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1 Introduction

One of the oldest and most fruitful methods for discovering new particles is to search for

resonance structures in invariant mass spectra from the new particle decay products. Most

recently, this resulted in the discovery of the Higgs boson [1, 2], but has a long history

from the direct observation of the Z boson [3, 4], the discovery of the Υ (and thus b-

quarks) [5], the J/ψ (and thus c-quarks) [6, 7], all the way to the ρ meson [8] and likely

earlier. This ‘bump hunting’ continues to be a large component of the search program for

the experiments at the Large Hadron Collider (LHC), with about a hundred searches in

a multitude of final state configurations [9–13]. Unlike searches targeting more complex

final states, for a given topology, two-body resonance searches are only sensitive to two

parameters: the mass of the new particle and the production cross-section.1 As a result,

these searches set powerful constraints on a variety of specific models of physics beyond

the Standard Model (BSM).

Given that there have been no confirmed discoveries for new heavy particles since the

discovery of the Higgs boson, it is critical to ensure that the complete landscape of two-body

resonances is covered by the existing search program. These resonances represent a natural

set of targets for searches motivated by experimental sensitivity rather than primarily by

theoretical model-building; in this sense they are guides into the unexplored territory of

data at the energy frontier, rather than confirmation or rejection of theoretical predictions.

The authors of ref. [14] enumerated the possible scenarios and provided physics motivations

for A→ BC, where A is a BSM particle and B and C are SM particles. One of our goals

in this article is to provide a status update, given that the full Run 2 dataset has been

collected and a number of searches have been performed since ref. [14].

While it is critical that dedicated searches targeting specific topologies continue to

improve their scope and sensitivity, there is also a growing need for more model agnostic

1There is also a mild dependence on the width, but this work will mostly consider narrow resonances

where the width is small compared to the relevant experimental resolution. Although there are other

interesting more-complicated decays, we chose to study two-body resonances, as they provide the simplest

and concrete examples. Future work will consider cases where there are undetectable particles (such as

neutrinos and dark sectors) as well as multi-body decays.
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searches. It may not be possible to have dedicated searches for every possible combination

of SM particles for B and C, and if either or both of these particles are themselves BSM par-

ticles, then the number of possibilities is endless. Recently, there have been a variety of pro-

posals to search for such scenarios in an automated manner using machine learning [15–23].

Our second goal is to extend ref. [14] to cases where B and/or C can be BSM particles to

study the motivation and coverage of the complete two-body landscape. This work may

help focus on the application of the machine learning-based model agnostic searches.

This paper is organized as follows. Section 2 motivates two-body searches, for both

the fully SM and mixed SM/BSM cases. The status of existing experimental searches is

presented in section 3. The paper ends with conclusions and outlook in section 4.

2 Theory motivation

Collider searches for resonances are well-motivated by their simplicity and a long history

of discoveries. New resonances appear in many extensions of the SM and most of the

experimental searches have followed the theoretical models, leading to a variety of searches

for a pair of identical objects but rarely for non-identical pairs. However, there is no obvious

compelling reason why one should focus only on identical pairs. In fact, the diversity and

simple structure of various resonances strongly motivate an experimental program which

targets a broad scope and a systematic approach capable of theoretically unanticipated

discoveries. Ref. [14] proposed a systematic search program for 2-body resonances, which

would consist of searches for resonances in all pairs of SM objects. A majority of 2-body

resonances have some indirect theoretical constraints but have received little experimental

attention, leaving most of the landscape unexplored and a large potential for unanticipated

discovery. It is interesting to note that the lack of these searches is not due to non-existence

of theory models as there are models for all possible pairs.

The models described below are illustrative examples of theories which contain such

resonances. In some cases, these models may have experimental signatures in other domains

or be in conflict with bedrock theoretical arguments. But even in the case where theoretical

or indirect experimental constraints exist, there is no replacement for a direct search, which

may reveal the existence of an unanticipated particle in tension with current understanding.

In this article, we take a step further and generalize the final state of 2-body resonances

to include BSM particles. We present our survey in various tables in this section. We begin

with the main classification in table 1, which contains 10 independent decay groups. Each

row and column represent how B and C decay after the main decay process, A→ BC. The

second cell in the first row (B) and the first column (C) represents a SM particle, while the

other three cells represent a BSM particle. These three BSM cells are distinguished based on

how they decay: BSM→ SM1×SM1 (two similar kinds of SM particles), BSM→ SM1×SM2

(two different kinds of SM particles), and BSM → complex (more complex final states).

