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Abstract8

This paper presents a theory for the buckling of short beams considering cross-sectional distortions9

due to transverse shear (i.e., shear warping), based on the consistent linearization of a geometrically10

nonlinear planar beam. The proposed deformation field considers the warping amplitude as an in-11

dependent kinematic field, while the hyperelastic material assumes that the stresses normal and12

tangent to the deformed cross section are linear with respect to their work-conjugate finite strains.13

An approximate closed-form solution to the resulting quartic equation for the critical load is pro-14

vided to facilitate practical implementation. Theoretical differences giving rise to distinct buckling15

theories for higher-order shear beams are discussed in terms of (1) the assumed deformation field,16

(2) variational consistency, and (3) material constitutive relation. The proposed formulation is17

applied to evaluate the stability of infinite strip unbonded fiber reinforced elastomeric isolators18

(FREIs) with moderate-to-high shape factor, for which shear warping is expected to have a major19

influence due to the flexural flexibility of the fiber reinforcement. A homogenization procedure is20

described to obtain effective isolator rigidities considering rubber compressibility and fiber exten-21

sibility. Next, a finite element parametric study of the buckling of unbonded infinite strip FREIs22

is presented and the results are used as a benchmark to evaluate the adequacy of the proposed and23
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existing formulations. The theory presented herein and its approximate solution exhibit the best24

match with the numerical results, and the latter is deemed adequate for practical application.25

Author keywords: Higher-order shear beams; Shear warping; Buckling theory; Fiber reinforced26

elastomeric isolators (FREIs); Stability of elastomeric bearings; Seismic isolation27

INTRODUCTION28

Some non-slender elements, such as elastomeric seismic isolators, are susceptible to buckling un-29

der compression due to their high flexibility in shear. This can be evaluated using a beam theory for30

which the cross sections remain plane but not orthogonal to the deformed axis. Two main buckling31

theories have been developed along these lines: Engesser’s (1891) and Haringx’s theories (1949).32

The latter, which assumes the axial and shear stress resultants P and V to be oriented with respect33

to the deformed cross section of the beam, has shown to be more appropriate for the stability anal-34

ysis of steel-reinforced elastomeric bearings where the reinforcement can be assumed to be rigid35

in bending (Gent 1964; Kelly and Konstantinidis 2011). Haringx’s buckling load is given by:36

PH
cr =
−PS +

√
P2

S + 4PS PE

2
(1)

where PS = GA = the shear rigidity, PE = π
2EI/h2 = Euler’s critical load, EI = the bending rigid-37

ity, and h = height. For elastomeric isolators with flexible reinforcement such as fiber-reinforced38

elastomeric isolators (FREIs), the assumption that plane sections remain plane is no longer valid39

because of the bending flexibility of the reinforcing elements, and warping needs to be accounted40

for; in this paper warping refers exclusively to the cross-sectional distortions caused by transverse41

shear (cf. warping due to torsion often described in the context of thin-walled elements).42

A plethora of planar beam theories considering shear warping, referred to as higher-order shear43

beams, has been proposed, and their stability under compressive loads has been explored (Wang44

et al. 2000; Challamel 2011; Challamel et al. 2013), albeit to a lesser extent. Within the context of45

elastomeric bearings, Simo (1982) studied the stability of planar elastomeric isolators accounting46

for the finite bending rigidity of the reinforcing plates. The cross-sectional distortion fw was based47
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on the solution to the 2D boundary-value problem of a sheared bearing, and the warping amplitude48

was taken proportional to the average shear strain γ̄ = v′ − ψ, where v = lateral displacement of49

the beam and ψ = average rotation of the cross-section, leading to a closed-form solution for Pcr.50

Kelly (1994), followed by Tsai and Kelly (2005a, 2005b), studied the same problem by means51

of a beam theory which considers an additional generalized displacement ϕ corresponding to the52

warping amplitude. In this theory, hereinafter referred to as the Kelly-Tsai theory, the warping53

function fw was defined in a way that avoids coupling of the new generalized stress resultants with54

the axial force P and bending moment M. A second-order approximation of the finite strain in the55

beam was obtained by drawing the deformed configuration of a differential element; the caveat is56

that finite strain measures are not unique, and a different strain would lead to a completely different57

theory. This theory results in a cubic equation for Pcr.58

Both of the aforementioned theories match with that of Haringx when the reinforcement is59

perfectly rigid in bending, but yield vastly different results for an element with finite warping60

rigidity. Moreover, Simo’s formulation has largely been missing from subsequent literature, while61

the Kelly-Tsai theory has been acknowledged (Pauletta 2019; Van Engelen 2019a) but seldom62

compared with experimental or numerical simulation results. The only exception is a recent study63

by Galano et al. (2021), which estimated the buckling of square FREIs employing equivalent64

two-dimensional finite element analyses, concluding that the Kelly-Tsai theory overpredicted the65

critical loads. However, the study implemented the equations presented by Tsai and Kelly (2005b)66

for a general homogeneous beam with the sole modification of using the effective compressive67

modulus Ec of the bearing, while the theory requires the use of effective rigidities in bending and68

warping (Tsai and Kelly 2005a). Other studies concerning the buckling load of unbonded FREIs69

(Kelly and Marsico 2010) or the influence of compressive loads on their lateral stiffness (Strauss70

et al. 2014; Habieb et al. 2019) have neglected warping effects and resorted to Haringx’s theory.71

This paper revisits the theoretical formulation of a buckling theory for short beams that ac-72

counts for shear warping, which is of particular interest for short composite elements highly flex-73

ible in shear. The theory is derived by a consistent linearization of the geometrically nonlinear74
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planar beam. The finite deformation field assumes the amplitude of the cross-sectional warping as75

an independent generalized displacement ϕ. Emphasis is spent on establishing a suitable material76

constitutive relation for the one-dimensional theory, assuming linearity of the stresses normal and77

tangent to the deformed cross section with respect to their conjugate finite strains. The theory78

derived results in a quartic equation for the critical load Pcr of an element with fixed supports (i.e.,79

no rotation or warping at the supports) but free to sway at the top support, which, upon simpli-80

fication, coincides with that of the Kelly-Tsai theory. An approximate closed-form solution for81

Pcr is proposed and shown to be in excellent agreement with the exact solution. The differences82

giving rise to distinct buckling theories for higher-order shear beams are explored in terms of (1)83

the assumed deformation field, (2) the variational consistency, and (3) the material constitutive84

relation. The proposed theory, Simo’s theory, and one of the solutions presented by Challamel85

(2011) (representative of alternative formulations) are discussed in this context.86

The proposed and existing theories are used to analyze the stability of infinite strip unbonded87

FREIs with moderate-to-high shape factor and standard support conditions for seismic base isola-88

tion (i.e., neither rotation nor warping at the supports) under no initial lateral displacement. First,89

the effective rigidities required to compute the critical load of FREIs are introduced accounting for90

rubber compressibility and fiber extensibility. Then, a parametric study for the critical load of the91

isolators is presented using a series of two-dimensional plane strain finite element analyses, and92

the validity of the analytical formulations is assessed by comparing their solutions to the numer-93

ical results. The present formulation, in agreement with the Kelly-Tsai theory, presents the best94

match with the critical loads from the numerical simulations. The results for the infinite strip bear-95

ings provide a proof-of-concept for the analytical formulation, while its extension to evaluate the96

buckling of FREIs with rectangular, circular and annular cross sections will be addressed in an up-97

coming work by the authors. The approximate closed-form equation provides a valuable resource98

for the buckling checks required for the design of these devices (see Pauletta 2019). This work also99

serves as a cornerstone to study the stability of unbonded FREIs under lateral deformation due to100

seismic loading, which corresponds to their most critical design condition, in future studies.101
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BUCKLING THEORY102

Assumed Deformation Field103

The undeformed planar beam to be analyzed has a height h ⊂ R and cross section A ⊂ R, such104

that its reference configuration B ⊂ R2 is given by B = A× [0, h]. The coordinates in the reference105

configuration B are designated by {X} = {X,Z} and the associated orthonormal basis {EA} with106

A = 1, 2 (see Fig. 1). It is assumed that the beam’s modulus-weighted centroidal axis in the107

reference configuration is oriented along the Z coordinate; the material is not necessarily assumed108

to be homogeneous over A. The beam’s coordinates in the deformed configuration are given by109

{x} = {x, z} and the associated orthonormal basis {ei} with i = 1, 2. For convenience we choose the110

orthonormal basis in the current configuration such that {ei} = {EA}. Unless otherwise stated, the111

components of vectors and tensors will be given with respect to the {EA} and {ei} bases.112

The beam is subjected to a deformation φ : B → R2 such that the position in the current113

configuration is given by x = φ(X). The planar deformation occurring in the XZ plane assumes114

that plane sections do not remain plane and do not remain normal to the deformed axis of the beam.115

The deformation field is:116

φ(X,Z) = φo(Z) + Xd1(Z) − fw(X) ϕ(Z) d2(Z) (2)

where the deformation of the beam’s axis, φo(Z) = φ(X = 0,Z), is given by:117

φo(Z) = v(Z) e1 + [Z + ∆(Z)] e2 (3)

and d1(Z) and d2(Z) are the unit vectors tangent and normal to the deformed cross section in the118

absence of warping, respectively, calculated as:119

d1(Z) = cosψ(Z) e1 − sinψ(Z) e2 d2(Z) = sinψ(Z) e1 + cosψ(Z) e2 (4)

The generalized displacements η(Z) = {∆(Z), v(Z), ψ(Z), ϕ(Z)} parameterize the deformation field,120

5 Montalto, July 18, 2023



where ∆(Z) and v(Z) correspond to the vertical and lateral displacements of the axis, respectively,121

ψ(Z) is the rotation of the cross section in the absence of warping, and ϕ(Z) is the dimensionless122

amplitude multiplier for the cross-sectional warping (see Fig. 1). Such a deformation field is anal-123

ogous to that proposed earlier in the context of constrained director Cosserat models for nonlinear124

geometrically exact rods that allow for warping (e.g., Simo and Vu-Quoc 1991).125

