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Nonparametric Multivariate Regression
Subject to Constraint

Steven M. Goldman Paul A. Ruud*
May. 1993

1. Introduction

Given a design matrix of explanatory variables X and a corresponding vec-
tor of dependent variable observations y, there is a functional relationship
=(X) = E(y | X). How should we parameterize z and how should we esti-
mate z7 Restricting ourselves to the ordinary least squares {OLS) estimation
criterion. we focus on the use of prior information for the parameterization
of z.

Clearly, if no restrictions are placed on the set of possible functions, then
the OLS fit, 2(X), will equal Y at every observation. At unobserved values
for the explanatory variables nothing can be said and the function Z is uncon-
strained. In contrast. if the set of functions were limited to linear relation-
ships alone, as in the case of linear regression. then z would be constrained at
every possible value of the explanatory variables. We are concerned with an

*We would like to thank Yazhen Wang for bringing Dykstra’s article to our attention
and William Kahan for heipfui discussions.




intermediate case in which z{X) is restricted to a set of functions, say II. In
such cases, the OLS estimation criterion may not yield a unique best fitting
function. Instead there is a subset of best fitting functions, say, A C II. For
analytical tractability, we will restrict II to be convex.

A leading example of such regression problems is isotonic regression. In
isotonic regression, there is a partial ordering > of the observations according
to X that implies an ordering of the regression function:

II= {Z I Ty < Xq9 = Z(CL’l) S z(m2)} '

Monotonic regression is a special case. For a general reference, see Barlow et
al (1972).

An analytical simplification to computing 2 € A follows from noting that
the best least squares fit only compares the vector z(X) to Y and does not
directly involve the function z. The restrictions on z translate into those for
the allowable vectors z(X) as the set Z = {2(X)} ]z € [I}. As many have
noted {e.g., Varian (1984)), viewed in this manner least squares regression
becomes a matter of quadratic programming: find the vector which minimizes
the Euclidean distance from Y to Z. While conceptually appealing, solving
such quadratic programs numerically is infeasible except for small data sets.

Hildreth (1954) attacks this problem quite elegantly employing the con-
cept of duality and the Gauss-Seidel computational algorithm. His analysis
is restricted by the requirement that Z be the intersection of linearly inde-
pendent half-spaces. That analysis is extended by Dykstra (1983) to Z that
are the intersection of a finite number of convexr cones. OQur analysis builds
upon these results by further expanding the possibilities for Z: It can be the
intersection of a finite number of conver sets. Additionally, we show conver-
gence of the Gauss-Seidel algorithm from an arbitrary starting point. This
not only shows the computation to be free of cumulative numerical errors,
but it also admits various computational improvements.

2. Basic Notation and Statement of Problem

In particular, consider a data set of NV observations on
Yn — Z(xn) + Un
{(n=1,...,N) where E(y, | ) = z(z,) is a regression function and z, is a

vector of M explanatory variables for the n** observation. Let y denote the
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N x1 vector of observations | y,] and X denote the N x M matrix of observed
explanatory variables [z]]. We will consider the problem of estimating z by
the method of ordinary least squares, minimizing the Fuclidean distance
between y and z, subject to the restriction that z belong to a convex set
of functions of z, Z. Thus, our estimation problem is the solution to the
program

min{ly ~ 2(X)|’ (1)

where z(X) = [z(zn);n = 1,..., N]. Note that the solution requires only
that we find z at the vectors in X. From now on, we will treat z and z (X)
as synonymous.

Such estimation problems have a long and broad history. The classic
example may be monotonic regression, where

Z= {z RN |Vi,j:2; <z = 2(z) < z(m_.,-)}.
One step more difficult are such second-order restrictions as concavity in z:
Z = {z € RV IVa e RY ™\ Vn: o' X = 2, = /2(X-5) 2 z(xn)}

For example, economists are interested in estimating regressions functions
with both monotonicity and concavity because the costs of efficient firms
should exhibit these properties with respect to the prices of inputs and out-
puts. Both monotonic and concave z exhibit Z that are convex cones. Still
more difficult are problems for which Z is merely convex. This occurs in
regression subject to Lipschitz smoothness restrictions: '

Z={zeR" | |a(:) — 2(x))| < |lai — z;| M }.

