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RElATIVISTIC Q.T!JARK MODEL BASED ON THE VENEZIANO REPRESENTATION. 
* 

II. GENERAL TRAJECTORIES 

Stanley Mandeistam 

Department of Physics and Lawrence Radiation Laboratory 
Universit3r of California 

Berkeley, California 

September 2, 1969 

ABSTRACT 

The model previously proposed is extended to include multi-

quark trajectories. Once any trajectories with more than a single 

quark and anti-quark are included, it is necessary to include trajectories 

where the number of quarks plus the number of anti-quarks, which we call 

the total quark number, is arbitrarily large. The necessary factorization 

properties of the multi-particle Veneziano amplitudes will hold provided 

the intercept of the leading trajectory is a polynomial function of the 

total quark number, and the degeneracy of the levels on all but the 

leading trajectory will increase with the order of the polynomial. It 

is possible to construct two different models dependingon whether one 

allows non-planar duality diagrams. The model with non-planar diagrams 

resembles more closely the non-relativistic harmonic-oscillator quark 

model, and the non-planar duality diagrams must beassociated with the 

non-planar Veneziano amplitudes discussed in a previous paper. One can 

introduce SU(3) symmetry breaking by making the intercept depend on 

the number of strange and non-strange quarks separately, and one then 

obtains a modified Gell-Mann-Okubo mass formula. 
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I. INTRODUCTION 

A relativistic quark model has been proposed and applied to 

mes6n trajectories by Mandeistam '  and by Bardakci and Halpern. 2  In the 

present paper we wish to extend the model to other trajectories. We 

shall discuss the general properties of the multi-quark trajectores, as 

well as the symmetry properties of the three-quark states. The spin 

and unitary-spin degrees of freedom will only be mentioned in so far 

as they are connected with the symmetry properties. We hope to treat 

the more detailed spin propertiesof the baryon trajectories in a 

subsequent paper. 

Within the framework of the model presented in I, it appeared 

that one need not introduce resonances consisting  of more than two quarks. 

Once one requires the presence of three-quark states, however, it is 

necessary to introduce trajectories where the number, of quarks and 

anti-quarks is arbitrarily large. We shall examine such trajectories 

in Sec. 2. For baryon anti-baryon scattering, it has already been 

pointed out by Rosner 3  that exotic resonances with two quarks and two 

anti-quarks must occur in the intermediate states, and one can apply 

similar reasoning  to more complicated reactions. Following' 

Delbourgo and Salam, we shall refer to the number of quarks plus 

the number of anti-quarks as the total quark number, and resonances 

with an arbitrarily large total quark number must be present. Our 

model in its present form does not appear to require trajectories with 

a net quark number greater than three, though it can certainly 

accommodate such trajectories. Until we know how to extend our 
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model beyond the narrow-resonance approxition we cannot answer the 

question whether trajectories of baryon number greater than one occur 

in this approximation, or only in higher orders. 

If our model is to be at. all acceptable on experimental and 

theoretical grounds, it is necessary that the mass of the lightest 

particle with a given total quark number be an Increasing function of, 

the quark number.. As long as the resonances with a total quark number 

of four or greater are sufficiently heavy, they will decay rapidly into 

resonances with smaller total quark numbers, and they will not appear 

experimentally as narrow.  resonances. We therefore have to inquire 

whether the model allows different trajectories to have different 

intercepts.. The question to be investigated concerns the factorization 

properties of the multi-particle Veneziano amplitude,' 6  which lie at 

the basis of the relativistic quark model. The.original treatment of 

such factorization properties assumed that all trajectories had the 

same intercept. 

We shall show in Sec. 2 that the residues at the poles of 

the multi-particle Veneziano amplitude can still be expressed as a 

finite sum of factored terms, provided that the intercept of the 

leading trajectory is a polynomial function of the total quark 

number. The degeneracy of the resonances will depend on the order of 

the polynomial. If the intercept is a linear function of the total 

quark number, the degeneracy of the spectrum of ordinary inesons, 

.e., of mesons with a total quark number of two, will be the same 

as in a model without nucleons and exotic resonances. The degeneracy 

of the spectrum of other resonances will be an increasing function 
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of the total quark number, as is to be expected on intuitive grounds. 

If the intercept Is a higher polynomial function of the total quark 

number, the degeneracy of all ordinary or exotic resonances on non-

leading trajectories will be increased, and even the degeneracy of the 

resonances on the first subsidiary trajectory will increase indefinitely 

with the order of the polynomiale 

In order that the spectrum of resonances be not too complicated, 

we therefore have to postulate that the intercept of the leading 

trajectory be a polynomial of low degree in the total quark.number. We 

might be tempted to assume that the intercept was a linear function 

of the total quark number. The masses of highly exotic resonances 

would then be proportional to the square root of the total quark 

number, however, and those of sufficiently high charge and hypercharge 

would be stable. It is not absolutely prohibited that such a model 

might be the appropriate narrow-resonances approximation to nature, 

since the range of validity of the model will probably not extend 

to resonances of very high mass. A model without the infinite system 

of stable exotic mesons is obviously to be preferred, and the simplest 

such model is one where the intercept of the leading trajectory is a 

quadratic function of the total quark number. 

It is possible to construct two different models with all the 

features mentioned above, depending upon whether one allows non-planar 

as well as planar duality diagrams. The models with only planar 

diagrams and with all diagrams will be discussed in Sees. 3 and i-

respectively. According to the general principles of the relativistic 
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quark model, each duality diagram is to be associated with the 

topologically similar multi-particle Veneziano diagram. The non-

planar duality diagrams will therefore be associated with the non- 

planar Veneziano amplitudes which we have discussed in a previous paper. 7  

Of the two models, that containing non-planar as well as planar 

diagrams has the closer resemblance to the non-relativistic harmonic-

oscillator quark model. All baryon states on the leading trajectory of 

such a model are symmetric in the three quarks )  andve shall hereafter 

refer to it as the symmetric quark model. The planar-diagram mOdel, 

on the other hand, posesses some non-symmetric states as well. The 

presence of one such state, the £ = 0 ZO has already been pointed 

out by Mandula, Rebbi, Slansky, Weyers and Zweig8 . While the symmetric 

quark model is, preferable in this respect, the planar-diagram model 

is not in definite contradiction with experiment, since the 2 = 0 

is only weakly coupled and may simply appear as a contribution to the 

continuum. We shall discuss such an interpretation in Sec. 3. 

