UC Berkeley
SEMM Reports Series

Title
A Theory for Continua Undergoing Phase Transitions

Permalink
btt_ps://escholarship.orq/uc/item/7r97399d

Authors

Auricchio, Ferdinando
Lubliner, Jacob
Taylor, Robert

Publication Date
1993-12-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/7r973999
https://escholarship.org
http://www.cdlib.org/

A THEORY FOR CONTINUA
UNDERGOING PHASE TRANSITIONS

F. Auricchio
J. Lubliner
R.L. Taylor
| Department of Civil Engineering
University of California at Berkeley, Berkeley, CA 94720 USA



A theory for continuum undergoing phase transition

Contents
1 Introduction

2 Theory
2.1 Assumptions and basic framework . . . .. ... .. oL
2.2 Flowrule . .. .. .. . . . . e

3 An application to shape memory alloys

4 Closure

F.Auricchio, J.Lubliner, R.L.Taylor



S

A theory for continuum undergoing phase transition 1

1 Introduction

In the present work we present a continuum mechanics theory for materials
undergoing solid-solid, rate-independent phase transition phenomena. The
motivation for the work is originated from the increased practical interest
in such materials, a classical examples being the so called shape memory
alloys (Wayman 1990, Wayman 1992, Wayman 1993). Due to a reversible
martensite phase transformation, the shape memory alloys present and in-
trinsic capacity of remembering their original shape and such properties have
open novel frontiers in terms of applications (Duerig 1990).

To model shape memory alloys as well as many other materials under-
going (reversible with or without hysteresis, and/or multiple ) phase trans-
formations, we clearly need a general and flexible framework. Following the
approach used in the generalized plasticity theory by Lubliner (1984, 1993),
we will base our development on the concepts of elastic range and loading
direction.

The paper is organized as follow: we start by discussing the assumptions
and the basic framework within the context of an internal variable approach.
We then describe the form of the evolutionary equation for the internal vari-
ables. Finally, as an example, an application to the case of martensitic
transformations in shape memory alloys is outlined.

2 Theory

In this Section we develop the core of a theory for continua undergoing solid-
solid rate-independent phase transitions. We first describe the assumptions
and the basic framework, then we discuss an appropriate form for the flow
rule.

2.1 Assumptions and basic framework
We start by assuming that:

e the material undergoing phase transition has a rate-independent be-
havior,
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e its inelastic behavior can be modeled through the use of internal vari-
ables

Following Rice (1971) by internal variables we mean quantities which should

be properly specified depending on the material considered and on the evo-

lution processes we wish to model. The choice of internal variables may also

depend on the scale at which we wish to describe the material; accordingly,

they may be some macroscopic average quantities or microscopic parameters.
We assume that:

e alocal thermo-mechanical state is represented by an ordered pair (G, q),
where G stands for the set of controllable state variables (control state)
and q = (¢1,92,...-,¢») is the set of internal variables. An example of
control state variables is:

G = (E,0)

where: E is the Green (Lagrangian) strain tensor and 6 is the relative
temperature. The set of all possible (realizable) states (G, q) is called
state space S. Moreover, we define:

Sq=Slq ¥ {G|(G,q)es5}

such that Sq is the set of all possible control states G given a specific
value to q. Finally, note that the set of internal variables q is, like
E, unaffected by a Euclidean transformation of the spatial frame (they
may be scalar or components of material tensors).

e there exists a sufficiently smooth function % : § — R, such that ¢ =
¥(G, q) is the the Helmholtz free energy per unit volume.

e there exists a dissipation function D : § x R™ — R defined by:
d
D =D(G,q,r) = —5—&¢(G,q)-r , TER"

The value of D at (G, q,q) is the specific dissipation per unit reference
volume and it is assumed to satisfy Kelvin inequality:

D =D(G,q,9) >0
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For a rate independent material, a process may be defined as a path (a di-
rected curve, not necessarily simple) in state space S; accordingly, indicating
with ¢ the curve arc-length (or a fictitious measure of time), we may think a
process as a mapping:

t— G(t)
In particular we distinguish between elastic and inelastic processes:

o elastic process: a process entirely contained in a manifold described
by q = const. or equivalently a process for which q = 0;

e inelastic process: any other process.

Given a state (G, q), we may define the elastic range of such state as
the set:

E(G,q) = {G"| there exists an elastic process
from (G, q) to (G*,q) }

As a result of rate-independence, a process with G = const. is elastic. Ac-
cordingly, every control state G belongs to its elastic range, that is:

G € £(G,q)

therefore every state has a non-empty elastic range. It seems reasonable
to assume that £(G, q) is relatively closed in Sq; the relative boundary of

E(G,q) will be denoted by 06(G,q) and the interior by § (G,q). If the
elastic range of a state (G, q) has a non-empty interior, then its boundary
may be assumed to be a piecewise smooth surface in Sq, called the loading
surface in the control variable G-space.

