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ABSTRACT: Arrays of Si microwires doped n-type (n-Si) and
surface-functionalized with methyl groups have been used, with or
without deposition of Pt electrocatalysts, to photoelectrochemically
oxidize I−(aq) to I3

−(aq) in 7.6 M HI(aq). Under conditions of
iodide oxidation, methyl-terminated n-Si microwire arrays exhibited
stable short-circuit photocurrents over a time scale of days, albeit
with low energy-conversion efficiencies. In contrast, electrochemical
deposition of Pt onto methyl-terminated n-Si microwire arrays
consistently yielded energy-conversion efficiencies of ∼2% for
iodide oxidation, with an open-circuit photovoltage of ∼400 mV
and a short-circuit photocurrent density of ∼10 mA cm−2 under 100
mW cm−2 of simulated air mass 1.5G solar illumination. Platinized
electrodes were stable for >200 h of continuous operation, with no
discernible loss of Si or Pt. Pt deposited using electron-beam
evaporation also resulted in stable photoanodic operation of the methyl-terminated n-Si microwire arrays but yielded
substantially lower photovoltages than when Pt was deposited electrochemically.

Global climate change caused by anthropogenic
greenhouse gases is a serious concern. To help
mitigate this, solar energy utilization is particularly

attractive because solar panels are easily deployable on various
size scales. Further, in many regions of the world electricity
from solar panels is cost-competitive with electricity derived
from sources that emit greenhouse gases.1,2 However, at
certain times of the day solar panels may provide more
electricity than demanded. This situation can occur at a level of
solar panel installation that provides as little as ∼20% of the
daily electricity demand,3,4 therefore necessitating substantial
installment of energy storage technologies to enable 100%
renewable electricity generation to be effectively utilized.
Silicon represents over 90% of the installed solar panel
capacity,1 and hence, identification of uses for silicon for direct
light-to-chemical energy storage is of current technological

interest. Arrays of Si microwires (MWs)5−14 and nano-
wires15−23 are interesting platforms for the fabrication of
artificial photosynthetic devices. The high aspect ratio of the
wires allows for effective light absorption along the length of
the wire, while enabling short, radial charge-carrier collection
distances to electrocatalysts optimally integrated in a high-
surface-area structure.24 The porosity of the wire array allows
for facile reactant access and product egress to/from the
internal area of the morphologically structured light absorber
and provides a minimal path length for ionic conduction to
and through a supporting membrane.25
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Renewable energy storage using H2 from water or fuels from
direct CO2 reduction from the atmosphere represent
particularly interesting chemical storage options because they
form simple high-energy-density chemicals and/or are carbon
neutral processes. However, both of these reactions present
major challenges,26 because both reactions utilize electrons and
protons from water via its oxidation to O2 by a complex four-
electron, four-proton process to store >1.0 V of potential. This
kinetically challenging process has only ∼40% roundtrip
efficiency for H2 energy storage via water electrolysis and use
in a polymer−electrolyte−membrane fuel cell.27,28 Moreover,
the band gap of Si is 1.12 eV, and even state-of-the-art Si
photovoltaics typically exhibit photovoltages at their maximum
power point of only ∼0.6 V under 1 Sun illumination.29 Hence,
Si by itself, either as an individual light absorber or in a tandem
structure in which two Si light absorbers are arranged optically
and electrically in series, cannot provide the photovoltage
necessary to drive water electrolysis or sustainable CO2
reduction.30 Si is also unstable toward anodic oxidation in
aqueous electrolytes and thus benefits from kinetic stabilization
strategies such as use of one-electron-transfer redox species in
nonaqueous solvents or protective coatings.31−34

Identification of simple alternative electron sources to water
are timely research endeavors. Halides in particular allow for
∼90% roundtrip efficiency for H2 energy storage and use.28,35