Our goal is not to provide a complete survey of all available theory models but to catalogue

the set of possibilities, providing at least one motivating example for each final state.2

2In nearly every case, there are multiple examples that have been well-studied in dedicated papers (we

apologize for not citing your paper!). This is particularly true for signatures that resemble all-hadronic

diboson decays [24] or contain di-photon resonances [25, 26] due to the excitement over (no longer) excesses

reported by ATLAS and CMS.
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The left-upper corner of the table (denoted by Group I) reproduces a group of the

standard 2-body decays, A → BC, where A is a BSM particle and B and C are SM

particles, as covered in ref. [14]. In this subtable, the column and row are a list of SM

particles and each entry corresponds to a mother particle, which would decay into one

particle in the column and one particle in the row in the subtable. We show examples

of theories that populate the entire landscape of 2-body resonances. Z ′ and W ′ denote

additional gauge bosons, /R represents R-parity violating supersymmetry (SUSY), L∗, Q∗

are excited leptons and quarks, respectively, and T ′ and B′ are a vector-like top and bottom

quarks, respectively. ZKK denotes Kaluza-Klein excitation of SM Z.

We categorize the rest of table 1 in terms of nine additional subtables, which are

denoted by Roman numerals II through X, and present each table in the sequential order.

Note that generally we suppress electric charges of each SM particle and focus on the

diversity of decay products, although we mention a few interesting examples of such kinds.

Similarly we will not distinguish light jets from gluon and generically denote them as j

but occasionally we distinguish them for some interesting decays. We denote the bottom

quark, and top quark by b/b̄ and by t/t̄, respectively. The V represents SM gauge bosons

Z and W± and H is a SM Higgs boson. Throughout the manuscript, a primed particle X ′

represents a BSM particle, whose properties are similar to the corresponding SM particle X.

Ref. [14] provide a complete list of possible production mechanisms of two body res-

onances, including resonant production mode (via the tree-level decay couplings, loop-

induced processes involving the decay coupling, or the inclusion of additional couplings to

quarks or gluons allowed by the quantum numbers of the resonance), the leading produc-

tion mode in association with one, two, three, or four Standard Model particles (using the

same coupling for production and decay in a four-flavor scheme), the unavoidable existence

of a pair production mode. It also notes a possible choice of resonance quantum numbers

that does not lead to a pair production mode. However, if one or both of the decay prod-

ucts of A is a BSM particle, A will not be produced as a single resonance at the LHC via

the same decay coupling. It requires additional couplings to quarks and gluons, which is

not an issue for our discussion in the rest of this study.

In general, various constraints may be imposed on these resonances and could affect

the possible production and decay modes. In order to maintain the broadest possible

scope, we consider only the most stringent constraints imposed by gauge invariance and

Lorentz invariance, as many experimental constraints are dependent on the details of the

underlying model and may in principle be evaded. Gauge invariance and Lorentz invariance

also dictate the structure of interaction of resonances and SM particles.

Table 2 shows example for A → BC, where A and B are BSM particles and C is a

SM particle, which is the Group II in table 1. We consider two similar SM particles in

the B decays. For example, the jj denotes B decays to two quarks (qq̄, qq̄′ or qq), while

`` includes both two opposite-charged leptons (`+`−) and the same-sign charged leptons

(`+`+ and `−`−) and the V V includes the B decays to gg, γγ, γZ, ZZ, WW , or ZW .

The H is the observed Higgs boson, H ′′ and H ′ are heavy scalars, A is a new pseudo

scalar, and H++ denotes a doubly-charged scalar particle. The Q′ represents a generic

vector-like quark. X5/3 and π
4/3
6 represent a vector-like quark with electric charge 5/3 and

– 3 –
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A→ BC
B = SM B = BSM B = BSM B = BSM

e µ τ q/g b t γ Z/W H BSM→ SM1 × SM1 BSM→ SM1 × SM2 BSM→ complex

e Z ′ /R /R LQ LQ LQ L∗ L∗ L∗

µ Z ′ /R LQ LQ LQ L∗ L∗ L∗

τ Z ′ LQ LQ LQ L∗ L∗ L∗

q/g Z ′ W ′ T ′ Q∗ Q∗ Q′

C
=

S
M b Z ′ W ′ Q∗ Q∗ B′ Group II Group III Group IV

t Z ′ Q∗ T ′ T ′ (Table 2) (Table 3) (Table 4)

γ H H ZKK
Z/W Group I H H±/A

H H

C
=

B
S

M

B
S

M
→

S
M

1
×

S
M

1

Group V
(Table 5)

Group VI
(Table 6)

Group VII
(Table 7)

