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Pseudospectral particle-in-cell formulation with arbitrary charge and current-density1

time dependencies for the modeling of relativistic plasmas2

Olga Shapoval,1 Edoardo Zoni,1 Remi Lehe,1 Maxence Thévenet,2 and Jean-Luc Vay1, ∗3

1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA4

2Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany5

(Dated: August 23, 2024)6

This paper introduces a formulation of the particle-in-cell (PIC) method for the modeling of
relativistic plasmas, which leverages the ability of the pseudo-spectral analytical time-domain solver
(PSATD) to handle arbitrary time dependencies of the charge and current densities during one
PIC cycle (applied to second order polynomial dependencies here). The formulation is applied to a
modified set of Maxwell’s equations that was proposed earlier in the context of divergence cleaning,
and to recently proposed extensions of the PSATD-PIC algorithm. Detailed analysis and testings
revealed that, under some condition, the formulation can expand the range of numerical parameters
under which PIC simulations are stable and accurate when modeling relativistic plasmas such as,
e.g., plasma-based particle accelerators.

I. INTRODUCTION7

Simulations of relativistic plasmas often rely on the electromagnetic particle-in-cell (PIC) method [1–3], with vari-8

ations of the method that have been proposed and are chosen based on the application. For the modeling of plasma-9

based accelerators [4, 5], a variation that has gained in popularity uses the “infinite-order” (in space and time)10

pseudo-spectral analytical time-domain (PSATD) method [6, 7], instead of the (almost universally adopted) second-11

order (in space and time) finite-difference time-domain (FDTD) “Yee” method [8], to solve Maxwell’s equations at12

discrete points in space and time. In contrast to the Yee solver, the PSATD solver offers no numerical dispersion13

and no Courant condition on the field solve. Extensions of the PSATD PIC method includes the use of finite-order14

spatial stencils [9, 10], alternating nodal-staggered representations of the field quantities during one PIC loop [11],15

time-averaging of the fields gathered onto the particles [12], and integration of the equations in a Galilean frame16

moving at a given velocity (a.k.a. Galilean PSATD PIC or Galilean PIC) [13, 14]. The combination of the Galilean17

PIC method with the other extensions has led to stable modeling of plasma accelerators [13, 14], free of the numerical18

Cherenkov instability (NCI) [15] when using the Lorentz boosted frame method to speed up simulations [16]. In some19

cases, however, the method, which relies on the user setting a predefined Galilean velocity, can become inaccurate20

when it cannot be assumed that the local plasma velocity is close to that predefined velocity. As a possible remedy,21

this paper introduces and starts exploring a formulation of the PIC algorithm where the standard assumption that22

the current density that is produced by the particles is constant over a time step is relaxed.23

The reminder of the paper is organized as follows. The formulation of the algorithm is derived first in section II.A,24

followed by the presentation of its finite-order stencil, alternating nodal-staggered and time-averaged extensions in25

section II.B. The connection between the algorithm and the Galilean PIC formulation is discussed next in section26

II.C. The effectiveness of the algorithm at mitigating the NCI is then explored theoretically and numerically on a27

simple uniform plasma case in section III.A. Finally, the scheme is tested in simulations of laser-plasma accelerators28

in a Lorentz boosted frame in section III.B.29

II. NEW PIC-JRhom ALGORITHM30

A. Presentation of the algorithm31

The following modified system of Maxwell’s equations is considered32

∂E

∂t
= c2∇×B − J

ε0
+ c2∇F , (1a)
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∂B

∂t
= −∇×E , (1b)

∂F

∂t
= ∇ ·E − ρ

ε0
. (1c)

In addition to the usual Maxwell-Faraday and Ampère-Maxwell equations, the system contains an extra equation for33

the scalar field F , which propagates deviations to Gauss’ law. (Note that, in the case where Gauss’ law is verified in34

the PIC simulation, Eq. (1c) leads to F = 0, and Eqs. (1a),(1b) reduce to the standard Maxwell’s equations.) These35

additional terms were introduced in [17] from the potential formulation in the Lorentz gauge and used as a propagative36

divergence cleaning procedure, as an alternate to the Langdon-Marder [18] or Marder [19] diffusive ones. This type37

of divergence cleaning was also proposed independently and analyzed more formally in [20]. A connection to the38

formulation of Eqs. (1) in potential form, derived more formally than in [17], is instructive and given in Appendix A.39

While the abovementioned earlier work [17, 20] considered this formulation in the context of the standard PIC40

method using FDTD discretization of Eqs. (1), this article focuses on the PSATD [1, 6, 21] discretization of Eqs. (1),41

where the equations are integrated analytically over one timestep, in Fourier space. The expression of (1) in Fourier42

space reads43

∂Ê

∂t
= ic2k × B̂ − Ĵ

ε0
+ ic2F̂k , (2a)

∂B̂

∂t
= −ik × Ê , (2b)

∂F̂

∂t
= ik · Ê − ρ̂

ε0
, (2c)

where f̂ denotes the Fourier transform of function f . The analytical integration of Eqs (2) in time requires an44

assumption on the time dependency of the current and charge densities Ĵ and ρ̂ over the integration interval, i.e.,45

over a timestep that goes from t = n∆t to t = (n+ 1)∆t. In the standard PSATD algorithm [6, 7], Ĵ is assumed to46

constant in time, and ρ̂ is assumed to be linear in time, within a given timestep ∆t.47

This paper considers more general time dependencies for Ĵ and ρ̂ within one timestep, which is divided into m48

subintervals of equal size δt = ∆t/m. During these subintervals, Ĵ and ρ̂ are considered to be either piecewise49

constant, piecewise linear, or piecewise quadratic in time. This is illustrated in Fig. 1. In the rest of this paper,50

the notation “PIC-JRhom” is used, where J and Rho (J,Rho ∈ {C (constant), L (linear), Q (quadratic)}) indicate51

the (piecewise) time dependency of the current density Ĵ and charge density ρ̂, respectively, and m is the number of52

subintervals. For example, “PIC-LL2” refers to the PIC algorithm with linear time dependency of both Ĵ and ρ and53

2 subintervals. Note that, in this notation, “PIC-CL1“ refers to the standard PSATD PIC algorithm [21], where Ĵ is54

constant and ρ̂ is linear in time over one time step.55

More specifically for each ℓth time subinterval ℓ ∈ Z ∩ [0,m− 1]:56

• When ρ̂(t) is assumed to be piecewise constant: macroparticles deposit their charge density in the middle of57

each time subinterval, i.e., at tn+(ℓ+1/2)/m ≡ n∆t + (ℓ + 1/2)δt, and ρ̂ is then assumed to be constant in each58

subinterval:59

ρ̂(t) = ρn+(ℓ+1/2)/m, t ∈ [n∆t+ ℓδt, n∆t+ (ℓ+ 1)δt].

• When ρ̂(t) is assumed to be piecewise linear: macroparticles deposit their charge density at the edge of each60

time subinterval, i.e., at tn+ℓ/m ≡ n∆t + ℓδt and tn+(ℓ+1)/m ≡ n∆t + (ℓ + 1)δt, and ρ̂ is then assumed to be61

linear in each subinterval:62

ρ̂(t) =
ρ̂n+(ℓ+1)/m − ρ̂n+ℓ/m

δt
(t− tn+(ℓ+1/2)/m) +

ρ̂n+(ℓ+1)/m + ρ̂n+ℓ/m

2
,

t ∈ [n∆t+ ℓδt, n∆t+ (ℓ+ 1)δt].

