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ABSTRACT OF THE DISSERTATION

Learning Bayesian Network Structures with
Non-Decomposable Scores

by

Yuh-Jie Chen
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Adnan Youssef Darwiche, Chair

Bayesian networks learned from data and background knowledge have been broadly

used to reason under uncertainty, and to determine associations and dependencies be-

tween random variables in the data, in various fields such as artificial intelligence, ma-

chine learning, and bioinformatics. The problem of learning the structure of a Bayesian

network is typically formulated as an optimization problem, by scoring each network

structure with respect to data and background knowledge. Modern approaches to the

structure learning problem assume the scores to be decomposable, so that the optimiza-

tion problem can be decomposed into a number of smaller and easier subproblems that

can be optimized independently. These approaches include those based on dynamic

programming, heuristic search, and integer linear programming methods.

In this thesis, we break away from this tradition, and consider non-decomposable

scores, that provide a richer expression for scoring the network structures. More specif-

ically, we generalize the heuristic search approach for learning with decomposable

scores, by using a more expressive search space, that accommodates non-decomposable

scores. The search can be guided effectively by a heuristic function evaluated by exist-

ing structure learning approaches for decomposable scores. We show that our frame-

work can learn an optimal Bayesian network structure with ancestral constraints and

order-modular priors. Both are non-decomposable scores. Our framework can also

ii



enumerate the k-best Bayesian network structures and the k-best Markov-equivalent

Bayesian network structures, using decomposable scores, and is empirically orders of

magnitude more efficient than the previous state of the art.

iii



The dissertation of Yuh-Jie Chen is approved.

Richard E. Korf

Wei Wang

Qing Zhou

Adnan Youssef Darwiche, Committee Chair

University of California, Los Angeles

2016

iv



To my parents ...

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Probability Distributions and Bayesian Networks . . . . . . . . . . . . 1

1.2 Bayesian Network Structure Learning . . . . . . . . . . . . . . . . . . 2

1.3 A New Search-Based Approach for Structure Learning with

Non-Decomposable Scores . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Bayesian Networks and Previous Work . . . . . . . . . . . . . . . . . . 9

2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Scoring Bayesian Network Structures . . . . . . . . . . . . . . . . . . 11

2.2.1 Scores with no Background Knowledge . . . . . . . . . . . . . 11

2.2.2 Scores with Background Knowledge . . . . . . . . . . . . . . . 13

2.3 Approximate Score-Based Approaches to Structure

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Exact Score-Based Approaches to Structure Learning . . . . . . . . . . 15

2.4.1 The K2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Order-Graph-Based Approaches . . . . . . . . . . . . . . . . . 16

2.4.3 Integer-Linear-Programming-Based Approaches . . . . . . . . 17

2.5 Constraint-Based Approaches to Structure Learning . . . . . . . . . . . 18

2.6 Other Approaches to Structure Learning . . . . . . . . . . . . . . . . . 18

3 A New Search Space for Learning Bayesian Network Structures . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3.2 A New Search Space: BN Graphs . . . . . . . . . . . . . . . . . . . . 22

3.3 Structure Learning with Non-Decomposable Scores . . . . . . . . . . . 24

3.3.1 Heuristic Functions for Non-Decomposable Scores . . . . . . . 26

3.4 Enumerating the k-Best Structures . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Heuristic Functions for k-Best Structures . . . . . . . . . . . . 28

3.4.2 Implementation of the A* Search . . . . . . . . . . . . . . . . 29

3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Learning with Order-Modular Priors . . . . . . . . . . . . . . . . . . . 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 A Heuristic for Order-Modular Priors . . . . . . . . . . . . . . . . . . 36

4.2.1 Optimizing the Prior . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Counting Linear Extensions . . . . . . . . . . . . . . . . . . . 38

4.2.3 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 A New Search Space for Learning Markov-Equivalent Network Structures 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Markov-Equivalent Bayesian Network Structures . . . . . . . . . . . . 45

5.3 A New Search Space: EC Trees . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 EC Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.2 EC Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Learning with Ancestral Constraints . . . . . . . . . . . . . . . . . . . 60

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



6.2 Scoring with Non-Decomposable Constraints . . . . . . . . . . . . . . 62

6.3 Ancestral Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 EC Trees and Ancestral Constraints . . . . . . . . . . . . . . . . . . . 64

6.5 Projecting Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5.1 More on Ancestral Constraints . . . . . . . . . . . . . . . . . . 65

6.5.2 Edge Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.3 Topological Ordering Constraints . . . . . . . . . . . . . . . . 69

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Asymptotic Analysis on Structures Learned with Order-Modular Priors 77

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Radnom Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.1 Edge Probability . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.2 Expected Size and Number of Parents . . . . . . . . . . . . . . 83

7.5 Moral Graph and Markov Blanket Analysis . . . . . . . . . . . . . . . 83

7.5.1 d-separation and Markov Blankets . . . . . . . . . . . . . . . . 84

7.5.2 Moral Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5.3 Markov Blanket . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.6 d-Separator Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.6.1 Maximum Size . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.6.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.7 Isolated Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Proofs of Theorems in Chapter 4 . . . . . . . . . . . . . . . . . . . . . 94

