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RESEARCH ARTICLE Open Access

Risk of cardiovascular events from current,
recent, and cumulative exposure to
abacavir among persons living with HIV
who were receiving antiretroviral therapy
in the United States: a cohort study
Kunchok Dorjee1,4* , Sanjiv M. Baxi1,2, Arthur L. Reingold1 and Alan Hubbard1,3

Abstract

Background: There is ongoing controversy regarding abacavir use in the treatment of HIV infection and the risk of
subsequent development of cardiovascular disease. It is unclear how the risk varies as exposure accumulates.

Methods: Using an administrative health-plan dataset, risk of cardiovascular disease events (CVDe), defined as the
first episode of an acute myocardial infarction or a coronary intervention procedure, associated with abacavir exposure
was assessed among HIV-infected individuals receiving antiretroviral therapy across the U.S. from October 2009 through
December 2014. The data were longitudinal, and analyzed using marginal structural models.

Results: Over 114,470 person-years (n = 72,733) of ART exposure, 714 CVDe occurred at an incidence rate (IR) (95% CI) of
6·23 (5·80, 6·71)/1000 person-years. Individuals exposed to abacavir had a higher IR of CVDe of 9·74 (8·24, 11·52)/1000
person-years as compared to 5·75 (5·30, 6·24)/1000 person-years for those exposed to other antiretroviral agents. The
hazard (HR; 95% CI) of CVDe was increased for current (1·43; 1·18, 1·73), recent (1·41; 1·16, 1·70), and cumulative [(1·18;
1·06, 1·31) per year] exposure to abacavir. The risk for cumulative exposure followed a bell-shaped dose-response curve
peaking at 24-months of exposure. Risk was similarly elevated among participants free of pre-existing heart disease or
history of illicit substance use at baseline.

Conclusion: Current, recent, and cumulative use of abacavir was associated with an increased risk of CVDe. The findings
were consistent irrespective of underlying cardiovascular risk factors.

Keywords: HIV, Abacavir, Anti-retroviral therapy, Cardiovascular disease

Background
Cardiovascular disease (CVD) accounts for approxi-
mately 16% of deaths among persons living with HIV
(PLWH) [1]. Risk factors for CVD are more prevalent
among PLWH [2], and use of various antiretroviral
(ARV) drugs has been shown to be associated with an
increased risk of CVD [3]. With rapid expansion of anti-
retroviral therapy (ART) coverage both domestically and

abroad, researchers and clinicians have become increas-
ingly aware of potential ARV drug-related adverse
events. Whether the commonly used ARV drug abacavir
is associated with an increased risk of CVD has been in-
tensely debated. Abacavir sulfate is a guanosine analog
nucleoside reverse transcriptase inhibitor that possesses
retroviral suppressive properties similar to tenofovir [4],
and is a commonly prescribed backbone ARV agent.
However, the writing of prescriptions of abacavir de-
clined after the Data Collection on Adverse Events of
Anti-HIV Drugs (D:A:D) study group reported in 2008
an increased risk of acute myocardial infarction (AMI)
among PLWH exposed to abacavir [5–7]. Independent
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investigations that were subsequently carried out have
both supported [7–17] and refuted [18–23] the D:A:D
study group’s findings.
While studies conducted more recently have generally

suggested an increased risk of CVD from abacavir ex-
posure [8, 10, 14, 17], they were limited by few out-
comes, with results occasionally underpowered [8, 17].
Failure to identify a clear underlying biological mechan-
ism to explain the epidemiologic findings has added to
the deliberation [24]. Furthermore, there has also been a
lack of consensus regarding whether the risk of CVD
from exposure to abacavir reverses within a few
months of stopping the drug [5, 16] and a lack of un-
derstanding on how the risk varies as exposure accu-
mulates. In this study, we have sought to address
these limitations by investigating the risk of CVD
events (CVDe) from current, recent, and cumulative
exposure to abacavir among PLWH using conven-
tional and causal statistical methods.

Methods
Study design, sample collection and participants
The risk of CVDe was assessed among PLWH who
started ARV drugs in the U.S. between October 1, 2009
and December 31, 2014. Data were obtained from med-
ical and prescription claims data included in the IMS’
PharMetrics Plus database. October 1, 2009 was the
earliest possible date for complete availability of relevant
data; ART prescription history prior to this date was not
available. PharMetrics Plus is a large health plan insur-
ance claims database in the U.S., and is comprised of ad-
judicated claims for more than 150 million unique
enrollees from across four regions of the U.S. [25]. The
data undergo a series of quality checks to minimize er-
rors. This study used a pre-defined algorithm (Fig. 1) to
extract and define the study population of PLWH ex-
posed to any ART in the database. The study popula-
tion was restricted to those ≥18 years of age. The
baseline time point was defined as the date of ART
initiation in the database and individual follow up
time was censored at the first of three events after
baseline: 1) first occurrence of CVDe, 2) last recorded
date of ART receipt, 3) December 31, 2014. The
study was approved by the Committee for Protection
of Human Subjects at the University of California,
Berkeley.

