our CG model, the interactions are
chosen such that even for negative mismatch the hydrophilic ends of the helix are in contact
with the hydrophilic part of the membrane (or water). Hence, for these systems tilt will be
energetically unfavorable [11, 62]. Our model is consistent with the results for WALP and
KALP peptides, for which the hydrophilic part of a helix, even for negative mismatch, is
in contact with the hydrophilic part of the membrane or in the water phase [34, 64]. Most
helices with negative mismatch in the OPM database, however, are not capped by hydrophilic
regions, but rather are continued by hydrophobic non-helical chains. Hence, for these helices
changing the tilt does not change the energy and the orientation of such helices is expected
to be random. Because of these differences we focus in the remainder of this article on the
cross angle of positive hydrophobic mismatch helices.

The results for KALP peptides, as seen in Figure 4.2(b), have a larger slope of tilt angle
versus hydrophobic mismatch compared to the OPM data and our CG simulations. In our
CG model, we chose the size of the hydrophilic part of the helix (3 residues) to match the
hydrophilic part of the membrane. Natural helices from the OPM database often have a chain
of several hydrophilic residues at both sides of the helix. KALP peptides, on the other hand,
contain only two hydrophilic residues. In the absence of hydrophilic residues to match the
hydrophilic part of the membrane, the energetic balance between the hydrophobic mismatch
and the counter hydrophilic mismatch is shifted such that the hydrophobic mismatch might
be more pronounced. In that case we expect to observe a larger tilt angle with similar
hydrophobic mismatch.

While analyzing the database we observed a strong ‘mirror effect” for parallel versus anti
parallel helices. Namely, the distribution of tilt angle and cross angle was similar for all
helices, regardless of their C to N terminus orientation. Evidence for this effect is shown in
Figure 4.3. Therefore, we follow the definition given by Chothia et al. [112] and treat all
helices as vectors pointing towards the +z-direction along the calculated helix axis. All our
results are reported using this convention.
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Figure 4.2: Average tilt angle as function of hydrophobic mismatch. (a) Compares tilt angle
for all unique TM helices (black line), peripheral unique TM helices (dashed green line, see
text) as obtained from the experimental data in the OPM database with CG simulation
of hydrophobic helices in a lipid bilayer (purple squares). The experimental data in the
OPM database gives a distribution of tilt angles, which is represented by the solid line, for
the average, and the pink shading, for one standard deviation (as obtained by the LOESS
method [83]). The simulated CG results are an average from system of both 5-bead and
6-bead tail lipids, representing two membranes with different hydrophobic thicknesses, with
error-bars representing the error in average values of both systems. (b) Further compares
our simulation (black filled squares) and OPM experimental data (solid black line, standard
deviation represented by dashed lines) with previously published simulation results for KALP
peptides. Results by Kandasamy et al. [62] are shown for low (blue filled circles) and high
(red filled triangles) protein to lipid ratio. Results of coarse grained simulations by Monticelli
et al. [34] are shown with magenta empty squares.
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Figure 4.3: Unadjusted tilt angles versus hydrophobic mismatch scatter plot shows a mirror
effect around 6 = 90° (dashed horizontal line).
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We find a surprising trend in the subset of peripheral helices (14% of helices). As these
helices are mainly at the outer regions of the protein, one would expect the effect of the lipid
bilayer on the tilt to be more pronounced, while for the non-peripheral helices the helix-helix
interactions would dominate. Instead, we observe the tilt of these peripheral helices to be
similar (Figure 4.2(a), dashed green line). This suggests that the presence of another helix
nearby is of a lesser importance to the tilt than the presence of the surrounding bilayer.

We note here that our results for the tilt angle of OPM helices depend on the membrane
thickness as determined in the OPM database (see Section 4.2.2). As the definition of the
membrane thickness is somewhat arbitrary, a different definition of the membrane thickness
could lead to quantitative changes in the tilt angle trend. Yet we expect that the qualitative
behavior of the tilt angle with respect to hydrophobic mismatch would not change.

4.3.2 Cross angle distributions
Reference Cross Angle Distribution

Bowie [113] showed that there are significant statistical biases that have to be taken into
account when referring to inter-axial angles of packed a-helices. Namely, using geometric
considerations one can show that the number of configurations available to a pair of helices
with a fixed cross angle depends on the value of that cross angle. This leads to a non-flat
cosine-like distribution of cross angles. Bowie [114] further explored this effect by analyzing
the packing of membrane proteins. However, at that time the number of resolved membrane
protein structures was too small to study this effect.

When studying the cross angle distribution we also have to account for a statistical bias
that originates from the fact that the cross and tilt angles are not independent. The relation
between these angles is described in Section 3.6.3 and Equation 3.2.

As mentioned, this relation confines the cross angle to the range |6; — 05| < |Q| < |61 + 65
and displays a non-uniform Arcsine-like distribution within that range. This distribution
displays two sharp peaks at |2 = |0; — 65| and || = |0, + 02| (see Figure 4.4, dashed line).
The importance of this relation is that even for a pair of helices that are so far apart in the
membrane that they don’t interact, we see a limited set of possible cross angles between
these helices. For helices with smaller tilt angles we will observe a smaller cross angle and for
a pair of helices with larger tilt angles we will observe a larger one. The cross angle is also
expected to be larger for a case of large difference in tilt angles (|0 — 65| > 0) and to display
a smaller value for similar tilt angles (|6, — 62| ~ 0).

For fixed tilt angles of the two helices, the projection angle between the helices, v, is the
only independent variable controlling the cross angle of the two helices. For non-interacting
helices, the tilt angles are uncorrelated and this projection angle is uniformly distributed.
Taking this into consideration, we calculate the distribution of cross angles in the OPM
database for the case that the two helices would not interact. For a given mismatch, we
assume a Gaussian distribution of tilt angles, where the mean and variance of the distribution
follow from the data in Figure 4.2(a). We sample a large number of tilt angles from these
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Figure 4.4: Reference Cross angle (2) Distribution. Dashed line corresponds to the reference
cross angle distribution of two helices with fixed tilt angles, ¢} and 6}, and random projection
angle, v; Solid line corresponds to the reference cross angle distribution of two helices with
normally distributed tilt angles with mean 6}, ¢, and standard deviation oy, 09, respectively.
These mean and standard deviation values correspond to the experimental tilt angles at
hydrophobic mismatch ranges Ad; = 3.0 A and Ady = 10.0 A respectively, as extracted from
Fig. 4.2(a). These amount to 0] = 23.6°, 6}, = 29.4°, 0y = 11.3° and 09 = 12.4°. A schematic
sketch of helices is provides for both extremes of v = 0° and v = 180°.
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distributions for each helix and uniformly sample the projection angle. We calculate the
resulting cross angles using Equation 3.2.

Each pair of fixed tilt angles will impose a cross angle distribution as shown in Figure 4.4
(dashed line), and the overall distribution will be a weighted average of these individual
distribution. The solid line in Figure 4.4 is an example of such a distribution for a pair of
helices that are drawn from the distribution corresponding to hydrophobic mismatches of 3 A
and 10 A. This figure illustrates that, even in absence of any interactions between the helices,
we obtain a dependence of the cross angle on the hydrophobic mismatch. To compute the
reference distribution of cross angles for all neighboring helix pairs in the OPM database, we
repeat this procedure for all possible mismatches of pairs of helices, (Ady; Ady).

Experimental Cross Angle Distribution

We calculated the cross angle between all pairs of helices within the same protein in the
OPM database. In determining the cross angle one can distinguish between a right- and
left- handed angles [112]. The histograms of left and right handed cross angles are close in
absolute value (see Figure 4.5) and there is are no major differences in preference for a right
or left handed orientation. Therefore in the remainder of this section we use absolute cross
angle values, which allows us to improve the statistics.

To determine the extent to which the OPM distribution differs from the one for non-
interacting helices, we first divided the pairs of helices into groups based on their hydrophobic
mismatch. We then analyzed the cross angle distribution of two representative groups of
neighboring helix pairs: (a) Ad; € (2,5] A , Ady € (4,7] A containing 175 helix pairs, and
(b) Ady € (0,3] A, Ady € (0,3] A containing 135 helix pairs.

In Figure 4.6 the OPM data are compared with the non-interacting reference curve.
Surprisingly, this comparison shows no significant differences between the two distributions.
The notion that the cross angle distribution is not determined by the helix-helix interaction
but determined by the orientation of the helices in the membrane is further illustrated by a
comparison with the distribution obtained from our molecular simulations using a similar
mismatch ((a) Ad; = 3.2 A, Ady = 7.7 A and (b) Ad; = 3.2 A | Ady = 3.2 A). Figures 4.7, 4.8
further illustrates the change in mean cross angle as a function of the hydrophobic mismatch
and tilt of both helices.

To construct the reference distribution of each cross angle, we sampled the reference
distribution by a Monte Carlo procedure for all neighboring helix pairs in the OPM database.
For each pair, we extract the hydrophobic mismatches of both helices, (Ad;; Ady). This
imposes the expected tilt angle distribution of each helix, based on the information displayed
in Figure 4.2(a), ((61), 0g,; (f2) , 09,). Note that we do not explicitly use the helices tilt angle
but rather the average distribution based on their mismatch, therefore obtaining the reference
distribution in the case that hydrophobic mismatch would be the only factor determining
the helix tilt. We then produce a set of N = 1000 values of tilt angles for each helix in
the pair, drawn from the imposed distribution, 6} ~ N({6;),04,) and 65 ~ N ({63, 04,),
fori=1...N. For each 7, aset of j =1... M = 1000 uniformly distributed projection 'y§
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Figure 4.5: Comparison of right and left handed experimental cross angles. (a) Shows the
frequency of cross angles along the entire range €2 € [—90°,90°] with colors corresponding to
helix orientation. Error-bars represent 0.9 confidence intervals. (b) Shows the absolute cross
angle distribution in which all helix vectors are treated as pointing towards +2z direction and
the angle between those vectors is calculated by a simple dot product (see Methods Section).
The mean standard deviation around the density lines is 0.006.



4.3. DATABASE ANALYSIS RESULTS 81

angles are drawn at random, and M cross angle values, Q;, are then calculated based on
Equation 3.2 by plugging in 6}, 65, 71. We therefore obtain MxzN = 10° independent cross
angle values which we bin into a histogram of narrow 0.1° bins. This histogram represents
the reference discrete distribution for this specific helix pair.
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Figure 4.6: Comparison of cross angle distributions. The experimental cross angle distribution
is shown in grey boxes; purple curves show the results of cross angle between simulated
helices and red dotted lines represent the reference cross angle distribution. The reference
distribution is based on the tilt angle distribution of the helices’ mismatch as extracted from
Fig. 4.2(a). (a) Shows absolute cross angle of pairs of neighboring helices with hydrophobic
mismatches in the ranges Ad; € (2,5] A and Ad, € (4,7] A compared to simulated helices
of mismatch Ad = 3.2 A 7.7 A respectively. (b) Shows pairs in ranges Ad; € (0,3] A and
Ady € (0,3] A compared to simulated helices of mismatch Ad = 3.2 A ;3.2 A respectively. (c)
Shows the full cross angle distribution (and not the absolute one) for the same set used in
plot (b). Error-bars in all three plots represent 0.9 confidence intervals.

We note that the choice of neighboring helix groups in Fig 4.6 was made by balancing two
factors: In order to display a representative cross angle distribution, a large enough number of
data points (neighboring pairs) should be accounted for, implying the use of a large range of
hydrophobic mismatch. The maximum density of helix pairs is 33 pairs/Ad? (see Figure 4.9)
and so a range of several A in hydrophobic mismatch is needed to include enough data points
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Figure 4.7: Scatter plot of neighboring helix pairs as function of helix hydrophobic mismatch.
Available data points represented by grey circles. Colors and text correspond to average
absolute cross angle for pairs in each mismatch range. Text size scales with the number of
data points in each range, representing the accuracy in average value calculation. Larger text
therefore corresponds to smaller error in average calculation. The plot shows the dependence
of cross angle on the hydrophobic mismatch of both helices. We observe smaller cross angle
values for helices with small hydrophobic mismatch, and larger cross angle values for helices
with large hydrophobic mismatch. We additionally observe larger cross angle values for helices
whose mismatch ranges differ (increase in average cross angle towards upper left corner of
the plot). Both phenomena are expected from our reference model.



4.3. DATABASE ANALYSIS RESULTS

83

o _|
~
e 0 <Q=<10
10<Q<20
o ¢ 20<0<30
© 30<Q<40
40<Q<50
° ° > ® 50<0Q<60
B e St e , ® 60<Q<70
® 0 o° o %000 L0 ® 70<Q0<80
_ o U 22, ® 80<0 <90
T o ] - () 3,4 ) )
= ¥ 0% 2 g8 m The ﬁd}“ °
'(:I e( "_.'o&l P » °
H* o) & [ 42 ’k‘. )
2 o ':ﬁ?*""ﬁ'h"
% ® ] (P9 #‘% ¥
(7 A
- Qf;' L," %° .'go‘: (. ..' °
X L3 "n\ & \.%. L) °
{ - 8¢, o S0, 00
oo, .‘;... [ ] Q”. °
"..Q o 3 :.A. [ ]
Oy o .
o | & %% daele \
= P e ©°
LR o o
° .( .. ° [ ]
o So °
o
I T I I T
0 20 40 60 80

Helix #1 Tilt (°)

Figure 4.8: Scatter plot of tilt angles for both helices across all neighboring helix pairs. Colors
represent the cross angle of the pair, according to the legend. The plot shows the dependence
of cross angle on the tilt angle of both pairs, as expected by Eq. 3.2. Small cross angles
(©2 <10, red circles) are available only to pairs with a small difference in tilt angles (along the
diagonal). While moving away from the diagonal, the cross angles are limited to growingly
larger values. The dependence of cross angle value on the sum of tilt angles is also apparent.
Each value of cross angles is limited in the bottom left direction of the plot, suggesting a

minimal limit on the sum of tilt angles.
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in the distribution of pair cross angles. On the other hand, using a too-large hydrophobic
mismatch range would include large variability in the tilt angle distribution of the helices
(observed change of up to 1.3°/Ad in average tilt angle) and therefore a variability in the
resulting cross angle distribution. We therefore chose windows of an intermediate size of
3A in mismatch ranges that include a large enough number of data points. We focus on
neighboring helix pairs where both helices have a positive mismatch for reasons described in
the main text. Figure 4.9 shows the scatter-plot of neighboring helix pairs and the chosen
ranges are shown for comparison.
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Figure 4.9: Scatter plot of neighboring helix pairs with positive hydrophobic mismatch as a
function of helix hydrophobic mismatch. X-axis represents the hydrophobic mismatch of the
helix with the lower mismatch value in the pair. Y-axis represents the hydrophobic mismatch
of the helix with the higher mismatch value in the pair. Diagonal line represents pairs with
equal mismatch values for both helices. Dashed rectangles correspond to mismatch ranges
used in Figure 4.6. The number on each rectangle represents the number of pairs in that
rectangle.

To quantitatively test that the OPM distribution and our reference distributions are
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statistically equivalent over all hydrophobic mismatch ranges, we used our generated reference
distributions for each helix pair to obtain the overall expected histogram of all helix pairs.
We calculated the overall p-value of all helix pairs. This provides a measurement of how
probable it is that the observed cross angles originate in the reference cross angle distribution.
Comparing the overall p-value to a p-value obtained for a set of random cross angles sampled
directly from the reference distribution shows that the experimental p-value (0.497) is well
within the standard error of the random p-value (0.500 + 0.006). This suggests that it is
statistically probable that the experimental cross angle distribution was in fact generated by
the model in Eq. 3.2.