• When ρ̂(t) is assumed to be piecewise quadratic: macroparticles deposit their charge density at the middle63

and edge of each time subinterval, i.e., at tn+(ℓ+1/2)/m, and at tn+ℓ/m and tn+(ℓ+1)/m. ρ̂ is then assumed to be64

quadratic in each subinterval:65

ρ̂(t) =
2(ρn+(ℓ+1)/m − 2ρ̂n+(ℓ+1/2)/m + ρn+ℓ/m)

δt2
(t− tn+(ℓ+1/2)/m)2
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PC
Time dependency of Ĵ or ρ̂

constant (τ = 0) linear (τ = 1) quadratic (τ = 2)

aτ
J 0 0 Ĵn+(ℓ+1)/m − 2Ĵn+(ℓ+1/2)/m + Ĵn+ℓ/m

bτJ 0 Ĵn+(ℓ+1)/m − Ĵn+ℓ/m Ĵn+(ℓ+1)/m − Ĵn+ℓ/m

cτJ Ĵn+(ℓ+1/2)/m (Ĵn+(ℓ+1)/m + Ĵn+ℓ/m)/2 Ĵn+(ℓ+1/2)/m

aτρ̂ 0 0 ρ̂n+(ℓ+1)/m − 2ρ̂n+(ℓ+1/2)m + ρ̂n+ℓ/m

bτρ̂ 0 ρ̂n+(ℓ+1)/m − ρ̂n+ℓ/m ρ̂n+(ℓ+1)/m − ρ̂n+ℓ/m

cτρ̂ ρ̂n+(ℓ+1/2)/m (ρ̂n+(ℓ+1)/m + ρ̂n+ℓ/m)/2 ρ̂n+(ℓ+1/2)m

TABLE I: Polynomial coefficients (PC), based on the time dependency of the current and charge densities Ĵ and ρ̂
over ℓth time subinterval [n∆t+ ℓδt, n∆t+ (ℓ+ 1)δt].

+
ρ̂n+(ℓ+1)/m − ρ̂n+ℓ/m

δt
(t− tn+(ℓ+1/2)/m) + ρn+(ℓ+1/2)/m,

t ∈ [n∆t+ ℓδt, n∆t+ (ℓ+ 1)δt],

with similar definitions for Ĵ , when Ĵ(t) is assumed to be piecewise constant, piecewise linear, or piecewise quadratic,66

respectively.67

Overall, the time dependency of Ĵ and ρ̂ can thus be expressed, for t ∈ [n∆t+ℓδt, n∆t+(ℓ+1)δt], with ℓ ∈ [0,m−1],68

as:69

Ĵ(t) =
2aτ

J

δt2
(t− tn+(ℓ+1/2)/m)2 +

bτJ
δt

(t− tn+(ℓ+1/2)/m) + cτJ , (3a)

ρ̂(t) =
2aτρ
δt2

(t− tn+(ℓ+1/2)m)2 +
bτρ
δt

(t− tn+(ℓ+1/2)m) + cτρ , (3b)

where the coefficients of the polynomials are given in Table I.70

It is important to note that the particles’ momenta are not updated during one time step, i.e., the proposed scheme71

does not involve subcycling of the macroparticles motion. As in standard PSATD PIC, macroparticles move in straight72

line from their known position at tn = n∆t to time t, using their known momentum at tn+1/2:73

x(t) = xn +
pn+1/2

m
√
1 + (pn+1/2/mc)2

(t− tn)

where xn and pn+1/2 follow the standard leap-frog time stepping that is commonly used in PIC simulations. Thus,74

here, even though the charge and current density may be deposited several times per timestep ∆t, the macroparticles’75

momentum p is only updated once per timestep, and therefore the fields E and B are gathered onto macroparticles76

to update p only once per timestep also.77

While charge-conserving deposition can be used readily with schemes CLn, since the time dependency of the current78

is the derivative of the time dependency of the charge density, as required by the continuity equation, there are no79

obvious such schemes for CCn, LLn and QQn. Hence, exact charge conservation is not addressed in the present work80

and direct deposition of charge and current densities, i.e., ρ =
∑
S(xp−xi,j,k)qp/V and J =

∑
S(xp−xi,j,k)qpvp/V ,81

where qp, xp and vp are respectively the particles charge, positions and velocities and V = ∆x∆y∆z is the volume of82

a grid cell, are used for all simulations.83

Using the piecewise definition of ρ̂ and Ĵ given in Eqs. (3), Eqs. (2) can be integrated analytically over one timestep84

∆t, i.e., from t = n∆t to t = (n+1)∆t. In practice, this is done by sequentially integrating these equations over each85

subinterval ℓ ∈ [0,m− 1]:86

Ên+(ℓ+1)/m = CÊn+ℓ/m + ic2
S

ck
k × B̂n+ℓ/m + ic2

S

ck
F̂n+ℓ/mk +

1

ε0ck
(Y3aJ + Y2bJ − ScJ)

+
ic2

ε0c2k2
(Y1aρ − Y5bρ − Y4cρ)k , (4a)

B̂n+(ℓ+1)/m = CB̂n+ℓ/m − i
S

ckÂ
k × Ên+ℓ/m − i

ε0c2k2
k × (Y1aJ − Y5bJ − Y4cJ) , (4b)
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t t + t/2 t + t

CL1
J

t t + t/2 t + t

CL2

t t + t/2 t + t

CL4

t t + t/2 t + t

CC1
J

t t + t/2 t + t

CC2

t t + t/2 t + t

CC4

t t + t/2 t + t

LL1
J
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t t + t/2 t + t

QQ4

FIG. 1: Diagrams illustrating various time dependencies of the current density J and charge density ρ for
constant/linear (CL), both constant (CC), linear (LL) and quadratic (QQ) dependencies with m subintervals: (first
column) m = 1, (second) m = 2 and (third) m = 4. CL1 corresponds to the standard PSATD PIC method. The

triangle and circle glyphs represent the times at which the macroparticles deposit ρ and J on the grid, respectively.
The dashed and solid lines represent the assumed time dependency of ρ and J within one timestep, when

integrating the Maxwell equations analytically.
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F̂n+(ℓ+1)/m = CF̂n+ℓ/m + i
S

ck
k · Ên+ℓ/m +

i

ε0c2k2
k · (Y1aJ − Y5bJ − Y4cJ)

+
1

ε0ck
(Y3aρ + Y2bρ − Scρ) (4c)

where87

C = cos(ckδt), S = sin(ckδt),

Y1 =
(1− C)(8− c2k2δt2)− 4Sckδt

2c2k2δt2
,

Y2 =
2(C − 1) + Sckδt

2ckδt
,

Y3 =
S(8− c2k2δt2)− 4ckδt(1 + C)

2c2k2δt2
,

Y4 = (1− C), Y5 =
(1 + C)ckδt− 2S

2ckδt
.

(5)

The steps of the nPIC-JRhom cycle with sub-timestepping are summarized in the diagram shown in Fig. 2.88
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FIG. 2: Diagram of the PIC-JRhom algorithm.

Assuming that the electric and magnetic fields are known from the previous time step at iteration n, the particles89

velocities are pushed from n−1/2 to n+1/2, then the positions from n to n+1. The charge and current densities are90

then obtained at every substep using direct deposition, as described above, assuming that the velocities are constant91

and the positions evolve linearly over the interval n→ n+ 1.92
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It is important to note that the algorithm preserves the property of absence of spurious self-force when using the93

same shape factor for field gather as for charge and current deposition, as with standard PIC. Further discussion of94

the property preservation and tests are given in Appendix B.95

B. Extensions96

As shown in Refs. [9–12], the PSATD PIC algorithm can be extended to (a) arbitrary-order spatial stencils, (b) a97

scheme that alternates between nodal and staggered representations of the field components on the simulation grid,98

and (c) a scheme that averages the fields to be gathered over one timestep. Such extensions are presented in the next99

sections for the PSATD PIC-JRhom algorithm.100

1. Extension to finite-order stencils101

When using domain decomposition to run PSATD PIC methods on parallel computers, it is advantageous to alter102

the wave vector in the Fourier representation of the equations to emulate a finite-difference approximation of the103

spatial derivatives at a finite order p, since this enhances the locality of the field solvers and thus reduces the required104

number of guard cells around each subdomain [9, 10]. The modified [kpu] at order p along the direction u = x, y, z are105

then given by106

[kpu]nodal =

p/2∑
j=1

[αp
j ]nodal

sin(kuj∆u)

j∆u
, u = x, y, z, (6a)

[kpu]staggered =

p/2∑
j=1

[αp
j ]staggered

sin(ku(j − 1/2)∆u)

(j − 1/2)∆u
, u = x, y, z, (6b)

for a nodal and staggered representation, respectively, with the following Fornberg coefficients [22]:107

[αp
j ]nodal = (−1)j+1 2[(p/2)!]2

(p/2− j)!(p/2 + j)!
, (7a)

[αp
j ]staggered = (−1)j+1

[
p!

2p(p/2)!