The planar-diagram model is simpler than the symmetric quark 

model in regard to the spectrum of resonances on' the leading trajectory. 

As has been shown in Ref. 5 and 6, the leading trajectory in a planar 

Veneziano amplitude has no "orbital" degeneracy, though there will 

of course be a degeneracy associated with the spin and unitary-spin 

degrees of freedom. The extra degeneracy associated with the exotic 

resonances affects only the subsidiary trajectories, and no trajectory 

is infinitely degenerate. In non-planar. Veneziano amplitudes, the 

resonances on the leading baryon trajectory are degenerate, and the 

degeneracy increases with the angular momentum. The spectrum of 
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resonances on the leading baryon trajectory of our symmetric quark 

model is identical to that of the non-relativistic quark model, 

where the degeneracy also increases with the angular moment'. 9  

The meson-baryon coupling constants in the planar-diaram model 

are two-thirds as large as in the symmetric quark model. A convenient 

comparison of the BBM and MIvI coupling constants. may be made on the 

basis of the coupling with the neutral vector mesons. We showed in I 

that it was possible to adjust a single parameter in such away that 

the coupling constant of the vector mesons to the other mesons was 

universal, and we can treat the BM vertex in a similar manner. On 

comparing the BBM and MMM coupling constants, we then find that the 

symmetric quark model gives results in accord with vector meson 

universality, while the couplings of the vector mesons to the baryons 

in the planar-diagram model are too small by a factor 

The models constructed in land in Sees. 20 and ).# of the 

present paper possess exact SU(3)  symmetry. A convenient method 

of introducing symmetry breaking is to assume that the intercept of 

the leading trajectory is a polynomial function, not only of the tote.l 

quark number, but of the number of strange and non-strange quarks 

separately. The resulting formula for the mass splitting resembles 

the Gefl-Mànfl-Okubo  formula without the term responsible for the ZA 

mass difference. If we assume that the intercept is a quadratic 

function of the quark models, our formula differs in detail from the 

Ge].l-Mann-Okubo formula. It contains an extra parameter, but we are 

able to fit the baryon and meson multiplets with a single formula, 
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whereas the usual Gell-Mann-Okubo formula involves the masses of the 

baryon multiplets and the squares of the masses of the pseudo-scalar 

octet. It is also worth pointing out that our present derivation does 

not depend on the smallness of the SU(3) symmetry breaking. 

4 
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II • EXOTIC IESONMCES 

The general principles of the model are the same as those 

applied to meson trajectories in I. For meson-baryon scattering we 

shall have the processes represented by Fig. 1(a) and its crossed 

diagram and by Fig. 1(b), possibly together with further processes 

represented by non-planar diagrams which we shall discuss in Sec. i-

In momentum space the diagrams correspond to multi-particle Veneziano 

amplitudes 10  with the external particles in the same cyclic order as 

in the diagrams. From such multi-particle amplitudes one can factor out 

meson-baryon amplitudes with external particles of any spin. The lines 

in FIg. 1 also represent delta functions in spin and unitary spin. The 

coupling therefore has the form originally proposed by Capps 1  and, in 

their internal degrees of freedom, the diagrams are the duality 

12 	 13 diagrams used by Harari, by Rosner, by Matsuoka, Minomiya and 

14 
Sawada, and, in a rather different form, by Neville) 5  

The diagram for baryon anti-baryon scattering is shown in 

Fig. 1(c); there will be a similar diagram with the s- and t-

channels interchanged. It will be noticed immediately that the 

resonances in the t- . channel are exotic mesons consisting of two 

quarks and two anti-quarks. Rosner 3  was the first to draw attention 

to such exotic mesons, and their presence is a necessary feature of 

our model.. By viewing Fig. 1(c) from the s- channel, we can see that 

it must be present. The Intermediate state is then an ordinary meson, 

and the BM coupling is required for consistency with the meson-baryon 

amplitude. 



-8- 	 UCRL-19327 

One can employ similar reasoning to prove the existence of 

'exbtic baryons consisting of four quarks and one anti-quark. A 

diagram for the process BBB - BBB is shown in Fig. 1(d). Such a 

diagram must be present in order to represent the sequence of ex-

changes shown in Fig. 2. The resonances in the t-channei of 

Fig. 1(d) are the exotic baryons under discussion. It is evident that 

exotic mesons and baryons with an arbitrarily large number of quarks and 

anti-quarks are present in the model. This type of reasoning leaves 

open the question of the existence of resozrnncès with a net quark 

number greater than three. 

We have pointed out that a model with an infinity of meson and 

baryon resonances would be completely unacceptable unless the masses of 

the resonances increase with the total quark number. We now wish to 

investigate the factorization properties of our amplitude when the 

intercepts of the trajectories depend on the total quark number, and to 

prove the results already quoted in the introduction. 

We begin by restricting ourselves to planar amplitudes. 

Figure 3 represented a general diagram for such an amplitude, and we 

are Interested in the factorization properties when the diagram is 

divided by the dashed line. As in Ref. 5, we write the Veneziano 

integrand in the form: 

I = 1112 	
(1-w y1y)1k - 	k-i + i, k-1 + Si+lk 

1=1 k=j+l 

(2.1)' 

a 
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where 

w=u.. 
13 

	

yi
=  u1  •.°u1 j-1 
	

i < 2 < j-1 

yj = 1, y1  0 

Yk = n j +2 	, k 	+ 2 k < N1 

+ 1 
=1, 

 YN = 

Sik = alk(sjk) 	if 	k > I + 1 

sjj  = s+ 
, 	= 0 

S 	=-1 
j+l,j 

(2, 2a) 

(2. 2b) 

(2.2c) 

(2.2d) 

(2.2e) 

(2 .2f) 

(2.2g) 

(2.2h) 

We have used the notation of Chan and Tsou 1°  for the u's. The 

subscripts I k refer to the channel with particles i to k in 

clockwise order round the diagram. Il  and  12  are the Veneziano 

integrands associated with the two halves of the diagram. 