To obtain the overall expected cross angle histogram of all helix pairs we combine the
reference histograms by adding the counts of each bin for every helix pair and normalizing
the resulting distribution at the end of the procedure. As the reference distribution does not
differentiate between negative and positive cross angles we calculate the cross angle value in
its positive form, and set its sign randomly such that the percentage of parallel pairs will be
identical to its value in the data (58.5%).

We further use the reference histograms to calculate the overall p-value of the experimental
results. For each helix pair (k = 1...2328) we calculate the probability of the pair’s cross
angle, Pr*(€;), according to the pair’s corresponding reference histogram. We then sum
over the probabilities of all the other bins in that reference histogram with lower probability
to obtain the k’th p-value, p* = > Pr¥(z) | Pr®(z) < Pr*(Q). To verify that the discrete
binning does not bias the p-value and to get an estimate on the variance of this result, we
calculate the same score on R = 500 random numbers sampled directly from the histogram
p* for I = 1... R. We then obtain an experimental overall p-value p = 3225 pF = 0.497 and
R random p-values p' = 2232218 p*!. The average random p-value is calculated by averaging
these R values. As expected, it comes out to be 0.500. The standard deviation is also obtain
from these R values as 0.006.

Using the overall reference histogram, one can obtain a direct comparison for cross angle
values that are over- or under- represented in the experimental results. The degree to which
each cross angle probability differs from its probability in the reference distribution can be
used as a measure for what specific interactions and other membrane effects are imposing
upon the helices. Results for the comparison of the overall cross angle are presented for both
the probability density (Fig. 4.10(a)) and the difference in log of probabilities (Fig. 4.10(b)).
Since most helix pairs (97%) are from structures with reported crystallization or experimental
temperature in the small range 7' = 275°K — 300°K (see Table 4.1), the difference in log
probabilities is close to the difference in free energy, up to a factor of kgT. These results
show that the differences in log(P) are rather small, and show an over-representation of
experimental cross angles in range —10 < 2 < 30 and an under-representation in ranges
—25 < Q2 < —15, 37 < Q2 <47, 58 < () < 65 over the entire error bar span.
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Figure 4.10: Comparison of cross angle distribution of all neighboring helix pairs with the
reference distribution based on their respective mismatches. (a) Shows the distribution of
all neighboring pairs (blue) compared to the overall reference distribution (pink, see text).
(b) Shows the difference in log of probabilities between the two sets. It is equivalent to
difference in estimated free energies. The plot shows higher tendency for small cross angles
(—10° < © < 30°) than expected by the reference distributions and lower than expected
tendency for larger cross angles absolute values (—25° < 2 < —15°), (37° < Q < 47°), (58° <
2 < 65°). Error-bars represent 0.9 confidence intervals obtained by a 500 resample bootstrap
[115] on the values of experimental cross angles. Data is omitted for |Q2| > 75° due to large
uncertainty.
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4.3.3 Deviations from the reference distribution

Deviations from the reference distribution can arise from a non-uniform distribution of
projection angles. In the OPM data, we observe a tendency towards small projection angles
(v <100) as presented in Fig. 4.11. This tendency was also observed in our CG simulations
and was seen to vary with hydrophobic mismatch. This trend toward smaller projection angles
corresponds to a trend towards smaller cross angles. We hypothesize that these deviations
are due to the membrane applying effective force to minimize the amount of constrained
lipids between the two helices. Since we observe similar deviations in both experimental and
simulated results, it is unlikely that this effect originates in specific residue interactions since
they are not included in our simulations. Other deviations from the reference distribution
can arise from correlations in tilt angle between the two helices. In our CG simulations
we observe a time averaged correlation coefficient ranging from 0.03 for negative mismatch
(Ad = —15,—15 A ) and up to 0.52 for extremely positive mismatch (Ad = 26,26 A ). We
note that theses two effects are not independent, but as both effects are present in our CG
model that does not resolve specific residues, it is unlikely that they originate in specific
residue interactions.

4.4 Discussion

Our findings show that even in the absence of any specific interactions, the cross angle
distribution of TM helices is not uniform. Some angles are more preferable than others.
The distribution of cross angles depends on the hydrophobic mismatch of the individual
helices, through its effect on the tilt angle. Therefore, special care has to be taken when
considering a set of TM helix pairs and attributing their cross angle distribution to specific
interactions. The observed distribution of cross angles should first be compared with the
reference distribution. Only statistically meaningful deviations from the reference distribution
point towards direct influence of specific interactions on the packed configuration.

It is interesting to discuss the consequences of our observations in the context of the
folding mechanisms of membrane proteins. Previous studies on mesoscopic models show that
membrane mediated interactions lead to long-range attractive forces between helices. These
forces depend only on the hydrophobic mismatch [14] and do not rely on specific interactions.
The importance of these membrane mediated interactions is that they are very robust and,
unlike specific interactions, do not rely on the helices to be in an ideal orientation such that
the surface motifs can interact. The surprising result of this current study is that the same
hydrophobic mismatch can guide the cross angle. Hence, the forces that constrain the cross
angle of the helices are also robust. We therefore see the membrane playing a role in all
aspects of the second stage of protein folding - from helix association to tertiary structure
determination.

It is important to emphasize that our results do not suggest that specific interactions
are not important in the folding of a membrane protein. The picture that emerges from
this study is that membrane mediated interactions play an important role in keeping the
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Figure 4.11: Histogram of experimental projection angles of neighboring helices (grey boxes)
shows tendency towards lower (y < 100°) angles with p-value < 0.0001 (based on a binomial
test). Representative projection angle histograms from CG simulations are shown in lines.
Each line corresponds to a different pair of same-mismatch helices: Ad = 3 A (red solid),
17 A (blue dashed), 21 A (green dotted). These show that the trend of over-population of
lower projection angles is observed in simulations as well and varies in strength and shape
with mismatch. Error-bars represent 0.9 confidence intervals in experimental projection angle
histogram.
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helices together and ensuring the helices have a stable cross angle. Hence, we hypothesize
that membrane mediated interactions put the helices in an ideal position for the short-ranged
specific interactions to take over and finalize the folding.

4.5 Appendix

4.5.1 List of Experimental Structures

Table 4.1: Experimental Structures

H PDB ‘ Experimental Method ‘ Temperature ‘ # Unique Helices ‘ # Neigh. Pairs H
1A11 SOLUTION NMR 313 1 0
1A91 SOLUTION NMR 300 2 1
1AFO SOLUTION NMR 313 1 1
1AR1 X-RAY DIFFRACTION N/A 12 18
1DXR | X-RAY DIFFRACTION N/A 9 8
1E12 X-RAY DIFFRACTION N/A 6 13
1EHK X-RAY DIFFRACTION 293 13 21
1EYS X-RAY DIFFRACTION 277 11 15
1FFT X-RAY DIFFRACTION 277 13 12
1FJK SOLUTION NMR 300 1 0
1H2S X-RAY DIFFRACTION N/A 9 18
1H61 ELECTRON CRYSTALLOGRAPHY N/A 6 15
1HGZ FIBER DIFFRACTION 300 2 2
1IFP FIBER DIFFRACTION 298 1 1
11JD X-RAY DIFFRACTION 291 1 2
1J4N X-RAY DIFFRACTION 277 6 15
1JBO X-RAY DIFFRACTION 277 26 25
1KF6 X-RAY DIFFRACTION 295 6 8
1KPL X-RAY DIFFRACTION 293 8 11
1KQF X-RAY DIFFRACTION 277 4 6
1L9B X-RAY DIFFRACTION 292 11 14
1LDF X-RAY DIFFRACTION 298 6 19
1LGH X-RAY DIFFRACTION N/A 1 2
1MOL X-RAY DIFFRACTION 295 6 11
1M56 X-RAY DIFFRACTION 277 21 35
1MHS ELECTRON CRYSTALLOGRAPHY 277 7 6
IN7L SOLUTION NMR 323 1 0
INEK X-RAY DIFFRACTION 293 6 7
1INKZ X-RAY DIFFRACTION 289 1 3
10KC | X-RAY DIFFRACTION N/A 6 7
10QW | X-RAY DIFFRACTION 293 1 0
10TS X-RAY DIFFRACTION 298 8 10
1P49 X-RAY DIFFRACTION 298 2 1
1PP9 X-RAY DIFFRACTION 277 11 18
1PW4 X-RAY DIFFRACTION 293 11 18
1PY6 X-RAY DIFFRACTION 310 6 7
1Q90 X-RAY DIFFRACTION 277 13 25
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H PDB \ Experimental Method \ Temperature \ # Unique Helices \ # Neigh. Pairs H
1QL1 FIBER DIFFRACTION 283 2 0
1R3J X-RAY DIFFRACTION 293 2 3
1RC2 X-RAY DIFFRACTION 300 6 15
1RKL SOLUTION NMR 298 1 0
1IRWT | X-RAY DIFFRACTION 291 3 1
1S5H X-RAY DIFFRACTION 293 2 3
1SU4 X-RAY DIFFRACTION N/A 7 8
1T58 X-RAY DIFFRACTION 292 8 7
107G X-RAY DIFFRACTION 298 9 28
1UAZ X-RAY DIFFRACTION 280 6 7
1V55 X-RAY DIFFRACTION N/A 22 47
1VGO | X-RAY DIFFRACTION 283 6 7
1WPG | X-RAY DIFFRACTION N/A 9 12
1WUO0 | SOLUTION NMR 298 2 1
1XIO X-RAY DIFFRACTION 293 7 12
1XL6 X-RAY DIFFRACTION 293 2 5
1XRD | SOLUTION NMR 298 1 0
1YCE X-RAY DIFFRACTION 290 2 7
1YEW | X-RAY DIFFRACTION 298 7 5
1YMG | X-RAY DIFFRACTION 298 6 17
1YQ3 X-RAY DIFFRACTION 278 6 8
1ZCD X-RAY DIFFRACTION 279 7 9
1ZLL SOLUTION NMR 303 1 2
120Y X-RAY DIFFRACTION 290 5 6
1ZRT X-RAY DIFFRACTION 277 10 13
2A0L X-RAY DIFFRACTION 293 2 3
2A65 X-RAY DIFFRACTION 291 9 18
2A9H SOLUTION NMR 315 2 3
2AGV | X-RAY DIFFRACTION 283 5 4
2B2F X-RAY DIFFRACTION 298 9 28
2B5F X-RAY DIFFRACTION N/A 5 9
2B60 ELECTRON CRYSTALLOGRAPHY 300 6 17
2BBJ X-RAY DIFFRACTION 297 1 0
2BG9 ELECTRON MICROSCOPY 277.20 16 28
2BHW | X-RAY DIFFRACTION N/A 1 0
2BL2 X-RAY DIFFRACTION N/A 4 11
2BS2 X-RAY DIFFRACTION N/A 5 9
2BS3 X-RAY DIFFRACTION N/A 4 6
2E74 X-RAY DIFFRACTION N/A 10 20
2F2B X-RAY DIFFRACTION 295 6 19
2FYN X-RAY DIFFRACTION 288.20 10 15
2GFP X-RAY DIFFRACTION N/A 10 15
2H8A ELECTRON CRYSTALLOGRAPHY 277 3 4
2HIL ELECTRON MICROSCOPY 368 1 0
2HYD | X-RAY DIFFRACTION N/A 4 4
2IFO FIBER DIFFRACTION 298 2 0
2IQL THEORETICAL MODEL 298 6 9
21Q0 THEORETICAL MODEL 298 6 9
2IQR THEORETICAL MODEL 298 5 6
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H PDB \ Experimental Method \ Temperature \ # Unique Helices \ # Neigh. Pairs H
21QV THEORETICAL MODEL 298 6 9
2JLN X-RAY DIFFRACTION N/A 7 6
2JWA SOLUTION NMR 313 2 1
2K1K SOLUTION NMR 313 1 1
2K74 SOLUTION NMR 313 2 1
2K9P SOLUTION NMR 320 2 1
2K9Y SOLUTION NMR 313 1 1
2KA2 SOLUTION NMR 313 1 1
2KB7 SOLID-STATE & SOLUTION NMR N/A 1 0
2KDC | SOLUTION NMR 318 1 0
2KIX SOLUTION NMR 305 1 2
2KNC | SOLUTION NMR 298 2 1
2KQT | SOLID-STATE NMR 243 1 2
2KSD SOLUTION NMR 318 2 1
2KSE SOLUTION NMR 313 2 1
2KSF SOLUTION NMR 318 3 2
2KSR SOLUTION NMR 313 4 3
2KV5 SOLUTION NMR 303 1 0
2KWX | SOLUTION NMR 303 1 2
2KYH | SOLUTION NMR 318 3 2
2135 SOLUTION NMR 303 3 3
219U SOLUTION NMR 313 1 1
2LAT SOLUTION NMR 298 1 0
2L.CK SOLUTION NMR 306 4 2
2NQ2 X-RAY DIFFRACTION 277 8 12
2NR9 X-RAY DIFFRACTION 298 4 4
2NRF X-RAY DIFFRACTION 295 4 4
2NS1 X-RAY DIFFRACTION 293 9 27
2NWL | X-RAY DIFFRACTION 277 5 3
2001 X-RAY DIFFRACTION 278 6 0
20AR | X-RAY DIFFRACTION N/A 2 5
20AU | X-RAY DIFFRACTION 277 1 0
2Q7R X-RAY DIFFRACTION 298 2 2
2QI9 X-RAY DIFFRACTION 293 14 18
2QKS X-RAY DIFFRACTION 293 2 5
2QTS X-RAY DIFFRACTION 277 2 4
2RDD | X-RAY DIFFRACTION 293 10 13
2RH1 X-RAY DIFFRACTION 293 7 10
2RLF SOLUTION NMR 303.10 1 2
2UUH | X-RAY DIFFRACTION N/A 3 8
2V50 X-RAY DIFFRACTION N/A 22 41
2V8N X-RAY DIFFRACTION N/A 5 2
2VLO X-RAY DIFFRACTION N/A 2 0
2VPZ X-RAY DIFFRACTION N/A 14 25
2VT4 X-RAY DIFFRACTION N/A 7 11
2W2E | X-RAY DIFFRACTION N/A 5 18
2W5J X-RAY DIFFRACTION N/A 1 2
2WCD | X-RAY DIFFRACTION N/A 1 2
2WIT X-RAY DIFFRACTION N/A 12 26
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H PDB \ Experimental Method \ Temperature \ # Unique Helices \ # Neigh. Pairs H
2WLL | X-RAY DIFFRACTION N/A 2 5
2WSW | X-RAY DIFFRACTION N/A 7 8
2WSX | X-RAY DIFFRACTION N/A 10 19
2WWB | ELECTRON MICROSCOPY 357 7 4
2XKM | SOLID-STATE NMR; X-RAY DIFF. N/A 1 0
2XOK | X-RAY DIFFRACTION N/A 2 7
2XQ2 X-RAY DIFFRACTION N/A 11 13
2XQU | X-RAY DIFFRACTION N/A 2 7
2XUT | X-RAY DIFFRACTION N/A 8 9
2X7ZB ELECTRON CRYSTALLOGRAPHY 277.50 7 4
2YDV | X-RAY DIFFRACTION N/A 7 12
2YL4 X-RAY DIFFRACTION N/A 5 7
2YVX | X-RAY DIFFRACTION 293 3 3
2YXR | X-RAY DIFFRACTION 277 8 7
27ZBD X-RAY DIFFRACTION 283 8 12
27.JS X-RAY DIFFRACTION 293 6 5
27T9 X-RAY DIFFRACTION N/A 11 22
2ZW3 X-RAY DIFFRACTION 277 4 9
27ZXE X-RAY DIFFRACTION 298 6 3
27.79 ELECTRON CRYSTALLOGRAPHY 293 6 15
3A0B X-RAY DIFFRACTION 293 24 21
3ATK X-RAY DIFFRACTION 293 6 11
3AMG6 X-RAY DIFFRACTION 293 6 7
3AQP X-RAY DIFFRACTION 293 12 23
3ARS X-RAY DIFFRACTION 283 5 4
3AR9 X-RAY DIFFRACTION 283 7 8
3ARC X-RAY DIFFRACTION 285 27 32
3B4R X-RAY DIFFRACTION 295 4 2
3B60 X-RAY DIFFRACTION 277 5 7
3B8C X-RAY DIFFRACTION N/A 2 0
3B8E X-RAY DIFFRACTION 292 5 1
3B9B X-RAY DIFFRACTION 292 8 7
3B9Y X-RAY DIFFRACTION 298 9 22
3BEH X-RAY DIFFRACTION 298 5 9
3C02 X-RAY DIFFRACTION 291 5 14
3CAP X-RAY DIFFRACTION 277 7 13
3CHX | X-RAY DIFFRACTION 293 7 3
3CX5 X-RAY DIFFRACTION 277 10 14
3D31 X-RAY DIFFRACTION 293.15 10 16
3D9S X-RAY DIFFRACTION 281 5 11
3DDL X-RAY DIFFRACTION 295 7 10
3DIN X-RAY DIFFRACTION 298 10 12
3DWW | ELECTRON CRYSTALLOGRAPHY 373 3 4
3E86 X-RAY DIFFRACTION 293 2 3
3EAM | X-RAY DIFFRACTION 298 3 6
3EML | X-RAY DIFFRACTION 293 6 8
3F5W | X-RAY DIFFRACTION 298 2 1
3F7TV X-RAY DIFFRACTION 298 2 3
3F7TY X-RAY DIFFRACTION 298 2 1
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H PDB \ Experimental Method \ Temperature \ # Unique Helices \ # Neigh. Pairs H
3FB5 X-RAY DIFFRACTION 298 2 3
3G5U X-RAY DIFFRACTION 278 12 18
3GD8 X-RAY DIFFRACTION 298 6 17
3GIA X-RAY DIFFRACTION 293 8 11
3H1J X-RAY DIFFRACTION 277 9 9
3H9V X-RAY DIFFRACTION 277 1 2
3HDG6 X-RAY DIFFRACTION 277 6 12
3HD7 X-RAY DIFFRACTION 293 2 1
3HFX X-RAY DIFFRACTION 289 7 8
3HQK | X-RAY DIFFRACTION 293 9 19
3HZQ X-RAY DIFFRACTION 277 1 2
3J01 ELECTRON MICROSCOPY N/A 6 2
3JYC X-RAY DIFFRACTION 277.10 2 5
3K03 X-RAY DIFFRACTION 293 2 3
3K3F X-RAY DIFFRACTION 293 6 11
3KBC | X-RAY DIFFRACTION 277 4 1
3KCU | X-RAY DIFFRACTION 291 6 23
3KG2 X-RAY DIFFRACTION 277 3 5
3KLY X-RAY DIFFRACTION 291 13 48
3KP9 X-RAY DIFFRACTION 298 5 6
3KZI X-RAY DIFFRACTION 291 28 35
3L1L X-RAY DIFFRACTION 291.15 15 18
3LBW | X-RAY DIFFRACTION N/A 1 2
3LDC X-RAY DIFFRACTION 293 2 1
3LLQ X-RAY DIFFRACTION 295 6 16
3LUT X-RAY DIFFRACTION N/A 5 6
3M73 X-RAY DIFFRACTION 298 9 20
3MK7 | X-RAY DIFFRACTION 294 10 13
3MKT | X-RAY DIFFRACTION 295 10 11
3MP7 X-RAY DIFFRACTION 273 9 11
3MRA | SOLUTION NMR 303 1 0
3N23 X-RAY DIFFRACTION 292 6 3
3NDO X-RAY DIFFRACTION 293 7 9
3NE2 X-RAY DIFFRACTION N/A 6 23
3NE5 X-RAY DIFFRACTION 298 6 6
300R X-RAY DIFFRACTION 277 12 23
307Q X-RAY DIFFRACTION 291 12 24
30AX | X-RAY DIFFRACTION 283 7 11
30B6 X-RAY DIFFRACTION 298 8 12
30DU | X-RAY DIFFRACTION 293 5 6
30RG | X-RAY DIFFRACTION 298 6 7
30UF X-RAY DIFFRACTION 293 2 3
3P03 X-RAY DIFFRACTION 291 19 32
3P0G X-RAY DIFFRACTION 293 7 12
3P5N X-RAY DIFFRACTION 298 4 4
3PBL X-RAY DIFFRACTION 293 6 9
3PCQ X-RAY DIFFRACTION 277 24 23
3PJZ X-RAY DIFFRACTION 298 5 2
3PL9 X-RAY DIFFRACTION 291 3 1
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H PDB \ Experimental Method \ Temperature \ # Unique Helices \ # Neigh. Pairs H
3PQR X-RAY DIFFRACTION 277 6 8
3PUY X-RAY DIFFRACTION 293 11 18
3PUZ X-RAY DIFFRACTION 293 10 16
3PX0O X-RAY DIFFRACTION 277 7 13
3Q7K X-RAY DIFFRACTION 293 6 23
3QE7 X-RAY DIFFRACTION 291 9 11
3QNQ | X-RAY DIFFRACTION 203 7 14
3RCE X-RAY DIFFRACTION 298 6 4
3RFU X-RAY DIFFRACTION 293 5 3
3RHW | X-RAY DIFFRACTION 277 3 4
3RKO X-RAY DIFFRACTION 296 41 67
3RLB X-RAY DIFFRACTION 279 4 3
3RVY X-RAY DIFFRACTION 298 8 16
3RZE X-RAY DIFFRACTION 293 7 11
350X X-RAY DIFFRACTION 298 4 2