B Weighted Linear Extensions and the A* Search . . . . . . . . . . . . . 97

C Proofs of Theorems in Chapter 5 . . . . . . . . . . . . . . . . . . . . . 100

D Proofs of Theorems in Chapter 6 . . . . . . . . . . . . . . . . . . . . . 102

D.1 ILP with Ancestral Constraints . . . . . . . . . . . . . . . . . . . . . . 102

D.2 Inferring Orderings via MAXSAT . . . . . . . . . . . . . . . . . . . . 102

D.3 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

D.4 Proofs for Section 6.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D.5 Proofs for Section 6.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.6 Proofs for Section 6.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 107

E Proofs of Theorems in Chapter 7 . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



LIST OF FIGURES

1.1 A probability distribution over random variables F , R, S, and W . . . . 2

1.2 A Bayesian network structure representing the probability distribution

in Figure 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A complete dataset over random variables F , R, S, and W , where for

each data point, the outcomes of all four random variables F,R, S and

W are observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A Bayesian network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The order graph for variables X = {X1, X2, X3}. . . . . . . . . . . . . . . 16

3.1 A Bayesian network graph (BN graph) for variables X = {X1, X2, X3}. 23

4.1 A network asia (a), and networks learned with dataset size 27 with a

prior (b), without a prior (c), and a network learned with dataset size

214 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 A CPDAG and the DAGs it represents. (a) CPDAG (b) - (d) DAGs. . . . 47

5.2 An EC graph for variables X = {X1, X2, X3}. . . . . . . . . . . . . . . 48

5.3 An EC tree for variables X = {X1, X2, X3}. . . . . . . . . . . . . . . . 51

7.1 Given V = {X, Y, Z} and k = 1, when (V,<) = 〈X, Y, Z〉 or 〈X,Z, Y 〉,

the DAGs constructed in Definition 2. . . . . . . . . . . . . . . . . . . 79

7.2 A DAG G and its G′A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Path Z → Z ′ → . . .→ X for a (V,<). . . . . . . . . . . . . . . . . . . 87

7.4 DAG G′A and its (G′A)m. . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



7.5 MAPE of the expected size and the expected size increase of moraliza-

tion estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



LIST OF TABLES

3.1 The BN graph and KBEST: A comparison of the time t (in seconds) and

memory m (in GBs) used. An ×t corresponds to an out-of-time (7,200s), and

an ×s corresponds to segmentation fault. n denotes the number of variables

in the dataset, and N denotes the size of the dataset. . . . . . . . . . . . . . 31

3.2 The BN graph: The time Th to compute the heuristic function and the time

TA∗ to traverse the BN graph with A* (in seconds). . . . . . . . . . . . . . 32

3.3 The BN graph: (1) The number of generated nodes. (2) The number of ex-

panded nodes. (3) The number of re-expanded nodes (in partial-expansion

A*). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The BN graph: The number of times the oracle is invoked to evaluate the

heuristic function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 The BN graph: The performance of A* search when learning with the uniform

order-modular prior: (1) The time Th to compute the heuristic function. (2)

The time TA∗ to traverse the BN graph with A* (in seconds) (3) The total

time t = Th + TA∗ spent in A* (4) The number of generated nodes. (5) The

number of expanded nodes. (6) The number of re-expanded nodes (in partial-

expansion A*). An ×m corresponds to an out-of-memory (64 GB). . . . . . . 42

5.1 The EC tree and KBESTEC: A comparison of the Time t (in seconds) and

memorym (in GBs) used. ×t denotes an out-of-time (7,200s), and×s denotes

a segmentation fault. n is the number of variables in the dataset, and N is the

size of the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 The EC Tree: The Time Th to compute the heuristic function and the time TA∗

to traverse the EC tree with A* (in seconds). . . . . . . . . . . . . . . . . . 56

xii



5.3 The EC tree: (1) The number of generated nodes. (2) The number of expanded

nodes. (3) The number of re-expanded nodes (in partial-expansion A*). (4)

The number of times the oracle is invoked to evaluate the heuristic function. . 57

5.4 Number of DAGs in the k-best equivalent classes. . . . . . . . . . . . . . . 58

5.5 The EC Tree and the BN graph: A comparison of the Time t (in seconds) and

memory m (in GBs) used. n is the number of variables in the dataset, and N

is the size of the dataset. A ×t corresponds to an out-of-time (7,200s). . . . . 58

5.6 The BN graph, for enumerating the DAGs in k-best EC: (1) The number of

generated nodes. (2) The number of expanded nodes. (3) The number of re-

expanded nodes (in partial-expansion A*). (4) The number of times the oracle

is invoked to evaluate the heuristic function. . . . . . . . . . . . . . . . . . 59

6.1 Time t (in seconds) used by the EC tree and and GOBNILP to find optimal

Bayesian networks. n is the number of variables, N is the size of the dataset,

and p is the percentage of the ancestor constraints. . . . . . . . . . . . . . . 72