The warping function is selected such that the generalized stress resultants P, M, and Q (warp-126

ing moment) are decoupled. Thus, the following conditions are enforced:127

∫
A

fwσ∆′(X) dA = 0
∫
A

fwσψ′(X) dA = 0
∫
A

σϕ′(X) dA = 0
∫
A

Xσϕ′(X) dA = 0

(5)

where σ∆′(X), σψ′(X), σϕ′(X) = the axial stresses caused by an axial strain ∆′, a curvature ψ′, and128

a rate of warping ϕ′, respectively. For a homogeneous beam, these requirements can be restated as129

the following orthogonality conditions:130

∫
A

fw(X) dA = 0
∫
A

X fw(X) dA = 0 (6)

which, in the small deformation range, allow the interpretation of ∆(Z) and v(Z) as the average axial131

and transverse displacements, respectively, and of ψ(Z) as the average rotation of the cross section.132

For the planar element, the following function satisfying these requirements will be employed:133

fw(X) =
5
6

(
X3

2b2 + ωX
)

(7)

where b = half the cross-sectional depth. For a homogeneous beam, ω = −3/10 after enforcing Eq.134

(6). For a non-homogeneous element, such as an elastomeric bearing, ω will need to be calculated135

making use of the general conditions in Eq. (5).136
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Kinematics137

Based on the deformation field presented in Eq. (2), the components of the deformation gradient138

F = ∂φ/∂X are:139

[FiA] =

 cos(ψ) − f ′w ϕ sin(ψ) v′ − X sin(ψ)ψ′ − fw ϕ
′ sin(ψ) − fw ϕ cos(ψ)ψ′

− sin(ψ) − f ′w ϕ cos(ψ) 1 + ∆′ − X cos(ψ)ψ′ − fw ϕ
′ cos(ψ) + fw ϕ sin(ψ)ψ′

 (8)

The determinant of the deformation gradient J = det(F) providing the ratio dv/dV of a differential140

volume in the deformed and reference configurations is given by:141

J =
(
1 + ∆′

) [
cos(ψ) − f ′w ϕ sin(ψ)

]
+ v′

[
sin(ψ) + f ′w ϕ cos(ψ)

]
− Xψ′ − fw ϕ

′ − f ′w fw ϕ
2 ψ′ (9)

For subsequent analysis it will also be necessary to make use of the right Cauchy-Green deforma-142

tion tensor C = F⊤F and the Green-Lagrange strain tensor E = (C − I)/2. By definition, the shear143

component of E is given by 2E12 = C12 = FE1 · FE2, such that:144

2E12 = −
(
1 + ∆′

) [
sin(ψ) + f ′w ϕ cos(ψ)

]
+ v′

[
cos(ψ) − f ′w ϕ sin(ψ)

]
+ Xψ′ f ′w ϕ − fw ϕψ

′ + f ′w fw ϕ
′ ϕ

(10)

Next we define the unit vectors L and N, tangent and normal to the cross section in the reference145

configuration, respectively, such that L = E1 and N = E2 (see Fig. 1). We can also define the unit146

vectors l and n tangent and normal to the cross section in the deformed configuration (see Fig. 1).147

Making use of Nanson’s formula for the normal vector n (Holzapfel 2000):148

n =
(
dA
da

)
J F−⊤N =

(
dA
da

) {[
sin(ψ) + f ′w ϕ cos(ψ)

]
e1 +

[
cos(ψ) − f ′w ϕ sin(ψ)

]
e2

}
(11)

where149

da
dA
= ||FL||=

√
1 + ( f ′w ϕ)2 (12)

is the ratio of a differential area in the deformed and reference configurations. Then, the tangent150
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vector l is calculated as:151

l =
FL
||FL||

=

(
dA
da

) {[
cos(ψ) − f ′w ϕ sin(ψ)

]
e1 −

[
sin(ψ) + f ′w ϕ cos(ψ)

]
e2

}
(13)

Lastly, consider a material curve X̂(S ) ∈ B, parameterized by S and direction given by the unit152

vector M such that its tangent X̂′(S ) is given by MdS . The spatial form of the curve is given by153

φ(X̂), and its tangent φ′(X̂) corresponds to mds, with m a unit vector. The deformation gradient F154

can be used to obtain the stretch λ = ds/dS of the spatial curve by λm = FM. Then, making use155

of the definition of the unit vector n [Eq. (11)], we can define the following stretch:156

λn = n · FN =
(
dA
da

)
J (14)

which corresponds to the stretch of a spatial curve that is normal to the beam’s cross section in the157

reference configuration, in the direction normal to the deformed cross section.158

Stress Measure159

The physically meaningful stresses of force per unit area in the deformed configuration σ and τ,160

acting normal and tangent to the deformed cross section, will be used subsequently. It will be161

considered that the appropriate material constitutive relation is that which assumes linearity of σ162

and τ with respect to their conjugate strain measures, which will be derived later based on stress163

power considerations. This derives from the ideas presented by Simo (1982) in the context of the164

formulation of a geometrically exact rod theory that allows for shear deformation, but not warping.165

There, the generalized stresses resulting from the integration of σ and τ over the cross section were166

assumed to be linear with respect to their conjugate generalized strains. The consistent linearization167

of the resulting theory for an inextensible rod was shown to match with that of Haringx.168

To obtain these stresses, we first define the two-point first Piola-Kirchhoff stress tensor P =169

pA ⊗ EA, where pA is the traction vector of force per unit area in the reference configuration acting170

on a surface with unit vector EA. Thus, the traction vector acting on a differential area of the cross171

section is given by p2 = PN. The traction vector acting on a differential area of the cross section in172
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the deformed configuration then corresponds to tn = (dA/da)p2, and allows for the representation173

tn = τl + σn. Hence, σ and τ can be obtained by:174

σ =

(
dA
da

)
P : (n ⊗ N) =

(
dA
da

)
n · p2 τ =

(
dA
da

)
P : (l ⊗ N) =

(
dA
da

)
l · p2 (15)

Relations can be established between the stresses σ and τ and the components of the referential175

second Piola-Kirchhoff stress tensor S, which are necessary for the derivation of the beam theory.176

Making use of the definition of the stress σ [Eq. (15)], the normal vector n [Eq. (11)], and the177

relation between stress tensors P = FS, we have σ = (dA/da)2JF−⊤E2 · FSE2 such that:178

S 22 =

(
da
dA

)2
σ

J
(16)

Using the definition of τ [Eq. (15)], the tangent vector l [Eq. (13)], and P = FS, we have τ =179

(FE1/||FE1||
2) ·FSE2. Moreover, using the definition of the right Cauchy-Green deformation tensor180

C, the Green-Lagrange strain tensor E, and Eq. (16), we obtain:181

S 12 = τ − 2E12
σ

J
(17)

Material Constitutive Relation182

To formulate an appropriate constitutive relation for the stresses σ and τ we calculate the stress183

power Pint of the beam for the assumed deformation field:184

Pint =

∫
B

P : Ḟ dV (18)

Employing the definition of F given in Eq. (8), this can be expanded as follows:185

Pint =

∫ h

0
∆̇′

∫
A

p2 · e2 dA dZ +
∫ h

0
v̇′

∫
A

p2 · e1 dA dZ −
∫ h

0
ψ̇′

∫
A

[
(φ − φo) × p2

]
· e3 dA dZ

+

∫ h

0
ψ̇

∫
A

{
− (da/dA) n · p1 +

[
(−Xψ′ − fw ϕ

′)d1 + fw ϕψ
′d2

]
· p2

}
dA dZ (19)
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+

∫ h

0
ϕ̇

∫
A

(
− f ′w d2 · p1 − fw ψ

′d1 · p2
)

dA dZ +
∫ h

0
ϕ̇′

∫
A

− fw d2 · p2 dA dZ

where the definitions of the traction vectors pA, directors di [Eq. (4)], the deformation φ [Eq. (2)],186

and the deformation of the beam’s axis φo [Eq. (3)] have been used.187

The resulting stress power can be expanded as:188

Pint =

∫ h

0
∆̇′

∫
A

{
σ

[
cos(ψ) − f ′w ϕ sin(ψ)

]
+ τ

[
− sin(ψ) − f ′w ϕ cos(ψ)

] }
dA dZ

+

∫ h

0
v̇′

∫
A

{
σ

[
sin(ψ) + f ′w ϕ cos(ψ)

]
+ τ

[
cos(ψ) − f ′w ϕ sin(ψ)

]}
dA dZ

+

∫ h

0
ψ̇

∫
A

σ
(
2E12 − Xψ′ f ′w ϕ − f ′w fw ϕ

′ ϕ + fw ϕψ
′) dA dZ

+

∫ h

0
ψ̇

∫
A

τ
(
−J − Xψ′ − fw ϕ

′ − f ′w fw ϕ
2 ψ′

)
dA dZ (20)

+

∫ h

0
ψ̇′

∫
A

[
σ

(
−X − f ′w fw ϕ

2
)
+ τ

(
− fw ϕ + X f ′w ϕ

)]
dA dZ

+

∫ h

0
ϕ̇

∫
A

σ

J

{
2E12 f ′w

[(
1 + ∆′

)
cos(ψ) + v′ sin(ψ) − Xψ′ − fw ϕ

′] − fw ϕψ
′
}

dA dZ

+

∫ h

0
ϕ̇

∫
A

τ
[
−

(
1 + ∆′

)
f ′w cos(ψ) − v′ f ′w sin(ψ) + Xψ′ f ′w + f ′w fw ϕ

′ − fw ψ
′] dA dZ

+

∫ h

0
ϕ̇

∫
A

σT

J

(
da
dA

)2

( f ′w)2ϕ dA dZ +
∫ h

0
ϕ̇′

∫
A

(
−σ fw + τ f ′w fw ϕ

)
dA dZ

where the normal stress σT perpendicular to the beam’s axis in the reference configuration has189

been introduced, by means of a transformation of the second Piola-Kirchhoff stress component190

S 11 equivalent to that presented in Eq. (16) for S 22. Moreover, the symmetry of the second Piola-191