Table 4.1: PDB entries of all experimental structures used in the OPM database analysis.

Experimental Method and Temperature was obtained for each PDB entry from the RCSB
protein data bank [80]. In X-ray diffraction experiments the temperature refers to the
crystallization temperature. The two right-most columns provide the number of unique
helices and the number of neighboring helix pairs extracted for each protein structure by our

method.
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Chapter 5

Acceleration of Molecular Simulations
using Graphical Processing Units

Recent developments in computer science and architecture has made it possible for
massively parallel, multithread algorithms to be executed. Graphical Processing Units
(GPUs) represent the state-of-the-art of parallel computing, allowing significant speedup in
general purpose computer programs in various fields. Dissipative Particle Dynamics (DPD),
is an established simulation technique in the field of computational chemistry. It allows
simulation of coarse-grained models while still remaining true to the dynamical nature of the
system. In this chapter we present a novel algorithm for highly parallel DPD simulations on a
GPU. Our algorithm shows substantial speedup over the canonical CPU approach. Our GPU
algorithm gives an additions speedup of a factor 30, which comes on top of the factor gained
by using a coarse-grained model. This combined approach allows us to access biologically
relevant time and length scale.

5.1 Introduction

The field of Computational Chemistry has always been in search for the fastest imple-
mentations to complex calculations. Acceleration in computation time allows for simulation
of larger system sizes for longer times. This may have a crucial effect when simulating
biologically relevant processes, which can typically take place in the us - sec time scale.
Recent technological advancements have made Graphical Processing Units (GPUs) affordable
and easily programmable for general purpose computations [116, 117]. Allowing for massively
parallel computation, it has become a popular tool in scientific computing [118-120].

The conversion from serial CPU-based algorithms to parallel GPU-based algorithms is,
however, not straightforward. To accelerate an algorithm, special attention needs to be given
to minimizing communication and to parallelizing serial instructions. Failing to do so will
result in very small speed up, if any.

Our goal is to accelerate the implementation for Dissipative Particle Dynamics (DPD)
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by making it GPU compatible. GPU based implementations of molecular dynamics (MD)
have been developed in recent years [121-123| and have shown speed-up of several orders
of magnitude over conventional serial algorithms. Nevertheless, several characteristic make
the implementation of DPD on a GPU a non-trivial extension to these GPU-based MD
implementations. First, DPD requires the momentum to be conserved (Eq. 2.4). Second,
the non-bonded force acting between every two particles contains a random component
(Eq. 2.3). These two requirements combined require a different strategy to parallelize the
force calculation, since, unlike in MD simulation, in DPD for each particle the forces with
all its neighbors cannot be calculated independently. In DPD we need to ensure that for
each particle 7 the force calculated for the interaction with particle 7, including its random
component, Fﬁ(rij), is identical and opposite to the force calculated simultaneously for
particle j.

Philips et al. [124] have bypassed some of these difficulties and extended HOOMD-blue, a
commonly used GPU implementation of MD [121], to be suitable for DPD by implementing
a thread based random number generator. Wu et al. [125] and Rozen et al. [126] disregarded
the conservation of momentum all together, overlooking its importance to the system’s
hydrodynamic behavior. We take a different approach, in which we calculate the interactions
of each particle only with particles in half the space. In this approach, we perform much fewer
calculations, but need to perform more communications between threads, compared to regular
GPU-based MD. In the following section we describe the details of our implementation.

5.2 CUDA overview

GPUs were originally devised for use in graphic cards, as the gaming industry required
extremely fast and realistic computer graphics. In order to allow for wider and easier
development, NVIDIA (http://www.nvidia.com) created a platform for parallel computing
programming, called CUDA. CUDA, written similar to C/C++, allows a developer to access
the memory and operate instructions directly on the GPU device. Below we briefly review
those aspects of CUDA that are important for our implementation. For a more detailed
discussion on CUDA we refer to [127].

Within the CUDA framework, algorithms distribute calculation over multiple threads.
Each thread executes the same set of instructions, but operates on different data. Threads
are bundled into different blocks, defined by the instruction kernel. A block may contain any
number of threads up to 1024. Given a block index and a thread index, each thread operates
the exact same set of instructions, on the data determined by the indices. The number of
blocks that may run in parallel depends on the resource limit of the hardware. Each block is
executed on a Streaming Multiprocessor (SM). Only 32 SMs can run in parallel on a GeForce
GTX 590 card. Each SM can run up to 8 blocks / 1536 threads at a time, and up to 48 KB
of block-wide memory (shared memory) can be accommodated [128].

The basic execution unit in CUDA is called a warp. A warp contains 32 threads that
execute the exact same instruction at the same time. Branches in the code, such as if-
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statements or loops, may cause different threads to execute different instructions. For efficient
parallelism, it is important to ensure that entire warps follow the same branch. This may be
done by branch predication [127], in which all threads follow the branching, but only some
have the instruction meaningfully performed.

This execution hierarchy is complimented by memory hierarchy. Each thread can have a
limited set of registers that can save data locally (local memory), for the use of that specific
thread only. In GeForce GTX 590, this memory is limited to 63 registers. Threads that
are within the same block can share memory with low latency at a rather fast pace. This
type of memory is referred to as shared memory and it is limited to small memory sizes
(48 KB per SM) [128]. A larger, long latency memory is available to all threads via global
memory. During the time it takes to access global memory, hundreds of instructions may be
performed on a multiprocessor. It is therefore advised to minimize the communication with
global memory, and make sure other warps can access their data while a given warp is waiting
on its data to come from global memory. It is important to note, however, that only global
memory keeps the data after a kernel has finished its instructions. Local and shared memory
have the life time of the kernel they are executing - any unsaved information at the end of a
kernel will be lost. Therefore, these memory types are only used for data manipulation, and
do not replace read / write to global memory at the beginning and end of each kernel.

Memory collisions, where two or more threads are accessing the same address in memory,
is one of the obstacles to be avoided when developing parallel code. CUDA allows for atomic
operations, to help prevent memory collisions [128]. Atomic operations perform writing to
memory addresses by principles of mutual exclusion. Each memory writing is preceded by a
locking of the address and proceeded by an unlocking. This is far slower than a non-atomic
write to memory. Avoiding memory collisions in the algorithmic level is therefore far more
desirable.

5.3 Implementation Details

The limiting step in DPD, as well as other MD simulations, is typically the non-bonded
force calculation. The complexity of this step, if done naively, scales as O(N 2), N being
the number of particles in the system. Several algorithms for reducing this time complexity
exist, including Cell List [129] and Neighbor List [130], which reduce the complexity to O (N).
Even so, it still remains the bottleneck in any given simulation. Improving the efficiency of
the DPD algorithm is therefore first and foremost focused on accelerating the non-bonded
force calculation, as well as its supporting cell or neighbor list.

5.3.1 Cell List Structure

In our simulation, we define a fixed size Cell List Structure that holds all the information
on the current position, velocity and force of each particle. Each particle is assigned into a
specific cell, based on its location. All non-bonded force interactions are calculated based on
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this structure. A few factors have been considered when constructing this structure: Cell
list based algorithms rely on dividing the space onto a grid. The complexity of calculating
forces with neighboring particles is then reduced from enumerating all pairs of particles, to
searching only particles that reside in neighboring cells. Choosing the grid size is typically
done based on the underlying force that has to be calculated. In DPD, the non-bonded force
is only non-zero up to a certain cutoff, R.. Therefore, choosing the grid spacing (or cell-size)
to be r.; > R, ensures that all possible interacting particles with a particle in a given cell
will be found in the nearest 27 neighboring cells, and nowhere else.

To minimize branching of threads we impose that the total number of particles in the list
structure is the same for all cells (NV,.). Empty spots in the cell lest are therefore occupied
with dummy particles. These dummy particles have no interactions with the real particles
and therefore their presence does influence the behavior of the real system. Force calculations
between adjacent cells are therefore always of fixed complexity. In determining the desired
Ny, we take into account the particle density. In DPD, the mean density of particles is
typically p = 3 particles per R3 [33]. In a cell of size r.; = R. we would therefore expect on
average 3 particles. We set the number of particles in each cell to be larger than that, such
that the probability of finding a cell with more than N,. particles would be small. We chose
N,. =8, such that P(N > N,,.) ~ 0.012 for cells of size r.;; = R. in all directions.

We note here that special care needs to be taken when dealing with particles that are
left out of the basic cell list structure. In practice, we leave room for many more particles
in each cell (N, = 16) such that the probability of having no spot available is decreased to
P(N > N,.) =125 107 for cells of size rq; = R, in all directions. Particles that exceed
the original NV, occupancy are treated differently, however, and do not contribute to the
fixed complexity of force calculation. We further discuss this issue in Section 5.3.6.