In units for which the slope of the trajectory is unity, we 

may write: 

	

= S ik + bik, k > I + 1 	 (2.3) 

where bik is the intercept of the leading trajectory in the channel 

ik. We supplement ( 2 .3) with the further definitions: 

	

= b +1,j +1 	
2 	 (2.a) 

b. 	=.i 	. 	 (2,b) 



-10- 	 - 	 UCRL-19327 

The quanity. 	in (2.4a) is the mass of the quark, s. 
JIJ 

and b 	are defined as the intercept which a trajeôtory would 
j+l,j+1  

have it the mass of its lowest member were equal to the quark mass. We 

may then write (24a) as: 

J. 	N 	 -2p.p ~ 
i

€ 

I 	1 11 	II 	II 	(1-w 	 •k 	k 
, 	 (2.5a) 2  

i1 k=j+1 

where 

ik = _blk -b11, k-i + b k-i + b1 +1,k 	
(2 5b) 

If all the intercepts are the same, so that all the quantities 

	

are zero except b,. 1 • 	it follows from (2.5b) that all e's 
1 	 J+,J 

are zero except The expression (2.5a) thus has the 

factorization properties described in Refs. 5 and 6.. If the €'s 

are not zero the factorization properties become more compli'cated and, 

unless restrictions are Imposed on the b's, the residue at a pole 

cannot be written as a finite sum of factored terms at all. 

We now assume that the intercept b.k  is a polynomiai 

function of the totai quark number and, to begin, we shall suppose 

that it depends linearly on the quark number. Most of the €'s are 

then equal to zero. Let us examine the channel 2p, for instance 

(Fig. 3). If we denote the total quark number by v, we may'write 
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VXp 3 . . e+i, p- = 	 = 	 2 

(2.6). 

As long as b.k  depends linearly on 	it follows from .(2.5b) 

and (2.6) that c 	0. We may treat the majority of the variables 

ik in a.simiiar way. The points i and k will be on the right and 

the left of the diagram respectively, and let us imagine a dotted 

line drawn just above these points. The quantity V.k - Vf1 k 
 will 

be equal to ± 1 according to whether the quark line dram to the. 

point I crosses this dotted line or not. Exactly the sane rule 

serves to determine the value of V 	
i V 	. 	, so that 

i - 	. 	 ,k-1 	+l, k-1 

ik' given by (2.5b), Is zero. 	. 	. 

The only c's for which this. reasoning falls are the quantities 

such as Cwq  (Fig. 3), where the points m and q are joined by a 

qark line. In that case 	.. 	 . . 

	

V mq Oil 	Vm+i, q-10 Vm,q_i._l) 	VmFi,  

( 2 .7) 

and €mq  is not zero. Thus, in Fig. 3, only two of the cts are non- 

zero, €. 	and c • These two c's correspond to the two quark. mq 	 ..- 	. 	. 	. 

lines which cross the diaam from left to right. No € is associated 

lNlN 

	

.vith the line iN, since the factor (1_wylyN) 	 . is absent 

by virtue of (2.2c) and (2,2e). The quantity c. 	, is non-zero 

even if the intercept of all trajectories is the same, but the other 
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non-zero €S  such as € 	are new features of our present model. 
mq 

The number of non-zero €'S is equal to the number of quark lines 

crossing the diagram besides the top line or, in other words, to the 

total quark number of the channel minus one. 

We observed in Ref. 5 that the term €. 	in the 
j,j+1 

exponent increased the degeneracy of the resonances, and any other 

non-zero € will have a similar effect. As long as the number of 

non-zero ED5.  Is finite and independent of the number of external 

lines, .we may easily repeat the reasoning of Ref. 5 and 6 to show that 

the residue at each pole is equal to the sum of a finite number of 

factorizable terms. The resonances on the leading trajectory will be 

non-degererate, but the degeneracy of all other resonances will 

increase with the number of non-zero €Ds.  In ordinary-meson channels, 

where the total quark number is two, the only non-zero € is €.. 	
1' J,J + 

so that the degeneracy of the resonances is exactly the same as in a 

model where all leading trajectories have.the same intercept. The 

degeneracy of the resonances in other channels will bean increasing 

function of the total quark number.. 

We turn next to the case where the intercept bik  is a 

quadratic function of the total quark number. 

Thus 

_bjk = (a vik) 	+ 7 . . 	 ( 2.8) 

For later reference we may generalize our formula to systems where we 

have several different quarks, e.g. strange and non-strange quarks in 

•a model with broken SU'(3). Equation (2.8) then becomes: 
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ik. (ar Vr,i )2 
+ 	

PV ,11 	(2. 0) 

where v •, is the number of qparks of type r in the channel 

For simplicity we shall limit our investigation to the 

spectrum of ordinary rnesons. The only lines which pass from the left 

to the right of Fig. 3 are then the top and the bottom lines. The 

	

channels ik mar  be divided into four classes as sho 	in Fig. (a)-(d); 

the number of vertical guars lines in arbitrary. In the first case 

(Fig. )(a) 

	

ik = (TarV .1 	 +. 	rVr, ik + 7 + 	
- 

a.ak> 

+  

	

T, 

 rVr,ik 	i - 	

7 - (arVr 1k 	

)2 

- 	 rVr,ik + i - 

7 _,( 	rVr,ik - 	

)2 

- 	 rVr, ik +cz~ 

i.e., 

2 a 
i 
a 	 . 	 (2.10) 
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The parameters a, a., P , 	represent a and Br for the quarcs 

in the external lines i and k. With the colifiguration shown in 

Fig. l.(b), one again obtains the result E =2 a,ak , With Figs.ik  

(c) and ll-(d), E jk = - • a1a. We may therefore write the general 

equation 

ik = .2 c. 	ekak unless i = j and k = j + 1 , 	(2.11) 

where €. is equal to +1 if the quark leading from the external 

line ± goes towards the -top of the diagram, and equal to -1 if the 

quark does towards the bottom of the diagram. 

• 	As in all previous examples, the value of 	€ik when 

i = j and k = j + 1 will not be given by the equation valid for 

other values of . ± and k. 	• 	. 	 . 