It is interesting to observe that in classical plasticity the elastic range
depends only on the set of internal variables q:

£(G,q) = €&(q) = Sq
while in generalized plasticity (Lubliner 1984) it depends on the whole state:
g(G)q) = g(G’q) g Sq

We may now introduce the definition of elastic and inelastic state:
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(G, q) is an elastic state <& G¢ £ (G,q)
(G, q) is an inelastic state & G € 9€(G,q)

It follows from this definition, that every state (G*,q) in a sufficiently
small neighborhood of an elastic state (G, q) is attainable elastically. Con-
sequently, in any possible process passing through an elastic state, q = 0.

The set of all elastic states in S will be called the elastic domain and
denoted by S; the projection of SE into Sq is the elastic domain at q and
will be denoted by 85, that is:

def
5§ =5%q € { G| (G,q) € ST}
It is easy to show that:

Sff C €(G,q) forevery G € Sq

As discussed and proved in Reference (Lubliner 1993), under simple topolog-
ical assumptions:

° Sg is open,

¢ S§=£(G,q) if Ge&§
We may also introduce the following sets:
Sl = 8§ - §F
I _ E
Note that a process whose range is entirely in the elastic region is reversible
and not merely quasi-reversible.
Now consider an inelastic state (G, q) and a vector N pointing away from

£(G, q), called the loading direction ! (refer to Figure 1). A path through
(G, q) such that:

N-G<0

leads to an elastically attainable state and is therefore, at least locally, an
elastic path, so that ¢ = 0. On the other hand, a path with:

N-G>0

!Note that dim(N) = dim(G).
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leads toward states that are attainable only inelastically, that is with g # O.
At this point it is worth noting that we have not stated any assumption
about the smoothness of the elastic range. .

Moreover, it follows that if (G, q) is an inelastic state and (G, q) is the
local tangent velocity of a path through (G, q), such that:

(G + 4G, q) € £(G,q)

for all sufficiently small positive h, then q = 0, so that D(G,q,q) = 0. We
therefore have the following:

Theorem 2.1 If:
1. (G, q) is a inelastic state,
2. (G, q) is the local tangent velocity of a path through (G, g),
3. (G+ kG, q) € (G, q) for |h| sufficiently small,
4. D(G,q,9)>0
then h < 0.

2.2 Flow rule

The preceding considerations give an idea of the nature of the rate equation
for q, which governs the inelastic processes. If these equations have the form
(Lubliner 1973):

q=1(G,q,G)
then:
e if (G, q) is an elastic state, that is
E
G € 5q

then: every (G*, q) in a sufficiently small neighborhood of G is attain-
able elastically, which implies ¢ = 0 and accordingly:

f(G,q,G)=0
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e if (G, q) is an inelastic state and if given a vector N pointing outward
from the elastic range we have:
N-G<0
then, again, q = 0, which implies:

f(G,q,G)=0

e for all the other cases

f(G,q,G) #0

Moreover for a rate independent material, f(G, q, -) must be homogeneous of
the first degree, that is:

f(G,q,a¢G) = af(G, q, G)

for any non negative real number a. The simplest rate equation having these
properties is:

g=h<N-G>

where < . > is the Macauley bracket defined as:

<a>= %(:c+|:v])

and:

h=h(G,q)

is a continuous function, null if G €g (G, q). Note that if 0(G, q) is locally
given by:

08(G,q) = { G™ | f(G*;G,q) = const. }
then:

of

N= =
aG*G*zG
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such that:
q=h <]%>
where:
o 6f .
f=sk G
aG G‘k :G

If h o N, then the evolutionary equation for ¢ can be called associative.

3 An application to shape memory alloys

Now we wish to specialize the results from Section 2 to a simple case to
demonstrate the generality and the flexibility of the theory. To do so, we
choose as an example the shape memory alloys. However, to not overload the
present discussion, we will only outline how their behavior can be modelled
within the theory described in Section 2 and in a forthcoming work we will
present all the necessary details.

Shape memory alloys present a peculiar macroscopic behavior (usually
known as shape memory effect and pseudo-elasticity [Wayman 1990, Way-
man 1992, Wayman 1993]), due to a microscopic martensitic phase trans-
formation. A martensitic transformation is a solid-solid, diffusion-less crys-
tallographic transformations, between an higher temperature phase, called
austenite, and a lower temperature phase, called martensite (Khachaturyan
1983, Wayman 1964). For the case of shape memory alloys, the martensitic
transformation is reversible and rate-independent (Funakubo 1987, Otsuka
1986).

In order to properly describe at least the basic features of shape memory
alloys, we need to consider two different phase transformations. The first one
is relative to the conversion of austenite into martensite (A — M), while the
second is relative to the conversion of martensite into austenite (M — A).
However, for simplicity we start by modelling only the first transformation
and later extend the arguments to both.