Exposure, covariate, and outcome definitions
Exposures to specific ARV agents were identified by gen-
eric product identifier (GPI) codes. Person-time of ex-
posure to abacavir was compared to exposure to ARV
agents other than abacavir. Any two prescriptions for an
ARV agent separated by <30 days were combined to rep-
resent a single continuous exposure; gaps ≥30 days were

not combined and this person-time was not included in
the analysis. These data are longitudinal, and each sub-
ject’s follow up time was divided into consecutive one-
month periods during which treatment was allowed to
vary. The values of covariates were updated at the start
of each month. The outcome of CVDe for an individ-
ual was defined as the first occurrence of an AMI or
receipt of a coronary artery intervention procedure
(i.e. percutaneous coronary intervention or coronary
artery bypass graft) after baseline. AMI and coronary
artery intervention procedures were ascertained using
the International Classification of Disease, 9th Revi-
sion, Clinical Modification (ICD-9-CM) or Current
Procedural Terminology (CPT) codes, respectively
(Additional file 1: Table S1). The ICD-9 code used for
AMI (410.xx) has been previously validated in another
claims database [26].
The temporal ordering of covariate, treatment, and

outcome allowed for a time-varying analysis, and the
opportunity for causal interpretations. The first ob-
servation of a time-dependent covariate corresponded
to its baseline value and once a health condition de-
veloped, an individual was assumed to have the con-
dition for the remainder of the study. Current
exposure to abacavir was defined as exposure (yes/
no) during each one-month observation period. Re-
cent exposure was defined as exposure (yes/no) in
the previous six months (inclusive of the current
month). Cumulative exposure was defined as the
total duration of exposure an individual had received
at a particular time point in one-month increments,
updated monthly. Duration of exposure ceased to ac-
cumulate upon discontinuation of the drug but re-
sumed if the drug was restarted. HIV-infection status
and covariates were ascertained using the ICD-9-CM
or CPT codes (Additional file 1: Table S1).

Statistical analysis
The risk of CVDe from a current, recent, and cumula-
tive exposure to abacavir was estimated by the param-
eters of pooled logistic regression marginal structural
models using stabilized inverse probability of treat-
ment weights (sIPTW) [27]. The sIPTW was gener-
ated from four treatment models – two each for the
numerator and the denominator of the weight [16].
For the denominator, the time point specific probabil-
ity of exposure initiation was first estimated by fitting
a main term pooled logistic regression to data up to
the individual’s first month of receiving the exposure
or end of follow up for those who were never exposed.
The probability of exposure continuation was then es-
timated by fitting the model to data after the first
month of starting the exposure. The denominator was
modelled as a function of baseline covariates: gender,
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tobacco use/smoking (ever), substance or alcohol
abuse (ever), serologic evidence of hepatitis B and C
infections, history of stroke, cancer or old myocardial
infarction, and time-dependent covariates: age, year of
ART initiation, body weight, receipt of hypoglycemic
agents (i.e. sulfonylureas, biguanides, insulin, thiazoli-
dinedione) or medications for CVDe (i.e. aspirin, beta-
blocker, angiotensin converting enzyme inhibitor,
angiotensin receptor blocker, calcium channel blocker,
statins) or diagnoses of: chronic kidney disease (CKD),
dyslipidemia, heart failure, cardiac dysrhythmia, ath-
erosclerosis, diabetes mellitus, and hypertension. The
exposure continuation model additionally contained a
variable for past month’s exposure status. The prob-
abilities for the numerator of the sIPTW were simi-
larly modelled but as a function of baseline covariates

only. The follow-up time was modeled as a function of
natural cubic splines with three internal knots placed
at 25th, 50th and 75th percentiles. The marginal struc-
tural model was adjusted for the sIPTW and the base-
line covariates. Same treatment weights were used for
estimation of CVDe risk from current, recent, and cu-
mulative exposure to abacavir. In order to assess the
change in risk over time, the adjusted and marginal
models were fit as a function of categories of cumula-
tive exposure, i.e., never exposed, 1–6, 7–12, 13–18,
19–24, and >25 months of exposure. In sensitivity
analyses, the study population was restricted to indi-
viduals free of CVD at baseline, and to individuals
without a history of alcohol and substance abuse at
baseline. Sensitivity analyses were additionally carried
out to assess if the risk of CVDe from abacavir