]2
4

(2j − 1)(p/2− j)!(p/2 + j − 1)!
. (7b)

These modified wave numbers can be readily used with the PIC-JRhom algorithm to limit the number of guard108

cells and enable efficient parallel simulations, just as with other flavors of PSATD PIC algorithms [9, 10].109

2. Extension to alternating nodal-staggered grids110

Just like the standard and averaged formulations of PSATD PIC, the PIC-JRhom algorithm can readily adopt111

the “hybrid nodal-staggered” scheme presented in Ref. [11] where the field alternate between nodal and staggered112

representations on the simulation grid. More precisely, the Maxwell solve and guard cell exchanges are performed113

on a staggered “Yee” grid while the charge/current depositions and fields gather are performed with field quantities114

on a separate nodal grid. This “hybrid” alternating nodal-staggered extension allows to retain the advantages of115

low numerical dispersion and compact stencils of the integration of Maxwell’s equations on a staggered grid with the116

stability associated with the interpolation of fields onto the particles from a nodal grid [11] (especially for NCI-prone117

boosted-frame simulations). The application of the “hybrid” alternating nodal-staggered scheme to PIC-JRhom leads118

to the steps shown in Fig. 3.119

3. Extension to the time-averaged PSATD PIC algorithm120

In Refs. [12], an extension to PSATD PIC, named time-averaged PSATD PIC (also labeled as averaged PIC for121

convenience), is presented that enables stable boosted-frame simulations even when the time step is larger than the122

Courant condition along a given axis, e.g., c∆t = ∆z > ∆x. With the time-averaged algorithm, the field quantities123

that are gathered onto the particles are given by time averages of the fields on the grid obtained by analytically124
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finite centering of Ĵ ,ρ̂ (nodal to staggered)

update Maxwell fields Ê,B̂,F̂ (staggered)
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FIG. 3: Diagram of the alternating nodal-staggered PIC-JRhom algorithm.

integrating the Ê and B̂ fields from t = n∆t to t = (n+ 2)∆t. The time-averaged PIC-JRhom algorithm consists of125

the steps shown in Fig. 4, where the analytical average of Ê and B̂ at time t = (n+ 1)∆t are,126

⟨Ên+1⟩ = 1

2∆t

2m−1∑
ℓ=0

[ S
ck

Ên+ℓ/m +
ic2Y4
c2k2

k × B̂n+ℓ/m +
ikY4
2ckδt

F̂n+ℓ/m

+
1

ε0c2k2
(Y1a

τ
J − Y5b

τ
J − Y4c

τ
J)− ic2k × (Y6a

τ
ρ + Y7b

τ
ρ + Y8c

τ
ρ)
]
, (8a)

⟨B̂n+1⟩ = 1

2∆t

2m−1∑
ℓ=0

[ S
ck

B̂n+ℓ/m − iY4
c2k2

k × Ên+ℓ/m + ik × (Y6a
τ
J + Y7b

τ
J + Y8c

τ
J)
]
. (8b)

For a detailed derivation see Appendix D.127128

C. Relation to the Galilean PSATD PIC algorithm129

This section examines the relationship between the Galilean PIC algorithm, the standard PSATD PIC algorithm130

and the PIC-JRhom algorithm. To this end, it is instructive to “deconstruct” the Galilean PIC algorithm by separating131
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update Maxwell fields Ê,B̂,F̂
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update Maxwell fields Ê,B̂,F̂
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FIG. 4: Diagram of the time-averaged PIC-JRhom algorithm.

it in two independent steps: (i) a shift of the quantities to recenter them on a grid moving at vgal, (ii) the integration132

of the PSATD equations assuming that the current source is constant along the flow moving at the Galilean velocity133
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vgal.134

The standard Galilean PIC scheme [13, 14] can then be written highlighting terms that arise from step (i) in red135

in Eqs.( 9a) and (9b) and those from step (ii) in blue in Eqs.( 10a)-(10d) and Eq.( 11):136

B̂n+1 = C θ2 B̂n − i
S

ω
k × ( θ2 Ên) + iX1 k × θ Ĵn+ 1

2 , (9a)

Ên+1 = C θ2 Ên + i c2
S

ω
k × ( θ2 B̂n) +X4 θ Ĵn+ 1

2 + i
(
X3 θ2 ρ̂n −X2 ρ̂

n+1
)
k , (9b)

where the coefficients X1, X2, X3 and X4 are defined as137

X1 :=
1

ε0(ω2 −Ω2 )

(
θ∗ − θ C +iΩ θ

S

ω

)
, (10a)

X2 :=
c2

θ∗ − θ

(
θ∗

χ1

ε0 ω2
−θ1− C

ε0 ω2

)
, (10b)

X3 :=
c2

θ∗ − θ

(
θ∗

χ1

ε0 ω2
−θ∗ 1− C

ε0 ω2

)
, (10c)

X4 := iΩX1 −
θ

ε0

S

ω
, (10d)

with138

χ1 :=
ω2

ω2 −Ω2

(
θ∗ − θ C + iΩ θ

S

ω

)
, (11)

where Ω := vgal · k, ω := c k, C := cos(ω∆t), S := sin(ω∆t), θ := eiΩ∆t/2 and θ∗ := e−iΩ∆t/2.139

When setting vgal = 0, the system (9a)-(11) converges to the standard PSATD algorithm, as expected.140

Step (i), which corresponds to the multiplication of some of the terms by θ or θ2, in red in Eqs. (9a) and (9b),141

is the easiest to interpret: noting that a multiplication by θ := eiΩ∆t/2 in Fourier space corresponds to shifting the142

terms spatially by the distance vgal∆t/2 in real space, the terms known at time n + 1/2 are multiplied by θ, hence143

shifted by vgal∆t/2 while the terms known at time n are multiplied by θ2, hence shifted by vgal∆t. These are exactly144

the shifts that are needed to bring the corresponding quantities to their new grid location after one time step, when145

assuming a Galilean frame of reference moving at vgal.146

Understanding the terms associated with step (ii) requires a more detailed comparisons between how the standard147

and the Galilean PIC equations are obtained. The standard PSATD algorithm is derived assuming that the current148

density (source term) is constant over one time step on a fixed grid. The Galilean algorithm makes the same assumption149

but in a Galilean frame, i.e., that the current density (source term) is constant over one time step on a Galilean grid.150

Following this comparison, it flows logically that step (ii) ought to correspond to an integration of the PSATD151

equations on a fixed grid assuming that the currents are constant along a segment of length vgal∆t. Indeed,152

it was verified that integrating the PSATD equations based on these assumptions leads to the system (9a)-(11) with153

the terms highlighted in red replaced by 1 in Eqs. (9a) and (9b).154

From this, it follows that the algorithm PIC-JRhom is related to step (ii) of the Galilean PIC algorithm in the155

following way. While step (ii) of Galilean PIC provides a more accurate analytical integration of the PSATD equations156

over one time step for a flow that moves uniformly at vgal, the PIC-JRhom, with its arbitrary time-dependence of J157

and ρ and its subintervals, provides a more accurate analytical integration of the PSATD equations over one time step158

for an arbitrary local flow of particles. The PIC-JRhom algorithm can thus be viewed as a possible generalization159

of step (ii) of the Galilean PIC algorithm. Indeed, the numerical tests discussed below show that, like the Galilean160

PIC algorithm, PIC-JRhom can lead to simulations that are very stable with regard to the numerical Cherenkov161

instability, and that it can also remain accurate in cases where the Galilean assumption is becoming less appropriate.162

III. NUMERICAL TESTS163

This section presents various physics applications to test the PIC-JRhom algorithm. All simulations and results164

have been performed and obtained with the open-source electromagnetic PIC code WarpX [23–25]. The current165

implementation provides the flexibility to:166



10

• choose an arbitrary polynomial time dependency of J and ρ among the following combinations:167

– J and ρ constant in time (CCm);168

– J constant in time and ρ linear in time (CLm);169

– J and ρ linear in time (LLm);170

– J and ρ quadratic in time (QQm);171

• choose the number of subintervals m within one time step;172

• turn on/off the divergence cleaning term, that is, solve Maxwell’s equations (1) with or without the scalar field173

F ;174

• turn on/off the time averaging of the E and B fields gathered on the macro-particles, as in (8).175

To assess the stability of the PIC-JRhom method theoretically, the analytical dispersion equation was derived176

(see appendix E). This allows to predict the growth rates of the numerical Cherenkov instability in the case of a177

uniform drifting plasma. Moreover, a variety of WarpX simulation tests were run to further investigate the method’s178

stability and accuracy. These tests include: 2D simulations of a uniform plasma drifting with a relativistic velocity v0179