C
=

B
S

M

B
S

M
→

S
M

1
×

S
M

2

Group VIII
(Table 8)

Group IX
(Table 9)

C
=

B
S

M

B
S

M
→

co
m

p
le

x

Group X
(Tables 10 and 11)

Table 1. Top-level organization of BSM particle A by its two-body decays into B and C, showing

examples of theoretical motivations for each case. Z ′ and W ′ denote additional gauge bosons, /R

represents R-parity violating SUSY, L∗, Q∗ are excited leptons and quarks, respectively, and T ′ and

B′ are a vector-like top and bottom quarks, respectively. The symbol ZKK denotes Kaluza-Klein

excitation of SM Z. The SM case in the upper left box is reproduced from ref. [14].

a color-sextet scalar with electric charge 4/3, respectively. Since we consider two similar

SM particles, many such examples are either a Z ′/W ′ or a neutral-heavy scalar.

It is worth noting that when B or C are BSM particles, searches for A are comple-

mented by searches for the B or C particle directly. These approaches are complementary

because searches for A→ BC are sensitive to the coupling between the A and B/C while

direct searches for B/C are sensitive to the coupling between B/C and the SM decay

products. It is possible that one of these couplings could be sufficiently smaller than the

other to render direct searches in one mode insensitive and therefore both search strategies

are useful. Figure 1 illustrates the complementarity of direct and indirect searches in the

case that B = C and B → qq̄. The three relevant couplings are between the A particle

and quarks (g(A, qq̄)), between the B particle (g(A,BB)) and between the B particle and
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A→ BC
B = BSM

`` jj V V HH

`(e, µ, τ) L′ → `Z ′ L′ → `Z ′, N ′ → `W ′ L′ → `Z ′, N ′ → `W ′ L′ → `H ′

C
=

S
M

Q′ → jZ ′, Q′ → jZ ′, Q′ → jZ ′, Q′ → jW ′,

j(b, t, q) Q′ → jH ′, Q′ → jH ′, Q′ → jH ′, Q′ → jH ′

X5/3 → bH++ X5/3 → b̄π
4/3
6 X5/3 → bH++

V (W,γ, Z) W ′ →WZ ′
W ′ →WZ ′, W ′ →WZ ′, Z ′ → ZH ′,

Z ′ →WW ′ Z ′ →WW ′ Z ′ → γH ′

H
A→ HZ ′, A→ HZ ′, A→ HZ ′, H ′′ → HH ′

H ′′ → HH ′ H ′′ → HH ′ H ′′ → HH ′

Table 2. Example theoretical models for two-body decay of a BSM particle A into a BSM

particle B and an SM particle C, where the B particle subsequently decays to two similar SM

particles (Group II in table 1). The jj denotes B decays to qq̄/qq̄′/qq, and the V V includes the

B decays to gg, γγ, γZ, ZZ, WW , or ZW . The H is the observed Higgs boson, H ′′ and H ′ are

heavy scalars, A is a new pseudo scalar, and H++ denotes a doubly-charged scalar particle. The

Q′ represents a generic vector-like quark. In particular, an exotic vector-like quark with electric

charge 5/3 is denoted as X5/3. The π
4/3
6 is a color-sextet scalar with electric charge 4/3.

quarks (g(B, qq̄)). When mB � mA, so that the B decay products are contained inside

a single jet, the inclusive dijet search sets strong limits on A production. These limits

would be significantly weaker when mB is not sufficiently small for its decay products to

be contained inside an R = 0.4 jet, which is the jet radius used by both the ATLAS and

CMS inclusive dijet searches. For mA = 2 TeV, the current limit on g(A, qq̄) is about

0.1 [27, 28]. For moderate (not contained) mB, this means that there is strong sensitivity

up to g(A,BB) ∼ g(A, qq̄). For larger g(A,BB), there would be stronger sensitivity from a

direct search that targets the full A→ BB topology, e.g. a search for two jets with substruc-

ture and not just a search for two generic quark/gluon jets. The coupling g(A, qq̄) ∼ 0.1 at

mA ∼ 2 TeV corresponds to a cross section limit of about 0.1 pb. The direct search for B

sets limits of about 1 nb at mB = 300 GeV, which corresponds to g(B, qq̄) ≈ 0.2 [29, 30].

Therefore, the direct B search is not sensitive to the B’s produced from A production.

However, the direct search for B can be competitive when g(A, qq̄) is small. In particular,

if g(A, qq̄) < 0.1, then the direct search for A is insensitive, but if g(B, qq̄) > 0.2, then the

B search is sensitive. In general, this is also true for other final states and we expect signif-

icant improvement possible with a dedicated search for A → BC → (SMSM)(SMSM),

especially in the parameter space where g(A,BC) & g(A,SMSM) and g(B,SMSM)/

g(C, SMSM) is not too large.