6.2 Time t (in seconds) used by the EC tree to find optimal Bayesian networks,

with a 32G limit on memory, and a 2 hour limit on running time. n is the

number of variables, N is the size of the dataset, p is the percentage of the

ancestor constraints, s is the percentage of test cases that finishes, and ∆ is

the edge difference of the optimal networks learned and the true networks. . . 73

6.3 Time and standard deviation t±σ (in seconds) used by the EC tree and

GOBNILP to find optimal structures, without any projected constraints,

using a 32G limit on memory, and a 2 hour limit on time. n is the

number of variables, N is the size of the dataset, p is the percentage of

ancestral constraints, and s is the percentage of test cases that finishes. . 74

xiii



ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Adnan Darwiche,

for his guidance and support in my journey through graduate school. I much appreci-

ated the freedom he gave me to pursue the research topics that I am interested in, and

the patience he showed during the process. I learned from Adnan how to choose a good

research topic, and to present our ideas and work.

Second, I would like to thank Arthur Choi, with whom I worked closely on the

research problems that center this thesis. Working with Arthur on a day-to-day basis is

a very valuable experience, which made me grow as a researcher and an engineer.

Next, I would like to thank my committee members Richard Korf, Wei Wang, and

Qing Zhou for their encouragement and invaluable comments and feedback. I would

like to especially thank Rich, for the topics covered in his heuristic search class is an

essential part of this thesis. I would also like to thank the researchers that we have con-

sulted, for their generous comments and help: Mark Bartlett, Joseph Barker, Zhaoxing

Bu, Mark Chavira, Yetian Chen, James Cussens, Cassio de Campos, Ru He, Mikko

Koivisto, Brandon Malone, Ethan Schreiber, and Guy Van den Broeck.

Furthermore, I would like to thank Judea Pearl, Fan Chung Graham and Ronald

Graham for advising me during my graduate studies; and Yung-Yu Chuang and Tsan-

sheng Hsu for advising me during my undergraduate years. I would also like to thank

the members in my labs, whom I have been very fortunate to know and learn from.

I would like to especially thank Jason (Yujia) for our collaboration on one central re-

search problem considered in this thesis.

Last but not least, I would like to thank my family and friends for their endless love

and support.

xiv



VITA

2012-2016 Teaching Assistant, University of California, Los Angeles.

2010-2013 M.S. Computer Science, University of California, Los Angeles.

2010-2016 Research Assistant, University of California, Los Angeles.

2010 Software Engineering Intern, Google, Mountain View.

2009-2010 Ph.D. student, Computer Science and Engineering, University of

California, San Diego.

2004-2009 B.S. Computer Science and Information Engineering, National Tai-

wan University, Taiwan.

PUBLICATIONS

Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. “Enumerating Bayesian Net-

works Using the MDL Score.” Under review.

Eunice Yuh-Jie Chen, Yujia Shen, Arthur Choi, and Adnan Darwiche. “Learning

Bayesian Networks with Ancestral Constraints.” Under review.

Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. “Enumerating Equivalence

Classes of Bayesian Networks using EC Graphs.” In Proceedings of the 19th Interna-

tional Conference on Artificial Intelligence and Statistics, pages 591-599, 2016.

xv



Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. “Learning Bayesian Net-

works with Non-Decomposable Scores.” In the 4th International Workshop on Graph

Structures for Knowledge Representation and Reasoning, Lecture Notes in Artificial

Intelligence, pages 50-71, 2015.

Eunice Yuh-Jie Chen, and Judea Pearl. “Random Bayesian Network with Bounded In-

Degree.” In Proceedings of the 17th International Conference on Artificial Intelligence

and Statistics, pages 114-121, 2014.

Eunice Yuh-Jie Chen, and Judea Pearl. “A Simple Criterion for Controlling Selection

Bias.” In Proceedings of the 17th International Conference on Artificial Intelligence

and Statistics, page 170-177, 2013.

xvi



CHAPTER 1

Introduction

In this chapter, we introduce Bayesian networks and the problem of Bayesian network

structure learning, and provide an outline of the remainder of the thesis.

1.1 Probability Distributions and Bayesian Networks

The world is full of uncertainty. We may wake up to different weather, and on our way

to work, we may experience different traffic conditions. As a consequence, represent-

ing and understanding uncertainty, such as with probability theory, has received much

attention.

More specifically, a probability distribution over n random variables has an expo-

nential number of possible outcomes, e.g., 10 binary variables have 210 possible re-

sults, and it is therefore challenging to record the probability of each of these outcomes

to represent the probability distribution. More importantly, a probability distribution,

by itself, is often not what one is truly interested in. One wants, instead, to learn the

relationship between each random variable, to understand these events, and in particu-

lar, how they interact. For example, consider four binary random variables: Fall (F ),

Rain (R), Sprinkler (S), and Wet Grass (W ), and the probability distribution in Fig-

ure 1.1. The probability of whether there is rain and whether it is fall are dependent,

so the events of rain and season are related, or dependent. Moreover, the probability of

whether there is rain and whether the automatic sprinkler is on are independent, given

whether it is fall, so the events of rain and sprinkler do not depend on each other, given

1



F R S W Pr(f, r, s, w) F R S W Pr(f, r, s, w)

t t t t 0.0570 f t t t 0.0570

t t t f 0.0030 f t t f 0.0030

t t f t 0.1120 f t f t 0.0120

t t f f 0.0280 f t f f 0.0030

t f t t 0.0105 f f t t 0.3780

t f t f 0.0045 f f t f 0.1620

t f f t 0.0035 f f f t 0.0135

t f f f 0.0315 f f f f 0.1215

Figure 1.1: A probability distribution over random variables F , R, S, and W .

the season.