As mentioned in Section 5.2, the basic unit of instruction in CUDA is a warp, containing
32 threads. Threads within each warp should follow the same set of instructions and not
branch . It is therefore preferred that each unit in the cell list structure corresponds to at
least one warp, where each thread is in charge of one particle. To reach the minimal unit size
of 32 threads per warp, we bundle 8 adjacent cells into a super-cell, redefining it to be the
basic cell list structure unit. Each super-cell may contain up to 64 particles, 8 particles in
each cell. The super-cell size in each direction (o = &, 7, £) corresponds to 1§, = 2 - r%,.

Within one super-cell, each thread will be assigned a specific particle out of the 64 possible
particles, based on the thread index. Given the occupancy of the super-cell, this particle may
either be a real particle in the system or a dummy particle.

One additional factor that plays a role when constructing the cell list structure is mini-
mizing memory collisions. The details of this scheme will be discussed in the next sections.
To minimize memory collisions we use a generalized 3D checkerboard decomposition [131] in
which we run in parallel only super-cells that are not spatially adjacent. This requires the
number of super-cells along each axis to be even, and the number of cell along each axis to
be devisable by 4.
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The size of each super-cell in each dierction (o = z, 9, 2) is therefore given by:
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where N,., is the number of super-cell repeats in each direction (corresponding to the number
of black tiles in the checkerboard representation); Ngc and N, are the number of super-cells
and number of cells in each direction, respectively. B= (B*, BY, B*) is the 3D box size and
€ is a small cell boundary factor, always set to be € > 1. We discuss the functionality of the
cell boundary factor in Section 5.3.9.

Based on their location, the checkerboard decomposition divides the system into 8
distinguished super-cell types. Each pair of super-cells that share the same super-cell type
are necessarily non-adjacent. Determining the super-cell type ("= 0,---,7) is done based
on its 3D location (¢*, ¢¥, ¢*) in the following way:
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Here, C is a vector of integers representing the super-cell location in 3D and 7' is the resulting
super-cell type. It is based on the super-cell’s even / odd location along each axis. Therefore,
super-cells C; = (1,2,3) and Cy = (5,4,1) will both share the same type (7' = 5) since they
have the same evenness / oddness in all three axes. For visual representation, see Figure 5.1.
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Figure 5.1: The super-cell list structure in our GPU based implementation of DPD. The
system is divided to super-cells, each containing 8 cells. Each super-cell is assigned a different
type (T'=0,---,7) based on its spatial position, as indicated on the top right corner. Grey
coloring shows the repeated pattern in type definition. In non-bonded force calculation we
employ the checkerboard decomposition, such that only super-cells of the same type are being
calculated at any given time. In this figure, for example, non-bonded forces for particles in
super-cells of type T'= 6 (colored grey) are being calculated.
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5.3.2 Algorithm overview

Before we discuss the details of our algorithm, we provide here an overview of our algorithm
(Algorithm 1). The algorithm is naturally divided into DPD moves, in which the system
evolves dynamically according to applied forces (Algorithm 2) and MC moves, in which the
system size samples the desired ensemble (Algorithm 3).

The GPU algorithm is devised of several kernels (GPU function). Each kernel is compiled
of a different number of blocks and threads. The number of blocks and threads typically
match either the total number of particles (), the total number of molecules (N,y), or the
total number of super-cells (Ns¢), based on its designation. A complete list of the kernels
discussed in the previous section is provided in Table 5.4.

input :Initial configuration, ¥ _,
Initial box size, B
number of simulation steps, Nstep
Ensemble parameters: Temp, Gamma, Pressure.

// Initialize super-cell list, velocities and forces
SCL < bucketSort (B, 7);

v « initVelocities(Temp);

-0

f < initForces(0.0);

// Enumerate simulation steps
for step <— 0 to Nstep do

Move < pickMove(); // Pick a move - DPD or MC
if Move is DPD then // DPD move
Nsub € U(0, 50]; // Choose number of DPD sub-steps
for substep < 0 to Nsub do
DPD(s);
s s +1;
end
else // MC move
‘ MC (s,Move,Gamma,Pressure);
end
end

// Finalize simulation
Algorithm 1: Hybrid DPD-MC algorithm with GPU implementation
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Subprocess DPD(s) // Perform a single DPD substep

Pt st moveParticles(?s,_v's,?s); // First integration step
SCL + updateCells(SCL,7*"" OutOfCell); // Update super-cell list
for T+ 0 to § do // Calculate Non-Bonded Forces

nonBondedForce (SCL, T);
nonBondedForceTerminal (SCL, 7T7);

end
if any particles out-of-cell then nonBondedForce00C(OutOfCell);
+1
e extractForces (SCL); // Extract forces from SCL
—s+1 —s+1
f <« f + bondedForce(Nmol); // Add bonded forces
+1
Ve updateVelocities(\_/'S‘Jrl,)?s ); // Second integration step

end
Algorithm 2: GPU implementation of DPD substep, as part of Algorithm 1

Subprocess MC(s,Move,Gamma,Pressure) // Perform an MC move
E < nonBondedEnergy (SCL); // Calculate non-bonded energy
B' < proposeMCMove (Move,B);

// Check cell size. See Section 5.3.9 for details

Rcell «+ setBoxSize(B');

if Rcell too small then stop and restart simulation;

// Scale all coordinates. Bonded energy remains constant
rs < scaleNonMolecular(7°,B");

s « scaleMolecular (7°,B’, Nmol);

SCL (—updateCells(SCL,;’S,OutOfCell); // Update super-cell list
E' + nonBondedEnergy (SCL); // Calculate non-bonded energy

accepted < testMCMove (E-E’,Move,Gamma,Pressure);
if accepted then

e T // Save positions

E«~E; // Save energy

B+« B'; // Save box size
else

Rcell < setBoxSize(B); // Restore cell size

SCL < updateCells(SCL,7); // Restore super-cell list
end

end

Algorithm 3: GPU implementation of MC move, as part of Algorithm 1
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Function updateCells(SCL,7,0utOfCell) // Update super-cell list
input : Current super-cell list, SCL

updated positions, r
Array of out-of-cell particles, OutOfCell
output : Updated super-cell list, SCL

// Update all particles that stayed in the same super-cell

SCL < updateSuperCell (SCL,7);

// Update all particles that moved between super-cells

SCL < moveSuperCell (SCL,7);

// Accommodate any out-of-cell particles in the super-cell list.
SCL <+ updateOut0fCell (SCL,OutOfCell);

return SCL
end

Algorithm 4: GPU implementation of super-cell list update, as part of Algo-
rithms 2, 3

5.3.3 Cell List Initialization and Update
Cell List Initialization

To initialize the cell list structure, we follow the modified bucket sort algorithm by RoZen
et al. [126]. The classical bucket sort algorithm [132]| achieves sorting of elements in linear
time by distributing them to different 'buckets’. In the context of the cell list structure, the
elements are particles and the ’buckets’ are the cells. The sorting of particles within each
cell, in this particular case, is not important.

The serial implementation of the bucket sort algorithm must be modified when using
GPUs. We must guarantee that no memory clashes occur when two particles are assigned
to the same cell at the same time. RozZen et al. revise the bucket sort algorithm to a GPU
implementation. Based on the revised bucket sort implementation, we distribute the particles
in a designated kernel. Each thread is assigned to a different particle and a different super-cell.
An array of 8 counters in the super-cell list (one per cell) is initially set to zero. This counter
keeps count of the number of particles already assigned to the current "bucket’ (cell).

The particle’s desired super-cell and cell index are pre-determined by their initial location.
As the kernel proceeds, each thread is trying to access the counter at the specific super-cell
and cell index it belongs to (s and ¢, respectively). Accessing this counter is done using
CUDA'’s atomic operations, such that only one thread at a time can increase the counter - an
operation that results in obtaining the latest value of the counter, p.

In the typical case that the latest value of the counter is less then the maximal limit of
particles per cell, p < N}, the particle’s information is safely added to the super-cell list
in super-cell index s, cell index ¢ and particle index p. If, however, p is greater than the
maximal value, the particle’s index is added to the out-of-cell list (see Section 5.3.6).
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cell | counter In-cell particles Terminal particles

0 3 8405 211 2997 - - - - B - - - - o
1 1 4135 - - - - - - - - -
2 0 - - ] ; - - ] - - Lo
3 5 2360 5846 1646 7293 5261 - - - - - - - o o~ o<
4 9 7978 3009 2010 9808 2932 3182 2817 9362 | 5092 - - - - - - -
5 2 5126 3950 - - - - - - - - - Lo
6 2 2989 2317 - - - - - - oL
7 4 8916 9205 5250 6840 - - - - - - - - - - o -

Table 5.1: Sample of super-cell data. An super-cell contains 8 cells. Each cell can contain
up to N,. = 16 particles. A particle position in the cell list can either be occupied by a
true particle index, or unoccupied and assigned a dummy particle (denoted in the table
by ’-’). The first N,. = 8 particle positions are termed in-cell, and are more likely to be
occupied, while the rest are termed terminal and are less likely to be occupied. The cell list
implementation procedure (Section 5.3.3) ensures continuous occupation of particles in each
cell, such that dummy particles are always pushed towards the higher particle positions.

Cell List Update

The advantage of the bucket sort algorithm is in allowing for simple resorting in the
super-cell list in the following steps. The update is done in two stages. In the first stage,
the super-cell list is scanned for particles that have moved to a new super-cell, and updates
within the super-cell are performed. In the second stage, all particles that were indicated as
'moved’ in the first stage, are being reassigned to their new location.

The first update stage is being done in a kernel that has number of threads matching
the number of slots in the super-cell list (named updateSuperCell). Each particle in the
super-cell is tested for its location. If the particle’s location is such that it belongs to a
different super-cell (and it is not a dummy particle), a flag is set for the particle index. The
flag indicates the particle should be assigned to a new super-cell, and its information is
being cleared from the super-cell list. The counter of the cell that contained this particle is
subsequently decreased by one.

If the particle has moved to a new cell within the same super-cell, we update this change
of cell number in the same kernel as well. While updating other super-cells requires slow
global memory access, updating cells within the same super-cell can be done via the fast
shared memory. We remove the particle’s information from the old cell, and decrease the old
cell’s counter by one. We then enumerate through the particle indices of the new cell, trying
to locate an empty position (indicated by a dummy particle). If one is found, we assign the
particle to that location. If no empty position is found, we save the particle to the out-of-cell
array of particles (see Section 5.3.6).

Finally, within the first stage kernel, we ensure that all the non-dummy particles are found
first in the cell list (See Table 5.1). This will guarantee that, if we do find a dummy particle
while enumerating particles in a given cell, all the particles following this dummy particle are
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also dummy particles. Such ordering will allow us to terminate enumerations in the force
calculation much sooner. To ensure this ordering of particles we first synchronize all the
threads in the block. As each block is assigned to a different super-cell, this ensures that all
particles that needed to be removed from the super-cell have been removed and replaced with
dummy particles. Then, for each particle having an index that exceeds the current counter,
we find a new, empty, location within the cell list. The final result is a well sorted cell list in
which the last non-dummy particle is found in a position identical to the current cell counter.

In the second stage of updating, we treat particles that have moved to a new super-cell
(kernel moveSuperCell). This is a by-particle kernel where the number of threads is identical
to the number of particles in the system. Only particles that are flagged to have moved a
super-cell continue in the kernel. Their location in the new super-cell can readily be found
by using the cell counter. Updating the particle’s information in the super-cell list is done
through global memory, and therefore this kernel update is rather slow, even if it involves
only a small number of particles.

5.3.4 Non-Bonded Forces

The essence of the force calculation algorithm is to allow each particle to calculate its
interactions with particles in half the space surrounding it, and to update the force on them as
well (See Figure 5.2). This would be done in parallel, such that each thread will be assigned
to a given particle and will have access to the variables (position, force etc.) associated with
it. By allowing each particle to calculate interactions with only a pre-determined half of the
space (+2), we ensure that the interaction between any given pair of particles i, j would
be calculated only once. This assurance is especially important in DPD, where the force is
comprised of a random component. If we were to allow a force to be calculated more than
once, different random numbers might have been drawn for the random force, resulting in a
different total force.

Challenges arise when applying the opposite force. Say a particle ¢ has calculated its
interaction with particle ;7 and the result was a non bonded force, ﬁij(rij), applied on particle
i. An opposite force F}l(rlj) = —ﬁ’ij(rij) must now be applied on particle j (See Eq. 2.4).
This requires additional communication, allowing the thread in charge of particle ¢ to update
the forces of particle 7. We can minimize this communication overhead by using the faster
shared memory as much as possible, and by avoiding CUDA’s clash safe atomic operations.

The checkerboard decomposition [131]| helps ensure force updates can be made non-
atomically. When calculating non-bonded forces we serially enumerate super-cell types
(T =0,---,7). For each super-cell of same type we are calculating non-bonded forces in
parallel, assigning a GPU block for each super-cell. Since super-cells of the same type are
guaranteed to be non-adjacent, we are guaranteed that each cell, and therefore each particle,
will be handled by only one block.

After assigning each super-cell to a GPU block, the nonBondedForce kernel prefetches
data from global memory. The information on each local particle in the super-cell (See
Table 5.2 for a detailed list of variables), as well as on all cells adjacent to the current
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Figure 5.2: Illustration of the force calculation. The 3D system is presented in 2D here
for clarity. The local super-cell being calculated is shaded grey (compare to super-cell in
Figure 5.1). It contains 8 cells, with up to N,. from which we can calculate the interactions
in each cell. To ensure each pair of particles is calculated only once, each cell is calculating
interaction with only half the space (denoted by arrows). The local cells allows us to calculate
interactions with particles located in either other neighboring local cells (shaded grey), or
in neighboring non-local cells (dotted). These non-local cells will be loaded into shared
memory while their interaction is being calculated, to minimize read/write to global memory.
Super-cells in this figure are separated by thick black lines. Cells are separated by thin black
lines. In 3D, there are 35 non-local (dotted) neighboring cells.
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super-cell is loaded into shared memory. This will allow faster writes to update forces on
neighboring particles. Then, the forces on each local particle in the given super-cell are
being calculated. In total, each block will be comprised of Ninreads per block = 64 threads.
The total number of blocks will be determined by the system size, and will be equal to
Nblocks =N* x NY x NZ = Nsc/8.

rep rep rep

Forces with adjacent cells

The force calculation between the local particle i and all neighboring particles in adjacent
cells is comprised of several steps:

1. Enumerate adjacent cells - Each particle calculates its interaction with particles in 13
adjacent cells to cover half the space. The direction of the adjacent cells is fixed such
that the same half space is accessed each time.

2. Enumerate particles within the adjacent cell - Each of the N,. = 8 possible particles in
the adjacent cell is being accessed. The loop is done with an offset based on the local
thread index, such that each particle is trying to access a different neighboring particle
(avoiding bank conflicts).

3. Calculate the distance between the local particle and the neighboring particle. Here we
ensure that the periodic boundary conditions are applied.

4. Calculate the force between the two particles only if the calculated distance is less the R..
This might create warp divergence but has proved more efficient than non-branching,
when profiling the program.

5. If any of the particles is a dummy particle, set the force to zero.
6. Add the calculated force on the local particle to a local register.

7. Add the force on the neighboring particle to its shared memory variable. In principal,
this should be done atomically, to make sure no other thread is updating that same
particle in the same time. In practice, we ensure algorithmically that no such collisions
are possible. Each particle is accessed only once at each given time. See Section 5.3.5
for more details. The force update on the neighboring particle is therefore done by a
faster non-atomic operation.