In next group (Group III in table 1), we consider the case where B decays to two

different types of SM particles. Unlike table 2 where many examples are either a Z ′ or a

neutral-heavy scalar, in this category of table 3, many examples of B are either a vector-

like quark, a charged scalar or a W ′, since we consider two different particles. Once the

spin of B is fixed, we can easily find the spin nature of A, for a given SM particle for C.

– 5 –
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q
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Figure 1. An illustration of the complementarity of the search for A (inclusive dijet resonance

search) and the search for B (boosted resonance search). Dotted circles indicate hadronic activity

that will likely be mostly captured by one (potentially large-radius) jet. When mA = 2 TeV and

mB = 300 GeV, the inclusive dijet search likely has reduced sensitivity to A→ BB because the B

decay products are not well-contained inside a single small-radius jet. Therefore, when g(A,BB) &
g(A, qq̄) ∼ 0.1, gains are possible for a dedicated search.

A→ BC

B = BSM

tZ, tH, Wb, bZ, bH,Wt,
`Z, `γ, or `H

γW , ZW , HW,

tg, or tγ bg, or bγ or tb

` LQ→ `T ′ LQ→ `B′ H ′ → `L′ N → `W ′, N → `H+

C
=

S
M

W ′ → bT ′, W ′ → tB′, LQ→ jL′ B′ → tW ′, T ′ → bH+,

j(b, t, q) Z ′ → tT ′ Z ′ → bB′ X5/3 → tW ′, B′ → tH−,

X5/3 → tH+

V (W,γ, Z)
B′ →WT ′, T ′ →WB′, L′′ → ZL′ H+ → γW ′,

X−7/3 →WX−4/3 X8/3 →WX5/3 Z ′ →WH+

H T ′′ → HT ′ B′′ → HB′ L′′ → HL′
W ′′ → HW ′

H+′ → HH+

Table 3. Example (Group III in table 1) for A→ BC, where A and B are BSM particles and C is

a SM particle. The B decays to two different SM particles are considered. The LQ is a leptoquark

carrying both baryon and lepton numbers, and the N is a right-handed heavy neutrino. Exotic

vector-like quarks with electric charges −7/3, −4/3, 5/3, and 8/3 are denoted as X−7/3, X−4/3,

X5/3, and X8/3 respectively. The H+ and H− are new charged scalar particles.

Here the LQ is a leptoquark carrying both baryon and lepton numbers, and the N is a

right-handed heavy neutrino. Exotic vector-like quarks with electric charges −7/3, −4/3,

5/3, and 8/3 are denoted as X−7/3, X−4/3, X5/3, and X8/3 respectively. The H+ and H−

are new charged scalar particles.
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A→ BC

B = BSM

N(→ jj`), g̃(→ jj`), Q′(→ jjj), H̃±/0(→ jjj), LQ(→ `j), q̃(→ `j),

or W̃±/0(→ jj`) or g̃(→ jjj) or q̃(→ jj)

C
=

S
M

`(e, µ, τ) W ′ → `N LQ→ `Q′ Q′ → `LQ

LQ→ jN , t̃→ tg̃,

L′ → qLQj(b, t, q) t̃→ tg̃, t̃→ tW̃ 0, q̃ → H̃±/0q

t̃→ bW̃±

V (W,γ, Z) L′ →WN
q̃′ →Wq̃

q̃′ → Zq̃

H N ′ → HN LQ′ → HLQ

Table 4. Example (Group IV in table 1) for A→ BC, where A and B are BSM particles and C

is a SM particle. The B decays to more complex final states are considered. The L′ is a vector-like

lepton, and N denotes a right-handed heavy neutrino which can decay to N →W ′(∗)`→ jj`. The

Q′ represents a generic vector-like quark decaying to Q′ → W ′(∗)j → jjj. The t̃ denotes a stop,

and the g̃ is a gluino which decays through RPV couplings [31, 32]. The W̃ 0 and W̃± are neutral

and charged winos respectively. The neutral and charged Higgsinos, H̃0 and H̃±, can decay to

H̃±/0 → jq̃∗ → jjj through RPV couplings.