The dependence and independence relations in a probability distribution can be

represented graphically, by using a directed acyclic graph (DAG), known as a Bayesian

network structure [Pea88, Dar09, KF09, Mur12], which in turn gives an efficient rep-

resentation of the probability distribution. In a Bayesian network structure, each node

represents a random variable, and each edge expresses a direct dependence of the ran-

dom variables. For example, the relations of the random variables in the probability

distribution in Figure 1.1 can be represented by the Bayesian network structure in Fig-

ure 1.2, where whether there is rain and whether the sprinkler is on directly depend on

the season, and whether the grass is wet directly depends on rain and the sprinkler.

1.2 Bayesian Network Structure Learning

In this section, we consider learning a Bayesian network structure, i.e., learning the

dependence and independence relations of the random variables.

First, we consider learning a network structure from an empirical probability of the

2



Fall? (F )

Rain? (R) Sprinkler? (S)

Wet Grass? (W )

Figure 1.2: A Bayesian network structure representing the probability distribution in

Figure 1.1.

F R S W

t f t t

t f t t

t f f t

f t f f

t f t t

t f t f

f f t t

t t f f

f t f f

t f t t

Figure 1.3: A complete dataset over random variables F , R, S, and W , where for each

data point, the outcomes of all four random variables F,R, S and W are observed.

3



random variables from a complete dataset. A dataset is complete if for every data point

inside the dataset, the outcomes of all the random variables are observed. For example,

Figure 1.3 shows a complete dataset. An empirical probability of a complete dataset is

the ratio of the number of outcomes in the dataset. For example, in dataset in Figure 1.3,

the empirical probability of rain is 0.3, since 3 of the 10 observations have rain; and the

empirical probability that the sprinkler is on is 0.6, since 6 of the 10 observations have

the sprinkler on.

We note that learning directly from the true underlying probability distribution of

the random variables, which governs the relationship between these variables, is usu-

ally not possible, as one rarely has access to it. One, however, may obtain the empirical

probability by observing the events. For instance, consider the example in Section 1.1.

One cannot know that given rain and the sprinkler is on, the probability that the grass

is wet is exactly 0.95. One can instead observe these three events, to obtain the empir-

ical probability from the outcomes seen, such as in Figure 1.3. In general, when more

observations are made, the empirical probability resembles more closely the true prob-

ability distribution; otherwise, the empirical probability may differ significantly from

the true probability distribution, and as a result, a Bayesian network structure learned

from the empirical probability does not express the true dependence and independence

relations of the random variables [Bun91, CH92, Hec98].

When the number of observations in the dataset is small, one might want to improve

the network structure learned by incorporating background knowledge of the structure,

if available [Bun91, CH92, Hec98]. For instance, in the example in Section 1.1, if one

knows for certain that rain directly depends on the season, then this knowledge may

be used to ensure that the learned network has an edge from rain to fall. We therefore

consider a more general framework of Bayesian network structure learning, where we

use both the data and background knowledge in the learning.

The Bayesian network structure learning problem is typically formulated as an op-

timization problem, where each Bayesian network structure is associated with a score

4



with respect to the dataset and background knowledge, to reflect how well the network

structure represents the empirical probability and the knowledge. A network structure

with the best score, found through solving the optimization problem, is viewed as the

best model for the relations between the random variables [Dar09, KF09, Mur12].

To make the optimization problem more manageable, a certain property, called de-

composability, is usually assumed by the score. Score decomposability allows the op-

timization problem, which considers the entire network structure, to be simplified into

a number of smaller and easier optimization problems over sub-structures, that can be

optimized independently. These optimization problems can be solved exactly by algo-

rithms based on dynamic programming, heuristic search, and integer linear program-

ming, and scale to problems with dozens of variables [KS04, SM06, JSG10, Cus11,

YMW11, YM13, FYM14]. A wide range of approximate algorithms have also been ap-

plied to optimize these problems, to scale up to thousands of variables [KF09, Mur12].

The score decomposability assumption, while significantly advancing structure learn-

ing in the past two decades, limits how well the structures capture the relations between

the random variables, with respect to data and background knowledge. Hence, it is not

surprising that there are scores that one would like to use, yet are non-decomposable.

For instance, in the example in Section 1.1, if one knows that whether the grass is

wet depends, directly or indirectly, on the season, then the learned Bayesian network

structure should have a path from fall to wet grass. This background knowledge is

non-decomposable, as we shall discuss in Chapter 6.