Therefore, photoelectrolysis of HI(aq) to produce H2(g) and
I3
−(aq) is one potential approach for solar energy storage using

a Si light absorber. The minimum voltage needed for the
electrolysis reaction is ∼0.55 V under standard-state
conditions36 and is only ∼0.25 V in highly concentrated
HI(aq),37 both of which can be provided by single, nontandem
Si MW arrays.38−40 A demonstration of the utility of Si MW
arrays for the unassisted electrolysis of HI(aq) would also
provide a pathway toward technologies for solar fuel
production. Such a demonstration, however, requires a method
to suppress the anodic oxidation/passivation of Si in aqueous
solutions. Unassisted photoelectrolysis of HI(aq) has been
demonstrated using membrane-embedded p-type Si MW
arrays in which the Si MWs served as the photocathode and
iodide was oxidized at a back metal contact to the MWs.41

Moreover, planar single-crystalline n-Si(111) photoanodes
have been shown to be stable in contact with Fe-
(CN)6

3−/4−(aq) solutions for hours of continuous illumination,
if the Si surface is terminated with methyl groups.42 Methyl
termination also introduces a surface dipole that shifts the
band edges relative to the solution redox potential, which
increases the photovoltage relative to that of H-terminated n-
Si(111) photoelectrodes.43 We demonstrate herein the use of
methyl-terminated Si MWs, in conjunction with surface-bound
Pt electrocatalysts for I− oxidation, to enhance the stability of
n-Si MW array electrodes under photoanodic operation while
effecting the solar-driven oxidation of I−(aq) to I3

−(aq) in 7.6
M HI(aq) at an ideal regenerative-cell energy-conversion
efficiency,41 ηIRC, of >1% for >200 h of continuous operation
under 1 Sun of simulated air mass (AM) 1.5 G solar
illumination (Figure 1).
Crystalline Si MW arrays were grown by the vapor−liquid−

solid growth method on patterned (111)-oriented Si
substrates.41,44,45 The desired MW diameter and spacing
were produced by lithographically patterning 3 μm diameter
circular holes, with a center-to-center pitch of 7 μm, into an
oxide overlayer on a degenerately doped, nonphotoactive
Si(111) substrate.45 The holes in the oxide layer were

subsequently filled with thermally evaporated Cu, which served
as the Si growth catalyst. The doping type and dopant density
of the n-Si MWs was controlled by use of PH3 during growth,
with the height of the MWs controlled by the growth time and
the position of the substrate in the reactor. After growth and
cleaning, the n-Si MW arrays were functionalized with methyl
groups by a two-step chlorination−alkylation reaction
sequence.43,46−48 As needed, Pt was then deposited using
electron-beam evaporation or by electrochemical deposition
from 5 mM K2PtCl4(aq) by passing >100 mC cm−2 of cathodic
charge density at −1.0 V versus a saturated calomel electrode
(SCE) (additional details are available in the Supporting
Information).
Four-point probe measurements on single Si MWs yielded

calculated resistivities, and therefore calculated dopant
densities,15 that were not related linearly to the partial pressure
of the PH3 dopant gas used during MW growth (Figure S1).
Measurements on the n-Si MWs that were etched by
KOH(aq) suggested that the MW shells were more conductive
than the cores. The radial dependence of the dopant density is
consistent with deposition of excess P by a vapor−solid−solid
growth mechanism.49,50 A high-temperature thermal oxide
“booting” procedure was then applied to distribute the dopants
more homogeneously throughout the radius of the MW and to
etch some of the excess dopants from the MW shell prior to
thermal annealing. This booting process was required to obtain
high-quality MW arrays that exhibited current density versus
potential (J−E) behavior (Figure S2) consistent with that
previously reported in nonaqueous electrolytes containing a
one-electron, outer-sphere ferrocene-based redox couple.45

The normal-incidence spectral response under these con-
ditions (Figure S3) was similar to that reported previously for
p-type or intrinsic (i.e., unintentionally doped) Si MW
arrays51,52 but was n-type in character for these n-Si MW
arrays. Changing the orientation of the Si MW arrays with
respect to the direction of propagation of incoming light has
been shown to result in increased external quantum yields,
even beyond the limit imposed by ergodic ray-optic light
trapping.51 In addition, improved light management techni-
ques using, for example, arrays of microcones can yield high
absorption over a large range of angles of the incident

Figure 1. Si MW array photoanode that is the focus of this work
and effects the stable light-driven oxidation of I−(aq) to I3