If we substitute (2.11) in (2.5a), we obtain the equation 

1= 112 II • II 	(1-w 	
+ 2€.a.€a 

1  

	

i=l k=j-i-1 	. •. 

(2.l2a) 

where 	 . 	. 	. 	. 	. 

S 

€ 	€• 	- 	 . a 
3  
. € j 
	

a j 
	

. 	 ( 2.12b) 
J,3+. 	

2€ 
 a 	+1 	+1 	 . 

We may rewrite (2.12a) as the exponential of a. logarithm so that it 

becomes: 	 . 
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1112  exp {2. 	K 	r  ) ( 	kYk) 
rr1 	irl 	 kj+1 

r)  ( 	 - €'] } . 
	(2.13) 

i=1 	 k=j+1 

On expanding the exponential in (2.13), we notice that the coefficient 

of w1'  is indeed equal to the sum of a finite number of factored terms. 

As the second term within the square bracket does not involve the scalar 

product p . p., it does not contribute to the leading trajectory, 

which remains non-degenerate. The term in question does contribute 

to the subsidiary trajectories, so that the degeneracy of the spectrum 

is greater than in a model where all trajectories have the same intercept. 

One may treat more complicated cases in the same way. If the 

intercept is a polynomial function of the total quark number, the 

degeneracy of a particular resonance will increase with the order of 

the polynomial and with thb total quark number of the resonance. All 

resonances are finitely degenerate, but the degeneracy of even the first 

subsidiary ordinary-meson trajectory increases indefinitely with the 

order of the polynomial. One would therefore expect the intercept to 

be a polynomial of low degree in the total quark number and, as we 

explained in the introduction, the optimal choice is a quadratic 

function if we demand that there be no infinite family of highly exotic 

stable particles. 
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We may easily generalize our results to the two-quark channels 

of a non-planar amplitude. it has been shown in Ref. 7 that the 

factorjzation properties in such channels are the same as those of 

planar amplitudes. We had assumed that all trajectories had the 

same intercept, but we can •  easily prove a similar theorem in a model 

where the intercept depends upon the total quark number. All 

results obtained, in this section for the factdrjzation properties of 

two - quark-channel are therefore true in mOdels with planar and 

non-planar diagrams. 

If the intercept of the leading' trajectory is a quadratic or 

higher polynomial in the total quark number, we cannot predict the 

masses of the exotic mesons. The masses of the ordinary mesons and 

baryons only give us two points, with which to determine the 

coefficients of the polynomial. If the quadratic term were absent 

we would obtain a mass of 1.6 - 1.8 BeV for the exotic mesons with 

a total quark number of four. The, quadratic term will increase this 

value, since it must be negative in order that the mass of the highly 

exotic resonances be an increasing function of the total quark number. 

With a sufficiently large quadratic term, the exotic mesons will 

have ,a considerable Q-value for S-wave decay into ordinary mesons. 

They may therefore be too 'broad to.appear experimentally as resonances. 

In our present modelthere is no coupling between one exotic meson and 

two ordinary mesons, but the linear-trajectory dynamical scheme is only 

to be regarded as a weak-coupling approximation to nature, and the 

coupling in question will occur when we improve on the approximation. 
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III. THE PlANAR-DIAGRAM MODEL 

In t1is and the following séction we are interested in the 

symmetry properties of multi-quark states and, in particular, of 

three-quark states. One may construOt two models with different 

symmetry properties. In the present section, we shall examine a 

model with only planar duality diagrams. 

The scattering of ordinary mesons and baryons will involve 

the duality diagrams of Figs. 1(a) and(b), together with the same two 

diagrams drawn upside down. If s and u are the meson-baryon channels, 

t the meson-meson channel, the st and tu terms will correspond to 

Fig. 1(a), the su term to Fig. 1(b), The even orbital-angular-

momentum states in the s-channel will be given by the sum of Figs. 1(a) 

and (b), the odd orbital-angular-momentum states by their difference. 

We observe that Fig. 1(b) may be obtained from Fig. 1(a) 

by interchanging the top and bottorh quarks on the right-hand side, 

followed by twisting the entire right-hand side through 1800.  The 

last operation does not affect the meaning of the diagram in any,  way, 

so that the two diagrams are related to óneanother by interchanging a 

pair of quarks in the final state. It follows that the purely 

anti-symmetrical state and the purely symmetrical state will be 

absent from the even and odd orbital-angular-momentum trajectories 

respectively. The even orbital-angular-momentum trajectories will 

possess symmetrical multipléts and multiplets of mixed symmetry or, 

in su(6), the L6 and ZO representation. 17  Odd angular-

momentum trajectories will posses multiplets of mixed symmetry and 
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anti-syrmnetricalmultiplets or in sU(6), the LO and 20 

representations. The 20 will of course not contribute to meson-baryon 

scattering. These results have been obtained by Mandula, Rebbi, 

Slansky, Weyers and Zewig. 8  

A more detailed analysis shows that the amplitudes represented 

by Figs.. 1(a) and (b) involve the L6 .  and the 70  in the following 

proportions: 

Fig. 1(a): 	 l5. 	+ 16. Zo 	 (3. la) 

F1. l(b) 	 - 8. Lo 	 (3.lb.) 

We confirm that the amplitude for states of odd angular momenta, which 

is obtained by subtracting (3.1b) frOm (3.1a), is a pure ZO,. States 

of even angular momenta involve the L66 and the ZO in the ratio 15/4. 

The existence of the 7Q multiplet in trajectories of even 

orbital angular momentum represents a difference between the planar-

diagram model and the non-relativistic symmetric quark model. The 

spectrum of our present model is not restricted to states which are 

symmetric in the spin, unitary-spin and orbital degrees of freedom of 

the quarks. No 70 multiplets with even angular momentum have been 

observed in pion-nucleon phase shift analyses% Before we dismiss the 

planar-diagram model out of hand, however, we should investigate possible 

changes which may occur when we improve on the narrow-resonance 

approximation. 