Kirchhoff stress tensor S has also been exploited to establish S 12 = S 21.192

To proceed, we neglect the contribution of σT which allows us to keep the analysis one dimen-193

sional. Moreover, we recall that the rotation f ′w ϕ is related to the extension of the cross section194

as shown in Eq. (12). Thus, a large warping deformation would lead to a large change in cross-195

sectional area, which is not necessarily realistic but a by-product of the assumed deformation field196

which is an incomplete representation of the three-dimensional deformation. Therefore, we con-197
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sider f ′wϕ ≪ 1, hence da/dA ≈ 1. Then, the stress power can be approximated by:198

Pint ≈

∫ h

0
∆̇′

∫
A

σ
[
cos(ψ) − f ′w ϕ sin(ψ)

]
+ τ

[
− sin(ψ) − f ′w ϕ cos(ψ)

]
dA dZ

+

∫ h

0
v̇′

∫
A

σ
[
sin(ψ) + f ′w ϕ cos(ψ)

]
+ τ

[
cos(ψ) − f ′w ϕ sin(ψ)

]
dA dZ

+

∫ h

0
ψ̇

∫
A

σ
{(

1 + ∆′
) [
− sin(ψ) − f ′w ϕ cos(ψ)

]
+ v′

[
cos(ψ) − f ′w ϕ sin(ψ)

]}
dA dZ

+

∫ h

0
ψ̇

∫
A

τ
{ (

1 + ∆′
) [
− cos(ψ) + f ′w ϕ sin(ψ)

]
+ v′

[
− sin(ψ) − f ′w ϕ cos(ψ)

]}
dA dZ

+

∫ h

0
ψ̇′

∫
A

σ
(
−X − f ′w fw ϕ

2
)
− τ

(
fw ϕ − X f ′w ϕ

)
dA dZ (21)

+

∫ h

0
ϕ̇

∫
A

σ
{[
−

(
1 + ∆′

)
f ′w sin(ψ) + v′ f ′w cos(ψ) − 2 f ′w fw ϕψ

′] − J( f ′w)2ϕ
}

dA dZ

+

∫ h

0
ϕ̇

∫
A

τ
[
−

(
1 + ∆′

)
f ′w cos(ψ) − v′ f ′w sin(ψ) + Xψ′ f ′w + f ′w fw ϕ

′ − fw ψ
′] dA dZ

+

∫ h

0
ϕ̇′

∫
A

(
−σ fw + τ f ′w fw ϕ

)
dA dZ

which differs from the complete expression in Eq. (20) only by higher-order terms in f ′wϕ.199

Let us define now the two strain measures:200

ϵ = λn − 1 =
(
dA
da

)
J − 1 Γ = 2E12 (22)

Making use of Eq. (14), and using a second-order approximation for dA/da [Eq. (12)], we obtain:201

ϵ =

[
1 −

( f ′w ϕ)2

2

] { (
1 + ∆′

) [
cos(ψ) − f ′w ϕ sin(ψ)

]
+ v′

[
sin(ψ) + f ′w ϕ cos(ψ)

]
− Xψ′ − fw ϕ

′ − f ′w fw ϕ
2ψ′

}
− 1

(23)

Also, recalling the expression for E12 [Eq. (10)], the stress power can be expressed as:202

Pint ≈

∫ h

0

∫
A

(
σϵ̇ + τΓ̇

)
dA dZ (24)

Note that second-order terms in f ′w ϕ in the definition of ϵ have been preserved because they con-203
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tribute first-order terms in f ′w ϕ to Pint. The previous expression leads to the work conjugacy be-204

tween σ and ϵ, and τ and Γ when f ′w ϕ is small. Notice that for the problem without warping205

ϕ = 0 and da/dA = 1, rendering the previous expression for the stress power exact. This can206

be interpreted from the work by Reissner (1972) and Simo (1982), albeit those formulations were207

established directly in terms of generalized stresses and strains.208

For the purely mechanical theory and a perfectly elastic material, hyperelasticity assumes the209

existence of a strain-energy function W per unit volume, such that Ẇ = P : Ḟ. For our case, this210

leads to Ẇ = σϵ̇ + τΓ̇, resulting in:211

W = Ŵ(ϵ,Γ) σ =
∂Ŵ(ϵ,Γ)

∂ϵ
τ =

∂Ŵ(ϵ,Γ)
∂Γ

(25)

The simplest model that can be assumed corresponds to a quadratic function in ϵ and Γ:212

W =
Eϵ2

2
+

GΓ2

2
(26)

where E and G are equivalent to the Young’s modulus and shear modulus of the infinitesimal213

elasticity theory. Then, the stresses σ and τ are linear functions of their conjugate strain measures:214

σ = Eϵ τ = GΓ (27)

Making use of the displacement gradient H = ∂u/∂X where u = φ − X, the linearization of the215

strains ϵ and Γ [Eq. (22)] with respect to the undeformed configuration can be shown to be:216

L[ϵ]η=0 = H22 = εz L[Γ]η=0 = H12 + H21 = γxz (28)

where εz and γxz are the engineering strains of the infinitesimal theory. Hence, the linearized ma-217

terial model coincides with the one-dimensional case from linear elasticity, as should be expected.218
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Variational Formulation219

To derive the stability condition for the equilibrium of the beam subjected to a compressive axial220

load P, we start by defining the potential energy Π:221

Π =

∫
B

WdV + Πext (29)

where W is defined in Eq. (26) and Πext is the potential due to external loads. The equilibrium222

state is obtained following the principle of stationary potential energy:223

δΠ =

∫
B

(σδϵ + τδΓ)dV + δΠext = 0 (30)

This expression simply corresponds to the material description of the principle of virtual work,224

the weak form of the balance of linear momentum in the reference configuration. Since time225

derivatives and variations of scalar fields behave in the same way, the expansion of the internal226

virtual work is analogous to Eq. (21), replacing the time derivatives ˙(•) with variations δ(•).227

According to the Lagrange-Dirichlet energy criterion, an equilibrium state of a conservative228

system is stable when it corresponds to a minimum of the potential energy such that δ2Π > 0,229

whereas a critical state of equilibrium is associated with δ2Π = 0 (Bažant and Cedolin 2010). Thus,230

the critical state of interest can be obtained by linearizing δΠ with respect to the equilibrium state231

corresponding to the beam subjected to P, which causes an axial stress σo such that −
∫
A
σo = P,232

an axial displacement ∆o and the axial strain ∆′o, while τo = vo = ψo = ϕo = 0:233

dδΠ =
∫ h

0
δ∆′

∫
A

dσ dA dZ +
∫ h

0
δv′

∫
A

[
σo

(
dψ + f ′w dϕ

)
+ dτ

]
dA dZ

+

∫ h

0
δψ

∫
A

{
σo

[(
1 + ∆′o

) (
−dψ − f ′w dϕ

)
+ dv′

]
− dτ

(
1 + ∆′o

)}
dA dZ

+

∫ h

0
δϕ

∫
A

{
σo

{(
1 + ∆′o

) [
− f ′w dψ − ( f ′w)2dϕ

]
+ f ′w dv′

}
− dτ

(
1 + ∆′o

)
f ′w

}
dA dZ

+

∫ h

0
δψ′

∫
A

−Xdσ dA dZ +
∫ h

0
δϕ′

∫
A

− fw dσ dA dZ = 0

(31)
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Linearizing Eqs. (23) and (10) accordingly, the incremental stresses dσ and dτ are given by:234

dσ = E
(
d∆′ − Xdψ′ − fwdϕ′

)
dτ = G

[
dv′ −

(
1 + ∆′o

) (
dψ + f ′w dϕ

)]
(32)

In the following, the notation d(•) is dropped to simplify the expressions. It should be recalled,235

however, that the strains and stresses are incremental, coming from the linearization of the principle236

of virtual work. Moreover, we define the following stress resultants:237

P = −
∫
A

σo dA = −EA∆′o N =
∫
A

σ dA = EA∆′

M = −
∫
A

Xσ dA = EIψ′ V =
∫
A

τ dA = GA
[
v′ −

(
1 + ∆′o

) (
ψ +

GB
GA

ϕ
)]

Q = −
∫
A

fw σ dA = EJϕ′ R =
∫
A

f ′w τ dA = GB
[
v′ −

(
1 + ∆′o

) (
ψ +

GC
GB

ϕ
)] (33)

with the corresponding cross-sectional rigidities and properties:238

EA =
∫
A

EdA EI =
∫
A

EX2 dA EJ =
∫
A

E f 2
w dA

GA =
∫
A

GdA GB =
∫
A

G f ′w dA GC =
∫
A

G( f ′w)2dA (34)

fB = −

∫
A

f ′w σo dA

P/A
fC = −

∫
A

( f ′w)2σo dA

P/A

where the modulus-weighted centroidal location of the beam’s axis (
∫
A

EXdA = 0) and conditions239

in Eq. (5) for fw have been used. The resultants Q and R correspond to the warping moment and240

shear, respectively. The term EJ is the warping rigidity, while GB and GC are warping-related241

shear rigidities with the same dimensions as GA. For a homogeneous element, the shear modulus242

G and the initial axial stress σo are uniform, hence fB = B =
∫
A

f ′wdA and fC = C =
∫
A

( f ′w)2dA.243

However, for non-homogeneous elements, such as elastomeric bearings, these properties differ.244

The rest of resultants and cross-sectional rigidities are interpreted in the standard way.245

The linearization of the principle of virtual work is then restated as follows in terms of gener-246
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alized stress resultants:247

dδΠ =
∫ h

0

{
δ∆′N − δv′

[
P

(
ψ +

fB

A
ϕ

)
− V

]
+ δψ′M + δϕ′Q

}
dZ

−

∫ h

0
δψ

{
P

[
v′ −

(
1 + ∆′o

) (
ψ +

fB

A
ϕ

)]
+ V

(
1 + ∆′o

)}
dZ

−

∫ h

0
δϕ

{
P

fB

A

[
v′ −

(
1 + ∆′o

) (
ψ +

fC
fB
ϕ

)]
+ R

(
1 + ∆′o

)}
dZ = 0

(35)

Using integration by parts, neglecting the incremental axial load N which is trivially zero, and248

using the definitions in Eq. (33), the strong form of the buckling eigenvalue problem becomes:249