(with/without divergence cleaning, with/without subintervals, and with small/large time steps) and 3D simulations180

of laser wakefield acceleration (LWFA).181

A. Stability of a uniform plasma drifting at relativistic velocity182

This section presents WarpX simulations of a uniform electron-proton plasma with density n0 = ϵ0mec
2γ0/e

2
183

(where ϵ0 is the permittivity of free space, c is the speed of light in free space, and e and me are respectively184

the electron charge and mass), drifting along z with a relativistic velocity v0 = (0, 0, v0), with v0 = c
√
1− 1/γ20185

and Lorentz factor γ0 = 130, through a two-dimensional computational domain with xmin = zmin = −6.45µm and186

xmax = zmax = 6.45µm, periodic boundary conditions and 600 × 200 grid cells along x and z, respectively. The187

simulations were performed with 4 particles per cell, per species, 1 pass of bilinear filter in the transverse direction188

x and 4 passes in the longitudinal direction z (the direction along which the plasma is drifting). Four cases were189

considered:190

1. PIC-JRhom with c∆t = ∆x = ∆z without divergence cleaning (Fig. 5);191

2. PIC-JRhom with c∆t = ∆x = ∆z with divergence cleaning (Figs. 6 and 7);192

3. averaged PIC-JRhom with c∆t = 6∆x = ∆z with divergence cleaning (Fig. 8);193

4. PIC-JRhom with c∆t = ∆x = ∆z and averaged PIC-JRhom with c∆t = 6∆x = ∆z, with divergence cleaning194

and finite order stencils (Fig. 9 and 10);195

and are discussed below in detail.196197198

1. PIC-JRhom with c∆t = ∆x = ∆z without divergence cleaning199

Fig. 5 shows the total electromagnetic energy as a function of ωp,rt = ωpt/
√
γ0 =

√
e2n0/(meϵ0) obtained from200

WarpX simulations using PIC-JRhom with CCm, LLm, QQm, CLm and LQm, for m = 1, 2, 5, 10, without201

divergence cleaning. In this case, increasing the order of the polynomial dependency (from C, L to Q), or202

timestep subintervals (m > 1), helps delaying the onset of the instability and lowering the growth rate. When203

using the same time dependency for J and ρ (CC, LL and QQ), for a given number of depositions per step,204

it is more advantageous to increase the order of the polynomial than to increase the subintervals number m.205

Conversely, when using a different time dependency for J and ρ (CL, LQ), it is more advantageous to increase206

the number of subintervals m than to increase the order of the polynomial. Matching the time dependency of207

Ĵ and ρ̂ (as in CC, LL, QQ) is also increasing stability, with PIC-LL5 and PIC-QQ2 being more stable than208

PIC-LQ10.209

2. PIC-JRhom with c∆t = ∆x = ∆z with divergence cleaning210

Fig. 6 shows the total electromagnetic energy as a function of ωp,rt obtained from WarpX simulations using211

PIC-JRhom with CCm, LLm, QQm, CLm and LQm for m = 1, 2, 5, 10, with divergence cleaning. The energy212

history from a simulation using the Galilean PIC algorithm [13] is also plotted for comparison.213
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FIG. 5: WarpX simulations of a uniform plasma with a time step at the Courant condition limit
c∆t = ∆x = ∆z and a stencil at infinite order, without divergence cleaning. The total electromagnetic

(EM) energy of a uniform plasma drifting at relativistic velocity v0 along the z-axis is plotted versus the time of the
simulation with (a) the same time-dependencies for J and ρ and (b) different time-dependencies for J and ρ, for

various combinations of time-dependency and number of timestep subintervals. Here, ωp,r = ωp/
√
γ0 is the

relativistic plasma frequency, where time ωp,rt = 4000 corresponds to roughly 6.7× 104 time steps.
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FIG. 6: WarpX simulations of a uniform plasma with a time step at the Courant limit c∆t = ∆x = ∆z
and a stencil at infinite order, with divergence cleaning. The total electromagnetic (EM) energy of a

uniform plasma drifting at relativistic velocity v0 along the z-axis is plotted versus the time of the simulation with

(a) same time-dependencies for Ĵ and ρ̂ and (b) different time-dependencies for Ĵ and ρ̂, for various combinations of
time-dependency and number of timestep subintervals. The energy history from a simulation using the Galilean PIC

algorithm [13] is also plotted for comparison in plot (a).
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(b) WarpX simulations

FIG. 7: NCI growth rates, with small time step c∆t = ∆x. Normalized NCI growth rates Im(ω)/ωp,r in
spectral space (kx, kz), calculated from (a) the analytical dispersion equation and (b) WarpX simulations using four
different solvers: Galilean PIC with matched velocity (vgal = v0), standard PIC-CL1, PIC-CC1 and PIC-LL1. All
numerical and physical parameters are the same as in Fig. 6: divergence cleaning is used in all cases except for
Galilean PIC. The simulation time step is c∆t = ∆x = ∆z and the transverse and longitudinal cell sizes are

∆x = 6.45× 10−2 k−1
p,r , where k

2
p,r = n0e

2/(ϵ0mec
2γ0).

In contrast to the previous case, when divergence cleaning is used, having the same time dependency for Ĵ and214

ρ̂ leads to an extraordinary level of stability that is comparable to the one of the Galilean PSATD method.215

Conversely, turning on the divergence cleaning degrades significantly the stability when using different time216

dependencies for Ĵ and ρ̂ (CL and LQ).217

The remarkable stability reported in Fig. 6 when matching the time-dependencies is confirmed with a theoretical218

NCI analysis. Fig. 7 shows the NCI growth rates, Im(ω)/ωp,r, obtained from theoretical calculations and WarpX219

simulations for the Galilean PIC, the standard PSATD PIC (CL1), PIC-CC1 and PIC-LL1, with an excellent220

agreement between theory and simulations.221

A detailed derivation of the two-dimensional dispersion equation for the PIC-JRhom scheme, for time depen-222

dencies of Ĵ and ρ̂ up to quadratic, is presented in Appendix E, clarifying the origin of the remarkable stability223

that is observed with PIC-CC1, PIC-LL1 and PIC-QQ1. As explained in the appendix, it can be shown that224

under some conditions that include having the same time dependency for Ĵ and ρ̂, key terms cancel out in the225

analysis matrix, leading to stable real solutions of the determinant.226

3. Averaged PIC-JRhom with c∆t = 6∆x = ∆z with divergence cleaning227228

In this test, the transverse cell size is intentionally set to a much smaller value than the longitudinal cell size,229

as typical in plasma accelerator simulations in a Lorentz boosted frame of reference [16, 26] with a high Lorentz230

factor γ0 [12], while keeping the time step at the CFL limit of the longitudinal cell size: c∆t = ∆z = 6∆x.231

The results from Fig. 8 show that this case is more challenging for all schemes, and even the averaged Galilean232

PIC scheme is not stable beyond 1000 plasma periods. Increasing the order of the polynomial and the number233

of subintervals m both help delaying the onset and lowering the growth rate of the instability, slowly for CLm234

but quite effectively for CCm, LLm and QQm, with increasing the number of subintervals m being the most235

effective strategy for a given number of depositions per time step.236

4. PICp-JRhom with c∆t = ∆x = ∆z and averaged PICp-JRhom with c∆t = 6∆x = ∆z, with diver-237
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FIG. 8: WarpX simulation of a uniform plasma with c∆t = ∆z = 6∆x . Total electromagnetic (EM) energy
of a uniform plasma drifting at relativistic velocity v0 along the z-axis. Simulations were performed with time steps
of c∆t = ∆z = 6∆x and divergence cleaning, for (a) PIC-CLm, (b) PIC-CCm, (c) PIC-LLm and (d) PIC-QQm,

with m = 1, 2, 4. The results from a simulation using the average Galilean PIC solver is also plotted for comparison.

gence cleaning and finite order stencils238

This test shows numerical (Fig. 9) and theoretical (Fig. 10) evidence that using a stencil at finite-order p with239

PICp-LLm leads to a degradation of the stability that increases as the order p decreases. This is because the240

NCI resonant modes, caused by temporal and spatial aliasing, depends on the stencil order:241