The linear Regge trajectories will acquire a curvature as the 

coupling is turned on. If the forces are attractive, the curves of 
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Re a against s will move upward from their positions in the Born 

approximation, just as in potential theory. Since the weak-coupling 

linear trajectories are inclined at 450 
 to the horizontal, this upward 

movement will be accompanied by a movement to the left, and the Q-value 

for a resonance with a given angular momentum will be decreased. The 

most strongly bound particles or resonances will therefore lie in the 

channels with the strongest attractive forces. We may go further and 

make the interpretation that the resonances on a trajectory which is 

not moved a substantial distance to the left by the coupling will be so 

wide that they appear experimentally as part of the continuum. The 

dynamical scheme will now have the property, expected in a bootstrap 

model, that particles or narrow resonances exist only in those channels 

where the attractive forces are sufficiently strong. We actually used 

such an interpretation in I, where we assumed that the V and II did 

not correspond to particles or narrow resonances, and that no narrow 

resonances exsisted on repulsive trajectories. 

We have seen that the attractive forces in the 70 - even - 2 

channels are indeed much weaker than in the L6 -  even - 2 channels; 

the squares of the coupling constants are in the ratio 4/15.  We may 

therefore assume that the forces in the ZO, -  even - 2 channels are 

not sufficient to produce narrow resonances. The S-wave states in 

such channels would correspond to the 11, 13 and 31 states of the 

pion-nucleon system. The latter two have not been observed at an 

energy below 1.8 13eV. The prominent 11 Roper resonance is usually 

assigned to the second trajectory, and we are not proposing to change 

that assignment. If the resonances in question had approximately the 
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same energy as the 2c1 resonances they could easily escape detection. 

Their cou1ing to the AN system would be about one-third as great as 

that of the 2 =1 resonances. On the .other hand, if their partial 

width for decay into the *irN mode is estimated from that of the Roper 

resonance with the appropriate phase-space correction, it is found 

that their total width would be roughly comparable to that of the 

2 =1 resonances. 

A second difference between the planar-diagram model and the 

non-relativistic quark model lies in the nature of the spectrum of 

resonances with higher angular momentum. In our present model, all 

resonances on the leading trajectory are non-degenerate in their orbital 

degrees of freedom. The degeneracy of resonances on non-leading 

trajectories depends on the total quark number, but no trajectory is 

infInitely. :degenerate. In the non-relativistic harmonic-oscillator 

quark model the degeneracy of the resonances will again depend on the 

total quark. number, but now the resonances on the leading trajectory 

will be degenerate if the total quark number is greater than two; the 

degeneracy will be roughly proportional to the (v-2)th power of the 

angular momentum. 

From the duality diagrams of Fig. 1 one may immediately 

construct diagrams for the vertices. Thus, from Figs. 1(a) and 1(b), 

one can infer that the BBM vertex is given by the sum of Fig. 5(a) 

and 7(b). From Figs. 1(c) one infers that the rertex which couples 

an exotic meson to a baryon anti-baryon pair is given by the sum of 

Figs. 5(c) and 5(d). In general, by referring to Fig. 1(d) and 
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more complicated diagrams, one may conclude that any exotic baryon or 

meson is represented by a diagram such as Fig. 6, where the top two 

quarks have their arrows pointing in the same direction, following 

which all arrows alternate until the bottom two quarks again have their 

arrows pointing in the same direction. The vertex between any three 

particles can now be drawn as in Figs. 3(a) - (d), with no lines 

crossing. Each vertex will consist of the sum of two terms with 

different cyclic ordering of the three particles. Note that it is 

impossible to draw a vertex such as Fig, 5(e); at least one quark line 

must pass between any pair of particles. 

For processes where the number of baryons plus anti-baryons 

exceeds four, half of the diagrams will occur with minus sign owing 

to the fermi statistics of the baryons. A particular diagram can be 

chosen and given a plus sign; any diagram obtained from the selected 

diagram by interchanging an odd number of baryon pairs or anti-baryon 

pairs is then given a minus sign. 

One may construct more complicated models which possess the 

exotic mesons and baryonst just discussed, together with exOtic mesons 

and baryons where more than two adjacent quark lines have their arrows 

in the same direction. For instance, one can have a model where states 

of baryon number two exists in the narrow-resonance approximation. The 

method of constructing the diagrams is straightforward. 

An important feature of the planar-diagram model is that it 

does not possess vector-meson universality. The ratio between the 

different MMV vertices and between the different BBV vertices is in 
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accord with vector-meson universality, provided one fixed certain 

mixing parameters as has been explained in I. However, the ratio 

between the BBV vertex and the NV vertex is two thirds of that 

predicted by vector-meson universality, since the meson in Figs. 5(a) 

and (b) cannot interact with the middle quark of the baryôn. 

In summary, we may mention the following three features of 

the planar-diagram model 

1) The baryon trajectories of even or'dital angular momentum 

possess a ZO, .ultiplet as well as a 56 

The resonances on the leading trajectory have no orbital 

degeneracy, as opposed to the states of the harmonic_oscillator quark 

model. 

The model does not possess vector-meson universality, since 

the meson can only interact with the two outer quarks of a multi-quark 

particle. 

Though point 1) may be regarded as a drawback of the model, we have 

seen that it does not necessarily imply that the model should be rejected. 

With regard to point (ii), the degeneracy of the higher resonances on 

the leading trajectory has thus far received no experimental support, 

and we may therefore prefer our present model to the har1onic_oscjllator 

model on the grounds of simpliáity of the spectrum Point iii), like 

point i), may be regarded as a drawback of the model, since vector- 

• meson universality is an appealing feature which may possibly be 

helpful in constructing 4 representation of current algebra. However, 
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since our model in its present form cannot make exact quantitative 

predictions of coupling constants, we should not regard the violation 

of vector-meson universality as strong experimental evidence against 

the model. 

By including non-planar as well as planar diagrams, we can 

construct a model which possess only symmetrical three-quark states on 

the leading trajectory. It therefore agrees with the, symmetric 

harmonic-oscillator model in points i) and ii), and it does possess 

vector-meson universality. We turn now to a discription of this model. 

11 
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IV. THE SYEThIC QUARK MODEL 

If all the baryon states .are to be symmetric in the three 

quarks, it is necessary thata quark in an intermediate state of a 

scattering process should be able to go into any quark in the initial 

or final states. For rneson-baryon scattering one would therefore expect 

diagrams such as Figs. 7(a) and (b) as well as Figs. 1(a) and (b). 