The next example (Group IV) shown in table 4 is similar to the previous case (Group

III), but we consider the case where B decays in a more complicated way. Many examples

that we present are due to 3-body decay or decays through R-parity violating interaction

(RPV) in supersymmetry. For instance, a right-handed heavy neutrino N could decay to

N → W ′(∗)` → jj` via an off-shell W ′. Similarly, a generic vector-like quark Q′ could

decay to Q′ → W ′(∗)j → jjj. In table 4, the t̃ denotes a stop, and the g̃ is a gluino which

decays through RPV couplings [31, 32]. The W̃ 0 and W̃± are neutral and charged winos

respectively. The neutral and charged Higgsinos, H̃0 and H̃±, can decay to H̃±/0 → jq̃∗ →
jjj through RPV couplings.

The next group (Group V in table 1) presented in table 5 is the first example of

A → BC decay, where A, B and C are all BSM particles. We consider that each of B

and C decays to similar kinds of SM particles. As discussed in table 2, the jj denotes

two quark-system of all possible flavor combinations. Here the V V includes γγ, γZ, ZZ,

ZW , γW , or WW . We abbreviate the decays G′ΘφI ≡ G′ → ΘφI , G
′
ΘΘ ≡ G′ → ΘΘ,

Θ ≡ Θ → G′G′, and φI ≡ φI → ΘG′ where G′, Θ, and φI denote a coloron, color-octet

scalar, and a singlet scalar, respectively [33, 34]. The extended Two-Higgs Doublet Model

with a real singlet (2HDMS) [35, 36] allows for the decay of a CP-even heavy scalar into

light scalars, abbreviated as 2H ≡ H ′′ → H ′H ′. We also consider heavy Z boson decays

Z ′ ≡ Z ′ → W ′+W ′− , H+H− ,W ′±H∓, or H++H−− where H± and H±± are singly- and

doubly-charged scalars.

The next two Groups, VI and VII, in tables 6 and 7 are similar to Groups III and IV,

respectively. In both cases, C decays to similar kind SM particles, while B decays to two

different kinds (Group VI, table 5) or more complex final state (Group VII, table 6).

– 7 –
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A→ BC
B = BSM

jj gg V V `` HH

C
=

B
S

M

jj Θ, Z ′ φI 2H, Z ′ 2H 2H

gg G′ΘΘ 2H, G′ΘφI 2H 2H

V V 2H, Z ′ 2H 2H

`` 2H 2H

HH 2H

Table 5. Example (Group V in table 1) for A→ BC, where A, B and C are BSM particles. Each

of B and C decays to similar kinds of SM particles. The jj denotes a diquark with all possible

flavor combinations. Here the V V includes γγ, γZ, ZZ, ZW , γW , or WW . We abbreviate the

decays G′ΘφI
≡ G′ → ΘφI , G

′
ΘΘ ≡ G′ → ΘΘ, Θ ≡ Θ → G′G′, and φI ≡ φI → ΘG′ where G′,

Θ, and φI denote a coloron, color-octet scalar, and a singlet scalar respectively [33, 34]. Extended

Two-Higgs Doublet Model with a real singlet (2HDMS) [35, 36] allow for the decay of a CP-even

heavy scalar into light scalars, abbreviated as 2H ≡ H ′′ → H ′H ′. We also consider heavy Z boson

decays Z ′ ≡ Z ′ → W ′+W ′− , H+H− ,W ′±H∓, or H++H−− where H± and H±± are singly- and

doubly-charged scalars.

A→ BC

B = BSM

tZ, tH, Wb, bZ, bH,Wt,
`Z, `γ, or `H HW

tg, or tγ bg, or bγ

C
=

B
S

M jj T ′′ → Z ′T ′ B′′ → Z ′B′ L′′ → Z ′L′
Z ′ → H±W ′∓,

Z ′ →W ′+W ′−

V V T ′′ → S′T ′ B′′ → S′B′ L′′ → S′L′

HH T ′′ → S′T ′ B′′ → S′B′ L′′ → S′L′

Table 6. Example (Group VI in table 1) for A→ BC, where A, B and C are BSM particles. The

C decays to two similar SM particles, while the B decays to two different kinds of SM particles.

The jj denotes a diquark with all possible flavor combinations. The V V includes gg, γγ, γZ, ZZ,

or WW .

A→ BC
B = BSM

jj` ``` tWW jjj

C
=

B
S

M

jj, V V , or HH

N ′ → Z ′N , L′′ → Z ′L′, X ′8/3 → Z ′X8/3 ,

q̃ → H̃+q̃′N ′ → H ′N , L′′ → H ′L′ X ′8/3 → H ′X8/3

L′ →W ′N

Table 7. Example (Group VII in table 1) for A → BC, where A, B and C are BSM particles.