Fig. 1 Algorithm for defining the study cohort from the IMS’ PharMetrics Plus claims database. GPI: generic product identifier; CPT: current procedural
terminology; ICD-9-CM: International Classification of Disease, 9th Revision, Clinical Modification. aAdditional filter (age ≥ 18) applied to obtain final cohort
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exposure differed after adjusting for other anti-
retroviral agents. Using the same sIPTW models, we
tested for interaction to see whether risk of CVDe
from current abacavir exposure is modified in the
presence of 13 different risk factors (Additional file 1:
Table S5). In addition to the marginal structural re-
sults, corresponding results from unadjusted and ad-
justed Cox models were calculated. This study
assumes uninformative censoring. Data were extracted
and processed from the main claims databases using
TERADATA (Dayton, OH), SAS version 9.1 (SAS In-
stitute, Cary, NC), and STATA version 13.1 (Stata-
Corp, College Station, TX). The marginal structural
models were implemented in STATA version 13.1,
based on Fewell et al. [28]. The rationale, definition,
and implementation of the marginal structural models
are described in Additional file 1: Appendix 1.

Results
Study population and incidence rates
There were 72,733 participants contributing 114,470
person-years of exposure to antiretroviral agents. On
average, participants were exposed to ART for
1.5 years. The mean age of the study population was
46 years and 82% were males. The characteristics of
the study population at baseline and summary of ex-
posure to various antiretroviral drugs are described
in Tables 1, 2 respectively. Overall, 714 CVDe oc-
curred at an incidence rate of 6.23 (95% CI: 5.80,
6.71)/1000 person-years. Of the 714 outcomes, 137
were observed over 14,060 person-years of current
exposure to abacavir at an incidence rate of 9.74
(95% CI: 8.24, 11.52)/1000 person-years, as compared
to 577 outcomes over 100,410 person-years with an
incidence rate of 5.75 (95% CI: 5.30, 6.24)/1000
person-years for those currently exposed to other
ARV drugs. The incidence rate was highest for those
exposed to abacavir between 13 and 18 months
(11.32/1000 person-years) (Table 3). Of the 714
CVDe, 548 were cases of AMI. The overall incidence
rate of AMI was 4.78 (95% CI: 4.39, 5.19)/1000
person-years (Additional file 1: Table S2). We calcu-
lated a population attributable risk (PAR) associated
with abacavir exposure as:

Factors associated with Abacavir use
At baseline, abacavir recipients had a higher prevalence of
essential hypertension, diabetes mellitus, chronic kidney
disease (CKD), dyslipidemia, lipodystrophy, heart disease,
and use of cardiovascular medications (Table 1). In the
pooled logistic regression model, older age, a diagnosis of
CKD, symptomatic HIV infection, and presence of lipody-
strophy were associated with an increased probability of
receiving abacavir (Additional file 1: Table S3).

Predictors of outcome
The sIPTW models showed the risk of CVDe (HR; 95%
CI) was increased for current (1.43; 1.18, 1.73), recent
(1.41; 1.16, 1.70) and cumulative (1.18; 1.06, 1.31) expos-
ure (per year) to abacavir (Table 4). Separate models
were run for each of current, recent, and cumulative ex-
posure. The unadjusted and adjusted Cox models also
showed increased risk for these exposures (Table 4). On
further assessment of the risk from cumulative exposure,
the HR varied with the duration of exposure in an
inverted U-shaped pattern (Table 5 and Fig. 2); the rela-
tive hazard continued to increase up to 24 months of ex-
posure, after which it decreased to non-significant levels
but remained elevated compared to those never exposed
to abacavir. Older age, male sex, tobacco use, other heart
diseases, prior AMI, use of CVD-related medications,
diabetes mellitus, and dyslipidemia were each associated
with increased hazard of CVDe in the adjusted Cox
model (Additional file 1: Table S4). We also assessed
whether the risk was reversible after six months of stop-
ping abacavir by comparing those with any abacavir ex-
posure prior to but not in the last six months including
the current month to those never exposed and found
that the risk (HR; 95% CI) remained elevated (sIPTW
model: 1.69; 0.89, 3.20; adjusted Cox model: 2.08; 1.17,
3.71). In tests of interactions, we observed that the risk
of CVDe associated with abacavir use was more pro-
nounced for age < 45 years (interaction p-value: 0.028)
and for people without prior heart disease (interaction
p-value: 0.016) (Additional file 1: Table S5).