There are fifty-four diagrams in all, since each of the three quarks 

of the initial and final nucleon may annihilate with the 

anti-quark of the meson and, in addition, the three quarks which pass 

from the initial to the final state may do so in six possible ways. 

According to the principles of the relativistic quark model, 

each duality diagram is associated with a topologically similar 

multi-particle Veneziano diagram. Corresponding to Figs. 7(a) and (b) 

we therefore have the diagrams Of Fig. 8(a) and (b), where we have 

drawn dashed lines across the meson andnucleon. These diagrams 

represent thescattering of ten external quarks, and they are to be 

interpreted in the sense of Ref. 7; we construct multi-particle 

Veneziano amplitudes with resonances in those channels for which Figs. 

8(4) and (b) prossess intermediate states. By factorzing the meson-

baryon amplitude from the ten-point Veneziano amplitude, we obtain the 

amplitude for the scattering of mesons and baryons of arbitrary spin. 

Of the fifty-four duality diagrams, the eighteen where the 

quark of the incoming meson passes into the, quark of the outgoing 

meson (Figs. 1(a) and 7(b)) have intermediate states in the s andt 
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channels. They therefore correspond to an st term in meson-baryon 

scattering. The remaining thirty-six, such as Figs. 1(b) and 7(a), 

correspond to an su term in meson-baryon scattering. 

In duality diagrams for processes where the total number of 

baryons and anti-baryons exceeds four, some of the diagrams will 

again occur with thinus signs owing to the fermi statistics of the baryons 

or the para-fermi statistics of the quarks. Each quark will be given 

a three-valued degree of freedom in addition to its spin, unitary-spin 

and orbital degrees of freedom. The three quarks in a single baryon 

have different values for this degree of freedom. We insert an extra 

minus sign for every pair of crossed lines between two quarks with the 

same value of the new degree of freedom. 

The vertex diagrams are obtained by combining the quarks in all 

possible ways. The ineson-baryon vertex will consist of the sum of 

eighteen diagrams, since the quark and the anti-quark lines of the 

meson may pass into any of the three •quark lines of the nucleon, and 

the remaining two nucleon lines may pass into one another in two possible 

ways. Vertices such as Fig. 5(e) areexciuded. In order that the 

vertices combine consistenty in both the s and t channels to give the 

duality diagrams such as Figs, 1(a) and 7(b), it is necessary to multiply 

all BM vertices and all meson-baryon amplitudes by a factor 7. 

Our present model does possess vector-meson universality, be-

cause any of the baryon quarks in the BBM vertex may pass into the 

meson quarks. The BBM coupling constant is 	as large as in the 

planar-diagram model, there being eighteen vertex diagrams and an 

overall factor , as opposed to the two diagrams in the latter model. 
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We next examinethe factorization properties of our amplitude, 

S 	
and we shall show that the spectrum of resonances on the 1eadin 

trajectory is indeed the same as in the non-reJ.ativistic harmonic-

oscillator quark model. In the analysis of non-planar diagrams given 

in Ref. 7, we had shown that the most direct formula hId to be 

modified in order to obtain the amplitude with the simplest spectrum 

of intermediate states. We shall repeat some of the formulas here in 

order to exhibit the relationsip betweeri.planàr and non-planar diagrams. 

The general non-planar diagram has been represneted in Fig. 9(a). 

All the solid and dashed lines in Figs. 8(a) and 8(b) have here been 

represented by solid lines, and we are interested in the spectrum in 

the channel cut by the dashed line. The factorization properties of 

the amplitude can be obtained from an expansion of the Veneziano 

integrand, in powers of w, the integration vriable corresponding to 

the channel in question. If we are only interested in the leading 

trajectory, we may drop all but the highest power of the angular 

momentum for a given power of w. The expansion for the general 

unmodified non-planar amplitude has the form: 	 . 

CO 

1112 	(n) 	(2 P1P2+ 2 P.5P+ 2 P 8- 2 P1 - 2 P1P8- 2 
 5. 

- 2 P5P8- 2 P,P- 2 P7P))" 

(.i) 

where I and 12 are the Veneziano integrands for the two halves of 

the diagram, and a is the trajectory function for the channel of 

interest. The Ps are defined by the equations: 
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= TPO  YO (4.2) 

where y  is the product of the u's for all left-hand sub-channels 

which include the particles a3 and 6 if o3 is on the left of the 

diagram, or the product of the u's for all right-hand sub-channels 

which include the particles a and 3  if a is on the right of the 

diagram. 

Let us compare this formula with the corresponding formula for 

a planar diagram. Figure 9(b) represents a general such diagram, the. 

middle solid line corresponding to the middle quark line of Figs. 2(a) 

and (b). The expansion of the amplitude in powers of w has been 

given in Ref s. 5 and 6. With neglect of lowest powers of angular 

momentum, it has the form 

CO 

(n ) {2 y 
( 	

P.  Y1  + P6 Y6 + 	P1  

p2  y2  + p3  y3  + 	p8 y8) 
n 

(1i..3) 
61 

The variables y have been defined in Ref. 5, as well as in Sec. 2 

of the present paper. We may eliminate the momenta p6  and p3  by 

using the equations 
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113 
p+p6+ 	 p2 +.p3 + 	p8 :O 

to leading order in the angular momentum. On doing so and making use 

of the relations between the u's, we may rewrite (4.3) as follows: 

Co 

1112 	
(flt)_l{2 (-p1  + p7)(p2  + P8) I 

00 

= 1112 	(n11  (2 P1P + 2 P 	 - 2 P1P8  - 2 
p)fl 

 wfl' 

where the P's are defined as in 4.2). The variables P )  and P5  

are zero for the diagram under cxnsideration, as there are no terms in 

the summation (4.2) when r is equal to Ll.  or 5. We thus observe that 

the same formula -i..l) holds for.planar and non-planar diagrams.. 