3. Hildreth’s Procedure

The estimation problem (1) is a form of restricted least squares. This ob-
servation is not enough to make computation attractive.! Fortunately, Hil-
dreth (1954) proposed a computational procedure that can be applied to this

'Linear regression with a small number of inequality restrictions has been previously
studied by Judge and Takavama (1966) and Liew (1976).




problem. Recently, Dykstra (1983) has extended Hildreth’s procedure; see
the next section. Here, we offer a new and simple description of the algo-
rithm as a combination of two classic ideas: the duality theorem of Kuhn and
Tucker and the numerical algorithm called Gauss-Seidel. After describing the
algorithm, we give a geometric proof of its convergence property.
Hildreth begins with the primal problem (1) written as
. 2

minlly — | (2)
where A is an R x N matrix whose rows are the elements of the set .A. The
algorithm breaks down (2) into a sequence of sub-problems which are easy
to solve. Hildreth’s procedure rests on the following duality theorem ({Kuhn
& Tucker, 1951, pp. 487, 491-2} (Hildreth, 1954, p. 604) {Luenberger, 1969,
pp. 299-300)).

Theorem 1 (Kuhn-Tucker). The primal constrained quadratic minimiza-
tion problem (1) is equivalent to the dual problem

. _Af 2
minlly — Al (3)

If we denote the solution to the dual problem by A, then the solution to the

~

primal problem is z = y — A'A.

The elements of the vector A are the Lagrange multipliers associated with
each of the convexity constraints. The dual problem has constraints with a
convenient form: they are univariate inequalities, This property makes the
application of the Gauss-Seidel method natural and this is essentially what
Hildreth did to derive the sequence of simple sub-problems of the form?

- 2
min (gr — prrdr) (4)

given ¢, and p,.. Given a feasible A > 0, at each step of the process we
focus on a single element of A, A.. The dual objective function is a simple

“The Gauss-Seidel method solves a system of n equations of the form z; =
filzy, ..., Zi-1,%i41,...,25) (3 = 1,...,n) by mapping zF~! into z* through the steps
¥ = fulef,...zf il .. zE71) on the E** iteration. In optimization problems,
these equations are first-order conditions. See Quandt (1983) for a brief survey of the

apphications of the Gauss-Seidel method by econometricians.
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quadratic in A, and the constrained optimization for this element is easily
solved: If the unconstrained solution yields a negative value for A, then we
set A, = 0. Treating one iteration as a cycle through all of the elements of
A, the i** iteration can be expressed in terms of the previous iteration as

A% = max(0, ¢.) ()

where

r—1 R

P (d, WS p,..j/\;“l) (6)
Prr i=1 j=r+1

P = [p;j] = AA', d = Ay, and R is the number of constraints imposed by

convexity.

In general, the Gauss-Seidel method is not guaranteed to converge. It is
sufficient for convergence, however, for the mapping from A*! to A' to be
continuous and a contraction mapping on a compact set (Quandt, 1983, p.
726). In Hildreth’s particular application of Gauss-Seidel, these conditions
are satisfied for the sequence {z' = y — A’A*}. Continuity follows when there
is a one-to-one relationship between z and A in the equation z = y — A’A:
That is, A must be full row rank so that there are no redundancies among
the inequality restrictions. Given the continuity in the sequence {z' = y —
A'A'} produced by the Hildreth procedure, the contraction property follows
immediately: By construction, |2*|| < ||2i=t] if A¥ # AL

Theorem 2 (Hildreth). If A is full row rank, then the iterations in (5) and
(6) converge to A.

3.1. The Geometry of Hildreth’s Procedure

Hildreth’s procedure has a useful geometric interpretation that is explained
by Dykstra (1983).> The basic Kuhn-Tucker duality between (2) and (3)
is illustrated in Figure 1 for a case in which N = 2 and M = 2. The two-
dimensional cone K = {z|Az < 0} describes the intersection of two inequality
constraints on z and the point y is the data. The normal vectors a; and a3
determine the directions of the inequalities, pointing into the interior of K.

3Dykstra cites Barlow and Brunk (1972) for the geometrical interpretation of the
quadratic program. They were studying isotonic regression by least squares. Barlow
and Brunk cite Sinden (1962).




Figure 1: Duality in the Gauss-Seidel Method

The primal quadratic programming problem is to find the point z in K that
is closest to y and the solution z is found at the orthogonal projection of y
onto the nearest “facet” of K. The constraints in the dual problem are also
a convex cone which we will call K*, The cone K* is the dual cone of K.

Definition 1. The dual cone to any convex cone K, denoted K*, is given
by K* = {z |Vk € K, ¥z <0}.

The geometry of Figure | shows that y — 2 = A’} is the solution to the
dual problem of finding the point in K™ that is closest to y.

We can also view the dual problem as a minimum distance problem in
the same parameter space as the primal problem

{ min, ||| (7)

subject to z € C = {zje =y — A'A, A > 0}

The set C is a rotation of the dual cone with its vertex translated to y. Figure
1 shows that 2z also solves the reparameterized dual problem.