Sensitivity analyses
In a sensitivity analysis, we observed a 53% higher risk
of CVDe (sIPTW model) for current exposure to

Risk of CVDe in Total Population‐Risk of CVDe in Unexposed Population
Risk of CVDe in Total Population

0
@

1
A�100

¼ 6:23=1000ð Þ‐5:75=1000
6:23=1000ð Þ

0
@

1
A�100 ¼ 8%:
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abacavir among individuals without a prior AMI or heart
disease at baseline (Additional file 1: Table S6). This re-
lationship was also assessed by excluding other heart
diseases (heart failure, cardiac arrhythmia, atheroscler-
osis, or receipt of cardiovascular medications) from the
adjustment set of covariates for both the marginal and
the adjusted Cox model, with similar results. The risk

also remained elevated by 41% when the study population
was restricted to individuals not using illicit substances or
alcohol at baseline (Additional file 1: Table S6). We further
tested for CVDe risk from abacavir use after adjusting for
cumulative exposure to other antiretroviral agents (teno-
fovir, emtricitabine, zidovudine, lamivudine, lopinavir, ata-
zanavir, darunavir, efavirenz, nevirapine, rilpivirine, and
raltegravir) using sIPTW models and found elevated risk
(HR; 95% CI) for current (1.38; 1.12, 1.68), recent (1.34;
1.09, 1.64), and cumulative exposure (1.16; 1.03, 1.31). We
then replicated the D:A:D model [5] for cumulative expos-
ure by including recent exposure in the same model as cu-
mulative exposure and observed that although our hazard
ratio estimate for risk from cumulative exposure (per year)
remained elevated (HR:1.08; 95% CI: 0.89, 1.30), it de-
creased to a non-statistically significant level. When we
modelled the risk by partitioning the cumulative exposure
into various durations, we observed a similar increased
risk [HR (95% CI)] pattern as observed in our primary
analysis (Table 4): 1–6 months: 1.91 (0.95–3.83); 7–
12 months: 2.58 (1.16–5.71); 13–18 months: 2.68 (1.17–
6.11); 19–24 months: 2.90 (1.37–6.17); and ≥25 months:
2.13 (0.93–4.88).

Discussion
In a large database claims-based study, we found an in-
creased risk of CVDe associated with exposure to
current, recent, and cumulative exposure to abacavir
using both adjusted Cox and marginal structural models
estimated with inverse probability treatment weights.
The overall incidence rate of AMI in this study was
4.78/1000 person-years, which compares to 3.3/1000
person-years in the 2008 D:A:D study. AMI incidences
of 1.41/1000 people and 1.2/1000 people were seen in
the general population in Olmstead county in Minnesota
in 2006 and in men 35–65 years of age in the Framing-
ham study population, respectively [29, 30]. This rela-
tively higher incidence of AMI in the PLWH could be
due to HIV infection [31–33], ART use [3], or both;
PLWH have been shown to have more risk factors for
CVD as compared to the general population [31–33].
The incidence rates of AMI associated with exposure to
abacavir in this study (6.9/1000 person-years) and in the
D:A:D study (6.1/1000 person-years) were ~4–5 fold
higher than the general population estimates and ap-
proximately 2-fold higher than in the general population
of PLWH [2, 31–34]. Some of the difference in results
between this study and the D:A:D study including higher
incidence rate of AMI in this study could be because
participants in this study were all exposed to ART
whereas the D:A:D study included individuals who had
not yet started ART, as well as those who had discontin-
ued ART totally. We calculated a population attributable
risk of 8%. This means 8% (n = 57) of the total CVDe

Table 1 Baseline characteristics of persons living with HIV in the
US receiving antiretroviral agents, stratified by exposure to
abacavir, in the IMS PharMetric Plus claims database from
October 1, 2009 through December 31, 2014

Characteristic Exposed to abacavir
(n = 8530)

Exposed to other
ARV agents (reference
group) (n = 64,203)

Age, median (IQR) 48 (43–54) 46 (39–52)

Male 6889 (80.76) 52,402 (81.62)

Region

East 2057 (24.11) 15,336 (23.89)

Mid-West 1370 (16.06) 12,104 (18.85)

South 3986 (46.73) 29,179 (45.45)

West 1117 (13.09) 7584 (11.81)

Year of ART initiation in the database

2009 3590 (42.09) 20,440 (31.84)

2010 1120 (13.13) 8578 (13.36)

2011 1147 (13.45) 9121 (14.21)

2012 801 (9.39) 7824 (12.19)

2013 643 (7.54) 7259 (11.39)

2014 1229 (14.41) 10,981 (17.10)

Ever substance abuse 1290 (15.12) 11,837 (18.44)

Ever alcohol abuse 273 (3.20) 2750 (4.28)

Ever tobacco use/smoking 1198 (14.04) 10,385 (16.18)

Body mass index > 24.9 116 (1.36) 1130 (1.76)

Essential hypertension 766 (8.98) 5026 (7.83)

Diabetes mellitus 366 (4.29) 2049 (3.19)