−(aq) in
7.6 M HI(aq). The MWs are doped n-type, are surface-terminated
with methyl groups, contain surface-bound Pt electrocatalysts, and
contain an oxide boot to attenuate electrochemical shunts.
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illumination.53 Consistently, in the dark the MW arrays
exhibited current rectification, evidenced by passing substantial
cathodic currents at negative potentials in conjunction with
small anodic currents at positive potentials (Figures S2 and
S4).
Figure 2 displays representative photoelectrochemical J−E

data of planar, single-crystalline n-Si(111) electrodes in contact

with Ar-purged ∼7.6 M HI(aq) that by visual inspection
contained adventitious I3

−(aq). The surfaces were as follows:
H−Si(111) (blue); Pt deposited electrochemically on H−
Si(111) (purple); CH3−terminated Si(111) (brown); Pt
deposited electrochemically on CH3−terminated Si(111)
(green); or Pt deposited using electron-beam evaporation on
CH3-terminated Si(111) (red). Even in highly concentrated
∼7.6 M I−(aq), the H-terminated n-Si(111) electrodes
exhibited a large resistance near open-circuit conditions, low
fill factors, and a rapid degradation of performance under
illumination. This loss in performance is attributed to
oxidation/passivation of the Si surface under photoanodic
operation. Deposition of Pt without prior methylation
provided enhanced rates of I− oxidation but low stability,
similar to that observed for H-terminated Si(111). CH3
termination alone resulted in an electrode that was stable on
the time scale of days but exhibited a very low fill factor,
attributable to the slow interfacial charge-transfer rate constant
for the oxidation of I− at Si surfaces.54,55 Open-circuit voltages,
Voc, for CH3-terminated n-Si(111) photoelectrodes were
consistently larger than those observed for H-terminated n-
Si(111) photoelectrodes, regardless of whether electrochemi-
cally deposited Pt was present. This behavior is consistent with
expectations in which an interfacial surface dipole arising from
Si−CH3 bonds produces a negative shift in the band-edge
positions of CH3−Si(111) surfaces relative to H−Si(111)
surfaces.43,56,57 In contrast to the other electrodes, CH3
termination in combination with electrochemical deposition
of Pt produced large fill factors and resulted in planar n-Si
photoanodes that exhibited reproducible, stable, and efficient
photooxidation of HI(aq).37 Hence, through judicious choice
of the Pt deposition protocol, large photovoltages could be

obtained even though Pt typically forms interfacial silicides
that limit the photovoltage to <500 mV under 1 Sun
illumination,58 similar to the behavior we observed for Pt
deposited by electron-beam evaporation.
Figure 3 displays representative photoelectrochemical J−E

performance of a methylated n-Si MW array electrode in

contact with ∼7.6 M HI(aq), before and after electrochemical
deposition of Pt. Methylated n-Si MW arrays were not easily
wetted by water or aqueous electrolytes. Repeated immersion
of electrodes into either of these solutions (∼10 times)
resulted in electrochemical contact between the aqueous
electrolyte and the MW arrays suitable for measurements.
Methylated n-Si MW arrays that contained electrochemically
deposited Pt consistently exhibited Voc ≈ 400 mV; short-circuit
current densities, Jsc, of ∼10 mA cm−2 at the Nernstian
potential for oxidation of I− to I3

−, E(I3
−/I−); and an ideal

regenerative-cell energy-conversion efficiency, ηIRC, of ∼2.0%
under 1 Sun of simulated AM1.5G solar illumination. Figure
S4 shows the behavior of the best-performing sample measured
during the course of this work.
Prior studies reported that methyl-termination of planar,

single-crystalline n-Si(111) surfaces followed by Pt deposition
resulted in efficient and stable photocurrent for the photo-
oxidation of aqueous iodide or bromide.17,37,59 Photocurrents
for I− oxidation using H-terminated n-Si nanowires with
surface-deposited Pt and without surface methylation were
shown to exhibit modest stability on the time scale of days.37