1.3 A New Search-Based Approach for Structure Learning with

Non-Decomposable Scores

In this thesis, we propose a general search-based framework for learning Bayesian

network structures with non-decomposable scores. Our framework generalizes the

search-based approach for structure learning with decomposable scores from [YMW11,
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YM13], by using a more expressive search space, called the BN graph, that accommo-

dates non-decomposable scores.

The BN graph, compared to search spaces for learning with decomposable scores,

has a much larger size. We show that the BN graph can be explored efficiently, to

find an optimal Bayesian network structure, by using a tight heuristic function that

guides a search nearly directly towards the optimal network structure, so that only a

small portion of the search space is traversed. In particular, this heuristic function is

evaluated by existing structure learning approaches for decomposable scores, such as

[KS04, SM06, JSG10, Cus11, YMW11, YM13]. As a result, we expand the reach of

these approaches to new learning tasks that are harder, and beyond those that they were

originally designed for.

Using our new framework, we consider the problem of learning an optimal Bayesian

network structure with two non-decomposable scores: those integrating ancestral con-

straints and order-modular priors. The ancestral constraints, as mentioned in Sec-

tion 1.2, specify dependence, direct and indirect, between random variables. Order-

modular priors provide a probability distribution of network structures, and is used

extensively for sampling network structures, such as in Markov chain Monte Carlo

(MCMC) methods for Bayesian model averaging [KF09, Mur12].

In addition, we also consider the problems of (1) enumerating the k-best Bayesian

network structures, where instead of finding the network structure with the minimum

score, we enumerate the k structures with the smallest scores, and (2) enumerating

the k-best Markov-equivalent Bayesian network structures, i.e., network structures that

encode the same set of dependence and independence constraints, and are therefore

equally expressive in terms of representing probability distributions.

These problems can be of interest when the the dataset is small. In this case, as

discussed in Section 1.2, the empirical probability differs from the true probability

distribution, and the optimal Bayesian network structure may not represent the true

dependence between random variables. Consequently, one might want to be aware of
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other possible Bayesian network structures, by enumerating the k-best ones. We show

empirically that our approach can be orders of magnitude faster than the state-of-the-art

systems over real datasets, in enumerating the k-best network structures.

1.4 Overview

Below is an overview of each chapter.

In Chapter 2 we provide a formal definition of a Bayesian network, and review

previous work on Bayesian network structure learning.

In Chapter 3 we propose our framework for learning optimal Bayesian network

structures with non-decomposable scores, that generalizes the search-based approach

for decomposable scores by using a more expressive search space called the BN graph.

We discuss how to explore the BN graph efficiently with the A* search, by using a

heuristic function evaluated by existing structure learning systems for decomposable

scores. Moreover, we use the BN graph to enumerate the k-best Bayesian network

structures using decomposable scores, and show empirically that our proposed ap-

proach is orders of magnitude more efficient than the existing state-of-the-art, which

is based on dynamic programming.

In Chapter 4 we consider using the BN graph to learn an optimal Bayesian network

structure with the order-modular priors. More specifically, the problem of evaluating

order-modular prior by itself is hard. We show that the order-modular prior can be

evaluated while performing the A* search, with a slight variation, on BN graph; and an

optimal network structure can be learned accordingly.

In Chapter 5 we consider specializing the BN graph to a more compact search space,

called the EC graph, over Markov-equivalent Bayesian network structures, to enumer-

ate the k-best Markov-equivalent structures. The EC graph is further canonicalized into

another search space, call the EC tree, so that each node in the search space is reached

by exactly one path. Empirically, we show that our proposed approach is in practice
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orders of magnitude more efficient than the existing state-of-the-art, which is based on

dynamic programming.

In Chapter 6 we consider using the BN graph to learn an optimal Bayesian network

structure with ancestral constraints. Moreover, we show that certain decomposable con-

straints can be inferred from the ancestral constraints, and can be exploited to tighten

the heuristic function. Empirically, our approach is orders of magnitude more efficient

than the state-of-the-art, which is based in integer linear programming.

In Chapter 7 we consider large random Bayesian network structures generated by

the uniform order-modular prior, but where each node has relatively few parents. In

other words, DAGs where the edges appear at random, each node has at most k parents,

and k is much less than the number of nodes n. We analyze the asymptotic expected

properties of these random Bayesian network structures, such as the expected number

of parents a node in the network structure has, and the expected size of the Markov

blanket.

Finally, we summarize the contribution of this thesis in Chapter 8.
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CHAPTER 2

Bayesian Networks and Previous Work

In this chapter, we provide an introduction to Bayesian networks, and review the pre-

vious work on Bayesian network structure learning, where the main approaches are the

score-based approach and the constraint-based approach.