Chronic Kidney Disease 265 (3.11) 492 (0.77)

Dyslipidemia 820 (9.61) 5552 (8.65)

Lipodystrophy 36 (0.42) 129 (0.20)

Pre-existing heart diseasea 242 (2.84) 1768 (2.75)

Receipt of medications for
heart diseaseb

819 (9.60) 4816 (7.50)

History of stroke 25 (0.29) 160 (0.25)

Symptomatic HIV disease 2313 (27.12) 18,839 (29.34)

Hepatitis B 69 (0.81) 612 (0.95)

Hepatitis C 141 (1.65) 896 (1.40)

History of cancer 438 (5.13) 4152 (6.47)

All reported as N (%) unless otherwise stated
aPrior myocardial infarction, heart failure, cardiac dysrhythmias, and
atherosclerosis
bAspirin, beta-blocker, statins, angiotensin converting enzyme inhibitor,
angiotensin receptor blocker, calcium channel blocker
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Table 2 Summary of exposure to various antiretroviral drugs among people living with HIV in the US in the IMS Pharmetrics Plus
Claims database stratified by regimens containing and not containing abacavir from October 1, 2009 through December 31, 2014

Antiretroviral drug Total exposure Exposure in antiretroviral
regimens containing abacavir

Exposure in antiretroviral regimens
not containing abacavir

Tenofovir

Persons with any exposure – n (%) 55,804 (76.7) Not calculated Not calculated

Total person-years of exposure 80,939 2528 78,410

Cumulative exposure (years) per person – mean 2.1 0.6 2.3

Lamivudine

Persons with any exposure – no. (%) 14,106 (19.4) Not calculated Not calculated

Total person-years of exposure 19,886 10,736 9150

Cumulative exposure (years) per person – mean 0.5 2.2 0.3

Zidovudine

Persons with any exposure – n (%) 6883 Not calculated Not calculated

Total person-years of exposure 9665 2074 7591

Cumulative exposure (years) per person – mean 0.3 0.5 0.2

Emtricitabine

Persons with any exposure – n (%) 53,377 (73.4) Not calculated Not calculated

Total person-years of exposure 76,466 693 75,774

Cumulative exposure (years) per person – mean 1.9 0.2 2.2

Efavirenz

Persons with any exposure – n (%) 29,795 Not calculated Not calculated

Total person-years of exposure 45,930 2466 43,464

Cumulative exposure (years)
per person – mean

1.2 0.6 1.3

Nevirapine

Persons with any exposure – n (%) 3879 Not calculated Not calculated

Total person-years of exposure 5880 1136 4744

Cumulative exposure (years) per person – mean 0.1 0.04 0.1

Rilpivirine

Persons with any exposure – n (%) 4345 Not calculated Not calculated

Total person-years of exposure 3778 103 3675

Cumulative exposure (years) per person – mean 0 (0–0) 0 (0–0) 0 (0–0)

Atazanavir

Persons with any exposure – n (%) 10,470 Not calculated Not calculated

Total person-years of exposure 13,862 3026 10,836

Cumulative exposure (years) per person – mean 0.4 0.6 0.3

Darunavir

Persons with any exposure – n (%) 8871 Not calculated Not calculated

Total person-years of exposure 10,394 1310 9084

Cumulative exposure (years) per person – mean 0.3 0.3 0.3

Lopinavir

Persons with any exposure – n (%) 5596 Not calculated Not calculated

Total person-years of exposure 7150 1230 5920

Cumulative exposure (years) per person – mean 0.2 0.3 0.2

Fosamprenavir

Persons with any exposure – n (%) 1964 Not calculated Not calculated
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risk in the PLWH could be prevented if abacavir was
not used, assuming a causal relationship between abaca-
vir use and CVDe risk.
In an attempt to characterize an underlying biological

mechanism for the increase in CVDe risk associated
with abacavir use, we assessed how the risk varied with
duration of exposure. The relative hazard of AMI in-
creased with increasing duration of exposure in an
inverted U-shaped pattern, peaking between 13 and
24 months of exposure and leveling off thereafter, sug-
gesting a dose response relationship between cumulative
time exposed to abacavir and risk, up to 24 months. This
result agrees with earlier finding by Young et al. in
which they first showed that the risk of CVD increased
with increasing duration of exposure, with greatest risk
between 6 and 36 months and exposure beyond
36 months adding little to the risk, suggesting a dose-
response pattern. We observed the dose-response rela-
tionship for various durations of cumulative exposure
after controlling for recent exposure as well in addition
to other variables in the model; the D:A:D study group
[5] had reported that the observed risk for cumulative
exposure disappeared after adjusting for recent expos-
ure, meaning that the CVD risk existed only up to first
6 months of exposure, after which the risk reversed. In a
separate model, we tested the risk reversibility and found
a 69% increased risk of CVDe among those who had
stopped abacavir prior to last six months, suggesting a
risk not reversible within six months of stopping the