However, the platinized n-Si MW arrays without methyl
groups investigated herein consistently exhibited poor stability
for I−(aq) oxidation. In contrast, the n-Si MW arrays that had
been platinized after methyl-termination showed stable
photocurrents for >200 h of near-continuous I−(aq) photo-
oxidation, with Jsc decreasing by <15% after 200 h of
continuous cyclic voltammetric sweeping (Figure 4). This
decrease in Jsc over time is consistent with our observation of
light attenuation by photogenerated I3

− measured using a
calibrated silicon photodiode. However, the change in the
shape of the J−E behavior to one that is consistent with
increased shunting suggests that oxidation of the surface of the
MWs was likely. This is not surprising given expected
imperfect methylation of the non-Si(111) facets on the

Figure 2. Three-electrode current density versus potential data
recorded under 100 mW cm−2 of simulated AM1.5G solar
illumination for planar, single-crystalline, n-type Si(111) electro-
des immersed in Ar-purged ∼7.6 M HI(aq) containing adventi-
tious I3

− with or without (blue) various combinations of surface
terminations and catalyst treatments: methylation (+CH3),
electrochemical Pt deposition (+Pt), and electron-beam evapo-
ration of Pt (+Pt′).

Figure 3. Three-electrode current density versus potential data
recorded in the dark (dashed) or under 100 mW cm−2 of simulated
AM1.5G solar illumination (solid lines) for a methylated n-type Si
MW array electrode immersed in Ar-purged ∼7.6 M HI(aq)
electrolyte containing adventitious I3

− before (brown) or after
(green) electrochemical deposition of Pt.
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sidewalls of the MWs due to varied bonding environments and
sterics.60 A methyl-terminated n-Si MW array that did not
contain Pt exhibited stable, but modest, efficiency under the
same conditions (Figure S5). This observation is consistent
with expectations of stable but attenuated performance for
methyl-terminated planar, single-crystalline n-Si(111) electro-
des in the absence of Pt catalysts (Figure 2).
To assess the feasibility of performing the overall photo-

electrolysis of aqueous hydriodic acid, in which the
concentration of I3

− will increase substantially over time, as
well as to assess the quantum yield of I3

− formation, J−E data
under potentiostatic control were obtained over 21 h for a
platinized, methyl-terminated n-Si MW array in ∼7.6 M
HI(aq) that initially contained adventitious I3

−. These data
were obtained in a three-electrode setup in an H-cell
configuration in which the working electrode was separated
from the Pt counter electrode by a Nafion membrane (Figure
5a). Ex situ spectroscopic detection indicated near unity
Faradaic yield for formation of I3

−(aq) (Figure 5b).
Consistently, the total anodic charge passed directly correlated
with the cathodic limiting current densities ascribable to

reduction of I3
− at the Si MW array photoelectrode. The

number of turnovers per Si atom was ∼900 (see the
Supporting Information for calculation), implying that >200-
fold excess of charge was passed relative to the amount of
charge required to fully oxidize each Si atom via a four-hole
process. No discernible loss of Si was observed via scanning-
electron microscopy before and after the evaluation period of
21 h (Figure S6), supporting that Si etching and/or loss of Pt
was not responsible for the small decrease in photoanodic
current density as a function of operating time. After the
electrolysis, a calibrated Si photodiode that was placed in the
cell close to the position of the MW array exhibited ∼85% of
its initial response before the electrolysis, consistent with the
observed decrease in photocurrent from the Si MW photo-
anode and indicating that the decay can be ascribed to parasitic
light absorption due to the formation of I3

− in the cell during
the electrolysis. Moreover, the photoactivity was due to the
MWs and not the substrate, because physical removal of the
MWs yielded planar n-Si electrodes that exhibited little anodic
photocurrent under the same conditions, as expected for
degenerately doped n-Si(111) acting as the electrode.

Figure 4. (a) Three-electrode current density versus potential data recorded in the dark (dashed; black initially and orange after 200 h) or
under 100 mW cm−2 of simulated AM1.5G solar illumination every 50 h, and at 200 h of near-continuous illumination, for the methylated n-
type Si MW array electrode with electrochemically deposited Pt of Figure 3 immersed in Ar-purged ∼7.6 M HI(aq) containing adventitious
I3

−. (b) Three-electrode chronoamperometry data recorded at a potentiostatic bias of 0 V versus the Nernstian potential of the solution over
200 h of 100 mW cm−2 of simulated AM1.5G solar illumination, which totalled 207.5 h to compensate for the instances when the ELH-type
W-halogen lamp burnt out and was replaced with a new source.