2.1 Bayesian Networks

A Bayesian network consists of the network structure, i.e., a DAG, where each node

represents a random variable, and the parameterization, i.e., conditional probability for

each random variable given its parents in the DAG. For example, Figure 2.1 shows

a Bayesian network that represents the probability distribution in Figure 1.1. As dis-

cussed in Section 1.1, the network structure expresses random variable dependence and

independence in the probability distribution it represents. In Figure 2.1, the network

structure suggests that whether the grass is wet directly depends on rain and the sprin-

kler; and by the parameterization, given say there is rain and the sprinkler is on, the

probability that the grass is wet is 0.95. Moreover, the probability that the season is

fall is Pr(F = true) = 0.25; and the probability to rain in fall is Pr(R = true|F =

true) = 0.8; so the joint probability that the season is fall and it is raining is Pr(F =

true, R = true) = Pr(F = true) Pr(R = true|F = true) = 0.25 · 0.8. Similarly, the

joint probability for all four variables to be true is Pr(F = true, R = true, S = true,

W = true) = Pr(F = true) Pr(R = true|F = true) Pr(S = true|F = true) Pr(W =

true|R = true, S = true) = 0.25 · 0.8 · 0.3 · 0.95. More generally, the probability of a
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full variable instantiation is obtained by multiplying a number of network parameters,

one from each conditional probability table. The parameter included from each table

must be compatible with the variable instantiation.

Fall? (F )

Rain? (R) Sprinkler? (S)

Wet Grass? (W )

(a) Network structure.

F Pr(f)

t 0.25

f 0.75

F R Pr(r|f)

t t 0.8

t f 0.2

f t 0.1

f f 0.9

F S Pr(s|f)

t t 0.3

t f 0.7

f t 0.8

f f 0.2

R S W Pr(w|s, r)

t t t 0.95

t t f 0.05

t f t 0.8

t f f 0.2

f t t 0.7

f t f 0.3

f f t 0.1

f f f 0.9
(b) Parameterization for node F,R, S and W , where t denotes true, and f denotes false.

Figure 2.1: A Bayesian network.

For the remainder of the thesis, we use upper case letters X to denote single vari-

ables and bold-face upper case letters X to denote sets of variables, and we will use

lower case letters x to denote the instantiation of variable X and bold-face lower case

letters x to denote the instantiation of sets of variables X. Generally, we will use X to

denote a variable in a Bayesian network and U to denote its parents, and refer to a node
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and its parents XU as a family.

2.2 Scoring Bayesian Network Structures

In this section, we discuss how to score Bayesian network structures, which the struc-

ture learning problem exploits to formulate the learning problem as an optimization

problem, i.e., finding a DAG with the minimum score.

Given a complete dataset D, where the value of every random variable is observed,

and background knowledge P , the score of a Bayesian network structure G is denoted

as score(G | D,P), such that the smaller the score, the better the Bayesian network

structure represents the dataD and background knowledge P . A score is decomposable

when the score of a Bayesian network structure G can be rewritten as the sum of the

scores of the families in G:

score(G | D,P) =
∑
XU

score(XU | D,P), (2.1)

As mentioned in Section 1.2, most existing literature on structure learning assumes

score decomposability, as it significantly simplifies the learning problem, which we

shall see later in this chapter. Below, we first consider scores that do not integrate

background knowledge, then we consider some types of background knowledge that

has been incorporated into such scores.

2.2.1 Scores with no Background Knowledge

In this section, we review two of the most commonly used scores, which are decom-

posable, that consider how well a Bayesian network structure represents the dataD and

the complexity of the network structure: the minimum description length (MDL) scores

and the Bayesian Dirichlet likelihood equivalence uniform (BDeu) scores [KF09, Mur12].

The MDL score considers the likelihood of network structures G given data D;

and at the same time exploits the Occam’s Razor principle, favoring structures G that
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provide a simpler encoding of the data D. Let N denote the dataset size, X# denote

the number of instantiations for variables X, and D#(x) denote the number of cases in

the dataset D that satisfies instantiation x. The MDL score is defined as

MDL(G | D) = LL(G | D)−
( log2N

2

)
||G||, (2.2)

where LL(G | D) is the log-likelihood of network structure G given data D, defined as

LL(G | D) = −
∑
XU

H(X|U)

H(X|U) = −
∑
xu

D#(xu) log2

D#(xu)

D#(u)
.

Here, H(X|U) is the entropy of variable X given parents U; and ||G|| measures the

complexity of the encoding, and is defined as

||G|| =
∑
XU

(X# − 1)U#.

The BDeu score favors more probable structures G given data D. That is,

BDeu(G | D) ∝ logPr(G | D)

∝ logPr(D | G)Pr(G). (2.3)

The BDeu score further assumes a uniform prior on the structures G, and consequently,

BDeu(G | D) ∝ logPr(D | G). (2.4)

The BDeu scores are defined as

BDeu(G | D) =
∑
XU

log
∑
u

Γ(αX|u)

Γ
(
αX|u +D# (u)

)∑
x

Γ
(
αx|u +D# (xu)

)
Γ(αx|u)

, (2.5)

where αX|u is α/U# and αx|u is α/X#U#, and α is the parameter equivalent sample

size.

Finally, we note that to formulate the structure learning as a minimization problem,

i.e., finding a best DAG with the minimum score, the BDeu and MDL scores need to

be negated.
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2.2.2 Scores with Background Knowledge

In this section, we review background knowledge on Bayesian network structures that

have been combined with MDL and BDeu scores.