8. Copy back to global memory - When all threads are done updating the forces on
neighboring cells, forces of all particles in all neighboring cells are copied back to global
memory. Due to the use of the checkerboard decomposition, no two blocks can write
back to the same cell and therefore this copy can be done non-atomically.
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Variable name | Variable Size (bytes) | Definition
X, Y, Z 3 x4 x 128 = 1536 Particle position along the X, ¥, Z axes
VX,VY,VZ 3 x4 x 128 = 1536 Particle velocity along the X, ¥, Z axes
fx, fy, fz 3 x4 x 128 = 1536 Force on particle along the X, y, Z axes
type 4 x 128 = 512 Particle type. Determines the force coefficient
index 4 x 128 =512 Particle index
Total Size 5632 bytes = 5.5 KB

Table 5.2: Each variable is loaded for 64 local (same super-cell) particles as well as for 64
neighboring particles from neighboring cells.

Forces within the same cell

Forces within the same cell are calculated by enumerating over half of the other particles
in the cell. We ensure that the interaction of all pairs of particles is being calculated, while
the load is distributed evenly between the threads. To that end use an offset based looping
scheme as described by Table 5.3.

The force is the being calculated based on the distance and velocity difference between
the two particles. The force on the local particle is saved to the local register while the force
on the neighboring particle is saved to shared memory. The offset based enumeration ensures
that each particle is being updated by only one thread at any given time and so updates to
shared memory are done non-atomically.

After all forces, within the cell and with adjacent cells, have been calculated, we copy
them back to global memory. First, we add the forces saved in local registers to the forces on
the local particle that were saved through shared memory. These include any forces applied
on the local particle by particles in the same super-cell. Then, each thread adds the forces
saved in shared memory to the corresponding forces saved in global memory.

Random number generator

Each particle-particle interaction requires a random number. To minimize communication
between threads, each thread maintains its own Random Number Generator (RNG), a
CURAND [133] object. The state of all RNGs is being passed to the kernel, and each thread
initializes its local RNG to the last seed saved for this thread index. After all force calculations
are completed, the state (current seed) of each RNG is saved back to global memory. This
ensures the full cycle of the RNG will be used. In total, we use Nyjocks X Nihreads per block = SNsc
RNGs.

5.3.5 Optimizing Loads to Shared Memory

In calculating non-bonded forces, we need to access all the local variables of the particles
in the current super-cell (64 particles), as well as the variables of particles in adjacent cells. In
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ParticleIndexHO‘1‘2‘3\4‘5‘6\7
O -|x|x|x]|x
1 - xX|x|xX|X
2 - IX|x|xX|X
3 - x| x|x|x
4 - x| x|x
5| x - X | x
6| x|x -1 X
TIx|x|x -

Table 5.3: Each thread, in charge of one particle index in a given cell (column heading)
will calculate interaction with at most 4 other particles in the same cell (row heading), to
distribute the load equally among all threads.

total, each super-cell is bordered by 35 non-local neighboring cells in the half space we wish
to calculate interaction with (See Figure 5.2). Each of these cells include N,. = 8 particles.
Loading all information on all these cells simultaneously would result in a large use of shared
memory (~ 15 KB per cell). Since only 48 KB of shared memory can fit in on SM (see
Section 5.2), loading all 35 cells to shared memory at once would result in a reduction from
the optimal 8 blocks per SM, and consequently in a slow down of the entire program. One
can only load up to 8 adjacent cells (64 particles, see Table 5.2) at once to shared memory
without changing the blocks per SM load.

Additionally, there is no need to load all 35 cells, information into shared memory
simultaneously. Parallelization occurs on the super-cell level, by allowing each block to treat
a different super-cell. Within the kernel, each block would have to enumerate adjacent cells
to obtain all the different interactions. If such enumeration takes place either way, it means
loading to shared memory can be done sequentially as well.

The question is how one can distribute these 35 cells, among different loads to shared
memory, while still maintaining the following criteria:

1. Only 8 neighboring cells are loaded into shared memory at any given moment
2. No more than the minimal [35/8] = 5 loads to shared memory occur.

3. The load is being distributed equally, such that each thread is calculating interaction
with exactly the same number of neighboring cells. Since we are loading only the +2
half of space, cells on the 4+ side of a super-cell would have more non-local neighboring
cells to calculate interactions with than cells on the —z side of a super-cell. Load
should nonetheless be distributed such that all threads perform the same number of
calculations.

4. Each non-local cell is being accessed by only one local cell at any point in time, to
minimize memory collisions.
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To achieve these goals we need to optimize the loads to shared memory. Each load of 8
neighboring cells to shared memory would be followed by a few iteration of force calculation
with the loaded cells.

In the following paragraphs we describe the full optimization process for the distribution
of non-local neighboring cells into shared memory loads.

Level 1: The naive approach

We begin with the naive approach, in which we iterate over 13 different directions. In
each iteration £k = 0...12, a direction ;. is being chosen. Each of the 8 local cells would
calculate interaction with the cell in its s; direction. For some this would be a local cell
(within the same super-cell neighbor), while for others it will be a non-local neighboring cell.

This approach will result in inefficient loads to shared memory. Up to 16 non-local cells
would be loaded twice and up to 7 non-local cells would be loaded 4 times in this scheme.
This would result in 13 loads to shared memory, much larger than the optimal 5 loads that
could in principal be achieved.

Level 2: Optimizing sets

The main problem with the naive approach is that there are non-local cells that are
needed more than once (up to 4 times) in calculating interaction with local cells. It would be
more beneficial to group these cells together, such that the loading to shared memory will
happen only once for each non-local cell.

To that end, for each of the k = 0...12 iterations mentioned in the previous section,
we define a set, P, = {Pyo,. .., Prr}, which contains all the neighboring cells calculated in
iteration k. We additionally define a scoring method for each set:

SY(P,) = # of unique non—local cells in set P,

We then try and minimize this score by swapping elements between sets. Swaps are only
allowed between cells of the same index. For example, if local cell 0 is calculating interactions
with non-local neighboring cell j in iteration 5 (Pso = j), and then local cell 3 is calculating
interactions with that same non-local cell in iteration 6 (P53 = j), it would be better if these
were done in the same iteration. Swapping F; 3 with Fs 3 would result in lowering the score
S*(Ps).

We perform the optimization process with regular MC. We define a sensitivity 'temperature
that determined the tolerance level for switches that increase the total score. We propose
random swaps which we accept or reject based on the change in the total score S' =

o S (Py).
The naive approach yields the following scores

9

Spefore = Y _{4,6,4,6,7,6,7,6,4,6,7,6,7} = 76
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Which after optimization can be lowered down to

Stpter = A1,1,1,2,2,2,3,3,4,4,4,4,5} = 36

Level 3: Optimizing loads

Now that we have minimized each set separately, we wish to bundle them sets together
into shared memory loads. Each load into shared memory, L; should include exactly 8
non-local cells. After these cells have been loaded, we iterate the different sets in each load,
and calculate their interactions, before moving to the next batch of non-local cells to be
loaded.

We preform a similar optimization scheme to distribute the sets P,—q 1o into loads L;—g 4.
Our goal is to reach a distribution in which each load contains exactly 8 non-local cells. This
means that sets that share same non-local cells would be encouraged to be part of the same
load. Sets that have a high number of unique non-local cells would be encouraged to be part
of the same load as sets that contain a small number of unique non-local cells.

We begin with a naive grouping, with loads of size 4, 3,2, 2, 2 sets each:

LOZ{POaPIaPIDPlQ}
LIZ{P27P3JP10}

LZZ{P47P5}
Ly = {Fs, P}
L4:{P87P9}

We define a second scoring function:
S%(L;) = |(# of unique non—local cells in all sets of load L;) — 8

and perform MC minimization by proposing random swaps of sets P, P, between loads
L;, Lj. We accept or reject such swaps based on the total score S? = 7 S?(L;). For
example, the naive grouping produces the following number of non-local cells in each load:
{11,7,4,6,7}, with a score of Sgefore = > {3,1,4,2,1} = 11. After minimization, we can
find a distribution with exactly 8 non-local cells in each load ({8,8,8,8,8}) and a score of
Sc%fter =0.

The result is powerful. We have found a way to distribute the 35 non-local neighboring
cells among 5 different loads to shared memory. We can now have a 5-fold iteration where at
each step we load 8 non-local neighboring cells into shared memory (each thread loads exactly
one non-local particle), calculate ALL possible interactions with particles in those cells, and
save the updated forces back to shared memory. This is already a notable improvement over
the initial 13 loads in the naive approach.
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Level 4: Optimizing memory clashes

The final optimization deals with memory clashes. So far, in the previous levels, we have
tried to group interactions with the same non-local cell into the same set and load. This
allowed us to achieve a distribution of cells that minimizes the number of shared memory loads.
Accessing the same non-local cell by multiple local cells simultaneously has its disadvantages,
however. It creates memory clashes while multiple threads try to read / write to the same
address in memory.

In this level, after the loads have been set up, we wish to redistribute the cells within
the different iterations of the load. After each load of neighboring cells to shared memory;,
several iterations will occur (4 for Ly, 3 for Ly and 2 for Lo, L, Ly). If non-local cell j is
being accessed by local cell 0 and by local cell 1 in the same iteration, memory clashes will
occur. If however non-local cell 7 will be accessed by local cell 0 in the first iteration and
then by local cell 1 at the second iteration, memory clashes will be alleviated.

We therefore make another optimization step. For each load we found in Level 3, we
try and redistribute the cells between the different iterations such that each non-local cell
is being accessed exactly once per iteration. If we could not achieve this goal, Level 3 was
repeated until a no-memory clash distribution was achieved.

The resulting scheme can be found in Tables 5.5 and 5.6. With this scheme, one can
calculate interactions of 8 local cells (and the 8 particles within them), with all 35 surrounding
non-local cells (and the 8 particles within them), in an efficient, evenly distributed and memory-
clashes-free way. This scheme does not need to be found repeatedly. We determine the
optimal scheme once, and use the same scheme in all of our simulations. The scheme itself,
as well as the optimization process leading to it, can be useful in other parallel applications
as well.

5.3.6 Terminal and Out-of-cell particles

The scheme described in Section 5.3.4 provides substantial speed-up in force calculation,
given the number of particles in a cell is less than N,.. The complexity of these operations is
O(N ) This is true for a great majority of cells and particles (98.8% of particles), and so one
might envision performing our fast scheme on only NV, particles per cell, and using the naive
approach for all particles that cannot be accommodated in the current cells. However, as the
complexity of the naive approach scales as O(N 2), for larger system size these calculations
will become the simulation’s bottleneck.

Another approach would be to use a larger cell, allowing N}, = 16 particles per cell, and
performing the optimized scheme described in Section 5.3.4. This approach proves faster
than the naive approach, but for a majority of the cells, we will be performing a large number
of idle calculations, as most particles will be assigned to be a dummy particle.

We choose a hybrid approach. We set the number of particles per cell to be N}, = 16.
However, particle indices that exceed the N,. = 8 limit of particles per cell (termed terminal
particles from now on) are treated differently in the force calculation. Particles that don’t
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fit in to this even larger cell limit (probability for which is P ~ 1.25-1077), are saved to a
separate array of particles, designated for out-of-cell particles. (See Table 5.1)
We therefore treat three types of particles, based on the particle’s index within the cell, i:

(a) In-cell particles: i < N
(b) Terminal particles: Ny <i < NJ,

(c) Out-of-cell particles: i > N

Force calculation of terminal particles

We expect the population of cells (and super-cells) that contain terminal particles to be very
low. We calculate the forces on terminal particles in a separate kernel (nonBondedForce
Terminal). As with in-cell particles, each thread is assigned a specific particle (with index
i > Np.) in a specific cell. In contrary to in-cell particles, we exit the kernel if the assigned
particle is a dummy particle. Exiting the kernel on a thread based if-statement creates
branches which may slow down the kernel. Yet since this event (finding a terminal particle) is
pretty rare. This branching is actually faster than following through with the entire function
(see Figure 5.6 for timings).

In the event that a terminal particle is found, we calculate its interaction with other
particles in neighboring cells and in the same cell. Calculating interactions of terminal
particles in the same cell is done for only half the space (13 neighboring cells), to avoid
repeating an interaction of a pair of particles, while for terminal particles in neighboring cells
this is done over the entire space (26 neighboring cells), to cover all possible interactions.

Force calculation of out-of-cell particles

Since the probability of finding an out-of-cell particle is very low, we rarely encounter
more than one out-of-cell particle at a time. Therefore, the limiting O(N 2) complexity is
avoided.

We calculate the interaction of each out-of-cell particle with its surrounding particles by
location the cell it should belong to in the cell list, and enumerate the full-space cells around
it (26 neighboring cells, up to N, particles each). If the number of out-of-cell particles
exceeds 1, the interaction between these particles is explicitly calculated by a separate kernel
(nonBondedForceOOC)

5.3.7 Bonded Forces

Bonded forces are also calculated in parallel on the GPU, even though their calculation
is much faster than non-bonded forces (See Figure 5.6). This is to avoid copying particle
information from the global device memory to the host memory and back. The kernel assigned
for the calculation is called bondedForce.
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We distribute the particles among different kernel blocks by molecule. Each bonded
force calculating is limited to a specific molecule and therefore requires data (positions, for
example) of particles only in the same molecule. By distributing the particles to blocks based
on their molecular index, we ensure all position data will be available in shared memory, and
all forces will be written to shared memory as well.

We allow for a maximum of 32 particles per molecule, which is sufficient for our needs.
Once in the kernel, each of the 32 thread in a block is assigned a particle - either a true
particle, or a dummy particle (if the molecule contains less than 32 particles). Each thread
then loads the position, (z,y, z), of the particle into shared memory. The threads are then
synchronized to make sure all the information has been uploaded before proceeding with the
force calculation.

At this point, we change the designation of threads. First, each thread is assigned to
one harmonic bond. The threads execute the calculation of the assigned bond based on the
pre-loaded particle positions in shared memory. It adds the resulting force to the force array
in the index corresponding to the bonded particles, in shared memory. Second, each thread is
assigned to one angle bond, executing the angle force calculation based on the three particles
constituting the assigned angle. Lastly, the same is done for dihedral angles.

The end result is the parallel calculation of all harmonic-bond, angle, and dihedral angle
forces (based on Eq. 2.2). The forces are added into a shared memory array, to the index of
all particles constituting the bond. The number of all bonds, angles and dihedral angles is
each limited by the number of threads per block to 32. We have found that this limitation
is sufficient in our simulations. Nonetheless, since this kernel is not the bottleneck of the
simulation, it is possible to change the limit with no substantial changes to the simulation
time.

The force on each particle in the molecule as a result of all bonded applied on it is added
up through fast calculation in shared memory. It is then written back to global memory on a
one thread per particle distribution.

5.3.8 Equations of Motion

We perform time integration based on the modified Velocity Verlet scheme described in
Equation 2.7. We implement two kernels, each with number of threads corresponding to the
number of particles.

One kernel, moveParticles, performs the first two stages of integration. It updates the
position of each particle based on the velocity and force at the current time step. It then
updates the estimated velocity, 1?, based on the current velocity and force. This velocity will
be used in the non-bonded force calculation (Equation 2.3).