P
(
ψ′ +

fB

A
ϕ′

)
−GA

[
v′′ −

(
1 + ∆′o

) (
ψ′ +

GB
GA

ϕ′
)]
= 0 (36a)

EIψ′′ + P
[
v′ −

(
1 + ∆′o

) (
ψ +

fB

A
ϕ

)]
+GA

[
v′ −

(
1 + ∆′o

) (
ψ +

GB
GA

ϕ
)] (

1 + ∆′o
)
= 0 (36b)

EJϕ′′ + P
fB

A

[
v′ −

(
1 + ∆′o

) (
ψ +

fC
fB
ϕ

)]
+GB

[
v′ −

(
1 + ∆′o

) (
ψ +

GC
GB

ϕ
)] (

1 + ∆′o
)
= 0 (36c)

with the boundary terms:250

{{
GA

[
v′ −

(
1 + ∆′o

) (
ψ +

GB
GA

ϕ
)]
− P

(
ψ +

fB

A
ϕ

)}
δv

} ∣∣∣∣h
0
+ (EIψ′δψ)

∣∣∣∣h
0
+ (EJϕ′δϕ)

∣∣∣∣h
0
= 0 (37)

If the element is very stiff in compression, such that the initial axial strain ∆′o can be neglected,251

these equations coincide with those of the Kelly-Tsai theory.252

The previous equations can be interpreted as the equilibrium equations corresponding to the253

deformed configuration shown in Fig. 2. As opposed to Haringx’s theory, where the axial load acts254

perpendicular to the deformed cross section, in this case the line of action of P has an additional255

rotation of ϕ fB/A with respect to the normal to the average cross-sectional plane in the deformed256

configuration. Equation (36a) then corresponds to the equilibrium of forces in X, while Eq. (36b)257

corresponds to the moment equilibrium. The cross-sectional distortion leads to additional stresses258

with no resultant force or moment, according to the requirements in Eq. (5). Equation (36c)259

establishes the equilibrium of these stresses in terms of the higher-order warping moment Q and260
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shear R, which cannot be interpreted as moments or forces in the standard sense.261

Buckling Load Equation262

The critical load of a beam with fixed lateral displacement at its base, and fixed rotation and warp-263

ing at both ends is estimated next; these correspond to the standard conditions for elastomeric264

bearings used for seismic base isolation with flexurally rigid supports. Hence, the essential bound-265

ary conditions are v(0) = ψ(0) = ϕ(0) = ψ(h) = ϕ(h) = 0, while the natural boundary condition266

is V(h) = 0. In other applications including bridges and mid-height isolation, support rotation can267

have important effects, as illustrated by Moghadam and Konstantinidis (2017, 2021), and should268

be considered. The procedure outlined next can be followed to estimate Pcr for those cases by269

enforcing non-vanishing rotations ψ(0) and/or ψ(h). For unbonded isolators, this approach will be270

valid for small to moderate rotations for which the whole cross section remains in contact with the271

supports; for large rotations, lift-off might occur (Konstantinidis et al. 2008; Stanton et al. 2008;272

Van Engelen 2019b), and the present approach will not be readily applicable in those instances.273

The buckling load of the beam comes from solving the system of ordinary differential equations274

in Eq. (36). Integrating Eq. (36a) and making use of the normalized axial load P̄ = P/GA we275

obtain:276

v′ =
(
P̄ + λo

)
ψ +

(
P̄

fB

A
+ λo

GB
GA

)
ϕ (38)

where λo(P̄) = 1 + ∆′o(P̄) is the initial stretch of the element given by:277

λo(P̄) = 1 − P̄
GA
EA

(39)

Substituting this in Eqs. (36b) and (36c), we get:278

ϕ = −
1

P̄
(
P̄ fB

A + λo
GB
GA

) [ EI
GA

ψ′′ + P̄
(
P̄ + λo

)
ψ
]

(40)

279

ψ = −
1

P̄
(
P̄ fB

A + λo
GB
GA

)  EJ
GA

ϕ′′ +

(P̄ fB

A
+ λo

GB
GA

)2

− λo

(
P̄

fC
A
+ λo

GC
GA

) ϕ (41)

16 Montalto, July 18, 2023



Substituting Eq. (40) in Eq. (41), the differential equation for ψ(Z) becomes:280

ψiv +
P̄

(
P̄ + λo

)
+ κB − κC

Ωh2 ψ′′ −
P̄

[(
P̄ + λo

)
κC − λoκB

]
Ω2h4 ψ = 0 (42)

where we have used Ω = EI/GAh2 and the following non-dimensional parameters:281

κB(P̄) =
(
P̄

fB

A
+ λo

GB
GA

)2 EI
EJ

κC(P̄) = λo

(
P̄

fC
A
+ λo

GC
GA

)
EI
EJ

(43)

The solution to Eq. (42) is given by:282

ψ(Z) = A cos(β1Z) + B sin(β1Z) +C cosh(β2Z) + D sinh(β2Z) (44a)

283

β2
1 =

1
2Ωh2

[P̄ (
P̄ + λo

)
+ κB − κC

]
+

√[
P̄

(
P̄ + λo

)
+ κB − κC

]2
+ 4P̄

[(
P̄ + λo

)
κC − λoκB

]
(44b)284

β2
2 =

−1
2Ωh2

[P̄ (
P̄ + λo

)
+ κB − κC

]
+

√[
P̄

(
P̄ + λo

)
+ κB − κC

]2
+ 4P̄

[(
P̄ + λo

)
κC − λoκB

]
(44c)

The solution to the system of equations using the boundary conditions yields either the trivial285

solution A = B = C = D = 0, or the solution β1h = π. The latter, upon expansion, results in:286

P̄
{[

P̄ + λo(P̄)
]
κC(P̄) − λo(P̄) κB(P̄)

}
+ π2Ω

{
P̄

[
P̄ + λo(P̄)

]
+ κB(P̄) − κC(P̄)

}
− π4Ω2 = 0 (45)

where the functional dependence of λo, κB and κC on P̄ has been explicitly stated for clarity. This287

corresponds to a quartic equation on P̄, whose solution yields the normalized buckling load P̄cr.288

This equation can be solved by appropriate numerical procedures such as Newton’s method. To289

ensure the convergence of the solution method, a good initial search value is required. This can be290

given by an approximation of Haringx’s buckling load for PE ≫ PS (also Ω→ ∞) [see Eq. (1)]:291

P(0)
cr =

√
PS PE (46)

17 Montalto, July 18, 2023



where the superscript indicates the iteration of the numerical procedure.292

Equation (45) provides the exact result for the developments presented here. However, the293

complexity of the solution to a quartic equation makes its implementation impractical in the context294

of design applications. If the axial shortening caused by the buckling load is neglected, such that295

λo = 1, the cubic equation from the Kelly-Tsai theory is recovered; yet, its solution remains296

onerous. The present formulation is of particular interest for short composite elements which are297

soft in shear. In those cases, the axial-to-shear stiffness ratio, EA/GA, and the bending-to-shear298

stiffness ratio, Ω = EI/GAh2, can acquire large values. For example, in elastomeric isolators with299

moderate-to-high shape factor EA/GA is in the range of 100-10,000, while Ω is in the range of300

10-10,000. Fig. 3 shows that in those instances the solution of Eq. (45) converges to:301

Pcr ≈

√√
PS PE

1 +
(

fB
A

)2 EI
EJ

(47)

which corresponds to a modification of Haringx’s approximate load [Eq. (46)] based on the302

bending-to-warping rigidity ratio EI/EJ and the ratio fB/A which measures the angular devia-303

tion of the line of action of P with respect to the normal to the average cross-sectional plane (see304

Fig. 2).305

COMPARISON WITH OTHER FORMULATIONS306

The present formulation has been derived by analyzing the geometrically nonlinear beam to estab-307

lish an appropriate hyperelastic material assumption and allow for additional effects, such as axial308

shortening. Upon neglecting the latter effect, it coincides with the Kelly-Tsai theory. However,309

this theory differs significantly from that by Simo (1982), as well as other buckling theories that310

have been proposed for higher-order shear beams (Wang et al. 2000; Challamel 2011; Challamel311

et al. 2013). Thus, before applying this theory to elastomeric bearings, it is deemed necessary to312

explore the differences giving rise to distinct formulations. First, a second-order approximation of313

the potential energy is introduced for the present theory; Simo’s theory and one of the solutions314

by Challamel (2011) are presented using such a potential energy. Then, the differences giving315
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rise to distinct formulations are discussed. Finally, the theories are compared for the case of a316

homogeneous beam to illustrate their different behavior for short elements highly-flexible in shear.317

Buckling Theories318

Proposed theory319

If the nonlinear material constitutive relation is known, only a linear displacement field and second-320

order approximations of the strain measures are required to determine the critical load. The linear321

displacement field associated with the present developments can be obtained by taking the lin-322

earization of the displacement field u = φ − X with respect to the undeformed configuration:323

L[u]η=0 = ve1 + (∆ − Xψ − fw ϕ) e2 (48)

This linear displacement field coincides with that assumed in the Kelly-Tsai theory.324

Moreover, it is convenient to state a second-order approximation of the potential energy directly325

in terms of the cross-sectional rigidities and generalized strains. Such a potential, which can be326

employed to derive the equilibrium equations in a more direct way, is given by:327

Π(v, ψ, ϕ) =
1
2

∫ h

0



ψ′

ϕ′

γ̃

ϕ̃



⊺ 

EI 0 0 0

0 EJ 0 0

0 0 GA + P̃ −GB − P̃ fB
A

0 0 −GB − P̃ fB
A GC + P̃ fC

A





ψ′

ϕ′

γ̃

ϕ̃


− P̃(v′)2 dZ (49)

where γ̃ = v′ − (1 + ∆′o)ψ, ϕ̃ = (1 + ∆′o)ϕ and P̃ = P/(1 + ∆′o). Recall that fB = B and fC = C,328

respectively, for elements with homogeneous materials.329

Simo’s theory330

Simo derived the beam’s deformation field based on the solution of the boundary value problem of a331

sheared planar bearing which enforces compatibility between the deformation of the reinforcement332

and that of the rubber, with the only kinematic assumption that the lateral displacement v is only a333

function of the axial coordinate Z. The resulting displacement is equivalent to that of Eq. (48), with334
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ϕ = γ̄ = v′−ψ. The warping function fw depends on the stiffness of the reinforcing plate and when335

the reinforcement is fully flexible in bending, it is given by Eq. (7) with ω = −3/10. Equilibrium336

was established based on the integration of a second-order approximation of the balance of linear337

momentum in referential form Div P = 0 over the cross section.338

Alternatively, we can derive this formulation from the following potential energy:339