The C decays to two similar SM particles, while the B decays to more complex final states. The jj

denotes a diquark with all possible flavor combinations, and V V includes γγ, γZ, ZZ, or WW . The

N denotes a right-handed heavy neutrino which decays to N →W ′(∗)`→ jj`. The L′ represents a

generic vector-like lepton decaying to L′ → Z ′(∗)`→ ```.
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A→ BC
B = BSM

Wb, tZ, tH, tg, or tγ Wt, bZ, bH, bg, or bγ `Z or `γ
C

=
B

S
M

Wb, tZ, Z ′ → T ′T̄ ′, W ′ → T ′B̄′,
LQ→ T ′L̄′

tH, tg, or tγ H ′ → T ′T̄ ′ H± → T ′B̄′

Wt, bZ, Z ′ → B′B̄′,
LQ→ B′L̄′

bH, bg,or bγ H ′ → B′B̄′

`Z or `γ
Z ′ → L′L̄′

S → L′L̄′

Table 8. Example (Group VIII in table 1) for A → BC, where A, B, and C are BSM particles.

Each of B and C decays to different kinds of SM particles. This table shows the resonant productions

(via either a new gauge boson or a new scalar) of new fermions.

A→ BC
B = BSM

jj` ```

C
=

B
S

M

Wb, tZ,
LQ→ T ′N LQ→ T ′L′

tH, tg, or tγ

Wt, bZ,
LQ→ B′N LQ→ B′L′

bH, bg, or bγ

`Z or `γ W ′ → L′N Z ′ → L′L′

Table 9. Example (Group IX in table 1) for A → BC, where A, B and C are BSM particles.

The C decays to two different SM particles, while the B decays to more complex final states. The

N denotes a right-handed heavy neutrino which decays to N →W ′(∗)`→ jj`. The L′ represents a

generic vector-like lepton decaying to L′ → Z ′(∗)` → ```. The T ′, B′, and L′ decays are the same

as presented in table 5.

In table 8, we present examples for A → BC, where A, B, and C are BSM particles

and both B and C decay to different kinds of SM particles (Group VIII in table 1). As

mentioned for table 3, many examples of two different SM decay products are decays of

vector-like fermions. Therefore an obvious example for Group VIII would be the resonant

production of two vector-like fermions (via either a new gauge boson or a new scalar).

The last two Groups (IX and X) involve more complex decays. In table 9, only B

follows the complex decays, while in table 10 both B and C give the complex final states.

We consider 3-body decays of a right-handed heavy neutrino or a vector-like quark for such

examples.

As an alternative example for X, we provide various coloron decays in table 11. In

this example, the j includes a t, b, and light-flavor quarks. The G′, Θ, and φI denote a

coloron, color-octet scalar, and a singlet scalar respectively. The three particles naturally

arise in a ‘renormalizable coloron model’ [33, 34]. It is interesting that a simple coloron

model provides such diverse signatures, depending on the mass spectrum.
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A→ BC
B = BSM

N(→ jj`) Q′(→ jjj) LQ(→ `j)

C
=

B
S

M N(→ jj`) Z ′ → NN̄ Q′′ → N Q′

Q′(→ jjj) Z ′ → Q′ Q̄′ L′ → Q′ LQ

LQ(→ `j) Z ′ → LQ LQ

Table 10. Example (Group X in table 1) for A → BC, where A, B and C are BSM particles.

Both B and C decay to more complex final states. The N denotes a right-handed heavy neutrino

which can decay into N → W ′(∗)` → jj`. The Q′ represents a generic vector-like quark decaying

to Q′ →W ′(∗)j → jjj.

A→ BC
B = BSM

ggjj ggjjjj WWjj γZjj ZZjj Hjj Hjjjj

C
=

B
S

M

ggjj G′ → ΘφI G′ → ΘφI G′ → ΘφI G′ → ΘφI G′ → ΘφI

ggjjjj G′ → ΘΘ G′ → ΘΘ G′ → ΘΘ G′ → ΘΘ G′ → ΘφI G′ → ΘΘ

WWjj G′ → ΘΘ G′ → ΘΘ G′ → ΘΘ G′ → ΘφI G′ → ΘΘ

γZjj G′ → ΘΘ G′ → ΘΘ G′ → ΘφI G′ → ΘΘ

ZZjj G′ → ΘΘ G′ → ΘφI G′ → ΘΘ

Hjj G′ → ΘφI

Hjjjj G′ → ΘΘ

Table 11. Example (Group X in table 1) for A→ BC, where A, B and C are BSM particles, where

both B and C decay to more complex final states. The j includes a t, b, and light-flavor quarks.