[kpx,res] =

√(
[kpz ]

v0
c

+mz
2π

∆z

v0
c

− 2πmt

c∆t

)2

− [kpz ]2, (12)

for any mz,mt ∈ Z, where mz is the spatial alias index and mt is the temporal alias index [27]. As the stencil242

order gets lower, such resonant modes relocate to lower wavenumbers where the resonance is stronger, as can be243

seen on Fig. 10 that shows the theoretical NCI growth rate at different spectral orders, p = 8, 16, 32. A nonzero244
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FIG. 9: WarpX simulation of a uniform plasma at finite spectral order p. Total electromagnetic (EM)
energy of a uniform plasma drifting at relativistic velocity v0 along the z-axis. Simulations were performed with (a)

the standard PICp-JRhom algorithm with c∆t = ∆z = ∆x and (b) the averaged PICp-JRhom algorithm with

c∆t = ∆z = 6∆x, using linear time dependency for Ĵ and ρ̂ in all cases and varying the spectral order p = 8, 16, 32.
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FIG. 10: NCI growth rates. Normalized NCI growth rates Im(ω)/ωp,r in spectral space (kx, kz), calculated from
the analytical dispersion equation of the PICp-LL1 algorithm with different stencil order p = 8, 16, 32. Solid grey
lines correspond to (mt,mz) = (0, 0) mode, which blue-shifts as the stencil order increases. All numerical and

physical parameters are the same as the ones used for the results reported in Fig. 9.

growth rate is observed solely along the NCI resonant mode that is caused by aliasing between the temporal245

mt = 0 and spatial mz = 0 modes. The results from Figures 9-10 indicate that the choice of stencil order will246

depend on the total duration of the simulations (as measured in plasma periods) for a given application.247248249

B. Laser-plasma acceleration250

This section demonstrates the extension of the stability properties observed in the uniform plasma cases to realistic251

3D simulations of laser wakefield acceleration (LWFA) [4]. In these runs, a Gaussian laser pulse with amplitude252

a0 = 1.7, duration τ = 73.3 fs and waist w0 = 50µm is injected at the entrance of a parabolic plasma channel with253

a background density n0 = 1018 cm−3 on axis. The simulations are run in a Lorentz boosted frame of reference [16]254

with γ0 = 60 using the PIC16-JRhom scheme (stencil order p = 16 in all directions) with a hybrid alternating nodal-255

staggered grids (using field and current centering of order 16 in all directions) [11]. Similarly to the uniform plasma256
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FIG. 11: WarpX simulation of LWFA with various time steps. Snapshots of the longitudinal electric field Ez

(x, z) slice at time t = 28.05 ps from the 3D simulation of two consecutive laser-driven plasma accelerator stages
using the Galilean PIC16 and PIC16-JRhom (with JRhom = CC1, CL1, LL1, CC2, LL2 or QQ1) algorithms with
time step (a) c∆t = ∆x = ∆z/6, (b) c∆t = 3∆x = ∆z/2 and (c) c∆t = 6∆x = ∆z. The laser (not shown) that

drives the wake propagates from left to right.

case, a bilinear filter was applied to the current and charge densities at each time step, with four passes in the z257

direction and one pass in the other directions. The simulations were run on the National Energy Research Scientific258

Computer Center (NERSC) supercomputer Perlmutter using 36 nodes (144 GPUs), with domain decomposition along259

both x and z, using 24 guard cells in each direction. The longitudinal resolution (in the boosted frame) was set260261262

to ∆z = (1 + β0)γ0λlab/24 = 4.08µm, where β0 =
√
1− 1/γ20 and λlab = 0.8µm is the driving laser wavelength in263

the laboratory frame, while the transverse resolution was ∆x = 0.68µm, so that ∆z = 6∆x. Simulations were also264

performed with the standard and averaged Galilean PIC16 algorithm [13, 14] for reference.265

Fig. 11 displays snapshots of the longitudinal electric field Ez from simulations running the Galilean PIC16 and266

the PIC16-JRho algorithms at time t = 28.05 ps (which corresponds to ωp,rt = 84.3) with different simulation time267
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FIG. 12: WarpX simulation of LWFA. Ez-field lineouts at x = 0 for selected cases of the results reported in
Fig. 11.

steps: (a) c∆t = ∆x = ∆z/6, (b) c∆t = 3∆x = ∆z/2 and (c) c∆t = 6∆x = ∆z. Figure 12 shows the corresponding268

lineouts at x = 0 for a selection of runs. Table II compares the performance of the various runs in each case.269

When using the “small” time step c∆t = ∆x = ∆z/6, the PIC16-CC1 algorithm is as effective as the standard270

Galilean PIC16 algorithm for mitigating the NCI instability (which is emerging at the end of the second stage in271

the simulations using PIC16-CL1), with around 20% speedup. For larger time steps c∆t = 3∆x = ∆z/2 and272

c∆t = 6∆x = ∆z, although the averaged Galilean PIC16 method is stable, it does not produce accurate physics273

results, leading to a very diminished amplitude of the electric field in the second stage. Instead, the averaged PIC16-274

JRhom method is stable and produces accurate results provided that the numbers of deposition and the number of275

timestep subintervals are high enough. For c∆t = 3∆x = ∆z/2, both PIC16-CC1 and PIC16-LL1 are stable and276

accurate, with respective speedups of approximately 1.8x and 1.5x as compared to the Galilean reference case with277

small time steps. For c∆t = 6∆x = ∆z, both PIC16-CC1 and PIC16-LL1 are unstable, while PIC16-CC2, PIC16-LL2278

and PIC16-QQ1 are stable and accurate, with respective speedups of approximately 2.2x, 1.8x and 1.9x as compared279

to the Galilean reference case with small time steps.280

It may seem counterintuitive that the average time per step is slightly larger for both PIC-CC1 and PIC-LL1 when281

using c∆t = 6∆x = ∆z rather than c∆t = 3∆x = ∆z/2. This is due to the fact that when using a larger time step,282

the number of plasma macroparticles that are exchanged between domain-decomposed regions grows with the size of283

the time step, leading to a fraction of extra time that grows with the time step. This is however a fraction of the total284

time and is thus not changing the general conclusions.285

These results show that the PICp-JRhom method is effective, efficient and versatile for controlling the numerical286

Cherenkov instability in plasma accelerator simulations, both in cases for which other methods (e.g., averaged Galilean287

PIC) apply as well, and in other cases that happen to be more challenging for the other methods.288

IV. CONCLUSION289

A formulation of pseudospectral analytical time-domain particle-in-cell algorithm is proposed and analyzed. The290

formulation includes an additional term of “hyperbolic divergence cleaning” and a relaxation of the standard assump-291
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PSATD PIC solver c∆t/∆x Averagedin time Stability Average timeper step [s] Total timeat t = 1.33 ps [s]

Galilean PIC 1 no stable 0.1441 86.4602
PIC-CL1 1 no unstable 0.1454 87.27
PIC-CC1 1 no stable 0.1405 84.35218

Galilean PIC 3 yes stable, butinaccurate 0.1797 35.95

PIC-CC1 3 yes stable 0.2349 46.995
PIC-LL1 3 yes stable 0.2937 58.7453

Galilean PIC 6 yes stable, butinaccurate 0.1862 18.62602

PIC-CC1 6 yes unstable 0.2645 26.4574
PIC-CC2 6 yes stable 0.3995 39.956
PIC-LL1 6 yes unstable 0.3289 32.8913
PIC-LL2 6 yes stable 0.4692 46.929
PIC-QQ1 6 yes stable 0.465 45.52

TABLE II: Performance comparison of runtimes for 3D LWFA simulations shown in Fig. 11 using different spectral
PIC solvers, run on the Perlmutter supercomputer without I/O, using 36 nodes (144 GPUs), with domain

decomposition in x and z and with 24 guard cells in each direction. Average time per step is from running up to
time t = 1.33 ps which corresponds to the first 600 time steps with c∆t = ∆x, or first 300 time steps with

c∆t = 3∆x, or the first 100 time steps c∆t = 6∆x.

tion of constant time dependency of the current density over one time step. Extensions of the algorithm to finite-order292

stencils, alternating nodal-staggered grids and time-averaging over a time step were also presented.293

Tests and analyses revealed that assuming the same time dependency for the evolution of the charge and current294

densities over one time step leads to excellent stability with regard to the numerical Cherenkov instability. Detailed295

analysis of the dispersion relation of the new algorithm (see Appendix E) provides a hint that explains the stability.296