ΠS (v, ψ, ϕ,R) =
1
2

∫ h

0


ψ′

γ̃

ϕ̃



⊺ 
EI 0 0

0 GA + P̃ −GB − P̃ fB
A

0 −GB − P̃ fB
A GC + P̃ fC

A




ψ′

γ̃

ϕ̃


− P̃(v′)2 + 2R (γ̄ − ϕ) dZ

(50)

where the definitions of the cross-sectional rigidities are as before, but the warping shear R is now340

a Lagrange multiplier enforcing ϕ = γ̄. Taking admissible variations of the proposed potential, the341

system of differential equations defining the problem is:342

P
[
ψ′ + (1 − κ)

(
v′′ − ψ′

)]
− κGA

[
v′′ −

(
1 + ∆′o

)
ψ′

]
= 0 (51a)

EIψ′′ + P
{
v′ −

(
1 + ∆′o

) [
ψ + (1 − κ)

(
v′ − ψ

)]}
+

(
1 + ∆′o

)
κGA

[
v′ −

(
1 + ∆′o

)
ψ
]
= 0 (51b)

with boundary conditions given by:343

{[
κGAγ̃ − P (ψ + (1 − κ) γ̃)

]
δv

}∣∣∣∣h
0
+

(
EIψ′δψ

) ∣∣∣∣h
0
= 0 (52)

where κ = 1 − 2GB/GA + GC/GA. Then, inextensibility was assumed to obtain the following344

solution for the critical load for a beam fixed at the base, and with fixed rotation but free to displace345

at the top:346

PS
cr =

2PE

1 + (1−κ)PE
κGA +

√[
1 + (1−κ)PE

κGA

]2
+ 4PE

GA

(53)
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Alternative theories347

Outside the realm of elastomeric bearings, the buckling of some higher-order shear beams has348

been studied. Wang et al. (2000) studied the buckling for the Bickford-Reddy beam (Bickford349

1982; Reddy 1984), Challamel (2011) presented a buckling solution for the Shi-Voyiadjis beam350

(Shi and Voyiadjis 2010), and Challamel et al. (2013) derived and compared the critical loads for351

a large number of higher-order beam theories including those in (Bickford 1982; Touratier 1991;352

Karama et al. 2003; Shi and Voyiadjis 2010; El Meiche et al. 2011), all of which take the warping353

amplitude to be proportional to γ̄ but differ in the definition of the warping function fw. The354

buckling solution of the Shi-Voyiadjis beam, which assumes the same displacement field as Simo’s355

theory, is presented next to illustrate the approach followed in these studies. The Engesser-type356

buckling theory, as referred to by Challamel (2011), was derived following a variational approach357

and will be referred to as Challamel’s theory.358

We can derive the equations from the following second-order potential:359

ΠC(v, ψ, ϕ,R) =
1
2

∫ h

0



ψ′

ϕ′

γ̄

ϕ



⊺ 

EI 0 0 0

0 EJ 0 0

0 0 GA −GB

0 0 −GB GC





ψ′

ϕ′

γ̄

ϕ


− P(v′)2 + 2R(γ̄ − ϕ) dZ (54)

where, again, the cross-sectional rigidities have been defined as before and the warping shear stress360

R is a Lagrange multiplier enforcing the warping amplitude to be equal to γ̄. Taking admissible361

variations and integrating by parts, the system of equations to be solved is:362

Pv′′ − κGA
(
v′′ − ψ′

)
+ EJ

(
viv − ψ′′′

)
= 0 (55a)

EIψ′′ − EJ
(
v′′′ − ψ′′

)
+ κGA

(
v′ − ψ

)
= 0 (55b)
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with boundary conditions given by:363

[(
κGAγ̄ − EJγ̄′′ − Pv′

)
δv

] ∣∣∣∣h
0
+

[(
EIψ′ − EJγ̄′

)
δψ

] ∣∣∣∣h
0
+

(
EJγ̄′δv′

) ∣∣∣∣h
0
= 0 (56)

where κ is as before. Then, the critical load for the boundary conditions of interest is:364

PC
cr = PE

1 + PE
κGA

EJ
EI

1 + PE
κGA

(
1 + EJ

EI

) (57)

Theoretical Differences365

For higher-order shear beams, several different buckling solutions can be derived on the basis of (1)366

the assumed deformation field, (2) the variational consistency of the equilibrium equations, and (3)367

the nonlinear material constitutive relation assumption. The first two items lead to differences in368

the linear beam theories for which, unlike the first-order shear case given by the Timoshenko beam369

theory, there is no consensus. The third item causes further differences in the nonlinear equations370

used for the estimation of the critical load. In the following, these aspects are discussed and the371

theories compared with respect to them.372

Assumed displacement field373

Two-aspects of the displacement can be altered: the warping function fw and the warping amplitude374

ϕ. The definition of fw has monopolized most of the discussion regarding higher-order shear beams375

(e.g., Bickford 1982; Touratier 1991; Karama et al. 2003; Shi and Voyiadjis 2010; El Meiche376

et al. 2011). However, as shown by Challamel et al. (2013), different warping functions lead to377

negligible differences in the buckling results. Moreover, the three formulations discussed make378

use of the same fw and thus the discussion will focus on the warping amplitude. The vast majority379

of formulations take the warping amplitude to be ϕ = γ̄ = v′ − ψ, and this approach is followed380

by the kinematic assumptions in Simo’s and Challamel’s formulations. This is often argued to be381

in agreement with the displacement fields corresponding to the exact elasticity solutions for the382

problem of a beam subjected to transverse terminal loads (e.g., Simo 1982).383
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Such classical solutions, presented by Love (1944), can only satisfy traction boundary con-384

ditions at the ends of the element in a weak sense in terms of cross-sectional force and moment385

resultants, but not in a point-wise manner (Barber 2010). Hence, these solutions correspond to386

unrestrained warping cases where a cross-sectional distortion results even at clamped ends. When387

specific traction distributions or displacements are enforced at the beam’s ends, additional self-388

equilibrated tractions will develop. Per Saint-Venant’s principle, these tractions will be local and389

have negligible effects at large distances from the end. For elasticity problems, the classical stress390

field results require corrective solutions using eigenfunctions that decay exponentially away from391

the boundaries and modify the displacement field (Timoshenko and Goodier 1970; Barber 2010).392

Thus, exact elasticity solutions for the restrained warping problem do not satisfy ϕ = γ̄.393

Taking ϕ = γ̄ should then be viewed as a constrained formulation, as illustrated by the deriva-394

tion of Simo’s and Challamel’s theories presented herein. An analogous situation arises when395

dealing with the case of restrained torsional warping, as has been recently detailed by Armero396

(2022). This constraint allows to select fw such that the shear stresses vanish at the top and bottom397

surfaces of the beam. Moreover, when inextensibility is assumed, a quadratic equation for the crit-398

ical load is obtained, leading to a closed-form solution which is desirable for practical purposes.399

When ϕ is an independent kinematic variable, the shear stress depends on γ̄ and ϕ, and the traction-400

free boundary condition at the top and bottom surfaces of the beam will not be satisfied. Thus, the401

theory might predict adequately the global response but not necessarily the local strain and stress402

distributions. Furthermore, even if inextensibility is assumed, a higher-order equation is obtained403

for the critical load whose closed-form solution is impractical, as shown in the Kelly-Tsai theory.404

Variational consistency405

The theories need to satisfy the variational principles of mechanics which, in the case of infinites-406

imal deformations of a one-dimensional element, read:407

δΠ =

∫
B

(σδε + τδγ) dV + δΠext = 0 (58)
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This requirement, trivial in other contexts, has proved to be an issue in the derivations of higher-408

order beam and plate theories (Bickford 1982; Reddy 1984). Following a variational approach, the409

higher-order warping resultants Q and R [Eq. (33)] appear naturally. The present formulation and410

the Shi-Voyiadjis beam used for Challamel’s buckling theory satisfy this requirement. In the latter411

theory, however, the higher-order shear R appears as a Lagrange multiplier due to the constrained412

nature of the formulation. Simo’s theory neglects the higher-order warping moment contributions,413

hence violating variational consistency. It is remarked that Simo (1982) referred to his formulation414

as being consistent with the nonlinear balance principles of finite elasticity. However, his treatment415

of structural members (rods and plates) only accounted for equilibrium of forces and moments,416

whereas a balance of higher-order resultants is also necessary for cases with restrained warping.417

Thus, Simo’s formulation is only valid for cases with unrestrained warping.418

Material constitutive relation419

The proposed theory is the only one, to the authors’ knowledge, to rigorously establish the material420

relation at the stress-strain level [Eq. (26)] as an intrinsic part of the formulation for the case of421

elements that account for cross-sectional warping due to shear. The nonlinear equilibrium equa-422

tions of the Kelly-Tsai theory were derived taking a second-order approximation of the extension423

of a differential element. The equations developed in the present study evidence that this agrees424

with the material constitutive relation presented herein up to second-order terms upon assuming425

inextensibility. In Simo’s theory, no reference was made of a material relation at the stress-strain426

level, but linearity was assumed for the generalized stress resultants obtained from the integration427

of a second-order approximation of the referential form of the balance of linear momentum. Eq.428

(50) evidences the material constitutive relation embedded in this procedure to be analogous to the429

constitutive relation presented here, up to second-order terms.430

The alternative formulations follow what their authors have deemed an Engesser approach,431

where the second-order contribution of the axial load to the potential energy is equivalent to that432

in Eq. (54) (Wang et al. 2000; Challamel 2011; Challamel et al. 2013). Engesser’s theory for first-433

order shear beams has been explained by taking a Saint-Venant Kirchhoff material (see Holzapfel434
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2000) and neglecting all second-order terms except for (v′)2/2 in the axial component of the Green-435