The G′, Θ, and φI denote a coloron, color-octet scalar, and a singlet scalar respectively [33, 34]. So

we could call all these entries as ‘a renormalizable coloron model’. It is interesting that a simple

coloron model provides such diverse signatures, depending on the mass spectrum.

Finally we make a brief remark on combining different groups. In Groups II and III, A

and B are BSM resonances and C is SM particle. Since C is a SM particle, we can classify

A and B based on the spin of C. Some examples are shown in table 12 for Groups II and

III. Any pair, FF , FV etc only indicates Lorentz structure and they could have different

(QED, QCD) charges. C could be F , V or H, and B (2-body resonance) will decay into

any possible pair of Cs. The spin of A will be determined, once the spin of B is chosen. All

primed particles are BSM particles. In principle, this classification could include Group IV

but would be more complicated. X represents either S or V .

Similarly we can combine Groups V, VI and VIII, and show generic presentation of

Lorentz structure in table 13. Here A, B and C are BSM resonances and both B and C

could decay into any possible pair of F , V or H. The spin of A will determined, once the

spins of B and C are chosen. In principle, this classification could include Groups VII,

IX and X but would be more complicated. The point of this exercise in tables 12 and 13

is that we can find an example of any resonance, once we specify (QED, QCD) quantum

numbers and Lorentz structure.
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A→ BC B → FF B → V V B → HH B → FV B → FH B → V H

C=F F ′ → FX ′ F ′ → FX ′ F ′ → FX ′ X ′ → FF ′ X ′ → FF ′ F ′ → FX ′

C=V V ′′ → V X ′ S′′ → V X ′ S′′ → V X ′ F ′′ → V F ′ F ′′ → V F ′ X ′′ → V X ′

C=H X ′′ → HX ′ X ′′ → HX ′ X ′′ → HX ′ F ′′ → HF ′ F ′′ → HF ′ X ′′ → HX ′

Table 12. Example (Groups II and III in table 1) for A→ BC purely based on Lorentz structure,

where A and B are BSM resonances and C is SM particle. The corresponding (QED, QCD) charges

need to be understood properly, depending on quantum charges of the involved particles. Any pair,

FF , FV etc only indicates Lorentz structure and they could have different (QED, QCD) charges.

C could be F , V or H, and B (2 body resonance) will decay into any possible pair of F , V or

H. The spin of A will be determined, once the spin of B is chosen. All primed particles are BSM

particles. In principle, this classification could include III but would be more complicated. X is

either a scalar (S) or a vector (V ).

A→ BC B → FF B → V V B → HH B → FV B → FH B → V H

C → FF X ′′′ → X ′′X ′ X ′′′ → X ′′X ′ X ′′′ → X ′′X ′ F ′′ → X ′F ′ F ′′ → X ′F ′ X ′′′ → X ′′X ′

C → V V X ′′′ → X ′′X ′ X ′′′ → X ′′X ′ F ′′ → X ′F ′ F ′′ → X ′F ′ X ′′′ → X ′′X ′

C → HH X ′′′ → X ′′X ′ F ′′ → X ′F ′ F ′′ → X ′F ′ X ′′′ → X ′′X ′

C → FV X ′ → F ′F ′′ X ′ → F ′F ′′ F ′′ → F ′X ′

C → FH X ′′′ → X ′′X ′ F ′′ → F ′X ′

C → V H X ′′′ → X ′′X ′

Table 13. Example (Groups V, VI and VIII in table 1) for A → BC purely based on Lorentz

structure, where A, B and C are BSM resonances. The corresponding (QED, QCD) charges need

to be understood properly, depending on quantum charges of the involved particles. Any pair, FF ,

FV etc only indicates Lorentz structure and they could have different QED/QCD charges. Both

B and C could decay into any possible pair of F , V or H. The spin of A will determined, once the

spins of B and C are chosen. In principle, this classification could include VII, IX and X.

3 Current status

ATLAS and CMS have an impressive and extensive search program that already includes

many of the possibilities described in the previous sections. In particular, a few more of

the A → SM × SM possibilities described in ref. [14] are now covered by Run 2 searches.

Table 14 describes the current coverage to both the SM × SM and more generic 2-body

resonances cases using published searches based on Run 2 data.

The first important feature of table 14 is that many of the SM × SM possibilities are

still uncovered, most notably the final states involving a lepton and a quark/gluon or Higgs

boson. The second important feature of table 14 is that when one or both of B/C are BSM,

most of the possibilities are uncovered. In some cases, such as B/C → quarks/gluons, there

is some complementarity with direct B/C searches (see section 2). This is also true when

B or C decay into leptons or vector bosons, but the B/C search limits are much weaker

due to the low production cross-section of vector boson fusion at the LHC and the available

center-of-mass energy at current and previous lepton colliders.