We first consider background knowledge that is decomposable, i.e., background

knowledge that can be expressed over families. One commonly used form of back-

ground knowledge is the maximum number of parents constraint [CL68, CH92]. Here,

each variable is assumed to have at most k parents. In this case, a family XU that vio-

lates the constraint, i.e., the number of parents |U| is greater than k, has a score(XU |

D,P) of infinity.

Another popular type of background knowledge is the ordering constraint, i.e., a

topological ordering of the variables that the learned network structure has to be com-

patible with [CH92], that is a topological ordering that is consistent with the DAG of a

network structure. These constraints may be available when one knows the temporal or-

der of variables. Ordering constraints can also be incorporated into scores by assigning

families that violate the constraints an infinite score.

One other type of background knowledge that has been considered widely is the

edge existence probability, where one specifies the probability that a certain variable is

a parent of another variable [MGR95]. This background knowledge may be available

when one understands the direct dependence between variables and can provide such

probabilities. The edge existence knowledge provides a probability for each family

XU, and consequently can be used in the score of the family.

We now consider ancestral constraints, which are a type of non-decompsable back-

ground knowledge. These constraints allow one to specify that a variable depends,

either directly or indirectly, on another variable,1 e.g., in diagnosis, one may know that

certain diseases are ancestors of certain symptoms [BT12, BT13].

The order-modular prior, a prior that considers a weighted count of the number of

1We note that when variable X is a parent of Y , it is also an ancestor of Y .
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topological orderings a network structure is compatible with, is also non-decomposable.

The order-modular prior greatly facilitates the process of sampling Bayesian network

structures, where the network structures with better scores are more likely to be sampled

[KF09, Mur12].

2.3 Approximate Score-Based Approaches to Structure

Learning

In this section, we review approximate approaches for learning Bayesian network struc-

tures.

The problem of learning an optimal Bayesian network structure is NP-hard [CHM04].

As a result, various approximate algorithms have been developed to mitigate the com-

plexity of the learning problem. Many early algorithms in this attempt use search-based

algorithms over the space of all possible network structures, i.e., DAGs [LB93, CGH95,

Hec98]. More specifically, the search first uses a random network structure as the ini-

tial network structure; then generates new network structures with local changes of the

current network structure, i.e., edge addition, removal, or reversal; and stops when the

search meets some stopping criterion, e.g., the new structures are all worse than the

current structure.

The search space over all structures, i.e., DAGs, is super-exponential in the number

of variables. As a result, following these early works, search-based algorithms over a

variety of more compact search spaces have been proposed. Background knowledge is

considered to constrain the search space, e.g., background knowledge on the number of

parents and the existence of edges in the network, [FNP99, MW03, PIM08]. Markov-

equivalent Bayesian networks, i.e., Bayesian networks that represent the same family

of distributions, are also avoided in the search space [CM02, Chi02].

We note that in principle search-based algorithms over the space of all structures,

and some of their more compact variations, can accommodate non-decomposable scores,
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as the search process only requires the evaluation of score(G | D,P), and not its de-

composability. However, historically, the scores have been assumed to be decompos-

able for computational efficiency. More specially, with decomposability, when a new

network structure G is generated from the current structure G′ by a local change, the

score of the new structure, i.e., score(G | D,P), can be obtained from the score of the

current structure, i.e., score(G′ | D,P), by only updating the scores over families that

are involved in the local change, i.e., score(XU | D,P).

2.4 Exact Score-Based Approaches to Structure Learning

In this section, we review exact approaches for learning Bayesian network structures.

2.4.1 The K2 Algorithm

The K2 algorithm is one of the first exact algorithms to learn an optimal Bayesian

network structure that minimizes the score of the structure, i.e., score(G | D,P)

[Bun91, CH92]. The K2 algorithm exploits the assumption that an optimal Bayesian

network structure G is consistent with a given topological ordering of the variables ≺.

By this assumption and score decomposability, an optimal DAG can be constructed

by choosing the optimal set of parents for each variable X , from those variables that

precede X in the ordering ≺. That is,

min
G consistent with ≺

score(G | D,P) = min
∑

XU, where U⊂Y

score(XU | D,P), (2.6)

where Y is the set of the variables that precedes X in ≺.

We note that with non-decomposable scores, the minimization problem of the score

of the structure cannot be decomposed as in Equation 2.6. We will revisit this key issue

with a concrete example in Section 3.3.
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2.4.2 Order-Graph-Based Approaches

An optimal Bayesian network structureG that minimizes the score of the structure, i.e.,

score(G | D,P), can be found by running the K2 algorithm on all n! possible orderings

≺, and then taking a DAG with the smallest score.

This idea can be further improved by the observation that these n! instances share

many computational subproblems: finding the optimal set of parents for some variable

X from the set Y of variables that precede X . One can aggregate these common sub-

problems, allowing one to solve at most n · 2n−1 unique subproblems. This technique

underlies a number of modern approaches to score-based structure learning, including

some based on dynamic programming [KS04, SM05, SM06], and related approaches

based on heuristic search methods, such as A* search [YMW11, YM13]; for A* search,

see [HNR68]. In the context of A* search, this aggregation of K2 sub-problems corre-

sponds to a search space called the order graph.