In Ref. 7 we showed that one can obtain a simpler spectrum of 

intermediate states by multiplying the Veneziano integrand by the function 

II (i-z) r s 	 () 
r> s 
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The product is over pairs of momenta from different groups 11 ... 21, 

51 .. 41 and 71 •" 81 of Fig. 9(a); the variable z 	isrs 

defined as the product of the u's for all channels which include one 

of the particles r and s and one of the particles 3 and6 	In the 

modified formula, (4.1) becomes replaced by the expression 

00 

1112 T, 

 (n 1  (2 P 
1  P 

 2 + 2 PP+ 2 P 8- P1P- P 
1  P  8 

 - P5P2- P 
5 
 P 8 

n n--1 -.P7P2- P7P) W 

CO 

= 1112 	(nY1{ (2 F1- F5- P7)(2 p2  pp8) + ( p+ 2 F5 - 

x (-p2+ 2.P- p)+ (-F1- P5+ 2 p1)(-p2- P+ 2 P2 )} 

x •na_1 	 (4.6) 

We may also modify the planar amplitudes by multiplying the Veneziano 

integrand by (4.5). The effect is again to replace (4.1) by 	.6). 

As in ().l..l.), at least two of the P's will be zero for a planar diagram. 

In a model with only planar diagrams we would not modify the formula 

in this way, since it results in a complication of the spectrum; ; the 

leading trajectory, which previously had no orbital degeneracy, now 

becomes infinitely degenerate. In our present model, however, we already 

have an infinitely degenerate leading trajectory due to the non-planar 
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diagrams, and we shall now prove that the effect of modifying the planar 

amplitudes is to remove the non-synmetrica1 quark states. 

In Fig..9(a),  the three solid lines cut by the. dashed line 

represent the transfer of three quarks from the left to the right 

of the diagram. Let us denote the quarks on the left of the diagram 

by the indices 1,5 and 7, those on the right by the indices 2,4 and 8. 

The tensor i (2 P 
1 
 - P 

5 
 - p7 ) 1  (-p.1+ 2 P5- p7 ) 2  (p 	2 p) 3  

corresponds to an initial state where the three quarks are in an 

n1  th, n2  th and n3  th. level of the harmonic-oscillator spectrum. 

Spurious states are eliminated by the relation 

(2 P1- PS- F7 ) + (-P1+2 P- F7 ) + ( P1- P5 + 2,P7) = 0. The curly 

brackets of 4.6) may then be represented symbolically by the 

expression 	 - 

12 54 78 ' 

the subscripts on the Kronecker 5 referring to states of the 

harmonic-oscillator spectruin. Since the lines going across the 

diagram also represent quark lines in a duality diagram, we may 

interpret the subscripts as referring to spin and isotopid-spin indices 

as well as to states of the harmonic-oscillator specturm. 

In addition to Fig. 9(a), there will be five further diagrams 

where the groups 1,. 5 and  7 are joined to the groups 2,4 and 8 in all 

possible ways. When we take the sum of all six diagrams, (4.7) becomes 

replaced by 
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12 654 678 B14 653 672 + 518 672 57 + 50 672 
673  + 612 65 0 6, 

	

+ 618 6 54 672 . 	(4.8) 

It is evident from (fB) that the only intermediate states are those 

which are syrirnet.ric in the space, spin and isotopic-spin degree of 

freedom of the quarks taken together.  

The factor (4.5) will of course modify the meson-baryon 

amplitudes which have been factored out of the general amplitude. We 

discussed this point in Ref. 7 and, although we. confined our attention 

in that paper to non-planar diagrams, the same reasoning applies to 

planar diagrams. The st and tu terms are unaffected by the 

modification, and they will be given by an ordinary beta function 

The su term, on the other hand, is given by the formula: 

1 	22 1 	 (s± - k - ) 

f
dx _a(s)_l (l_X)1{l_x(l_x)} 

(14.9) 

Let us verify that the 2=0 and 2=1 states conslst of. a pure 

and a pure 70 respectively, as implied by the symmetry of the 

quark states. The st and su terms will again involve the 	and 

in the proportions given by (3.1a) and (3.b) 
	

in the present moTl 

there are iaice as many si diaSrars as st di agrans, so that the sum 

of the dieg:ems will give a pure 	. For the 2=1 resonance it is not 
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difficult to show that the last factor of (.9) reduces the residue in 

the su terr by a fdctor 	The mu]tip2et constitutjon is therefore 

obtained simply by subtracting (3.1h) from .(3.1a),  and the 

resonance is a pure 70 . 

We conclude with the remark that the duality diagrams which 

we have dra;n in F±S. 7 and 8 are the simplest possible nonplanar 

diagrais In general, we could constrcct nor-ple'iar diagrams with 

any number of crossed lines, and it is necessary thatall diagrams be 

present in a consistent bootstrap scheme. In Ref. 7- we confined our 

attention to diagrams with only one pair of crossed lines, but it would 

be surprising if the methods could not be extended to the general case. 

We must assume that such an extension is pOsihle if we are to cdmplete 

our scheme in the narrow-resonance approxiination. 

-4 
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V. su(  3) SYRY BREAKING 

In the su( 3)- symmetric model which we have examined thus fai 

the mass of the lowest resonance on the leading trajectory depends only 

on the total quark number. An obvious method of introducing Su(3) 

symmetry breaking is to make the mass depend, on the number of 

strange and non-strange quarks separately. The octet character of the 

mass formula then arises naturally out of the theory. One does not 

obtain a sufficiently general mass formula by this method, as the 

formula for the mass splitting of the nucleon octet contains only one 

term, the E and A having the same mass. It may be necessary to 

introduce another type of SU(3) symmetry breaking or, alternatively, the 

term responsible for the ZA mass difference may appear as a higher-

order effect in the width of the resonances. 