Figure 2: The Iteration Process

The cycles of Hildreth’s procedure are pictured in Figure 2 for a case in
which N = 3 and M = 2. In the previous example in Figure 1, the path is
trivial. In Figure 2, the starting point for the procedure is simply y so that
A = 0 initially. The first iteration of the algorithm chooses the best value
for A1, holding the value of A, fixed at zero. Thus, the first step =i is the
orthogonal projection of y onto K. In the second step, A; is held fixed at its
new value and the algorithm chooses the best value for A;. This results in a
move to z:, the orthogonal projection of y — Ay onto K;. This completes
a single cycle. The figure also shows the second cycle so that the zig-zag
pattern of convergence is evident.

The discussion below justifies Theorems 1 and 2. While the former is
widely understood, its explanation bears a brief repetition in this context.
We give a new, geometric proof of the latter theorem that we will also apply
to Dykstra’s generalization of Hildreth’s procedure. The strategy of the
argument is as follows: We show

1. the necessary and sufficient conditions for the unique optimum;




il. that the solution to the minimization problem 1 is the closest point to
the origin of the form y — w for w € 2™

iii. that the algorithm defines a function f : RY — R which maps a closed
bounded subset into itself;

iv. that the function f is a contraction mapping with a fixed point on the
closed bounded subset described in (iii) and the fixed point satisfies the
conditions described in (i).

Items (i) and (ii) comprise Theorem 1 and (iii) and (iv) justify Theorem
2.

3.2. Necessary and Sufficient Conditions for the Unique Optimum

We noted previously that Z exists and is unique. The necessary and sufficient
conditions that Z must satisfy are

e Z and (y—2)=0. (8)
and, for every other ray in the cone, say &k € Z,
Kly—2) <0 (9)

(that is, y — 2 € Z*). These are necessary because otherwise, by simple
geometry, the convexity of Z implies that there would be a closer point to y
than % on the line segment between &k and 2.

The sufficiency of (8) and (9) follows from

2 o)

ly —wl® = lly = 2If* — 2w'(y = ) + flw = 2" > |ly - 2

forall we Z, w # 2.

3.3. The Dual Problem: Proximity to the Origin

According to (9), Z can be expressed as y — o for some w € Z£*, where Z*is
the dual cone of Z.* Define C = {z | 2 = y — w,w € Z*}. We will now
show that if y is external to Z, 2, the solution to (8) and (9), is also the

4This result is cited by Dykstra (1983) from Barlow and Brunk (1972).
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closest point in C to the origin. Consider any other x € C. Then we can
write 2 = 2 — w + w. Then

121 = I20° + 2( - w)'2 + || & — w|f”.

A

Now according to (8), w2 = 0, so that

Il = 121 = 2w'2 + b — wl® 2 12]".

since w'z < 0 for all w € Z™.
Thus, if Z solves the original problem (1) then y — 2 solves the dual
problem

' 12
nin [ly — wl| (11)

We can apply this general duality to obtain Theorem 1: When Z = {z|Az <
0}, then Z* = {w|w'z < 0Vz € £} = {w|w = A'A\, A = 0}.

3.4. The Tterative Process

Now consider the iterative process in Hildreth’s procedure. It begins with a
point 2% & C. Over the i* cycle through (5) and (6), we obtain a sequence
of tentative solutions to the primal problem in

r R r R
z;=y—2aj;- Z aj)\;‘“lzy——Zw}—— Z w;"l (12)
j=1 j=r+1 i=1 j=r+1

where w;; = aﬂj-. Every point 2z} in the sequence is also a member of . To
see this, note that according to the Gauss-Seidel method, 2! is chosen to be
the closest element in Kj to 2™ 4+ wi™!, Thus, wi = z/™' — 2 + wi™! € K7
by (9). The process begins with w? € K7 so that all w! € K7 and z* € C.
Therefore, the algorithm is a mapping from C onto itself.

In addition, every z: is at least as close to the origin as z™'. By (10),

2 i i (13)

K4 4

-1)% =
J J

D=1 i -1 ~
— 2w+ wy - wy =

because 2t € K, and wi™! € K. Therefore all z are elements of the closed
sphere 5(2°%) = {z|||z|| < [iz°||}. The intersection of S{z%) and C is a closed
and bounded subset of C.




For the moment, we will assume that any point z € € may be written
z=y— R w, where the w, € K} are unique. This can always be made
to occur, by reducing the K, to a non redundant set of restrictions. Let
us define a function f : C — C obtained from passing through a complete
cycle in the K,,r = 1,..., R: Let z be any z"1 of the algorithm and let
f(z) = zi. Then f is continuous. We have continuity if we look at the
mapping of {wi™,..., w5} — {wi,...,wh}. The continuity of f follows
from the uniqueness of w for every z € C.