The second kernel, updateVelocities, is called after all the forces (bonded and non-
bonded) on all particles have been calculated. It uses the average of the force at the previous
time step along with the newly calculated force on the particle, to update the velocity on
each particle.

These two kernels are truly parallelizable, as no communication is needed between any
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two threads. This leads to substantial speedup in these kernels over the sequential CPU
version.

5.3.9 Monte Carlo moves

We allow for several Monte Carlo (MC) moves in our simulation, including pressure moves
and surface tension moves (see Section 2.4). All MC moves consist of changes to the box size,
following the same procedure:

1. Calculate system’s energy, including bonded and non-bonded energy contributions.
2. Propose a move in system box size: (By, B, B,) = (R, X By, Ry x By, R. X B;)

3. Rescale particles’ coordinates according to the proposed move

4. Recalculate system’s energy.

5. Accept or reject move, according to change in energy. Each move type has a different
acceptance probability.

(a) If the move is rejected: Rescale back particle’s coordinates.

(b) If the move is accepted: Save an continue

In practice we find that in a system with a lot of bonded molecules it is best to only
rescale one bead per molecule [45]. All the other particles in the molecule are subsequently
translated such that their relative position to the scale bead in the molecule remains the
same. In that case, the bonded energy remains constant and only the non-bonded energy
changes. The result is higher acceptance rates for all MC moves.

Calculating non-bonded energy (kernel nonBondedEnergy) is done analogously to
non-bonded force calculation. Each GPU block corresponds to one super-cell, that calculates
interactions with surrounding cells by loading their data into shared memory. Instead of saving
the result directly into a per-particle array as done in the force calculation, a shared memory
energy variable is set up. This variable will locally sum up the super-cell’s contributions to
the non-bonded energy. One thread will add this result to global memory at the end of the
kernel.

Scaling of particle’s coordinates is divided into two kernels. One kernel, scaleNonMolec-
ular, scales the coordinates of all particles that are not bonded. In our simulation these
include the water beads. Scaling of the coordinates is easily parallelizable where each thread
treats each particle and sets the particle position to be (2}, y}, 2/) = (x; X Ry, y; X Ry, 2; X R..).

The second kernel, scaleMolecular, is distributed such that each block treats a different
molecule. This scheme is analogous to the bonded force calculation. All the particles in a
molecule require access to the position of the head bead in the molecule. Its position, before
and after the scale, can be saved locally to shared memory. Each thread is then assigned to a
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particle in the molecule. The position of particle 7 is then determined by its relative position
to the head particle, 0. (x}, v, 2!) = (zg, ¥, 2) + (i — To, Yi — Yo, 2i — 20)-

One major obstacle in performing changes the box size, as proposed by MC moves, is that
it might lead to changes in the super-cell list structure. As the size of each cell is limited
by the force cutoff distance (r.;; > R.), decreasing the box size might require recalculation
of the entire super-cell list, as well as the bucket sort procedure (See Section 5.3.3). This
recalculation is very expensive, especially as it might be needed frequently for a fluctuating
box size.

I'cell

R

Figure 5.3: Cell size in a simulation with MC moves in system size. 1. is set initially to a
large value (¢ = 1.05). The box size changes according to proposed MC moves, while the
number of cells, super-cells remains constant. Each move, r.; is recalculated and is assured
to be larger than a minimum R, - €,,;,, denoted by the magenta area around the cell. If
the move proposes to decrease r.; below the minimum value, the simulation is halted and
restarted with a smaller number of super-cells.

We wish to avoid recalculating the super-cell list by maintaining a fixed number of cells
and super-cells throughout the simulation. We can achieve that by initializing the cell size to
be slightly larger the R., and constantly checking that it doesn’t fall below a lower limit (the
minimum cell boundary factor, €,,;,). The lower limit is chosen such that only below that
limit is it likely to propose a move that will change the cell size to be smaller than R..

We therefore initialize the cell size according to Equation 5.2, with ¢ = 1.05. The cell
size is therefore ensured to exceed 7%, > R, - ¢ in all directions (a = &, 7, 2). We propose
moves that change the box size via the MC procedure. The number of cells and super-cells
does not change throughout the simulation. Each time a move is proposed, the cell size
in each direction is recalculated (1%, = N’%a”) If the cell size is lower than the minimum
(rey, < Re - €mn for any a = 2,9, 2, €pmin 2661.015), we halt and restart the simulation with
a smaller number of super-cells. A schematic representation of our cell size determination
process is provided in Figure 5.3. We find that a restart of the simulation is needed very
rarely, and only in cases where the initial configuration is very far from equilibrium.
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We note that when the simulation is done under constant volume, with no MC moves, we

do not use this procedure. In that case we set ¢ = ¢,,;, = 1.0.

’ Kernel ‘ Thread base ‘ Threads per Block ‘ No. of Blocks
moveParticles particle 128 [N /128]
updateVelocities particle 128 [N /128]
updateSuperCell super-cell Nje x Ne =128 Nsc
moveSuperCell particle 128 [N /128]
nonBondedForce super-cell Npe X Ne =64 | Npep = N2,y X Niep X N7,
nonBondedForceTerminal | super-cell Npe x N, = 64 Nyep = Ny, X Nep ¥ N,
nonBondedForceOOC out-of-cell Nooe Nooe
nonBondedEnergy super-cell Ny x Ne =128 Nsc
bondedForce molecule 32 [Nmot[32]
scaleMolecular molecule 32 [Nmot /32]
scaleNonMolecular particle 128 [N /128]

Table 5.4: Overview of the different kernels in the GPU implementation of DPD. Each kernel
is divided into blocks and threads to match either the total number of particles (N), the
total number of molecules (N,,,), or the total number of super-cells (Nsc). N, = 8 is the
number of cells per super-cell. Details on the kernels can be found in Sections 5.3.1- 5.3.9.
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5.4 Performance Results

To test the performance of our algorithm we compared the simulation times of our GPU
implementation an equivalent CPU version. We used the GeForce 590 GTX GPU, which
comes equipped with 1024 CUDA cores, 32 streaming multiprocessors (SMs) and 3GB DRAM.
The card delivers performance of 2448.3 GFlops and 327.7 GB/s peak memory bandwidth.
The PCle 2.0 with 16 lanes is used to transfer data back and forth from the CPU to the
GPU memory. The CUDA compiler driver NVCC along with gce 4.1.2 with -O3 optimization
flag is used for all GPU simulations.

We compared the performance tests to a serial CPU version of the DPD algorithm. The
CPU version ran on 3 GHz Quad-Core Intel Xeon processor with 8GB DRAM. The intel
ifort 10.1 compiler was used with -O3 optimization flag.

We simulated two types of systems. The simpler system includes a set of N 'water-like
beads. These are non-bonded particles, all of the same type. We performed these water-
box simulations with varying number of particles (192 < N < 8388608). The system was
simulated in either the NVI' ensemble (7" = 0.7; V = N/, = N/30), or the NPT ensemble
(T'=0.7; P = 22.28, the bulk pressure of water).

We additionally simulated various bilayer systems. We use a varying number of lipids
(128 < Ny, < 65536) with the lipid model described in Section 2.2. The temperature is set to
be well within the L, phase of the bilayer, T" = 0.7. We use an hydration layer of 30 water beads
per lipid, reducing any correlation between periodic images of the system. The total number
of particles in the bilayer system therefore amounts to N = 30 x Ny;, + 13 X Ny, = 43 X Nygp.
We simulate this system in either the NVI' ensemble, or the NP~ T ensemble (7 = 0.0;
P =22.28). In the canonical ensemble we estimate the system’s volume based on the typical
area per lipid we observe in this model, A, = 1.54, as well as the typically observed membrane
thickness, dy = 5.6277.

These four types of systems: waterbox / bilayer, NVI' / non-NVT allow us to probe the
performance of different segments in our code. Bilayer systems contain bonded interactions
and display a larger diversity of non-bonded interactions with three bead types rather than
one. Simulations performed in the NVT ensemble show the performance of only the DPD
scheme, while non- NVT' simulations show the interplay of the hybrid DPD-MC scheme. Both
systems were simulated for 1000 cycles.

We note here that NVT simulations are expected to be longer in simulation time compared
to non-NVT simulations. This is due to the fact that the number of DPD cycles, as well as
DPD sub-steps, Ny, is different in both schemes. In the hybrid DPD-MC scheme, Ny, is
randomly chosen from the uniform distribution (N, € U(0,50]) to obey detailed balance.
On average, (Ngup) = 25 in the non-NVT' schemes. In the DPD only scheme, however, Ny,
is set to be fixed at 50.

Additionally, the number of DPD cycles is different. In the waterbox NPT ensemble
0.2 of the cycles result in an MC move while 0.8 of the cycles result in a DPD move (see
Algorithm 1). In the bilayer NP~ T ensemble these ratios are 0.4 and 0.6, respectively.
The total number of DPD sub-steps in the waterbox NPT (bilayer NP~ T) simulation is

Y
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therefore 20000 (15000) on average, compared to a total of 50000 DPD sub-steps in the NVT
simulation.

Simulation times of all four systems are shown in Figures 5.4 and 5.5. CPU simulation
times are shown in blue symbols while GPU results are represented by red symbols. Results
are shown in both linear and log-scale, for clarity. These results show an overwhelming
speed-up in the DPD algorithm with GPU, reaching up to 30 times speed-up.

Figure 5.6 shows the breakdown of simulation time into kernels. As expected, non bonded
force calculations are the most time consuming, taking up ~ 83% of simulation time in
bilayer simulations. Updating the super-cell and performing MC moves constitutes ~ 5%
of simulation time each. MC moves include a calculation of the non bonded energy twice.
These calculations are expected to be at least as time consuming as the non bonded force
calculations. However, since MC moves are performed less frequently than DPD moves, and
contain only two energy calculations, compared to Ny, ~ 25 DPD sub-steps, the overall
timing is much smaller.

5.5 Conclusions

In this chapter we present a novel algorithm for Dissipative Particle Dynamics. This
GPU-based algorithm was constructed following the guidelines of minimum communication
through global memory. Non-bonded force calculation, constituting the bottleneck in this
algorithm, is calculated by a network of super-cells. Each super-cell is in charge of calculating
interactions with its surrounding cells.

Parallelizing this algorithm is challenging due to the unique nature of the Dissipative
Particle Dynamics algorithm. The DPD force does not depend only on the distance between
the interacting beads, but also on a random number. Additionally, Newton’s third law is
maintained, such that each interaction must be calculated only once, and communicated to
both interacting beads. Therefore, communication between different elements of the system
is inherit in the technique.

We develop a method that decreases the communication to the necessary minimum. Using
minimal number of loads to shared memory, we perform most of the calculations using the
fast shared memory. We then communicate the results via global memory, doing so as little
as computationally possible.

Our algorithm shows great speed-up of 30 times or higher over the CPU version. It now
allows the simulation of much larger systems for much longer times.
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Figure 5.4: GPU performance as a function of system size for simulation of water particles. z-
axis corresponds to the number of particles, N, in the system. Simulation times of Ny, = 1000
cycles are presented in the y-axis, in both linear (top figure) and log (bottom figure) scale.
Blue and red symbols correspond to GPU and CPU simulation times, respectively. Each
system was simulated at constant volume (filled symbols), with only DPD moves, as well as
in the NPT ensemble (empty symbols), with both DPD and MC moves (See Section 2.4.1).
Fit lines were added to each plot for convenience.
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Figure 5.5: GPU performance as a function of system size for simulation of lipid bilayers.
x-axis corresponds to the number of lipids in the bilayer, N;;,. Total number of particles
in the system corresponds to N = 43 x Nj;;,. Simulation times of Ny, = 1000 cycles are
presented in the y-axis, in both linear (top figure) and log (bottom figure) scale. Blue and
red symbols correspond to GPU and CPU simulation times, respectively. Each system was
simulated at constant volume (filled symbols), with only DPD moves, as well as in the NP~ T
ensemble (empty symbols), with both DPD and MC moves (See Section 2.4.1). Fit lines were
added to each plot for convenience.
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Figure 5.6: Breakdown of simulation time by kernels, for a test system containing 1024
lipids, simulated in the NP~ T ensemble. Non bonded forces are the most time consuming,
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5.6 Appendix

Table 5.5: Optimized distribution of non-local cells to shared memory loads.

Loaded cell name | Load Index | Local cell |

Non-local super-cell position \ Non-local cell index

No,o Co +X 1
No,1 Ch +% 3
No Gy | 4% 2
Nojs Cs -y 6
No.4 0 Cy +X -y 2
Nos Cs +X 0
Nos Cs +y 1
No,7 Cy +X+¥y 0
Nio Co +¥ 5
N1 C1 +X+y 1
N172 Cy +Xx — y 3
Nij3 C3 -3y 7
Nig4 1 Cy +Z 4
Nis Cs +y 4
Nig Cs 7 7
Niq Cy YR+ §+2 0
NQ,(] Cy —Z 3
Ny Cq +¥ 0
Napo Cs +2 6
Nas C; | 4% 3
N274 2 Cy +X 2
Nas Cs | +x+2 2
Nag Cs +X+y—2Z 1
Na 7 Cr +y — 2 1
Nao Co T 5
Ng,l Cq +7Z 2
N3 2 Co +y + 2 0
N33 Cs +2 6
N374 3 Cy +y —Z 5
N s | 42 0
N Cs | +%—9-2 3
N3 Cy -y—2 7
Neo Co | tx-2 I
Nia o | +x-y9+2 9
Nyp Cy +R+ 2 0
Nyg3 Cs -y+z 6
Nyy 4 Cy +3 4
Nis G| +x-z 3
N476 Cﬁ +§’ + z 4
N4,7 Cr —Z 5

Table 5.5: For a given load index, each local cell loads exactly one non-local neighboring cell.
The location of the neighboring cell is defined by the relative position of the neighboring
super-cell (Non-local super-cell position) and the cell index within that super-cell (Non-local

cell index). Loaded cell name is used for future reference
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Table 5.6: Optimized scheme of calculating interactions with neighboring cells

Load Index ‘ Iteration  Local cell  Calculate interaction with
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Table 5.6 (cont’d): Optimized scheme of calculating interactions with neighboring cells

Load Index ‘ Iteration  Local cell  Calculate interaction with
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Table 5.6 (cont’d): Optimized scheme of calculating interactions with neighboring cells

Load Index ‘ Iteration  Local cell  Calculate interaction with

3 1

N O UU R W OO UUR WN = O O O
Z
o

Note. — We preform 5 different loads to shared memory. Within
each load, several iterations are performed. At each Load Index and
each Iteration, each Local Cell calculates interactions with particles
of a neighboring cell. The neighboring cell can either be a local cell,
or a non-local cell. Its location in shared memory at the given load
is readily determined by its name (as can be found under Calculate
interaction with).

It can easily be confirmed that each neighboring cell is being accessed
only once per iteration. We can therefore safely perform non-atomic
writes to the neighboring cell variables.
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Chapter 6

Bending Rigidity in Bilayers containing
Cholesterol

Cholesterol is known to induce rigidity in lipid bilayers. We use our recently developed
parallel algorithm to perform very large time and length scale explicit-solvent simulations of
lipid bilayers at various Cholesterol concentrations. We show that the bending rigidity of
membranes containing Cholesterol increases monotonically with Cholesterol concentration.
We find that it displays a sharp increase at a concentration corresponding to a phase transition.
While extracting the bending modulus of pure symmetric lipid bilayers is a common task, the
method for extracting the bending modulus of asymmetric lipid bilayers containing a mixture
of lipids is not as well known. We derive the Helfrich free energy for these asymmetric nearly
flat bilayers and show that if this asymmetry is not taken into account one would observe an
apparent non-zero surface tension in the undulation spectrum fit.