drug. We did not formally test whether the inverted U-
shaped curve described for cumulative exposure pro-
vides a better fit to the observed risk estimates than a
simple linear association.
Whereas this and Young et al.’s study results do not

support an underlying mechanism related to immediate
exposure to abacavir, the results are not consistent with
an atherogenic mechanism, in which an ongoing or in-
creasing risk would be expected with an increasing dur-
ation of exposure, without necessarily reaching a peak
effect and leveling off after 24 months. The finding of an
early peak in the increased risk of AMI in the course of
abacavir treatment is helpful in understanding how risk
may change with continuing versus changing therapy.
The study results presented here suggest a reversible but
more gradual underlying mechanism with a longer last-
ing impact that regresses more slowly after removal of
the exposure.
Prior work has suggested that abacavir-induced plate-

let hyper-reactivity and aggregation could potentially
lead to thrombosis and myocardial infarction [35–37].
Specifically, abacavir may induce platelet hyper-reactivity
by competitive inhibition of a nitric oxide-induced sol-
uble guanylyl cyclase via its active metabolite, carbovir-
triphosphate, leading to a decreased production of cyclic
guanosine monophosphate, an inhibitor of platelet ag-
gregation and secretion [24, 35, 36, 38]. It is possible
that abacavir may trigger an acute platelet response lead-
ing to endothelial injury with a longer lasting impact. It

Table 2 Summary of exposure to various antiretroviral drugs among people living with HIV in the US in the IMS Pharmetrics Plus
Claims database stratified by regimens containing and not containing abacavir from October 1, 2009 through December 31, 2014
(Continued)

Antiretroviral drug Total exposure Exposure in antiretroviral
regimens containing abacavir

Exposure in antiretroviral regimens
not containing abacavir

Total person-years of exposure 2699 698 2001

Cumulative exposure (years) per person – mean 0.1 0.2 0.1

Raltegravir

Persons with any exposure – n (%) 10,537 Not calculated Not calculated

Total person-years of exposure 13,663 1731 11,932

Cumulative exposure (years) per person – mean 0.4 0.4 0.4

Table 3 Incidence rate (IR) of cardiovascular disease eventsa (CVDe) among persons living with HIV exposed to abacavir for various
durations

Duration of exposure to abacavir (months) Person-years No. of CVDe Incidence rate per 1000 people (95% CI)

Never exposed 98,857 561 5.68 (5.22, 6.16)

1–6 4757 51 10.72 (8.15, 14.11)

7–12 3125 31 9.92 (6.98, 14.11)

13–18 2208 25 11.32 (7.65, 16.76)

19–24 1663 18 10.82 (6.82, 17.18)

>25 3860 28 7.25 (5.01, 10.51)
aIncludes acute myocardial infarction and coronary intervention procedures
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is also unclear whether abacavir may exert its effect on
CVD risk through an increase in inflammatory bio-
markers. While the SMART/INSIGHT study investiga-
tors [15], Kristoffersen et al. [39], and Hileman et al. [40]
showed evidence for a possible role of inflammatory bio-
markers in causing CVD among abacavir users [e.g. in-
creased levels of high sensitivity c-reactive protein
(hsCRP) and interleukin-6], several other studies have
shown that levels of inflammatory biomarkers such as
hsCRP, interleukin-6, selectin P and E, D-dimer, vascular
adhesion molecule-1, intercellular adhesion molecule-1,
and tumor necrosis factor alpha are not elevated after
exposure to abacavir [41–54]. Future interdisciplinary
studies may explore these areas by bridging basic, trans-
lational and clinical science to provide additional in-
sights into the mechanisms underlying abacavir-
associated cardiovascular risk. We have not established a
clear reason for observing a higher risk of CVDe

associated with abacavir use among the younger age-
group and individuals without a pre-existing cardiac
condition in the test of interactions. While we acknow-
ledge the exploratory nature of the analyses for inter-
action testing with the possibility that the results could
be due to chance, the observation of a higher CVDe risk
in individuals without prior heart disease may stand to
support the finding of an increased risk in younger age
people. The increased CVDe risk in younger age people
could also reflect a higher prevalence of cocaine and in-
jection drug use among them [19]. It would be import-
ant to test in other populations whether CVD risk
associated with abacavir use differs by age.
We used the sIPTW approach because individuals

with certain risk factors for CVD such as CKD,
hypertension, diabetes mellitus, and dyslipidemia, may
be preferentially channeled into (or away from) re-
ceiving abacavir based on its known toxicity in the