3.5. The Contraction Process

By (13), I f(2)|| < ||z|l- The inequality is strict if w® % w®, so that a
stationary length for z requires stationary w,’s; and stationary w,’s imply
a fixed point of f(z). We can show that the only fixed point of f is 2. By
construction, if (z,w) is a stationary point, then for each r, z'w, = 0. Then,
denoting & | w, as w, 2w = 0 with z € £ and w € £* and satisfies the
necessary and sufficient conditions for the unique minimum. Therefore the
fixed point is the closest point we seek.

We now show the process described in Section (3.4) converges to the 2 and
& described by Sections (3.2) and (3.3). Take the intersection of C with the
space of points at least as near to the origin as the original point, y. Then for
any point z € C, f(z) is also in that intersection. Since g(z) ={|f(2)] — |2l
is strictly negative on C except at the unique Z and ¢(z) is continuous on C,
the process f- f-...- f(z) must converge to z. This establishes convergence
to # from an arbitrary starting point in the intersection of C and the ball of
radius [|y]l. Since y itself is a member of this intersection, we may simply
start with .

The above argument is easily modified to allow for redundancy in the set
of restrictions. Even if an element of CNS(2°), say w, does not have a unique
representation in terms of the w,’s, it would suffice if the set

R
W(2°) = {{wr,...,wr)| D_ w, = w,w € C N (27}

r=}1

were bounded, Then we could be assured that the contraction was bounded
away from zero {for w’s bounded away from y — Z) by simply looking at the
smallest contraction on the closed set of w’s within that bound.

10




An additional argument is required if C contains a subspace, because in
such cases the set W(z°) is not bounded. Nevertheless, the contraction is
still bounded away from zero. Since the K,’s are half spaces, every z" must
lie on a closed line segment between z"~! and K, no matter which w € W (%)
one chooses. Thus 2% is contained in a closed set Z7(2%) that depends only
on 2% this closed set is the range of f over all possible w. Furthermore, this
set does not contain z° unless 2° = 2. The closest point to 2° in ZF(2°) is
the smallest, non-zero, contraction.

4. Dykstra’s Procedure for Convex Cones

In this section we describe Dykstra’s generalization of Hildreth’s procedure.
Hildreth focused on convexity constraints in linear regression which, as we
have seen, are linear inequalities that correspond to polyhedral convex cones.
Dykstra considers constraints that imply more general convex cones than
finite ones. Such cones hold our interest as well because they arise with the
inclusion of additional smoothness constraints, as we will explain below. In
this section, we extend our interpretation of Hildreth’s procedure to that
of Dykstra. In so doing, we provide an alternative, geometric proof of the
convergence of this procedure.

Theorem 3 (Dykstra). *Let y € RN and K,,r = 1,...,R be R closed
convex cones. A convergent, iterative solution to the restricted least squares

problem
min |y - =|° (14)

zEﬁ;f;1 Kr

is to begin with a point zp = y — T2 w? where w® € K and on the r't

iteration of the 1" cycle choose z! to be the point in K, closest to zi_ +wi™!,
where wi = zi_, — 2} + wi™l,

By direct substitution, z} = y — 2=t wh — Z?:,, +1 Wit and we formally
reproduce (12}, an iteration of Hildreth. Thus, Dykstra’s procedure has the
same interpretation as Hildreth’s: they are applications of Gauss-Seidel to
the dual problem. As Dykstra points out, the dual to {14) is

. 2 -
min - 1
weKIEK®.. 8K}, ly =l (13)

*Dykstra (1983, Theorem 3.1, p. 839).
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and the rt* iteration of a cycle is the r* iteration of a cycle of Gauss-Seidel
applied to each of the K in succession:

. 2 . ' 2
mig [ly —wl” is dual to mip ||y — 2|

For this reason, wi € K for all i,r > 0 and every point z! in the sequence
is also a member of C, as defined in Section 3.3.

Dykstra gives a formal proof of this theorem. We can extend the argu-
ments in Sections 3.4 and 3.5 to provide an alternative, geometric proof. Such
an extension is straightforward for polyhedral convex cones. Even though the
set of possible z, that can follow a z,.; is no longer a simple line segment,
this set is still closed so that by induction Z#{zy) remains closed. Our diffi-
culties arise in the case of smooth cones where such sets can be open. This
openness causes no problems, however, because the boundary points involve
the fastest rates of contraction.