The new algorithm is found to be effective, efficient and versatile for controlling the numerical Cherenkov instability297

in plasma accelerator simulations, both in cases for which other methods (e.g., Galilean PIC) apply and, more298

importantly, in other cases that happen to be more challenging for the other methods. A possible extension of the299

algorithm for this particular application could be to incorporate the Galilean PIC algorithm in each subinterval, which300

should provide enhanced stability while preserving the versatility of the new scheme.301

While the application of the new algorithm to the modeling of plasma acceleration has proven successful, the302

application to other domains must be explored with care. For example, initial testings of the application of the303

method to the modeling of relativistic plasma shocks [28] has led to the observation of unphysical effects that have304

been tentatively attributed to unphysical coupling between the unphysical longitudinal electric field waves associated305

with divergence cleaning (from the term F in Eq. 1c) and the plasmas. Further studies are needed to fully understand306

the underlying mechanisms and propose possible remedies.307

Appendix A: Connection between the modified system of Maxwell’s equations and a potential formulation308

It is instructive to derive the modified system of Maxwell’s equations (1) in its potential form, starting with309

∂E

∂t
= c2∇×B − J

ε0
+ c2∇F , (A.1a)

∂B

∂t
= −∇×E , (A.1b)

∂F

∂t
= ∇ ·E − ρ

ε0
, (A.1c)

∇ ·B = 0 . (A.1d)

Equation (A.1d) implies that B can be derived from a potential B = ∇×A which, when inserted in Eq. (A.1b),310

gives ∇× (E + ∂A
∂t ) = 0. This means that E + ∂A

∂t can be written as the gradient of a potential Φ, giving311

E = −∇Φ− ∂A

∂t
. (A.2)
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Plugging Eq. (A.2) in Eqs. (A.1a) and (A.1c) leads to312

∇2Φ+
∂

∂t
(∇ ·A) = − ρ

ε0
− ∂F

∂t
, (A.3a)

∇2A− ∂2A

c2∂t2
−∇

(
∇ ·A+

1

c2
∂Φ

∂t

)
= −µ0J +∇F , (A.3b)

which, choosing Φ and A that verify the Lorentz gauge ∇A+ 1
c2

∂Φ
∂t = 0, gives313

∇2Φ− ∂2Φ

c2∂t2
= − ρ

ε0
− ∂F

∂t
, (A.4a)

∇2A− ∂2A

c2∂t2
= −µ0J +∇F , (A.4b)

∇2F − ∂2F

c2∂t2
= µ0

(
∇ · J +

∂ρ

∂t

)
. (A.4c)

A gauge transformation314

A′ = A−∇Λ, (A.5a)

ϕ′ = ϕ+
1

c2
∂Λ

∂t
, (A.5b)

with315

F =

(
−∇2 +

1

c2
∂2

∂t2

)
Λ = −

(
∇A′ +

∂Φ′

c2∂t

)
(A.6a)

then leads to316

∇2Φ′ − ∂2Φ′

c2∂t2
= − ρ

ε0
, (A.7a)

∇2A′ − ∂2A′

c2∂t2
= −µ0J . (A.7b)

This is consistent with the derivation given in Ref. [17], where Eqs. (A.1a)- (A.1c) were derived from Maxwell’s317

equations in the Lorentz gauge form (i.e., the form of Eqs. (A.7a) and (A.7b)) with the assumption that J = J0+ δJ318

where J0 is the portion of J that verifies the continuity equation ∂ρ
∂t +∇J0 = 0, and defining F = −∇δA such that319

A′ = A+ δA with ∇A+ ∂Φ′

c2∂t = 0.320

In addition to showing that the term F can arise from considerations other than a “divergence cleaning” term,321

this derivation also highlights how F relates more directly to the continuity equation via Eq. (A.4c) and gauges via322

Eq. (A.6).323

Appendix B: Absence of spurious self-force324

The main reason behind the recommendation to use the same shape factor for charge and current deposition and325

field gather in PIC codes is to avoid a gravitational-like instability that occurs when using a shape factor for field326

gather that is at lower order than for charge and current deposition [29]. Also, as stated in Sec. 8.5 of Ref. [3], “if327

the difference equations relating the densities to the electric fields are symmetric in space, use of the same weight328

function eliminates the self-force and ensures conservation of momentum”. The analyses of the self-force in these329

earlier work by Langdon, Birdsall and others [30] indeed rely on the spatial symmetries of the difference equations330

used by the algorithm, which are preserved in the proposed scheme by the use of PSATD and the same splines for331

charge and current deposition and field gather. The subcycling in the deposition of the charge and current densities332

does not change the spatial symmetries of the difference equations, and hence do not lead to self-forces. We have333

indeed verified on simulations of a single particle at rest that the electric field gathered onto the particle was zero334

to machine precision (relative to the maximum electric field near the particle), independently of the position of the335

particle within a cell:336
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TABLE III: Integration coefficients over ℓth time subinterval [n∆t+ ℓδt, n∆t+ (ℓ+ 1)δt].

f̂ ∂tf̂(tn + ℓ/m) C3 C4 C5

Ê ic2k ×Bn+ℓ/m − Jn+ℓ/m

ε0
−i 2a

τ
ρc2k

ε0δt2
− 4aτ

J+ibτρc2δtk

ε0δt2
4iaτ

ρc2k−bτJω2δt−ic2cρω
2δt2k

ε0δt2

+ic2F̂n+ℓ/mk

B̂ −ik ×En+ℓ/m i
2aτ

Jc2k×
ε0δt2

i
bτJk×
ε0δt

−4iaτ
Jk×+icJω2δt2k×

ε0δt2ω2

F̂ ik · Ên+ℓ/m − ρ̂n+ℓ/m

ε0
−i 2a

τ
Jk

ε0δt2
−i 4a

τ
ρk+ibJδtk

ε0δt2
4iaτ

Jk−bρδtω
2−icJω2δt2k

ε0δt2ω2

• Electric field (relative to maximum electric field) experienced by a single particle located at [0.25dx, 0.75dy,337

0.5dz] within a cell at the center of the simulation box (where dx, dy and dz is the cell size along x, y and z)338

after 20 times steps after initialization:339

– CL1: Ex ≈ 1.85e− 17, Ey ≈ −1.38e− 16, Ez ≈ 1.48e− 17340

– CC1: Ex ≈ −8.54e− 18, Ey ≈ −4.59e− 16, Ez ≈ 2.56e− 17341

– LL2: Ex ≈ 7.69.3e− 17, Ey ≈ −2.15e− 16, Ez ≈ 1.01e− 16342

The CL1 algorithm is the standard PIC algorithm, for which it is well known already that there is no self-force,343

and verified here. It was also verified for a number of different configurations of the algorithm (CC1 and LL2 are344

reported here) that the property is preserved, as evidenced by the relative values of self-field experienced by the345

particle reported above being zero to machine precision.346

Appendix C: Derivation of the PIC-JRhom equations347

We first rewrite Eqs. (2) in an equivalent second-order differential form,348

∂2Ê

∂t2
+ c2k2Ê = − 1

ε0

(
∂Ĵ

∂t
+ ic2kρ̂

)
(C.1a)

∂2B̂

∂t2
+ c2k2B̂ =

1

ε0
ik × Ĵ (C.1b)

∂2F̂

∂t2
+ c2k2F̂ = − 1

ε0

(
∂ρ̂

∂t
+ kĴ

)
(C.1c)

and then we sequentially integrate them analytically over each subinterval [n∆t+ ℓδt, n∆t+ (ℓ+ 1)δt], ℓ ∈ [0,m− 1]349

with δt = ∆t/m, assuming that the current and charge densities are piecewise functions of time, given by Eqs. (3a)350

and (3b). Each of those equations can be expressed in the following generalized form with a right part as time351

polynomial up to order two:352

( ∂2
∂t2

+ c2k2
)
f̂ =

2∑
j=0

a0jt
j (C.2)

where {a0j}2j=0 are known coefficients for any given f̂ = Ê, B̂, F̂ . The general solution of such a second-order PDE353

equation with constant coefficients is:354

f̂(t) = C1 cos(ω(t− tn+ℓ/m)) + C2 sin(ω(t− tn+ℓ/m))

+
1

ω2

(
C3(t− tn+(ℓ+1/2)m)2 + C4(t− tn+(ℓ+1/2)m) + C5

)
,

(C.3)

where {Ck}5k=1 are integration coefficients to be determined. The coefficients Ck with indexes k = 3, 4, 5 for any355

given f̂ = Ê, B̂, F̂ can be determined by solving a system of linear equations, obtained from substitution of Eq. (C.3)356

into the corresponding Eq. (C.1) and calculated at time steps tn+ℓ/m, tn+(ℓ+1/2)/m and tn+(ℓ+1)/m. While the re-357
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358

maining coefficients C1 and C2 can be determined from the initial conditions f̂(t)|tn+ℓ/m
and ∂tf̂(t)|tn+ℓ/m

, respectively,359

360

C1 = f(tn + ℓ/m)−
(
C3(δt/2)

2 + C4(δt/2) + C5

)
/ω2,

C2 = ∂tf(tn + ℓ/m)−
(
2C3(δt/2) + C4

)
/ω2.