Lagrange strain tensor E22 on the basis of rotations being larger than strains and σcr ≫ E (Bažant436

and Cedolin 2010). However, for the higher-order shear beam with displacement field given by437

Eq. (48) with ϕ = γ̄ we have:438

E22 = ∆
′ − Xψ′ − fw ϕ

′ +
1
2

(v′)2 +
1
2

[
∆′ − Xψ′ − fw

(
v′ − ψ

)]2 (59)

The assumptions used for Engesser’s theory do not justify neglecting some of the higher-order439

terms in E22, and these theories cannot be directly traced back to any particular material model.440

Comparison441

The implications of the differences between theories are illustrated by means of two examples. The442

analysis is developed for the case of a planar beam with homogeneous material, such that GB =443

GC = GA/6, κ = 5/6 and EJ = EI/84. The calculations for the non-homogeneous elastomeric444

bearings are somewhat different because effective rigidities and cross-sectional parameters need445

to be employed, as will be shown in the next section. However, the qualitative behavior of the446

theories presented in the following remains the same.447

Displacement under lateral load448

The distinct kinematic assumptions and satisfaction of variational consistency lead to differences449

even in the linear equilibrium equations where axial load effects are neglected. This can be il-450

lustrated by estimating the lateral displacement of a beam with fixed ends, but allowed to move451

laterally at the top support upon the application of a lateral load H in the absence of an axial load452

P. For Simo’s theory with variational inconsistency and constrained warping amplitude, only four453

boundary conditions are required in terms of v and ψ or their conjugate generalized forces [Eq.454

(52)]. A fixed end requires v = ψ = 0, but the cross-sectional warping does not vanish (Fig. 4a).455

The displacement at the top of the beam is given by:456

vS (h) =
Hh3

12EI
+

Hh
κGA

(60)
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which coincides with the classical solution for a beam with unrestrained warping.457

In the absence of axial load, the present formulation is equivalent to the beam theory presented458

by Kelly (1994), and thus a superscript K will be used for reference. The variationally consistent459

theory with independent warping amplitude ϕ requires six boundary conditions to be enforced in460

terms of the generalized displacements v, ψ and ϕ or their conjugate generalized forces [Eq. (37)].461

The enforcement of fixed boundary conditions requires v = ψ = ϕ = 0 at that boundary, which is462

kinematically consistent (Fig. 4b). In this case, the solution is given by:463

vK(h) =
Hh3

12EI
+

Hh
κGA

+
(1 − κ) HlK

κGA

csch
(

h
lK

) [
cosh

(
h
lK

)
− 1

]2

− sinh
(

h
lK

) (61)

where lK =
√

EJ/[(1 − κ)κGA] corresponds to a characteristic length of the beam theory. The464

additional term in the solution appears due to the effect of restraining the warping deformation at465

the supports, and it reduces the lateral displacement of the beam.466

Lastly, for a variationally consistent formulation with constrained warping amplitude, such as467

the Shi-Voyiadjis beam, six boundary conditions are again required but now in terms of v, v′ and ψ468

[Eq. (56)]. For a fixed boundary condition, v = v′ = ψ = 0, such that the cross-sectional distortion469

vanishes at the boundary. The shear stress, proportional to γ̄ in this case, necessarily vanishes at470

the boundary as well (Fig. 4c). Thus an effective shear force conjugate to the lateral displacement471

v is needed [Eq. (56)], where the additional contribution comes from equilibrium but not from the472

integration of the shear stress over the cross section. This corresponds to an inconsistency arising473

from the constrained nature of the formulation. The lateral displacement at the top of the beam is:474

vS V(h) =
Hh3

12EI
+

Hh
κGA

+
HlS V

κGA

csch
(

h
lS V

) [
cosh

(
h

lS V

)
− 1

]2

− sinh
(

h
lS V

) (62)

where lS V =
√

EJ/κGA is the corresponding characteristic length.475

The squatness of an element can be represented by Ω = EI/GAh2, which acquires large values476

as the length-to-depth ratio decreases. For an isotropic homogeneous beam with E = 3G and a477

length-to-depth ratio of 0.5, Ω = 1. As indicated before, however, for composite elements which478
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are soft in shear Ω can acquire much larger values; for example, 10 ≤ Ω ≤ 10, 000 for elastomeric479

bearings with moderate-to-high shape factor. Fig. 5 shows how the theories predict vastly different480

displacements in that range. The displacement predicted by the Shi-Voyiadjis beam unrealistically481

tends to vanish as Ω increases due to the constraint ϕ = γ̄, which forces the shear to vanish at the482

restrained ends. Simo’s theory, despite also following this constraint, is not overly stiff because483

warping cannot be restrained due to the variational inconsistency. On the other hand, Kelly’s484

formulation does account for the warping restraint at the ends, but the lateral displacement does485

not vanish even at high Ω values.486

Critical load487

The distinct nonlinear material assumptions in the theories lead to further differences in their criti-488

cal load estimates. This is shown in Fig. 6, where Haringx’s and Engesser’s theories, which neglect489

cross-sectional distortions, have been included for reference. The buckling load from the proposed490

theory is significantly reduced with respect to Haringx’s load, due to the cross-sectional distortion.491

Simo’s critical load is significantly lower, and as Ω → ∞ it converges to PS
cr = κGA/(1 − κ) as a492

consequence of not accounting for the effect of warping restraint at the ends. On the other hand,493

Challamel’s estimation is low at first and close to Engesser’s solution for small values of Ω. How-494

ever, as Ω → ∞ it converges to PC
cr = PEEJ/(EI + EJ), exceeding even Haringx’s load. This has495

not been duly noted in the derivation of this type of theories in (Wang et al. 2000; Challamel et al.496

2013), where the analysis has been restricted to small values of Ω corresponding to more slender497

elements which are not affected as much by warping effects.498

The theories exhibit significantly different behaviors for large values of Ω, which corresponds499

to the range of interest for short shear-flexible composite elements, including elastomeric bearings.500

In this range, constraining the warping amplitude ϕ = γ̄ leads to an overly stiff response. Theories501

that enforce this constraint, such as the one by Challamel, might still be useful for other appli-502

cations using more slender elements corresponding to the context in which they were presented.503

However, the influence of warping decreases in such cases and the use of buckling theories that ac-504

count for first-order shear might be accurate enough and lead to simpler solutions. Moreover, given505
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that a variational approach at the stress-strain level is necessary to establish the linear equations506

corresponding to higher-order beam theories, it is deemed necessary to follow the same approach507

for the nonlinear equations. This would provide more insight about simplifications embedded in508

these so-called Engesser type theories, their applicability, and limitations. In Simo’s formulation,509

however, the effects of the warping constraint are offset by its variational inconsistency.510

APPLICATION TO FIBER-REINFORCED ELASTOMERIC ISOLATORS511

The work presented heretofore, while being of particular interest for elements with large EA/GA512

and EI/GAh2 ratios (e.g., elastomeric bearings), is general and applicable to any prismatic beam-513

like element. The subsequent discussion, however, is specific to FREIs, which have been proposed514

to seismically isolate normal-importance structures such as residential buildings. Stability under515

compressive loads is a critical aspect of their design (Pauletta 2019), and of elastomeric isolators516

in general (Constantinou et al. 2007). In the following, the proposed formulation is applied to517

evaluate the stability of unbonded infinite strip FREIs under no initial lateral displacement, and518

the results are compared to existing formulations. The results are validated with finite element519

analyses, providing a proof-of-concept on the applicability of the formulation. The case of FREIs520

with rectangular, circular and annular cross sections will be presented in a forthcoming publication.521

The results presented hereinafter also provide a foundation for the evaluation of the stability of522

FREIs under lateral displacement due to seismic loading, which often corresponds to the most523

critical design condition; such topic, however, is reserved for future studies.524

Effective Isolator Properties525

The mechanical response of an elastomeric isolator is governed by the composite action of the526

rubber and the reinforcement. The non-homogeneous material distribution along the isolator’s527

axis leads to different axial stresses than those that occur in an element with constant material528

distribution along its axis. Hence, a homogenization of the isolator properties is needed to reconcile529

the beam theory with the isolator response. Effective rigidities and cross-sectional properties are530

obtained by evaluating the mechanical response of a single rubber layer of thickness te using the so-531

called pressure solution (Gent and Meinecke 1970; Kelly and Konstantinidis 2011). The kinematic532
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assumptions are that vertical lines are deformed into a parabola, while the vertical displacement is533

assumed to vary linearly throughout the pad. Moreover, infinitesimal elasticity theory is employed534

for the rubber material as well as the reinforcement. It is further assumed that the normal stresses535

are dominated by the pressure p, such that σxx ≈ σyy ≈ σzz ≈ −p.536

The effective rigidities and cross-sectional properties for a planar infinite strip bearing with537

depth 2b are presented next. Let us define the following dimensionless parameters:538

α2 =
12Gb2

E f t f te
=

12GteS 2

E f t f
β2 =

12Gb2

Kt2
e
=

12GS 2

K
λ2 = α2 + β2 (63)

where K = bulk modulus of the rubber, E f = Young’s modulus of the fiber, t f = thickness of the539

fiber, and S = shape factor, defined as the ratio of loaded area to area free to bulge in a single540

rubber layer. For an infinite strip layer, S = b/te. The parameter α measures fiber extensibility,541

while β measures the rubber compressibility; in practical scenarios, both terms are small but have542

important effects in the estimated rigidities, particularly when S is large.543

The effective axial rigidity ẼA and effective bending rigidity ẼI accounting for bulk compress-544

ibility of the rubber and fiber extensibility are then given by (Kelly and Takhirov 2002):545

ẼA =
24bGS 2

λ2

(
1 −

tanh(λ)
λ

)
(64)

546

ẼI =
24b3GS 2

λ4

(
1 +

λ2

3
−

λ

tanh(λ)

)
(65)

The derivation of the effective rigidity and cross-sectional properties associated with warping con-547

sidering fiber extensibility but not rubber compressibility has been presented by Tsai and Kelly548