Assume that the material is described by a set of two control variables:

G = {91792}
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which for examples could be uniaxial stress (or strain) and temperature.
With q we indicate the set of internal variables (left unspecified), which
however are supposed to describe the actual material composition (appropri-
ate phase fraction description). Looking at experimental results (Funakubo
1987, Otsuka 1986), we may immediately note that Sq is independent of
q. Accordingly, in what follows, Sq will be indicated by S to simplify the
notation, that is, the points of S are G, not (G, q). Moreover, there is a
well defined subset of S where the A — M transformation may occur; such
subset, indicated with S§,,;, may be described by:

Sl = { all G such that F1F, <0}

where Fy and F} real-valued functions defined on S (refer to Figure 2). Ac-
cordingly, we may also define S%,, as the subset of S where the A — M
transformation may never occur, that is:

SEM =8~ Sim
Note that the set S¥,, may also be described as:
SE, = { all G such that F;F, >0 }

and it is not a connected set. Again, looking at the experimental results,
it is immediately seen that for any point in S},,;, we may define a loading
direction N, that is, a direction N such that

N-G>0 & q#0
Accordingly, for any inelastic state:
G=h<N-G>

Recalling the definition of inelastic region for the present problem, we may
rewrite the evolutionary equation for the internal variables as:

q_—.a<—FlF2><N-G>

for any state in the state space S since the condition —F; F3 > 0 imposed by
the first Macauley bracket automatically verifies that a state is in S%,,.

F.Auricchio, J.Lubliner, R.L.Taylor
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A similar treatment can be adopted for modelling the reverse transfor-
mation, i.e. the conversion of martensite into austenite (M — A). Two
functions F3 and Fy delimiting the inelastic region and a loading direction
M must be introduced, such that we may write:

St = {all Gsuch that F3F; <0}
Siia = S—Sua
= { all G such that F3Fy >0 }

Accordingly, for this phase transformation we have:
q=b< —-FF,><M-G >

Finally, the whole set of transformations can be described by the single evo-
lutionary equation:

q=a<-FF><N-G>+b< -FF,><M-G>

where the different Macauley brackets are able to identify which phase trans-
formation is active. Moreover, we have:

St = SiuUSia

We observe that due to the flexibility described in Section 2, no complication
of any sort is introduced from the relative position of the two inelastic regions
Sl and Si;,; accordingly, they may or may not intersect and may even
perfectly overlap.

4 Closure

In the present work we presented a theory for continua undergoing solid-
solid, rate independent phase transitions. The inelastic behavior is modeled
through the use of internal variables and the developments are based on the
concepts of elastic range and loading direction. The theory may describe the
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behavior of materials undergoing reversible and/or multiple phase transfor-
mations. As example, an application to the case of martensitic transforma-
tions in shape memory alloys is outlined. In forthcoming works, we will detail
such application, presenting numerical results and discussing the numerical
implementation of the model within a valid computational framework.

F.Auricchio, J.Lubliner, R.L.Taylor



A theory for continuum undergoing phase transition 11

References

[

T.W. Duerig, K.N. Melton, D.Stockel, and C.M.Wayman, (1990) Engineering
aspects of shape memory alloys, Butterworth-Heinemann.

H. Funakubo, (1987) Shape memory alloys, Gordon and Breach Science Pub-
lishers, translated from the Japanese by J.B. Kennedy.

A.G. Khachaturyan, (1983) Theory of structural transformations in solids, John
Wiley & Sons .

J. Lubliner, (1993) Generalized plasticity theory, Unpublished work.

J. Lubliner, (1973) On the structure of the rate equations of materials with
internal variables, Acta Mechanica 17, 109-119.

J. Lubliner, (1984) A mazimum-dissipation principle in generalized plasticity,
Acta Mechanica 52, 225-237.

K. Otsuka and K.Shimizu, (1986) Pseudoelasticity and shape memory effects in
alloys, International Metals Reviews 31 , 93-114.

J.R. Rice, (1971) Inelastic constitutive relations for solids: an internal variable
theory and its application to metal plasticity, Journal of the Mechanics and
Physics of Solids 19.

C.M. Wayman, (1964) Introduction to the crystallography of martensitic trans-
formations, Macmillan.

C.M. Wayman, (1992) Shape memory and related phenomena, Progress in Ma-
terial science 36, 203-224.

C.M. Wayman, (1993) Shape memory alloys, MRS bulletin April, 49-56.

C.M. Wayman and T.W. Duerig, (1990) An introduction to martensite and
shape memory, Engineering aspects of shape memory alloys (T.W. Duerig, K.N.
Melton, D.Stockel, and C.M.Wayman, eds.), pp. 3-20.

F.Auricchio, J.Lubliner, R.L.Taylor



A theory for continuum undergoing phase transition 12

Figure 1: Graphical description of a vector N pointing away from the elastic
range £(G,q) (outward normal). For the case of a locally smooth elastic
range, the outward normal is uniquely defined. For the case of a locally non-
smooth elastic range, the outward normal must be contained in the cone of
outward normals.
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E2
S AM

E1
SAM

Siu= Saul S st

9

Figure 2: Definition of the F; and F, functions. FiF, < 0 represent the
part of the state space where the A — M transformation may occur (Si,,).
F1F, > 0 represent the part of the state space where the A — M transforma-
tion may not occur, that is the elastic region relative to the transformation

(S&m)-
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F>0

4 92 F <0

Figure 3: Definition of the loading function F.
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SE =SE1 USE2U3E2
Sl =sl1 USIZ

Figure 4: Distinction between elastic (S¥) and inelastic region (ST)
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