(C.4)

The expression of the field components f̂(tn+(ℓ+1)/m) at the next time subinterval are then given by:361

f̂(tn+(ℓ+1)/m) = C1 cos(ωδt) + C2 sin(ωδt) +
1

ω2

(
C3(δt/2)

2 + C4(δt/2) + C5

)
, (C.5)

where C3, C4 and C5 are given in Table III.362

Appendix D: Derivation of the averaged PIC-JRhom equations363

The notation ⟨f̂(t)⟩n+1 is introduced to refer to the average of any given function f̂(t) over the time interval364

[n∆t, (n+ 1)∆t] as,365

⟨f̂⟩n+1 =
1

2∆t

∫ tn+2∆t

tn

f̂(t′)dt′, where f̂ = Ê, B̂. (D.1)

For any given number of subintervals m, the integral in Eq.( D.1) can be split into a sum over 2m integrals over366

[tn + ℓδt, tn + (ℓ+ 1)δt], ℓ = 0, .., 2m− 1 as,367

⟨f̂⟩n+1 =
1

2∆t

2m−1∑
ℓ=0

∫ tn+(ℓ+1)∆t

tn+ℓδt

f̂(t′)dt′, where f̂ = Ê, B̂. (D.2)

The averaged ⟨Ê⟩ and ⟨B̂⟩ fields are obtained through sequential integration of Eq. (C.3) over each subinterval368

[tn + ℓδt, tn + (ℓ+ 1)δt], ℓ = 0, .., 2m− 1 and then substituted into Eq. (D.2),369 ∫ tn+(ℓ+1)δt

tn+ℓδt

Ê(t′)dt′ =
S

ck
Ên+ℓ/m +

ic2Y4
c2k2

k × B̂n+ℓ/m +
ikY4
2ckδt

F̂n+ℓ/m

+
1

ε0c2k2
(Y1aj − Y5bJ − Y4cJ)− ic2k(Y6aρ + Y7bρ + Y8cρ) , (D.3a)∫ tn+(ℓ+1)δt

tn+ℓδt

B̂(t′)dt′ =
S

ck
B̂n+ℓ/m − iY4

c2k2
k × Ên+ℓ/m + ik × (Y6aJ + Y7bJ + Y8cJ) , (D.3b)

with370

Y6 =
1

6ε0c5k5δt2
(
(ckδt)2 − 3δ(ckδt)2S − 12ckδt(1 + C) + 24S

)
, (D.4a)

Y7 =
1

2ε0c4k4δt
(ckδtS + 2(C − 1)) , (D.4b)

Y8 =
δt

ε0c2k2

(
1− S

ckδt

)
. (D.4c)

Appendix E: Dispersion relation for the PIC-JRhom algorithm371

The 2D dispersion relation for Eqs. (4) is derived to analyze the algorithm’s stability with respect to the numerical372

Cherenkov instability (NCI), for a uniform plasma flowing through a periodic grid along the z-axis with a velocity373
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v0 = (0, 0, v0), where v0 = c(1 − 1/γ20)
1/2. Following the analysis from Refs. [12, 13], we consider the discretized374

perturbed Vlasov equation, expressed in Fourier space:375

δf̂n+1/2(km,p)e
ikm·v∆t/2

− f̂n−1/2(km,p)e
−ikm·v∆t/2

+ q∆tŜ(km)
[
Ên(k) + v × B̂n(k)

]
· ∂f0
∂p

= 0 ,

(E.1)

where f0 = n0δ(p−mγ0v0) is the distribution function of the uniform plasma in a state of equilibrium, and δf is a376

perturbation to f0. The discretized formulas for the deposited current and charge in Fourier space at any time ℓ∆t,377

ℓ ∈ [n, n+ 1] centered around δf̂n+1/2, are given by378

Ĵ ℓ(k) =
∑
m

S(km)

∫
dpqvδf̂n+1/2(km,p)e

−ikm·v(ℓ−(n+1/2))∆t, (E.2)

ρ̂ℓ(k) =
∑
m

S(km)

∫
dpqδf̂n+1/2(km,p)e

−ikm·v(ℓ−(n+1/2))∆t. (E.3)

Then, assuming the same e−iωt time evolution for Ê, B̂, F̂ , Ĵ , ρ̂ and δ̂f with the following anzatz,379

Ên(k) = Ê(k)e−iωn∆t , (E.4a)

δf̂n+1/2(km,p) = δf̂(km,p)e
−iω(n+1/2)∆t , (E.4b)

Ĵn(k) = Ĵ(k)e−iωn∆t , (E.4c)

ρ̂n(k) = ρ̂(k)e−iωn∆t . (E.4d)

Equation (E.1) yields380

δf̂(km,p) = −i q∆t
2
Ŝ(km)

Ê(k) + v × B̂(k)

sin((ω − km · v)∆t/2)
. (E.5)

Substituting the Vlasov equation (E.1) into Eqs. (E.2) and (E.3) gives the following expressions for the deposited381

current Ĵ(k) and the charge ρ̂(k):382

Ĵ = i
ckε0

T̂

(
ξ0 + (ξ · Q̂)

v

c

)
, (E.6)

ρ̂ =
ikε0

T̂
(ξ · Q̂) , (E.7)

Q̂(k) = Ê(k) + v × B̂(k)− (v · Ê(k))v/c2 , (E.8)

ξ0 =
T̂ ω2

p

γ0ck

+∞∑
m=−∞

S2(km) · 1
2
∆ts

′
ω

, (E.9)

ξ =
T̂ ω2

p

γ0k

+∞∑
m=−∞

S2(km) · kmc
′
ω(

2
∆ts

′
ω

)2 , (E.10)

where T̂ =
∏

i

[
1 − sin(ki∆i/2)

]
is one pass of a binomial smoothing operator, and ωp = (n0q

2m−1
e ε−1

0 )1/2 is the383

plasma frequency, and Ŝ(km) is the particle shape factor. Still following Refs. [12, 13], Eqs. (4) are then rewritten in384

the time-symmetrical form385 (
Ên+(ℓ+1)/m − Ên+ℓ/m

)
= i

S

(1 + C)ck
c2k ×

(
B̂n+(ℓ+1)/m) + B̂n+ℓ/m

)
+ i

S

(1 + C)ck
c2k

(
F̂n+(ℓ+1)/m + F̂n+ℓ/m

)
+

1

ε0ω

(
Y9aj − 2S(1 + C)−1cj

)
− ic2

ε0c2k2
Y10kbρ, (E.11a)
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B̂n+(ℓ+1)/m − B̂n+ℓ/m

)
= − S

(1 + C)ck
ik ×

(
Ên+(ℓ+1)/m + Ên+ℓ/m

)
+
ik × bj
ε0c2k2

Y10 , (E.11b)

(
F̂n+(ℓ+1)/m − F̂n+ℓ/m

)
=

S

(1 + C)ck
ik
(
Ên+(ℓ+1)/m + Ên+ℓ/m

)
− 1

ε0c2k2
ikbjY10 +

1

ε0ck

(
Y9aρ − 2S(1 + C)−1cρ

)
. (E.11c)

Substitution of equations (E.4) in Eqs.(E.11a)-(E.11c) gives386

sωÊ = −tckcωk × cB̂ − cωtckk̂cF̂ + i
(
Y9ã

τ
ω/2− tck c̃

τ
ω

)
Ĵ +

(
Y10b̃

τ
ω/2
)
kρ̂, (E.12a)

sωB̂ = tckcωk × Ê −
(
Y10b̃

τ
ω/2
)
k × Ĵ , (E.12b)

sωcF̂ = −tckcωk · Ê + k · Ĵ
(
Y10b̃

τ
ω/2
)
+ i
(
Y9ã

τ
ω/2− tck c̃ω

)
ρ̂ . (E.12c)