(2005a). To account for bulk compressibility of the rubber, the same procedure is followed with549

the sole modification that the trace of the infinitesimal strain tensor ε does not vanish and is given550

by tr(ε) = −p/K. Hence, only the relevant results are presented next.551

First, the parameter ω in Eq. (7) is obtained from satisfying the third and fourth conditions in552
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Eq. (5). The third condition is trivially satisfied, and the fourth allows us to obtain:553

ω = −

(
1
2
+

3
λ2 +

1
5

λ2

3λ coth(λ) − 3 − λ2

)
(66)

Then, the warping rigidity and warping-related shear rigidities and cross-sectional areas are:554

ẼJ = −
10b3GS 2

9λ2

(
3

14
+ ω

)
(67)

555

GB =
5
6

Gb (1 + 2ω) GC =
5

72
Gb

(
9 + 20ω + 20ω2

)
(68)

556

fB =
5
6

b
(
3 + 2ω +

6
λ2 −

2λ
λ − tanh(λ)

)
fC =

5
72

b
(
9 + 20ω + 20ω2 +

60 (3 + 2ω)
λ2 +

1080
λ4 −

360/λ2 + 36 + 40ω
λ coth(λ) − 1

)
(69)

When steel reinforcement is present, further modifications need to be implemented to account for557

its bending rigidity (Tsai and Kelly 2005a). When fiber is used, it is reasonable to assume the558

reinforcement as completely flexible in bending, forgoing the need for these modifications.559

Finite Element Analysis560

To evaluate the suitability of the different theories in the prediction of the buckling load of FREIs,561

a finite element study was developed using the nonlinear FEA software Marc (MSC Software562

2021). A parametric study was carried out for two-dimensional plane strain models representing563

the infinite strip bearings described above. The bearings are modeled in an unbonded configuration564

where they remain in place due to the pressure and friction between the bearings and their supports.565

The analysis and its results are presented in the following.566
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Modeling567

The finite element analysis was carried out using mixed-formulation low-order elements, which568

prevent volumetric locking while being robust with respect to mesh distortions. The formulation569

employed extends from a Hu-Washizu type three-field variational principle proposed by Simo et570

al. (1985) defined in terms of the deformation φ, the pressure p, and the volumetric strain θ. The571

corresponding functional is given by:572

Π(φ, p, θ) =
∫
B

[
Ŵ(Ĉ) + U(θ) + p (J − θ)

]
dV + Πext(φ) (70)

where Πext(φ) = the external potential energy due to the imposed body forces and surface tractions.573

The functional Π(φ, p, θ) adopts the following multiplicative split of the deformation gradient:574

F̄ = θ1/3 F̂, (71)

where F̂ = J−1/3 ∂φ/∂X corresponds to the isochoric part of the deformation gradient, leading to575

the modified right Cauchy-Green deformation tensor Ĉ = F̂⊤F̂. An additive split of the strain576

energy W(C̄) = Ŵ(Ĉ)+U(θ) has been assumed, where Ŵ and U are the deviatoric and volumetric577

parts of the strain energy, respectively.578

Many phenomenological and statistical mechanics constitutive models for elastomeric materi-579

als are available. However, most of these models depend on a large number of parameters, which580

makes them unsuitable for a parametric study such as the one pursued here. Hence, a simple com-581

pressible neo-Hookean model defined by the shear modulus G and bulk modulus K was used for582

the rubber. The deviatoric strain energy is then given by:583

Ŵ(Ĉ) =
G
2

(
IĈ − 3

)
(72)
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where IĈ = the first invariant of Ĉ. The selected volumetric strain energy function is:584

U(θ) = K
(
θ2 − 1

4
−

ln θ
2

)
(73)

A fine mesh was required to achieve convergence of the buckling loads and capture the high585

distortion of the bulging ends of the bearing (see Fig. 7). Triangular elements were used at the586

edges of the bearings to avoid the failure of the quadrilateral elements due to excessive distortion,587

while quadrilateral elements were used at the inner part of the bearings. Moreover, an unstructured588

mesh was used for the sections with triangular elements to smoothly transition between a coarser589

mesh at the inner section and a finer mesh at the edges. The algorithm presented by Persson and590

Strang (2004) was implemented for this purpose.591

The quadrilateral elements correspond to Q1-P0 elements, which use continuous piecewise592

bilinear interpolation for the deformation field and piecewise constant interpolation for the pressure593

and volumetric strain fields (Simo et al. 1985). In Marc this corresponds to element type 11 with594

constant dilation. The triangular elements correspond to a variation of the so-called MINI element595

(Arnold et al. 1984), which makes use of continuous linear interpolation for the deformation field596

augmented by a bubble function, continuous piecewise linear interpolation for the pressure and597

discontinuous constant interpolation for the volumetric strain. In Marc this corresponds to element598

155. Both elements are implemented in an Updated Lagrangian formulation.599

The reinforcement was modeled using tension-only two-node plane strain rebar elements, cor-600

responding to Marc element type 165. These elements only have a displacement field for which601

they use linear interpolation, and thus they do not have any flexural rigidity. They are implemented602

in a Total Lagrangian formulation. The material for the fiber reinforcement is linear elastic, de-603

fined by its Young’s modulus E f and Poisson’s ratio ν f . Moreover, a node-to-segment formulation604

was implemented to handle the contact between the bearing and its supports, and the bearing with605

itself. The top and bottom supports were represented as rigid curves, while Coulomb friction was606

implemented using a bilinear formulation. Preliminary analyses evidenced negligible influence of607
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the friction coefficient µ on the results. Therefore, µ was fixed at 1.0 for all the simulations.608

Buckling Analysis Method609

The buckling load was determined by performing linearized buckling analyses with respect to an610

equilibrium configuration of the bearing, which is obtained from a fully nonlinear analysis (see611

Riks 1997). This is implemented using the buckle routine in Marc (MSC Software 2021). A612

vertical load P = ξPre f is applied to the model, with Pre f a reference vertical load and ξ the load613

factor that defines the magnitude of the applied load. Then, for a given equilibrium configuration i614

with load factor ξi, the following eigenvalue problem is solved:615

[
K(ξi) + (ξ∗ − ξi)

dK(ξ)
dξ

∣∣∣∣
ξ=ξi

]
u∗ = 0 (74)

where K(ξi) = the stiffness matrix, and [dK(ξ)/dξ]ξ=ξi = change in the stiffness matrix with respect616

to the load factor ξ, both evaluated at the equilibrium configuration i.617

The solution of the eigenvalue problem gives an estimate of the buckling load P∗ = ξ∗Pre f and618

the buckling mode shape u∗. When the approximate critical equilibrium state is close enough to619

the equilibrium configuration from which it was calculated, the influence of the initial deformation620

of the body is properly accounted for in the calculation; in this study the eigenvalue solution has621

been accepted when (ξ∗ − ξi)/ξi < 0.02. Moreover, when the equilibrium configuration i is far622

from the critical equilibrium configuration, the eigenvalue problem might yield spurious solutions623

which correspond to nonphysical instabilities of the model. Thus, the eigenmode u∗ needs to be624

checked to guarantee that it corresponds to a physical lateral buckling mode. When both of the625

previous conditions are met, ξcr ≈ ξ
∗ such that Pcr = ξcrPre f and ucr = u∗ (see Fig. 8).626

Cases627

The influence of various parameters on the buckling load was evaluated. The geometric parameters628

considered include the shape factor S = b/te, which affects all of the effective rigidities [Eqs. (64),629

(65) and (67)], and the width-to-total height aspect ratio S ∗2 = 2b/h [cf. the second shape factor630

S 2 = 2b/tr, where tr = total thickness of elastomer] which measures the overall slenderness of631
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the isolator; b, h and te are as previously defined. The material parameters evaluated were the632

shear modulus G, the bulk modulus K, and the reinforcement Young’s modulus E f . The values633

for these parameters included in the analysis are presented in Table 1, and provide realistic ranges634

for unbonded FREIs used in seismic isolation. Each parameter was varied while the rest were set635

to their default values. The total height of the bearings was fixed at h = 100 mm, while the fiber636

thickness was t f = 0.50 mm. Note that the exact S values used differed slightly from the target637

values listed in Table 1 because the bearing geometry was constrained to satisfy the S ∗2 values638

exactly. In total, 260 cases were analyzed; geometric parameter combinations that yielded fewer639

than 5 or more than 20 rubber layers were not included because they do not correspond to realistic640

bearing designs.641

Results642

The first theoretical formulation compared with the FEA results is the complete higher-order ex-643

pression [Eq. (45)], hereinafter referred to as the proposed-exact equation. The simplified ex-644

pression shown in Eq. (47), hereinafter referred to as the proposed-approximate equation, is also645

compared. In both of these formulations, the effective cross-sectional properties account for com-646

pressibility of the rubber and extensibility of the reinforcement. Moreover, results based on Simo’s647

and Haringx’s theories are included for comparison purposes. Both of them have been imple-648

mented as originally introduced and, in the case of Haringx, currently used in practice: disregard-649

ing the influence of rubber compressibility and reinforcement extensibility on the cross-sectional650

effective properties. From a theoretical standpoint, Haringx’s theory provides an upper bound for651

the buckling load estimation of an isolator that is flexible in warping.652

Fig. 9 shows that the FEA results are approximately bounded from below by the proposed-653

exact formulation, and from above by Haringx’s theory; in this figure, each combination of line654

(and marker) color and style is associated with a unique combination of width-to-height aspect655

ratio and analytical (or numerical) formulation. The proposed-exact expression closely agrees with656

the numerical results, except for combinations of low shape factors and high aspect ratios where657

it underestimates them. The proposed-approximate equation is in excellent agreement with the658
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exact one, exhibiting the same trends and approaching it closely from below. In contrast, Simo’s659

theory significantly underestimates the load of critical equilibrium which extends from neglecting660

the effect of the warping restraint at the element ends. Due to the squat geometry of the bearings,661

this has a significant influence in their nonlinear behavior, which Simo’s theory does not capture.662