Lemma 1. Let P(z|K) be the point in the convex cone K closest to z. Then
Pz K) 2 1P(z 4 w|K)|
for all w € K~

Proof. According to duality, P(z]|K) is the shortest vector in the set
C = {'|z' = z —v, v € K*}. Similarly, P(z + w|K) is the shortest vector in
the set C' = {Z/|z' = z+w—wv, v € K*}. Since C C €, the result follows.O

Lemma 2. Let Z%(z) be the range of P{z+w|K) forallw € K*. If 2 ¢ K,
then every member of the closure of Z¥(z) has a length strictly less than

Iz}

Proof. If z ¢ K then z ¢ Z%(2) and || P(2|K)|| < ||z||. From lemma 1,
Izl = [[P(z|E)]| = | Pz + w|K}|| for all w € K*. Since |P(z + w|K)| is
continuous in w, the result follows irnmediately. a
Let W(z) = {wjw € Kf x K} x ... x K,y — T~ w, = 2} denote the
feasible w which could generate zy.
Define P™{z¢,w) inductively:

Pl(zo,w) = Pz + w1|K1),

12




P(zg,w) = P(P" (20, w) + w.|K,).

Let Z7(2z0) = {2]3w® € W(z0),2 = P"(z,w")} denote the set of projec-
tions on the r** cone which are feasible from an initial z°, and let ?(zo)
denote the closure of Z™(z).

Lemma 3. Either

1. 2o ¢ Z%(z) and Vz € ?R(zo), Iz} < |izoli, or

2. 29 € Z8(z0) and 2 = 2.

Proof. If zp ¢ K" then the result is true by Lemma 2.

If zg € K™ then w? = 0 implies 20 € Z"(2), a contradiction, so w® #
0. But then either there is a contraction and the result is true, or P{zy +
wl|KT) = zg is on the boundary of K7 in which case z, € Z"(2;) and there
is a contradiction. So if 2o & Z®(z), then Yz € Z (z0), ||zl| < ||zol|. Al-
ternatively, if zo € Z%(2) then Jw € W (zo) such that Vr,z, € Z"(2) and
w;zg = 0. But this is simply the sufficiency condition (8) and z; = 2. m]

We are now ready to prove the theorem, namely that for zo € C N S(y),
limy o 25 = 2.

Proof.  (Theorem 3) It immediately follows from Lemma 3 that if || ze|i —

IZ|| = €, then mian?R(zu)(Hng—[lz“) > 0. Denote D = {zy € CNS(y), ||20]| —

il 2 ¢}. Since Z = U_ Z%(2p) is closed and bounded, then 3§ > 0, such
Zp

that Yz € Z, |jzof| — {|2|} > é. Thus the contraction proceeds, unimpeded

towards Z. 0

Drawing this analogy between the procedures of Hildreth and Dykstra
gives a key insight into the latter: One can start the latter anywhere in C,
not just at y as Dykstra does. As a result of this insight, one can potentially
begin from better starting values, guard against accumulated numerical er-
rors, and switch between various parameterizations of K as an intersection
of K.’s. The last technique can substantially accelerate the rate of conver-
gence because it permits attempts at the final solution based on the active
constraints.

13




5. Closing Remarks

The programming problem can be generalized from convex cones to convex
sets. Hildreth and Dykstra both restricted themselves to cones, but this is
not necessary. For example, Hildreth’s primal problem (2) can be generalized

to

: 2
min {ly — <] (16)

where b is an arbitrary vector in R”. This program can be transformed into
one with conic constraints by taking

uE(Z;y),B=(A-%)

so that (16) can be written as

' 2
g@ﬂ%- (17)

=1

Given the solution to the conic problem
2=y N . . Y - On
( - ) =u" = arg Bmu%%ﬂw ul|® where w= ( ) )

and Oy is the N-dimensional zero vector, z** = z*/t* is the solution to (17).
To see this note that

Yu:t=1t" ||[t'w —ul® = lw —ul® — (1 —¢°)°
so that

*

Z=arg min |[t'w—ul|>? = " =2/t"=arg min |lw—ul’
z:Bu<o, z

fe=t® tzi- '
by a simple rescaling. The relationship among the points is illustrated by
Figure 3.

As an example, an iterative solution to the smooth regression problem

{ min ||y ~ 2||*

subject to zpm — 2, € Mpp, n,mm=1,..., N

sets i . _ _
zH 1 (L+ ME )2l + 28 4+ Mot
2l = (14 M2 )zl + 28—~ Myt

n 2 mn/%n T Zm 7 HMmn

A 2+ Mg, Mpnzh, — Mppzt + 28
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{(y,1)

(v,0)

Figure 3: The Case of a Convex Constraint Set
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