Table 4 Risk of cardiovascular disease events associated with current, recent, and cumulative exposure to abacavir among persons
living with HIV, in the IMS PharMetric Plus claims database from October 1, 2009 through December 31, 2014

Exposurea Unadjusted Cox Model HR
(95% CI; p value)

Adjusted Cox Model HRb

(95% CI; p value)
Marginal Structural Model
(sIPTW) HRc (95% CI; p value)

Currentd 1.70 (1.41, 2.05; p < 0.001) 1.32 (1.09, 1.60; p = 0.004) 1.43 (1.18, 1.73; p = 0.001)

Recente 1.66 (1.38, 2.00; p = 0.001) 1.28 (1.06, 1.54; p = 0.01) 1.40 (1.16, 1.69; p = 0.001)

Cumulative (per year) 1.24 (1.12, 1.37; p < 0.001) 1.13 (1.02, 1.25; p = 0.02) 1.18 (1.06, 1.31; p = 0.002)
aSeparate models run for each of current, recent, and cumulative exposure to abacavir
bAdjusted for baseline covariates: gender, tobacco use (ever), substances or alcohol abuse (ever), symptomatic HIV disease, serologic evidence of hepatitis B & C
infections, history of stroke, history of cancer, prior myocardial infarction, and time-dependent covariates: age, calendar year, body weight, receipt of anti-
hyperglycemic agents (sulfonylureas, biguanides, insulin, thiazolidinedione), receipt of medications for heart disease (i.e. aspirin, beta-blocker, angiotensin converting
enzyme inhibitor, angiotensin receptor blocker, calcium channel blocker), and diagnoses of: diabetes mellitus, chronic kidney disease, dyslipidemia, heart failure, cardiac
dysrhythmia, atherosclerosis, and hypertension
cIn addition to adjusting for weights generated from the treatment model using the time-fixed and time-dependent covariates in the adjusted Cox model, the
marginal models are adjusted for time-fixed/baseline covariates: sex, ever tobacco use, ever alcohol or substance abuse, symptomatic HIV disease, serologic
evidence of hepatitis B & C infections, history of stroke, history of cancer, prior myocardial infarction, and baseline values of time-dependent covariates: age,
calendar year, receipt of anti-hyperglycemic agents, receipt of medications for heart disease, and diagnoses of: diabetes mellitus, chronic kidney disease,
dyslipidemia, heart failure, cardiac dysrhythmia, atherosclerosis, and hypertension
dReferent group is those not currently exposed to abacavir
eReferent group is those not recently exposed to abacavir

Table 5 Risk of cardiovascular disease among HIV-infected individuals exposed to abacavir for various durations

Duration of exposure (months) HR (95% CI; p value)
Unadjusted Cox Model

Adjusted Cox Model HRa

(95% CI; p value)
Marginal Structural Model HRb

(95% CI; p value)

Never exposed Referent Referent Referent

1–6 1.66 (1.23, 2.25; p = 0.001) 1.24 (0.92, 1.67; p = 0.163) 1.25 (0.92, 1.70; p = 0.150)

7–12 1.69 (1.15, 2.47; p = 0.007) 1.27 (0.87, 1.86; p = 0.219) 1.41 (0.97, 2.06; p = 0.073)

13–18 2.28 (1.48, 3.54; p < 0.001) 1.71 (1.10, 2.65; p = 0.016) 1.78 (1.16, 2.72; p = 0.009)

19–24 2.09 (1.26, 3.47; p = 0.004) 1.62 (0.98, 2.69; p = 0.060) 1.90 (1.16, 3.11; p = 0.011)