Despite increasing with an increasing shape factor, the FEA estimates of the critical load present a663

lower sensitivity with respect to S than expected from the proposed formulation. This agrees with664

the findings presented by Galano et al. (2021).665

Using the FEA results as benchmark, Fig. 10 compares the performance of the analytical for-666

mulations with respect to the average compressive strain at buckling εc,cr = ∆cr/h, where ∆cr = the667

vertical displacement at buckling. The performance of the proposed formulations decreases with668

increasing εc,cr, even for the proposed-exact solution that accounts for the axial shortening. As669

opposed to steel-reinforced elastomeric isolators, FREIs typically have smaller shape factors and670

more axially flexible reinforcement, leading to large shortening at buckling for some of the ana-671

lyzed bearings. Due to the quasi-incompressibility of the rubber, this causes a nonlinear increase672

of the cross section that is not negligible, which increases the bending and warping rigidity of the673

bearing. Such behavior cannot be accounted for in one-dimensional theories as the ones dealt with674

herein where the cross-sectional dimensions remain constant. Proper consideration of these effects675

would require the analysis of the three-dimensional problem.676

Similar behavior has been reported in the context of low-shape factor (S < 5) steel-reinforced677

elastomeric bearings for bridges or 3D seismic isolation (Stanton et al. 1990; Orfeo et al. 2023).678

In those cases, the significant cross-sectional expansion under compression of the axially flexible679

steel-reinforced elastomeric bearings has been deemed to have a major influence on the stability of680

the bearings. Semi-empirical correction factors have been proposed in those instances to account681

for cross-sectional expansion and improve the accuracy of the Pcr estimates. Such an approach682

is not pursued here considering that bearings exhibiting large compressive strains would not be683

implemented for standard seismic isolation purposes—the focus of this work. Moreover, the influ-684

ence of these effects is accentuated in the present results due to the plane strain conditions, but it685
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becomes less relevant for the three-dimensional cases.686

The influence of the different material properties is illustrated in Fig. 11 where, again, each687

combination of line (and marker) color and style corresponds to a unique combination of width-688

to-height aspect ratio and analytical (or numerical) method. The variation of the critical loads689

with respect to the rubber’s shear modulus G is similar in all the analytical formulations and the690

FEA results, as shown in Fig. 11; note that Pcr has been normalized by G in Fig. 11(a), and691

thus a horizontal line represents a linear relation between them. A linear increase of the critical692

load with respect to the rubber’s shear modulus is expected for Haringx’s theory. Simo’s theory,693

which converges to Pcr/A = 5G, naturally exhibits a linear relation, too. The same would apply694

for the proposed formulations, were it not for the inclusion of the rubber compressibility in the695

effective rigidities which leads to a slightly nonlinear increase of the buckling load with respect696

to G. The numerical results also exhibit a slightly nonlinear increase with respect to the rubber’s697

shear modulus.698

Haringx’s and Simo’s theories were implemented without accounting for rubber compressibil-699

ity and fiber extensibility in the estimation of the bearing effective properties. Therefore, neither700

formulation is affected by these properties in Fig. 11(b). The proposed formulations do account701

for these effects through parameter λ [Eq. (63)], which tends to reduce the effective rigidities as the702

rubber becomes more compressible and the reinforcement more axially flexible, hence reducing703

Pcr. These effects are more important for large shape factors, as λ is proportional to S , and thus704

only the results for S = 30 are presented in Fig. 11. As seen in Fig. 11(b,c), the behavior of the705

FEA results with respect to the normalized bulk modulus and the normalized reinforcement axial706

rigidity is in agreement with that of the proposed formulations.707

The effect of rubber compressibility becomes noticeable for K/G ratios lower than 5000, while708

it does not affect Pcr significantly outside that range. In contrast, within the range of the evaluated709

material parameters, the critical loads (both analytical and numerical) are quite insensitive to the710

reinforcement extensibility, even for a high shape factor of S = 30 [see Fig. 11(c)]. The mate-711

rial parameters adopted in the numerical study cover the range of expected reinforcement axial712
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rigidity. Thus, the results indicate that for realistic scenarios, the reinforcement extensibility has a713

negligible effect on the isolator’s critical load. This result is relevant because neglecting the fiber’s714

extensibility allows to simplify the computation of the isolator’s effective rigidities.715

Towards Practical Implementation716

Both proposed formulations exhibit excellent agreement, but the approximate one is deemed more717

convenient for practical implementation because it is given in closed-form and requires fewer ad-718

ditional warping properties. Its performance with respect to the numerical results is compared to719

Haringx’s theory in Fig. 12. The effective rigidities required for each theory have been calcu-720

lated under four scenarios: (1) considering both rubber compressibility and fiber extensibility, (2)721

considering only rubber compressibility (α = 0), (3) considering only fiber extensibility (β = 0),722

and (4) considering neither rubber compressibility nor fiber extensibility (α = β = 0). Results723

presented in the figure correspond to average ratios of the analytical to numerical buckling loads724

over all the combinations of material parameters. Nevertheless, the results for any specific triad of725

G, K and E f follow the same trends as can be interpreted from the low coefficients of variation,726

shown in Fig. 13. Simo’s theory has been excluded from the comparison because it substantially727

underestimates Pcr for all the studied cases.728

Practically feasible geometric parameter ranges for FREIs, which correspond to aspect ratios729

between 2.0 - 5.0 and shape factors larger than 10, are highlighted with dashed-line rectangles730

in Figs. 12 and 13. An aspect ratio of 2.0 - 2.5 has been shown experimentally (Toopchi-Nezhad731

et al. 2008) and analytically (Van Engelen et al. 2015) to be the threshold at which instability under732

lateral deformation due to rollover effects is precluded in unbonded FREIs. Isolators with lower733

aspect ratios will become unstable under lateral deformation before the originally vertical faces of734

the bearing contact the supports, making them unsuitable for seismic isolation applications. On the735

other hand, S = 10 corresponds to a practical lower limit to prevent the bearing from being overly736

flexible in compression and avoid coupling of lateral and vertical structural vibration modes.737

Haringx’s theory can become largely unconservative for geometric parameter combinations738

that yield feasible designs for isolation purposes (ratios larger than one in Fig. 12). The proposed-739
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approximate expression underpredicts the buckling loads for low shape factors but tends to be740

close to the numerical results (unity in Fig. 12) in the highlighted region of interest. When fiber741

extensibility is neglected (α = 0), the mean ratios are slightly modified (Fig. 12), but the variation742

of the ratios for specific material combinations (G, K, E f ) with respect to the mean ratios (Fig. 13)743

is actually reduced. This coincides with the negligible influence of the reinforcement axial rigidity744

on the critical load previously identified. Based on this, the use of the proposed-approximate ex-745

pression in Eq. (47) along with effective bearing properties that account for rubber compressibility746

can provide a good estimation of the buckling load of unbonded FREIs.747

CONCLUSIONS748

A buckling theory for short beams that accounts for shear warping was developed based on the749

consistent linearization of the geometrically nonlinear planar problem. The assumed deformation750

field considers the warping amplitude as an independent generalized displacement, which proves751

to be a critical point for the adequacy of the theory. An appropriate hyperelastic material was752

proposed in terms of the stresses normal and tangent to the deformed cross section by assuming753

linearity of these stresses with respect to their work-conjugate strains, established based on stress754

power considerations. The solution for the critical load of a beam with fixed supports but free-to-755

sway at the top yields a quartic equation which can be solved by iteration. If the axial shortening756

of the element is neglected, this formulation coincides with the Kelly-Tsai theory. An approximate757

closed-form solution is provided for the critical load which allows a clear understanding of the758

reduction due to the warping effects with respect to the classical theory of Haringx.759

The proposed formulation is compared to Simo’s theory, developed for elastomeric bearings,760

and Challamel’s buckling solution for the Shi-Voyiadjis beam, which is representative of the so-761

called Engesser-approach often used for the buckling of higher-order shear beams. It was shown762

that constraining the warping amplitude to be proportional to the average shear leads to an overly763

stiff response, with unrealistically vanishing shear deformations for short elements. Variational764

consistency is a strict requirement and failure to satisfy it, as in Simo’s approach, yields to omis-765

sion of higher-order resultants and overly flexible formulations tantamount to solutions with unre-766
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strained warping. Lastly, it is demonstrated that the material assumptions embedded in Simo’s and767

Kelly-Tsai theories are simplified second-order approximations of the material constitutive relation768

proposed herein. It is further shown that Engesser-approaches cannot be directly traced back to a769

specific material constitutive relation, and simplifying assumptions that justify Engesser’s solution770

for first-order shear beams are not applicable for higher-order shear elements.771

The proposed analytical formulation closely matched the numerical results from the finite el-772

ement parametric study for unbonded infinite strip FREIs with moderate-to-high shape factors773

corresponding to realistic designs for seismic isolation purposes. It only underestimated the crit-774

ical loads for bearings with low shape factor and high width-to-height aspect ratio, which exhibit775

significant axial shortening at buckling, leading to a nonlinear increase in cross-sectional dimen-776

sions not accounted for in one-dimensional theories. The inclusion of compressibility effects in the777

effective rigidities was shown to be important for bearings with high shape factors, but axial exten-778

sibility of the reinforcement showed negligible influence in the results and can be neglected. The779

approximate closed-form solution for the proposed theory exhibits excellent agreement with the780

proposed-exact solution and numerical results, and is deemed suitable for practical implementa-781

tion. Instead, Haringx’s theory was shown to largely overestimate the buckling capacity of FREIs,782

and its use for this application is discouraged. Experimental validation of the proposed theory is783

recommended for future studies to supplement the numerical validation presented herein.784
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Table 1. Parameters used for buckling analysis

Parameter Valuea

S 5, 10, 15, 20, 25, 30
S ∗2 1, 2, 3, 4, 5
G (MPa) 0.4, 0.6, 0.8, 1.0, 1.2
K (MPa) 2000, 4000, 6000, 8000, 10000
E f (MPa) 25000, 50000, 75000, 100000, 125000
a Default cases shown in bold font.
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shear modulus, (b) compressibility, and (c) reinforcement extensibility
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Figure 12. Average ratio P analytical
cr /PFEA

cr depending on analytical formulation and method to cal-
culate the effective rigidities
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Figure 13. Coefficient of variation (%) of the ratio P analytical
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cr depending on analytical formu-
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