6.1 Introduction

Cholesterol is an essential component in living cell membranes. Typical Cholesterol
concentration ranges from 20%-30%, and up to 50% in the plasmatic membrane [134]. Its
functions in the cell vary from metabolism to being a precursor for vitamins and hormones.

In addition to its specific functions, Cholesterol is responsible for changes in the mechanical
and structural properties of the cell membrane. Cholesterol plays an important role in
increasing the membrane mechanical strength [135], in decreasing membrane permeability to
water [136, 137] as well as in the condensation [138, 139], and in ordering [140] of the lipids
in the bilayer.

The elastic properties of lipid membranes, including its bending rigidity, were also shown to
be controlled by the presence of Cholesterol [141-143|. To obtain a molecular understanding
of this effect, model systems containing one type of lipid and cholesterol are often investigated.
Even in these simplified systems the effect of cholesterol is unclear, with large variability in
results [144]. For example, in a DMPC bilayer containing 10% Cholesterol, reported bending
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rigidities may range between 0.66 - 1071° J to 2.23 - 10712 J, even though reported errors are
on the scale of 0.01 - 107 J. All reported bending rigidities for DMPC/Cholesterol bilayers
are shown for reference in Table 6.1.

Researchers have put forward different explanations for the increase in the bilayer bending
rigidity in the presence of Cholesterol. The lipid raft model [145], in which Cholesterol
induces the formation of a highly ordered lipid domains with the membrane plane is often
proposed in that context. Pan et al. [141] suggest that the loose complexation of Cholesterol
with neighboring lipids induces higher ordering in lipids. They argue that Cholesterol has a
larger effect on ordering of lipids with more saturated chains since a larger number of lipids
can be complexed with each Cholesterol molecule. The connection between lipid ordering
and bending rigidity is not obvious, but Pan et al. observed that the ordering of the lipids
and the bending rigidity show similar trends with increasing cholesterol concentration. In
addition, Pan et al. also observed that the effect of cholesterol depends on the type of lipid.
Namely, they note a large increase in bending rigidity for DMPC, a lipid with two saturated
tails, and almost no increase in bending rigidity for DOPC, a lipid with two unsaturated
tails, with increasing Cholesterol concentration.

Most of these molecular explanations for increasing bending rigidity with the addition
of Cholesterol assume that changing the cholesterol concentration has little effect on the
overall structure of the membrane. It is, however, known that cholesterol may induce phase
transitions. For example, if we increase the cholestrol concentration in a DMPC/cholesterol
system we observe a phase transition from the L, liquid disordered phase to the L, ordered
phase. Such a phase transition may have a significant effect of the mechanical properties of
the bilayer, including the bilayer bending rigidity.

Molecular simulations can be utilized to explore the molecular level as well as collective
behavior of lipids molecules simultaneously. Our CG lipid model, along with a CG model
for Cholesterol has been used by de Meyer et al. to explore the temperature-composition
structure diagram of a model DMPC/Cholesterol system [146]. Their simulations identify
five distinct structural phases (Figure 6.1).

While these CG simulations allow one to perform simulations on a relatively large system
for a long time, calculating the bending rigidity is a relatively difficult task. The bending
rigidity is extracted from the elastic bending modes of a membrane. To ensure spatial
independence and to access variable Cholesterol/DMPC domain compositions, the elastic
deformations of a large membrane patch should be observed. The relaxation time of the
largest bending modes, however, scales as 7 ~ L* ~ N2, where L is the system size and N is
the total number of molecules in the bilayer (lipids and Cholesterol) [152]. We therefore need
to perform, even for a coarse-grained model, very long time and length scale simulations to
accurately calculate the bending rigidity of a DMPC/Cholesterol membrane.

The novel GPU algorithm for Dissipative Particle Dynamics, described in Chapter 5,
allows us to perform this otherwise unfeasible task. Taking advantage of the 30 times speed-up,
we perform explicit-solvent simulations of a comparably large number of N = 4096 molecules
(DMPC plus Cholesterol) at 10 different Cholesterol concentrations. In the following sections
we discuss the details of the simulation and analysis, as well as the computed bending moduli.
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| Ref. | Temp. (°C) | % Chol. | x (107 J) | Method

[147] 26° 0 0.35 — 0.65 | Flickering of tubular vesicles

[148| 26° 0 2.4+ 0.4 | Flickering of tubular vesicles

[149] 27° 0 1.41 £ 0.13 | Optical force / Confocal microscopy
[143] 27° 0 1.52 4+ 0.06 | Thermal fluctuations of GUVs

[150] 29° 0 0.56 & 0.06 | Micropipette aspiration

[141] 30° 0 0.58 £ 0.08 | X-ray scattering

[142] 30° 0 1.15+0.15 | Fourier Analysis of GUV undulations
[143] 30° 0 1.30 = 0.08 | Thermal fluctuations of GUVs

[149] 30° 0 1.33 £0.12 | Optical force / Confocal microscopy
151 370 0 | 1.40 £ 0.03 | Flickering

[147] 29° 6 0.28 — 0.35 | Flickering of tubular vesicles

[141] 30° 10 0.66 £+ 0.08 | X-ray scattering

[143] 30° 10 2.0£0.1 | Thermal fluctuations of GUVs

[143] 27° 10 2.23 £0.07 | Thermal fluctuations of GUVs

[141] 30° 20 1.32+£0.1 | X-ray scattering

[142] 30° 20 2.1 £0.25 | Fourier Analysis of GUV undulations
[141] 30° 30 2.74+£ 0.1 | X-ray scattering

[142] 30° 30 4.0+ 0.8 | Fourier Analysis of GUV undulations
[143] 30° 30 4.1+ 0.25 | Thermal fluctuations of GUVs

[143] 30° 50 6.1 +0.3 | Thermal fluctuations of GUVs

Table 6.1: Experimental results of bending rigidities in DMPC/Chol bilayers show large
variability in numerical values. Description of experimental techniques can be found in each
reference are reviewed by Bouvrais [144].
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Figure 6.1: (a) Coarse-Grained model of Cholesterol, as used by de Meyer et al. [146]. The stiff
tetrameric cholesterol ring is represented by five beads while the Cholesterol tail is represented
with two beads. The hydrophilic head bead is displayed in grey color and the hydrophobic
tail beads in blue. Their non-bonded interaction parameters match that of the lipid model
(See Section 2.2.1). (b) Temperature-composition structure diagram of DMPC-cholesterol
bilayer shows five distinct structural phases (Figure adopted from de Meyer et al. )

6.2 Determining Bending Rigidity

To determine the bending rigidity of a lipid bilayer, we use the Helfrich model. On a
large scale, a membrane can be considered a continuum surface. The Helfrich free energy
[153] relates the membrane local principal curvatures, ¢; and ¢y, as well as the membrane
spontaneous curvature, cg, to its elastic energy. For 2D surfaces with fixed topology the free
energy takes the following form:

F = /AdA [O’ + 2%(01 + Cco — 00)2] (61)

where A denotes the total area of the surface, o is the intrinsic surface tension and x is the
bending modulus.

The Helfrich model has been successfully used in describing the thermal fluctuations
around the equilibrium surface state [154, 155]. In the following sections we summarize the
conventional method for extracting the intrinsic surface tension and bending modulus, and
present the effect of symmetry breaking on this method.

6.2.1 Symmetric membranes

Simulations of lipid membranes may be performed in several different ensembles. In the
thermodynamic limit, the ensemble in which the membrane is simulated should not affect
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the undulations of the membrane surface. In finite-size membranes, however, the simulated
ensemble influences the membrane undulations and dictates a different relation of the Helfrich
free energy. Here we focus on two ensembles, constant area (NP A,T) and constant frame
tension (NPyyT'), where the frame tension, 7, is conjugated to the projected area, A,. The
NP A, T ensemble is more useful to rigorously show how the elastic moduli can be extracted
using the Helfrich theory. In practice, however, we prefer to simulate in the NP,y T ensemble
to better represent the physical tensionless system [42]. We therefore discuss and distinguish
between both ensembles below.

We note here that the frame tension, v, and the surface tension, o, are different quantities.
The former is conjugated to the projected area of the membrane (A,) while the latter is
conjugated to the total area of the membrane (A). The total area of the membrane is
constructed of the projected area of the membrane as well as the local curvatures of the
membrane. The total area is therefore always greater or equal to the projected area.

In the NP A, T ensemble the size of the simulation box along the Xx—§ plane (the projected
simulation box area, A,) is fixed. The total number of lipids is also fixed, and therefore
fluctuations in the surface area A can only arise from forming local surface curvatures. The
volume of the simulation box may change to provide constant normal pressure (P, ), by
changing only the box size in the z direction.

The statistical mechanics of a simulated membrane with fixed projected area has been
rigorously presented in previous publications [156-158|. These works show the equivalence
between the thermodynamic definition of the surface tension, o, and bending modulus, k,
and their extraction from the surface undulations.

In short, one may relate the Helfrich free energy to the surface height, h(x,y), at the 2D
coordinate (z,y). Assuming small curvature (9%/o- < 1; 9h/oy < 1), one may rewrite the
Helfrich free energy (Eq. 6.1) in terms of the derivatives of h(x,y):

dA ~ drdy [1 + %]wﬂ (6.2)

1
c1+ e~ §V2h

= F~ / dzdy [1 - 1|wﬂ
A 2

o+ 2K (%v% — c0> 2] (6.3)

For symmetric membranes the spontaneous curvature is zero (¢ = 0). Omitting terms of
order O(h3) or higher, we obtain the following equation for the free energy of the surface:

Fopmmetric = 04y + / dady|Vh[* + 5 / dudy | V0| (6.4)
Ay A,

The Helfrich free energy can now be rewritten with a discrete Fourier space basis set. Let
{7, = (z4,y,)} be a set of M? grid points. The discrete Fourier transform of h(7,) is defined
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by:

1 =\ i
hg = L—Zh(rg)e @7y (6.5)

where L, = /A, is the projected linear size of the membrane and ¢'= (¢,, ¢,) satisfies:

(42, 9y) = >7/1p - (N2 1) } (6.6)
{ng,ny=—-Mp, ... . Mh—1}

In Fourier space the free energy of a symmetric membrane becomes, up to a constant:

l2
Fsymmetric ~ UAp + 5 Z (an + /iq4) |h(fl2 (67)

—

q

where | = Lr/i is the grid size in both X and § directions and ¢ = |g]. In the NP A, T
ensemble, we can then obtain the following relationship between the fluctuations about a flat
surface and the thermodynamic moduli o and  [156, 158-161]:

<‘h*\2> _ kgT
q NP A, T 12 [O'q2 + /iq4 + O(qﬁ)]

(6.8)

Equation 6.8 provides a useful route for obtaining o and . By averaging the Fourier transform
of the membrane height at predefined grid points and fitting to Eq. 6.8 one may extract those
thermodynamic moduli in the NP A, T" ensemble.

Lipid bilayers, however, are typically not simulated in the NP A, T ensemble. Constant
frame tension, v = 0, is typically used to mimic the tensionless state of a biological membrane
[42]. In this ensemble, the projected area (A,), conjugate to the frame tension (), is allowed
to fluctuate. In that case, it is more convenient to obtain the fluctuation of each undulation
mode, hz; n = |(ng,ny)|, rather than each wavelength [152].
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kg TL?
<|hﬁ|2>NPL’YT - <l4 [0— (27rn/L )2 —{—},;j (27m/L )4} > (69)
P P NP ~T
hal\? kpT
(|L_|) _M4'< S T Ao 4>
P NPT o(2mn)?L,” + k(2mn) NPAT
~ 2
0(2mn)? (Ly) yp 7 + K (270)*
If we now define a normalized height function z; = ‘Z—Z' and rename the variables k' = k(2mn)?,
o' = o(2m)? <Lp>?VPﬂT we obtain the following equation relating the thermodynamic moduli

k, o to the normalized height fluctuations zj:

. kT
O'/TLZ + K/TL4

~

2
(|2l >NPLyT ~

(6.10)

Fitting the normalized membrane height fluctuation as a function of n yields the elastic
properties of the membrane. This procedure has been extensively used in constant surface
tension simulations of bilayer surfaces [152, 158, 160, 162, 163|.

6.2.2 Asymmetric membranes

Bilayers may not be symmetric. In such cases the spontaneous curvature (cy) may have a
finite, non-zero, value. The derivation of Equation 6.8 would not hold under these conditions.

Here we develop the spectral analysis equation for asymmetric bilayers, equivalent to
Equation 6.8. We proceed from Equation 6.3, which describes the Helfrich free energy of a
nearly flat surface. We note here that the following derivation would therefore only hold for
bilayers who are nearly flat as well as displaying non-zero spontaneous curvature, limiting
our discussion to membrane displaying small spontaneous curvature.

By omitting terms of order O(h?) or higher in Equation 6.3, but not assuming zero
spontaneous curvature (co # 0), we obtain the following equation for the free energy of the
surface:

Fsymmetric & Mﬁ%/ dudy|Vh|* + g/ ddy |V?h[* (6.11)
AP Ap

+ 2kco* A, — 2/100/ dxdy(V?h) + Iico2/ dxdy‘Vh‘z
A, Ap
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which converges to Fiymmetric in the limit ¢ — 0, as expected. Using Laplace transform we
can again rewrite this equation in Fourier space. The free energy now reads:

l2
Frsymmetric = (0 + 2kco®) A, + 3 Z [(0 + 2krc0*) ¢ + Kq'] |hq~|2 — 2Kcohg (6.12)

—

q

The leading term in front of |hg|” now reads [(o + 2r¢o?) ¢ + kq'], compared to [0¢* + r¢*] in
the symmetric case. This means that if we use the spectral analysis described in Section 6.2.1
for asymmetric bilayers, we obtain the same bending modulus s but a different surface
tension:

) 1 kT
([hgl >NPLAPT 2 (0 + 2kc?) ¢ + kg (6.13)
B kgT
T2 o*¢? + kgt
kgT
S(n) = (|zal") yp o = M* - (6.14)

(o + 2K/c)?) n2 + K'n*

where ¢ = ¢ - Lr)neyr/2r. In practice, the spectrum of undulations will have the same
form as in the symmetric bilayer case. When fitting the intensity of height fluctuations as
a function of ¢, one would obtain o* = (0 + 2rco?) as the effective surface tension, rather
than 0. As k > 0 this would always yield an effective surface tension higher than the actual
surface tension: o* > o.

We note that asymmetry in bilayers may arise from having different number of lipids on
each leaflet, as well as from having different lipid molecules on each leaflet. Bilayers with a
mixture of lipid types may have local patches where the transient composition of lipids in
the upper and lower leaflets is different, thereby causing local asymmetric bilayer.

6.3 Methods

In this work we simulated bilayers with different DMPC/Cholesterol ratios and obtained
the elastic properties of these membranes. We simulate these systems at their tensionless
state [42] in the NP~ T ensemble. The temperature is set to T* = 0.35 (30°C') throughout
all simulations.