Projecting Eqs. (E.6) and (E.12a) along x and z and Eqs. (E.12b) along y gives the following 2D dispersion equation387

in matrix form:388

MUT = 0 , (E.13a)
389

M =



−sω 0 cωk̂ztck −cωk̂xtck iTχτJ 0 −iT k̂xψτρ

0 −sω −cωk̂xtck −cωk̂ztck 0 iTχτJ −iT k̂zψτ ρ

cωk̂ztck −cωk̂xtck −sω 0 iT k̂zψτJ −iT k̂xψτJ 0

−cωk̂xtck −cωk̂ztck 0 −sω −iT k̂xψτJ −iT k̂zψτJ iTχτ ρ

i
T
ξ0 0 − i

T
ξ0β0 0 −1 0 0

i
T
ξxβ0

i
T
(1− β2

0)(ξ0 + ξzβ0) − i
T
ξxβ

2
0 0 0 −1 0

i
T
ξx

i
T
ξz(1− β2

0) − i
T
ξxβ0 0 0 0 −1



(E.13b)

where U =
(
Êx, Êz, cB̂y, cF̂ , Ĵx/(ck ε0), Ĵz/(ck ε0), ρ̂/(k ε0)

)
and k̂ = k/k is the normalized wave vector. The matrix390

coefficients in M that depend on the time dependency of the current and charge densities Ĵ and ρ̂ are summarized391

in Table IV. For example, the upper index τJ/ρ in the coefficients ψτJ/ρ
and χτJ/ρ

indicates the time dependency of392

Ĵ and ρ̂ and can be constant (C), linear (L) or quadratic (Q).393

TABLE IV: Matrix coefficients of the dispersion equation (E.13a), based on the time dependency of the current and

charge densities Ĵ and ρ̂ over one time subinterval, δt = ∆t/m.

Coefficients
Time dependency of Ĵ or ρ̂

constant (τ = 0) linear (τ = 1) quadratic (τ = 2)

ãτω 0 0 (cω − 1)

b̃τω 0 sω sω
c̃τω 1 cω 1
χτ −tck −cωtck Y9(cω − 1)− tck
ψτ 0 −isωY10 −isωY10

394

395

The other coefficients are given by:396

cω = cos(ωδt/2), (E.14a)

sω = sin(ωδt/2), (E.14b)
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tω = sω/cω, (E.14c)

c′ω = cos ((ω − km · v)∆t/2) , (E.14d)

s′ω = sin ((ω − km · v)∆t/2) , (E.14e)

km = k + 2πm/∆r, m ∈ Z, (E.14f)

tck = tan(ckδt/2), (E.14g)

Y9 =
tck(8− c2k2δt2)− 4ckδt

(1 + C)(ckδt)2
, (E.14h)

Y10 =

(
1− 2tck

ckδt

)
, (E.14i)

χτ = Y9ã
τ
ω − tck c̃

τ
ω, (E.14j)

ψτ = Y10b̃
τ
ω. (E.14k)

The dispersion relation is given by computing the determinant of (M) using the Sarrus rule. Interestingly, when the397

charge and current densities have the same temporal dependency, e.g., with CC, LL or QQ, the determinant simplifies398

to the straightforward expression399

det(M) = α1α2, (E.15)

where400

α1 = T̂ 3
[
ξ0

(
β0k̂z(χτ cωtck + ψτsω)− (χτsω + ψτ cωtck)

)
+ (c2ωt

2
ck − s2ω)

]
, (E.16a)

α2 = (c2ωt
2
ck − s2ω) + (1− β2

0)
[
(ξxk̂x + ξz k̂z)(χτ cωtck + ψτsω)

+ ψτ cωtck(ξ0 + ξzβ0) + χτ (ξzcωβ0 + ξ0sω)
]
. (E.16b)

Here, such simplification is possible due to the presence of similar terms of opposite sign that cancel each other401

when the charge and current densities have the same time dependency. For example, terms like
(
ψτJ

)2
kxkzc

2
ω −402

ψτJψτρkxkzc
2
ω = 0, since ψτJ = ψτρ = ψτ (τJ = τρ = τ). Moreover, at the asymptotic limit, assuming that (i)403

δω = ω−kmv0 is small and (ii) considering an ultrarelativistic regime, e.g., β0 = v0/c = 1, the determinant equation404

reduces to:405

ξ0

(
k̂z(χτ ckmv0tck + ψτskmv0)− (χτskmv0 + ψτ ckmv0tck)

)
+ (c2kmv0t

2
ck − s2kmv0) = 0 (E.17)

where ckmv0 = cos(kmvδt/2), skmv0 = sin(kmvδt/2), and ξτ0 is proportional to 1/δω and reads406

ξτ0 =
T̂ ω2

pS
2(km)

γ0ck

1

δω
+
T̂ ω2

p

γ0ck

+∞∑
j=−∞, m ̸=j

S2(kj) ·
1

2
∆ts

′
kjv0

=
αm

δω
+ βm . (E.18)

Finally, we obtain a first order equation for δω with real coefficients,407

δω = −
αm

(
k̂z(χτ ckmv0tck + ψτskmv0)− (χτskmv0 + ψτ ckmv0tck)

)
βm

(
k̂z(χτ ckmv0tck + ψτskmv0)− (χτskmv0 + ψτ ckmv0tck)

)
+ (c2kmv0

t2ck − s2kmv0
)
. (E.19)

It follows that, under the assumptions (i)-(ii), the determinant has only real coefficients, δω is real, and the algorithm408

is stable.409
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Lehe wrote the initial implementation of the algorithm in WarpX and discussed the results. Maxence Thévenet425
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and E. Zoni, Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs,479

Physics of Plasmas 28, 23105 (2021).480

[26] J. L. Vay, C. G. R. Geddes, E. Esarey, C. B. Schroeder, W. P. Leemans, E. Cormier-Michel, and D. P. Grote, Modeling Of481

10 Gev-1 Tev Laser-Plasma Accelerators Using Lorentz Boosted Simulations, Physics Of Plasmas 18, 10.1063/1.3663841482

(2011).483

[27] M. Kirchen, R. Lehe, S. Jalas, O. Shapoval, J. L. Vay, and A. R. Maier, Scalable spectral solver in Galilean coordinates484

for eliminating the numerical Cherenkov instability in particle-in-cell simulations of streaming plasmas, Physical Review485

E 102, 13202 (2020).486

[28] A. Spitkovsky, Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?, The Astrophysical Journal487

682, L5 (2008).488

[29] A. B. Langdon and C. K. Birdsall, Theory of Plasma Simulation Using Finite-Size Particles, The Physics of Fluids 13,489

2115 (1970).490

[30] R. W. Hockney and J. W. Eastwood, Computer simulation using particles (Taylor & Francis, Bristol, UK, 1988).491

https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1088/1742-6596/1596/1/012059
https://doi.org/10.1063/5.0028512
https://doi.org/10.1063/1.3663841
https://doi.org/10.1103/PhysRevE.102.013202
https://doi.org/10.1103/PhysRevE.102.013202
https://doi.org/10.1103/PhysRevE.102.013202
https://doi.org/10.1086/590248/FULLTEXT/
https://doi.org/10.1086/590248/FULLTEXT/
https://doi.org/10.1086/590248/FULLTEXT/
https://doi.org/10.1063/1.1693209
https://doi.org/10.1063/1.1693209
https://doi.org/10.1063/1.1693209

	 Pseudospectral particle-in-cell formulation with arbitrary charge and current-density time dependencies for the modeling of relativistic plasmas 
	Abstract
	  Introduction
	  New PIC-JRhom algorithm
	  Presentation of the algorithm
	  Extensions
	  Extension to finite-order stencils
	  Extension to alternating nodal-staggered grids
	  Extension to the time-averaged PSATD PIC algorithm

	  Relation to the Galilean PSATD PIC algorithm

	Numerical tests
	Stability of a uniform plasma drifting at relativistic velocity
	 Laser-plasma acceleration

	  Conclusion
	  Connection between the modified system of Maxwell's equations and a potential formulation
	  Absence of spurious self-force
	  Derivation of the PIC-JRhom equations
	  Derivation of the averaged PIC-JRhom equations
	  Dispersion relation for the PIC-JRhom algorithm
	Acknowledgments
	References