>25 1.45 (0.97, 2.18; p = 0.071) 1.20 (0.80, 1.80; p = 0.386) 1.30 (0.86, 1.97; p = 0.208)
aAdjusted for baseline covariates: gender, tobacco use (ever), substances or alcohol abuse (ever), symptomatic HIV disease, serologic evidence of hepatitis B & C
infections, history of stroke, history of cancer, prior myocardial infarction, and time-dependent covariates: age, calendar year, body weight, receipt of anti-
hyperglycemic agents, receipt of medications for heart disease, and diagnoses of: diabetes mellitus, chronic kidney disease, dyslipidemia, heart failure, cardiac
dysrhythmia, atherosclerosis, and hypertension
bIn addition to adjusting for weights generated from the treatment model using all the time-fixed and time-dependent covariates in the adjusted Cox model, the
marginal model is adjusted for time-fixed/baseline covariates: sex, ever tobacco use, ever alcohol or substance abuse, symptomatic HIV disease, serologic evidence
of hepatitis B & C infections, history of stroke, history of cancer, prior myocardial infarction, and baseline values of time-dependent covariates: age, calendar year,
receipt of anti-hyperglycemic agents, receipt of medications for heart disease, and diagnoses of: diabetes mellitus, chronic kidney disease, dyslipidemia, heart
failure, cardiac dysrhythmia, atherosclerosis, and hypertension
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presence of these conditions. The sIPTW approach
may also be necessary because post-baseline values of
these variables may simultaneously serve as con-
founders and causal intermediates; adjusting for these
through traditional methods can lead to biased results
[55]. Under such settings, the use of inverse probabil-
ity weights provides a valuable tool for balancing con-
founders across exposure groups without conditioning
on variables affected by treatment [55, 56]. Some of
our results for various durations of cumulative expos-
ure appreciably differed between conventional Cox
models and marginal structural models. For example,
the hazard ratios (95% CI, p value) for 7–12 months,
13–18 months, and 19–24 months of cumulative ex-
posure were 1.27 (0.87–1.86; p = 0.219), 1.71 (1.10,
2.65; p = 0.016), and 1.62 (0.98, 2.69; p = 0.060), re-
spectively, in adjusted Cox models. The corresponding
hazard ratios from marginal structural models were
1.41 (0.97, 2.06; p = 0.073), 1.78 (1.16, 2.72;
p = 0.009), and 1.90 (1.16, 3.11; p = 0.011) (Table 4).
A key strength of this study is the application of con-

ventional and robust methods to address key study ques-
tions while using a very large U.S. health-plan dataset
containing longitudinal information on usage of ART in
>70,000 PLWH receiving care across the U.S. The re-
cency of the data is an asset. Most studies that showed
an association between abacavir use and CVD risk so far
were hospital based [5, 9, 10, 14, 16–19] and hence may
be subject to similar bias, such as channeling bias, that
could arise from specific prescription behavior of physi-
cians. Therefore, reproduction of the results in another
representative population, such as that enrolled in the
claims database, would be relevant and important. The
similarity of these results to those from prior studies, the

reproducibility of the results in the sensitivity analyses,
and the finding of a background incidence rate of AMI
comparable to that found in other studies are reassuring.
A limitation of the study is that the ICD-9 and CPT
diagnostic codes used may be prone to coding errors;
however, such errors are likely to affect the exposure
groups non-differentially and may not bias the study re-
sults. It is possible that information on covariates, such
as body-weight, for which re-imbursement may not be
sought could be under-reported in the database. Again,
we expect this problem to exist non-differentially across
exposure groups. This is an observational cohort study
and is therefore subject to confounding from unmeas-
ured factors and possible channeling bias; we have
attempted to account for the latter by adopting an
sIPTW-based analytic approach. Covariates that could
be relevant but not available in the claims database and
hence missing in our study are race/ethnicity, CD4 cell
count, and HIV viral load. Adjustment for CD4 cell
count and HIV viral load made little difference to the
relative rate of AMI in a prior study [5]. There is poten-
tial for bias in the study results from residual confound-
ing that may arise from the binary categorization of
certain variables in the study, rather than having a
graded continuous response. We assumed uninformative
censoring for the study because participants in both the
exposure groups, i.e., PLWH receiving abacavir based
ART regimen and PLWH receiving non-abacavir based
ART regimen, may be at similar risk of adverse HIV–re-
lated life events that may cease their continued enrollment
into the health-plan and hence representation in the data-
base. We chose AMI and/or coronary artery interventions
only to define CVDe so as to be as specific as possible
with the study outcome’s representation of ischemic CVD;
however, we might use a broader definition including
other cardiac conditions or cerebrovascular events for the
study outcome.

Conclusions
In summary, exposure to abacavir is associated with an
increased risk of CVDe. We recommend a careful con-
sideration of the risks and benefits of abacavir treatment
while formulating antiretroviral treatment regimens with
patients.

Additional file

Additional file 1: Table S1. ICD-9-CM and CPT codes for defining
various covariates and outcomes. Table S2. Age-specific incidence rate
(IR) of acute myocardial infarction (AMI) among persons living with HIV
receiving antiretroviral therapy. Table S3. Factors associated with
initiation of abacavir among persons living with HIV, by pooled logistic
regression. Table S4 The influence of various risk factors on the
development of CVD among persons living with HIV receiving anti-
retroviral therapy. Table S5 Risk of CVD from current exposure to

Fig. 2 Risk of cardiovascular disease events associated with
increasing durations of exposure to abacavir as compared to those
never exposed. See Table 3 and S4 table for covariate adjustment
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abacavir in sub-groups of variables at baseline (test of interactions).
Table S6 Risk of cardiovascular disease from exposure to abacavir
among persons living with HIV free of heart diseasea or substance
or alcohol abuse at baseline. Appendix 1. Detailed approach to developing
marginal structural models. (DOCX 58 kb)
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