Despite a large number of existing searches, table 14 combined with section 2 indicate

that there are many well-motivated possibilities that are currently uncovered. New searches

can close these gaps in coverage and ensure broad sensitivity to BSM possibilities.
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e µ τ q/g b t γ Z/W H
BSM→ SM1 × SM1 BSM→ SM1 × SM2 BSM→ complex

q/g γ/π0’s b · · · tZ/H bH · · · τqq′ eqq′ µqq′ · · ·

e [37, 38] [39, 40] [39] ∅ ∅ ∅ [41] [42] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ [43, 44] ∅

µ [37, 38] [39] ∅ ∅ ∅ [41] [42] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ [43, 44]

τ [45, 46] ∅ [47] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ [48, 49] ∅ ∅

q/g [29, 30, 50, 51] [52] ∅ [53, 54] [55] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

b [29, 52, 56] [57] [54] [58] [59] ∅ ∅ ∅ [60] ∅ ∅ ∅ ∅ ∅

t [61] ∅ [62] [63] ∅ ∅ ∅ [64] [60] ∅ ∅ ∅ ∅

γ [65, 66] [67–69] [68, 70] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Z/W [71] [71] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

H [72, 73] [74] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

B
S

M
→

S
M

1
×

S
M

1 q/g ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

γ/π0’s [75] ∅ ∅ ∅ ∅ ∅ ∅ ∅

b [76, 77] ∅ ∅ ∅ ∅ ∅ ∅
...

...

B
S

M
→

S
M

1
×

S
M

2

tZ/H

bH
...

...

B
S

M
→

co
m

p
le

x

τqq′

eqq′

µqq′

...

...

Table 14. References to existing searches for two-body resonances, where one decay product is

from the first column and one is from the first row. Only the most recent searches are considered.

The box BSM → SM1 × SM2 represents cases where the primary resonance decays to a BSM

particle, which itself decays into two SM particles that are not the same. Colored cells indicate

searches that were covered by
√
s = 8 TeV searches reported in ref. [14].

4 Conclusions

Two-body resonance searches are a cornerstone of the LHC search program. While the

current experimental coverage is broad, there are many well-motivated scenarios that are

all or partially uncovered. We have catalogued the set of possibilities, providing at least

one motivating example for each final state. Given the lack of significant excess at the LHC

and the lack of a unique theory to guide the search program, now is the time to consider

diversifying the experimental sensitivity. Organizing the possibilities by final state provides

a way forward.

While the traditional search program will be able to accommodate many of the possi-

bilities described earlier, there are not enough resources to consider all potential final states.

Therefore, dedicated searches will likely need to be complimented with more model agnos-

tic searches. Machine learning methods may be able to automate this approach and solve

significant statistical challenges like large trails factors [15, 16]. In particular, techniques

such as neural networks can readily analyze high-dimensional spaces and approaches with
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cross-validation can avoid over-training. A variety of advanced machine learning meth-

ods have been proposed recently [15–20, 20–23, 78–80] which can be trained without any

particular signal model. As a result, these algorithms would be broadly sensitive to new

resonances and offer a powerful complement to dedicated searches for particular topologies.

Many of these techniques can be trained directly on data [15–20, 20, 21, 78–80] and so can

naturally be incorporated into the usual bump hunting framework. While these tools will

not be more sensitive than a dedicated search on any particular topology, they can be

simultaneously sensitive to a wide variety of resonances. For example, in the case that

mA 6= mB 6= mC , a traditional search would pay a significant ‘look elsewhere effect’ by

scanning over mA,mB, and mC . In contrast, methods like those proposed in refs. [15, 16]

only pay the trails factor for a scan in mA and let a neural network discover structure that

could point to a localized feature from resonances B and C. As another example, a method

trained with photons and jets may be sensitive to diphoton, dijet, and mixed photon-jet

resonances all at once while traditional methods typically focus on one topology at a time.

These methods are in their infancy, but have a great potential to fill in gaps in the existing

search program.

This work has focused on two-body decays into visible final states. Future work will

consider more complex cases where there are undetectable particles, such as neutrinos and

dark sectors, as well as multi-body decays.

The LHC experiments have and will continue to collect rich datasets that may contain

answers to key questions about the fundamental properties of nature. Many well-motivated

fundamental theories have provided guiding principles to analyses these data. However, a

more diversified perspective will be required to full exploit the data — in fact, there may

be something new already hiding in the existing datasets!
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