6.3.1 Size and Time Dependence

The common practice is to simulate a relatively small membrane patch with periodic
boundary conditions. Most bilayer properties do not show significant finite-size effects when
sampling a system whose linear size is a few lipids long. The long-wavelength undulations of a
membrane, however, are constrained by the periodic boundary conditions [164]|. To correctly
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sample the elastic properties of a membrane, the system size should be large enough to
include those long-wavelength undulations that contribute to the bending coeficients. In this
work we chose a relatively large membrane patch of N = 4096 lipids (DMPC or Cholesterol).

Using a large system size necessitates the use of a long simulation time. Not only because
the system is larger but more importantly because the relaxation time of each undulation mode
scales with the linear size of the simulated membrane to the fourth power [152]: 7, o< (L#/n)?.
Therefore, to maintain a fair sampling of all undulation modes, we simulate each system for
a very long 10° cycles. Additionally, we simulate 10 independent samples of each system
(10 copies for each of the 10 cholesterol concentration systems). Each DMPC/Cholesterol
composition is therefore simulated for what would correspond in real time to a total of 400 us.
These simulation sizes and lengths were made possible because of our novel GPU based
algorithm (Chapter 5).

We obtain a snapshot of the membrane at time frame intervals of 2500 DPD sub-steps
(see details in Section 6.3.2). To ensure the independence of each sample, we calculate the
time correlation of each undulation mode from these snapshots of the membrane. Typical
time correlation curves of the lowest undulation modes are presented in Figure 6.2(a). One
can clearly see that the relaxation time of the lowest undulation modes (77 = (0,1); (1,0))
is indeed the largest. We extract the typical relaxation time by fitting these curves to an
exponential decay function. 10% of all simulations displayed a relaxation time of 20 frames
or slower. We therefore chose to skip 20 frames (equal to 50000 DPD sub-steps ~ 130 ns)
between every sampled membrane configuration. Figure 6.2(b) shows the time correlation
curve of the lowest undulation modes when 20 frames are being skipped. No significant
correlation between samples is seen. Simulations that displayed a relaxation time larger than
20 frames were omitted from further analysis.

6.3.2 Determining Membrane Surface

The elastic theory described in Section 6.2 is appropriate for an infinitely thin surface.
Lipid bilayers, on the other hand, have finite thickness. A bilayer can perform undulations of
both leaflets at fixed thickness (undulatory motion), as well as fluctuations in the thickness
itself (peristaltic motion). There will be energetic cost associated with each of these modes
of fluctuation, separated by the principle of equipartition [160].

Undulatory motions are defined by the average position of the two monolayer surfaces.
We therefore setup a 32x32 grid for each monolayer at each time frame and determine the
height of the monolayer at each grid point. The average undulatory surface is then defined
as the average of the two monolayer heights at each grid point.

The height of a monolayer at a given grid point is not a well-defined property. One may
average the z-position of a specific bead (e.g. the first lipid head bead) to determine the
local height [161, 165] of the monolayer. Our system, however, contains molecules of two
types: DMPC and Cholesterol. Determining the surface of a monolayer based on the bead
position of only one of these molecules would result in misrepresentation of the monolayer
surface. Instead, we use a method developed for liquid vapor interface analysis [166]. By
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Figure 6.2: Typical correlations in lowest undulation modes of a membrane containing 5%
Cholesterol (T=0.35). (a) Shows the time correlation of 7 lowest undulation modes when
all time frames are included. (b) Shows the time correlation of 7 lowest undulation modes
when skipping 20 time frames. A single time frame here refers to 2500 DPD steps. In both
subfigures each color represents a different undulation mode 7 = (n,, n,), as described in the
legend.
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constructing a coarse-grained density field, this method enables one to define a surface that is
continuous in space as well as in time. In practice, we search for the surface that corresponds
to where the density of hydrophobic beads drops to half its initial value. Since both DMPC
and Cholesterol models are defined by the same hydrophobic and hydrophilic bead types, this
type of definition incorporates both molecule types into the surface definition. Additionally,
the surface is not defined solely by the position of one bead but rather by the density profile
of all hydrophobic beads in the molecule.

To determine the surface height of each monolayer at each time frame, we set a gaussian
of width £ = 1dj around the center of each hydrophobic bead. For each grid point we sum
the contribution of all gaussians to the hydrophobic density at K = 100 discrete z levels
(zizo..x = ££%). For each grid point 7, we then interpolate z(7;) as the height at which the
hydrophobic density drops to half its maximal value. The set of (7)) for all grid points
defines the surface of the monolayer at time frame ¢. A typical surface construction for both
monolayers can be seen in Figure 6.3.

Figure 6.3: Hydrophobic surface construction of a typical configuration of a lipid bilayer
containing 5% Cholesterol. Hydrophilic and hydrophobic beads are represented by red and
grey colors, respectively. The hydrophobic surface grid for each monolayer, constructed
according to the method described by Willard et al. [166], is represented in blue. The
undulation surface is then determined by the mean of the two monolayer surfaces.

6.3.3 Spectral Analysis

To compute the bending modulus of each membrane, we analyze the fluctuation of the
surface and fit the average height fluctuation to Equations 6.10, 6.14. The method described
in the previous section provides us with a discretization of the surface height on a M x M
grid. The first step in the analysis is computing the discrete fourier transform of this grid, at
cach time frame (t), to obtain |hg(t)|>. The normalized height function |z;(t)|* is obtained
by dividing this quantity by the projected area at each time frame. We average the value
of |Zﬁ|2 for each mode n throughout the simulation. To reduce biases caused by the grid
discretization, we divide each mode by a damping factor, following Cooke and Deserno [163].

Plotting the average value of the normalized height function (S(n) = <\zﬁ\2>) as a function
of n should then yield the fitting parameters o', &', ¢{. We emphasize here that this relation
would only hold for the lowest undulation modes. When the wavelength of undulation is on
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the order of the bilayer thickness, the elastic theory breaks down as small bilayer protrusions
become a dominant factor [160]. Shiba et al. [167] have shown that to extract the bending
modulus accurately one must fit an inverse power-spectrum, rewriting Equations 6.10, 6.14
to the form:

M* - kgT

2
25 (n) = <a' + 2r'c}) ) + k'n? (6.15)

where ¢ = ¢y = 0 for symmetric membranes. This results in a linear fit, where the intercept

is o’ 4+ 2K/ 062 and the slope corresponds to k’.

6.4 Simulation Results

6.4.1 DMPC-only bilayers

Bilayers containing 0% Cholesterol (DMPC-only bilayers), with the same number and type
of lipids in each leaflet and under isotropic stress conditions are expected to be symmetric.
We therefore expect the spontaneous curvature to be zero. Additionally, Farago and Pincus
[156] have shown that the surface tension extracted from spectral analysis of membrane
fluctuations, o, should be equal to the applied frame tension, . Since we simulate these
systems with an applied zero frame tension (y = 0), we expect S(n) to fit to S(n) oc 1/xnt.

Figure 6.4 shows the average spectrum of undulation for a system of N = 4096 DMPC
lipids, at constant temperature (T* = 0.35) and frame tension (v = 0). The normal pressure
was also kept constant at a value matching the pressure of bulk water. The curve of S(n) as
a function of n is displayed in Figure 6.4(a) on a log scale plot. The plot clearly shows the
asymptotic fit to S(n) oc n™* at the lowest undulation modes.

To extract the bending modulus we fit the undulation spectrum to Equation 6.15. This
inverse power-spectrum allows one to extract the bending modulus (') and the surface
tension (¢’) as the slope and intercept of a linear fit at the limit of n — 0, respectively. The
red line in Figure 6.4(b) shows the best linear fit to the inverse spectrum. This yields, for
Cholesterol free membrane, x = (0.62 £ 0.02) - 107 .J; o = 0.00011 & 0.00012 N/m.

6.4.2 DMPC/Cholesterol bilayers

In bilayers containing Cholesterol, there is no guarantee that the bilayer will have zero
spontaneous curvature, even in the case that we intitiate our system with an equal number
of lipids and cholesterol molecules in both leaflets. In fact, spontaneous curvature is known
to be induced in a mixture of lipids with different shapes [168] as a result of a mismatch
between the size of the head and tail groups. In our simulations, local transient aggregations
of Cholesterol molecules might form local non-zero spontaneous curvature.

Simulations with periodic boundary condition suppress the overall spontaneous curvature
of a membrane. The mean membrane height change is constrained to be zero by construction
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Figure 6.4: Spectral analysis of Cholesterol-free membrane (a) Shows a log-log plot of S(n) as
a function of n. The red curve represent a n~=* slope, which is the theoretical prediction for the
asymptotic behavior of S(n). (b) Shows a linear fit (red line) to the inverse power-spectrum
1/n2S(n) as a function of n?. According to Eq. 6.15 this should be a linear fit, with a slope
of k" and an intercept of ¢’. The fitted surface tension is ¢’ ~ 0 as expected.
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Figure 6.5: Spectral analysis of a membrane containing 30% Cholesterol. (a) Shows a log-log
plot of S(n) as a function of n. The red curve represent a n~* slope, which is the theoretical
prediction for the asymptotic behavior of S(n) in the case of symmetric bilayers. In this
asymmetric bilayer there is clear deviation from that slope. (b) Shows a linear fit (red line)
to the inverse power-spectrum 1/n?S(n) as a function of n?. According to Eq. 6.15 this
should be a linear fit, with a slope of &’ and an intercept of o’ + 2x'c}?, where ¢’ ~ 0. For
asymmetric bilayers with ¢, # 0 the intercept is expected to be greater than zero. The fitted

intercept in this asymmetric bilayer is indeed non-zero, measuring 0.0017 £ 0.0004 N/m
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((h(z,y)) = 0) in such simulation. However, the heterogeneous nature of the bilayer containing
a mixture of lipids may result in local patches where ¢y # 0 [169]. In those cases we expect
to find the bilayer follows the asymmetric free energy described in Section 6.2.2.

We simulated bilayers containing DMPC/Chol mixtures (with 5 - 45 % Chol), with ten
copies of each system (see Section 6.3.1 for details). We calculated the normalized height
spectrum for each Cholesterol concentration. Figure 6.5 shows these results for systems
containing 30% Cholesterol. Even though these systems were simulated at zero frame tension,
their characteristic S(n) does not follow the asymptotic n~ slope (Fig. 6.5(a)). This is an
indication of a non-zero coefficient of n? in Equation 6.14. We claim that this non-zero n?
coeflicient is a result of a non-zero spontaneous curvature term.

We additionally fit the normalized height spectrum to Equation 6.15 and display the fitted
line in Figure 6.5(b). The plot clearly shows non-zero intercept in the linear fit, supporting
our hypothesis of non-zero spontaneous curvature term. This fit allows one to extract both
the bending modulus, , as well as the intercept. Since all simulation were performed similarly
with 7 = 0, we may assume o ~ 0 [156] and extract the spontaneous curvature, co, from the
intercept.

6.4.3 Bending Modulus and Spontaneous Curvature

Results for extracted bending modulus as a function of Cholesterol concentration are
displayed in Figure 6.6. The bending modulus monotonically increases with Cholesterol
concentration, as seen experimentally [141-143]. Additionally, we note an inflection point in
the bending modulus at %Chol = 30. This inflection point matches the Cholesterol concen-
tration for which we detect a structural phase transition at 7' = 30°C' (See phase diagram
in Figure 6.1(b)). Such an increase in bending modulus has also been seen experimentally
[141], though comparison with the experimental data shows that this increase is larger in the
experiments. (See detailed values for ref. [141] in Table 6.1).

Pan et al. [141] hypothesize that the large increase in bending modulus of DMPC bilayers
with Cholesterol concentration is related to complexation of lipids and cholesterol. Pan et
al. assign different complexation rates for different lipid species thereby explaining why the
increase in bending modulus with Cholesterol concentration is different for each lipid molecule.
They suggest that saturated lipids, such as DMPC, have a higher complexation rate than
lipids with unsaturated tails, such as DOPC, which leads to higher ordering of lipids and
higher bending rigidity with increasing Cholesterol concentration.

We offer a different explanation, related to the thermodynamic properties of the bilayer.
The large change in the bending modulus for Cholesterol concentrations larger than 30%
is a result of a change in the structural phase of the system. Namely, a change from the
disordered liquid phase, L, to the ordered L, phase. Other lipid species, such as DOPC, will
display a different phase diagram and will therefore show a different change in the bending
modulus for similar Cholesterol concentrations.

Figure 6.7(a) shows the fitted intercept values. We note clear distinction between the
bilayer containing no Cholesterol and the bilayers with Cholesterol. The former displays
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Figure 6.6: Bending modulus as function of Cholesterol concentration at T*=0.35 (30°C)
shows monotonic increase with a larger jump at 30% Cholesterol concentration.
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Figure 6.7: Fitting parameters for Eq. 6.15 for different Cholesterol concentrations. (a) Shows
the linear fit intercept. There is a clear distinction between symmetric bilayers containing
no Cholesterol, whose intercept is approximately zero and asymmetric bilayers containing
Cholesterol whose fitted intercept is greater than 0. (b) Shows the extraction of spontaneous
curvature from the fitted intercept, assuming o = 0.
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a fitted intercept of approximately zero, while the latter show clear non-zero intercept.
Extracting the spontaneous curvature, ¢y from the intercept (Figure 6.7(b)) shows the
same trend. The Cholesterol-free bilayer is fitted a significantly smaller value than bilayers
containing Cholesterol.

It is interesting to note that the extracted ¢y does not seem to monotonically vary with
Cholesterol concentration. Wang et al. [169] show that if two lipid types are distributed
unevenly between both bilayer leaflets, the spontaneous curvature depends linearly on the
lipid concentration ratio. Here, however, the number of Cholesterol molecule in both leaflets
is identical. The spontaneous curvature created here is not a result of non-matching lipid
volume between leaflets, but rather a result of local patches of varying lipid concentration.
The number of patches as well as the change in local spontaneous curvature it creates does
not necessarily depend linearly on the Cholesterol concentration. We hypothesize that for
this reason we see no clear trend in the dependence of ¢y, on the Cholesterol concentration.

6.5 Discussion

In this chapter we have calculated the bending modulus of DMPC/Chol bilayers at
various cholesterol concentrations. To capture the full spectrum of bilayer undulations, this
calculation requires very large systems that are simulated for very long time. Without our
GPU algorithm (Chapter 5) such simulations would require a month each. We therefore
utilize our newly developed GPU parallel algorithm to perform these simulations in feasible
time.

Our results show that bilayers with no Cholesterol fit the classical theory of the Helfrich
model. The spectrum of membrane undulations follows an asymptotic S(n) o 1/kn* at
n — 0, and the bending modulus can be extracted from fitting this equation. For membranes
containing Cholesterol we see a different behavior. Fitting the undulation spectrum of these
membranes to the classical model would yield a non-zero surface tension, 0. We extended
the Helfrich model for asymmetric membranes and show that this apparent surface tension
is a result of a non-zero spontaneous curvature term in the Helfrich model of asymmetric
membranes.

The bending modulus extracted from our simulations shows an increase with Cholesterol
concentration, as seen in experimental results [141]|. Specifically, we see a sharp increase
in the value of the bending modulus at 30% Cholesterol concentration. This Cholesterol
concentration also corresponds to where a change in the structural properties of the bilayer is
seen [146]. We therefore conclude that the sharp increase in bending modulus is associated
with a thermodynamic phase transition.
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