Figure 5. (a) Three-electrode current density versus potential data in an H-cell configuration with the working and counter electrodes
separated by a Nafion membrane recorded continuously at a scan rate of 10 mV s−1 under 100 mW cm−2 of simulated AM1.5G solar
illumination for a methylated n-type Si MW array electrode with electrochemically deposited Pt immersed in Ar-purged ∼7.6 M HI(aq) that
initially contained adventitious I3

− over ∼21 h of continuous operation. (b) Integrated current data from panel a reported for several times
during the measurement (orange) and the scaled limiting cathodic current near −0.55 V, which is proportional to the amount of I3

− in
solution. For reference, also shown is the end point concentration of I3

− determined using ultraviolet−visible (UV−Vis) electronic
absorption spectroscopy in conjunction with the Beer−Lambert law.
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Methylation, and in general surface functionalization via
solution chemistry, is one of several approaches to protect
underlying semiconductors from deleterious surface reac-
tions.61 Other protection schemes include physical deposition
of materials, for example, by atomic-layer deposition (ALD),
sputtering, evaporation, bombardment with atoms or mole-
cules (e.g., nitridation62), or use of single-layer coatings
including graphene.63 Introduction of surface functionality
using solution chemistry can provide a conformal coating, for
which electron transfer across the interface is either mediated
by this layer or requires tunnelling through insulating
molecules,64−66 such as for the methyl functionality utilized
herein. However, even thin conformal layers of metals and
metal-oxide materials can absorb and/or reflect a substantial
amount of incoming light.67 Moreover, coating high-surface-
area substrates such as MW arrays and mesoporous thin films
is challenging. Use of both surface chemistry and metal
electrocatalysts resulted herein in a large Voc due to the
Si−CH3 surface dipole as well as rapid catalysis from the Pt,
resulting simultaneously in a large fill factor for iodide
oxidation. Methylation additionally protected the Si surface
from extensive oxidation.
The standard electrochemical potential required to oxidize

I−(aq) to I3
−(aq) at unity activity for each species (Eo(I3

−/I−))
is ∼+0.55 V versus the normal hydrogen electrode (NHE).36

Hence, on the basis of the observed values of Voc, the
platinized, methyl-terminated n-Si MW array electrodes did
not generate sufficient photovoltage under 1 Sun of normal-
incidence simulated AM1.5G solar illumination to simulta-
neously drive half-reaction 1 in conjunction with the reduction
of protons to molecular hydrogen, half-reaction 2, each at
standard state:

+− − −3I I 2e3F (1)

++ −2H 2e H2F (2)

However, the Voc values do allow for unassisted splitting of 7.6
M HI(aq), whose nonstandard-state concentration results in
E(I3

−/I−) ≈ +0.25 V.37

The combination of enhanced stability, catalysis, and large
Voc values is a key step toward use of MW arrays for integrated
reversible storage of solar energy as H2 using a variety of
electron sources, such as other hydrohalic acids (e.g.,
HBr(aq)) or H2O. The benefits of using hydrohalic acid fuel
precursors are (i) some are abundant; (ii) the thermodynamics
required for these reactions can be supplied by a single light-
absorber material used in efficient and commercial photo-
voltaics; and (iii) the electron-transfer chemistry between most
materials and halides is extremely rapid, resulting in little
energy loss during repeated oxidations and reductions in a
redox flow battery. These facts have led photoelectrochemical
redox flow batteries to be an active area of research.68−73

Toward this, inexpensive carbon-based materials could be
deposited on Si MW arrays as electrodeposited organic
polymers or high-surface-area graphitic materials, therefore
enabling small overpotentials for the hydrohalic redox
reactions and enabling a better match between the available
current from unconcentrated sunlight and the load from the
electrochemical reactions, catalysts, and electrolyte.32
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