Let us assume that the intercept depends quadratically on the 

total quark number; we have shown in Sec. 2 that this is the simplest 

possible assumption if we are to avoid stable particles of high charge 

and strangeness. From Eq. (2.4), we find that the mass of the lowest 

resonance on the leading trajectory is given by the formula 

2 	
nVn + av)2 

+ n 
V  n + P 5v 5 + Y, 	• 	•. 

where v and V are the number of strange and non-strange quarks. We 

may rewrite (5.1) in the form 

2 	
+ (a s. - a)v} + PnV + ( 	- n)vs + 

(5.2) 
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where •v is the total quark number. Hence 

2 = Av 2  + PV , + C 	 0 	 (5,a) 

where 

A 	(a - a) 	 (5.b) 

B = 2 av(a 	a) + 	- 	 (
5 3c) 

C =a n 
2 
V + 0 n V - 7 . 	 (5.3d) 

We notice that the constant A is independent of the thultipiet, while 

• P is a function of the total quark number. If the symmetry-breaking 

parameters aresmall, A will be a small quantity of second order. 

Equation (5.3a) provides us with a mass-splitting formula. 

• 	 We may compare it directly with experiment for0 the •spin decuplet and 

• 	 for the vector meson nonet, where each particle contains a definite 

number of strange quarks. We shall not compare the formula with 

• 

	

	 experiment for the nucleon octet, as the ZA term is absent. The 

mass splitting of the pseudo-scalar octet cannot be treated rigorOusly 

until have a model where the 35 is not degenerate with the ii'. In 

such a model the T1 would not contain a definite number of strange 

quarks. We shall make the assumption, justified by the success of 

the Gell-Mann-Okubo mass forumla, that one can simply put V for the 

r equal to its average value of 
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We then find that the masses of the three multiplets are 

reasonably well represented by the following formulas: 

Spin - 	de.cuplet : 	 = 0.02 V 2  + 0.17 v + 1.56 

Vector-meson nonet : 	 2 = 0.02 V 2  + 0.18 vs + 0.59 

Pseudo-scalar octet: 	 2 = 0.02 vs2 + 0.20 vs + 0.02 

The formula for the psuedo-scalar octet is the least accurate, since 

it would give a mass of 575 IvleV for the r, as opposed to the 

experimental mass of 550MeV. However, our present formula is not 

appreciably worse than the ordinary Gell-Mann-Okubo formula. 

If the constant A in (5.3a) were zero, we would obtain a 

Gell-.Mann-Okubo formula in the squares of the masses, without the 

E-A term. If A = B2/4C, we obtain a Gell-Marin-Okubo formula in 

the masses. By leaving A arbitrary we have one more parameter 

than the ordinary Ge1l-MannQkubo formula, but we can fit the three 

multiplets under consideration with a mass-splitting formula of the 

same type. The term Av 2  is of second order in the symmetry breaking, 

and in any case is represents a fairly small effect, but the fit with 

such a term is definitely better than that with a simple Geil-Mann-Okubo 

formula in the squares of the masses. 

Another point worth mentioning is that our formula is not a 

perturbation formula in the symmetry breaking, at any rate for the 

spin - decuplet and the vector meson nonet. We nowhere assume that 

the SU(3) symmetry breaking terms are small. 
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VI. CONCLUDING REIvIARKS 

At first sight our model appears to differ from the usual 

quark models by the presence of exotic rnesons of arbitrarily high 

total quark number. The distinction between ordinary and exotic 

resonances is that the latter have a higher Q-value for decay across 

a given centrifugal barrier. It is to be expected of any reasonable 

model that poles should occur in all channels of the S-matrix. The 

channels would differ from one another according to the distance of 

the poles from the real axis. Our present model may be favored from 

the point of view of nucleon democracy, since it admits of no difference 

in principle between two and three-quark channels on the one hand, and 

multi-quark channels on the other. 

Since the total quark number in our model can assume any 

positive integral value, it may be of interest to attempt to Reggeize 

the quark number in the manner proposed by Delbourgo and Salam. We 

shall not investigate this point in the present paper, however. 

We have left open the question of choosing between the 

planar-diagram model and the symmetric quark model. The two models do 

not differ drastically from one another in their experimental predictions 

and, as neither is meant to be an exact representation of nature, it 

may be difficult to make sucha choice. The difference between the 

coupling, constants provides one obvious possible method of 

distinguishing between the models. Using the fact that vector-meson 

universality is fairly well satisfied in nature, we might decide in 

favor of the symmetric quark model. We should bear in mind the 
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limitations in accuracy of our model, however and, in particular, the 

model predicts a value for the ratiog 	/ g 	which is somewhat ZPJ) 	7P 

smaller than the experimental value. If one compares the meson-baryon 

coupling constants with the constant girpm 
	 g instead of with 	, 

ttp 

one obtains roughly equally good results with the two models. The 

"experimentafdetejnation of the coupling constant g is of 

course subject to some uncertainty, 

If the higher resonances on the leading baryon trajectory 

turn out to be complex, we would have strong evidence in favor of 

the symmetric quark model. It would be difficult to draw any conclusion 

from a failure to resolve the resonances. The degenerate trajectories 

may be so close together that the spacing between the resonances is 

small compared to their width, in which case they would appear 

experimentally as a single resonance. On the other hand, the degeneracy 

may be broken to a considerable extent, so that the relationship between 

the degenerate resonances is not evident. The resonances which are 

increased in mass by the breaking of the degeneracy may not appear 

experimentally as narrow resonances. 

It is quite possible that the two models are equally good 

representation of nature in the narrow-resonance approximation, and 

that the differences between them are of the order of magnitude of 

the effects due to finite widths of the resonances. Each model possesses 

trajectories which do not appear in the other, and the symmetric quark 

model has a greater degree of degeneracy. The extra trajectories, and 

the breaking of the degeneracy, could appear as higher-order effects. 
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It may even be that the two models are different starting-points which 

eventually lead to the same dynamical scheme. We cannot discuss such 

questions until we are able to improve on the narrow-resonance 

approximation, however. 
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FIGURE CAPTIONS 

Fig. 1. Duality diagrams for various processes. 

Fig. 2. A sequence of reactions contained in Fig. 1(d). 

Fig. 3 ,  A general n-point duality diagram. 

Fig. +. 	Various channels i k in Fig. 3. 

Fig. 5. Vertex functions in the planar-diagram model. 

Fig. 6. 	quarks in an exotic resonance. 

Fig. 7. Non-planar duality diagrams. 

Fig. 8. Non-planar Veneziano amplitudes. 

Fig. 9. Non-planar and planar multi-particle Veneziano amplitudes. 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such con tractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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