{X1,X2,X3}

{X1,X3} {X2,X3}{X1,X2}

{X2} {X3}{X1}

{}

14年10月20⽇日星期⼀一

Figure 2.2: The order graph for variables X = {X1, X2, X3}.

Figure 2.2 illustrates an order graph over variables X = {X1, X2, X3}, where each

node represents a subset of these variables. There is a directed edge from set Y to set

Z if and only if Z results from adding some variable X to Y. We denote such an edge

by Y
X−→ Z. Hence, any path {} X1−→ · · · Xn−−→ X from the root to the leaf corresponds to

a unique ordering 〈X1, . . . , Xn〉 of the variables. We can associate each edge Y
X−→ Z
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with the local score: minU⊆Y score(XU | D), which corresponds to finding an optimal

set of parents U of X from a candidate set of parents Y. Hence, each edge of the

order graph corresponds to one of the computational subproblems of the K2 algorithm.

Moreover, any path from the root node of the order graph to the leaf corresponds to a

full instance of the K2 algorithm, when invoked with the corresponding ordering. As a

result, a path from the root node to the leaf gives the optimal DAG for the corresponding

ordering, the cost of the path is the score of the optimal DAG, and the optimal score

over all paths yields an optimal DAG over all orderings, based on Equation 2.1.

2.4.3 Integer-Linear-Programming-Based Approaches

Bayesian network structure learning can also be formulated using integer linear pro-

gramming (ILP), with Equation 2.1 as the linear objective function of an ILP. In partic-

ular, for each variable X and possible parent set U, an ILP variable I(X,U) ∈ {0, 1}

is introduced to represent the event that X has parents U when I(X,U) = 1, and

I(X,U) = 0 otherwise. In addition, a set of constraints asserts that each variable X

has a unique set of parents,
∑

U I(X,U) = 1. Another set of constraints ensures that

all variables X and their parents U must yield an acyclic graph. One approach is to use

cluster constraints [JSG10], where for each cluster C ⊆ X, at least one variableX in C

has no parents in C,
∑

X∈C
∑

U∩C=∅ I(X,U) ≥ 1. Finally, the objective function of

the ILP is
∑

X∈X
∑

U⊆X score(XU | D) ·I(X,U),which corresponds to Equation 2.1.

In principle, the ILP approach can accommodate non-decomposable scores, as long

as the scores can be expressed using a linear cost function [OSM15]. In addition, we

note that the A* search approach, discussed in Section 2.4.2, and the ILP approach are

effective in different domains. More specifically, the ILP approach is more efficient

when the parents of a node in the network are restricted to a relatively small size;

otherwise, in the more general case without this restriction, the search approach is more

effective [YM13, MKJ14].
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2.5 Constraint-Based Approaches to Structure Learning

In this section, we discuss constraint-based approaches to structure learning, which

exploits independence relations between the variables in given data and background

knowledge, to learn a family of network structures that is consistent with these depen-

dence constraints.

The constraint-based approach assumes faithfulness, i.e., there exists a DAG such

that the data contains exactly the independencies in the DAG. With this assumption,

various graphical rules can be used to infer the Bayesian network structures that satisfy

the independencies in data and background knowledge [PV91, Mee95, SGS00]. For

example, consider learning a network structure over variables X1 and X2, where the

two variables are independent in the data. In this case, the only Bayesian network

structure that satisfies the independency is DAG

X1 X2

where the two variables do not have dependency through directed edges. If, on the

other hand, that X1 and X2 are dependent in the data, both DAG

X1 X2 and DAG X1 X2

can potentially be learned, as the directed edges between X1 and X2 express an depen-

dency.

2.6 Other Approaches to Structure Learning

In this section, we review structure learning of Gaussian Bayesian networks. Gaussian

Bayesian networks are a particular family of Bayesian networks, where the random

variables are continuous, and the parameterization over the families has a linear Gaus-
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sian form. More specifically, in a Gaussian Bayesian network, the value of each variable

X is defined as

X =
∑
U∈U

βX,U U + εX , (2.7)

where βX,U is the coefficient captures the influence of U on X; and εX is independent

Gaussian noise variable with mean 0 and variance σX , which captures uncertainty in

the value of X given the values of its parents U [Nea04, KF09, Mur12].

For Gaussian Bayesian networks, the structure learning problem can be formulated

as an estimation problem of unknown parameters βX,U and εX from data D. The esti-

mation problem considers how well the Bayesian network represents the data, and the

complexity of the network structure. For the former, the smaller the mean squared error

between the probability distribution induced by the Gaussian Bayesian networks using

estimated parameters and the empirical probability from D, the better the estimation

of parameters βX,U and εX . For the latter, L1-norm regularization, i.e., the number of

edges, is used to represent model complexity, where models with fewer edges are pre-

ferred.2 A good estimation of the parameters can be found approximately by coordinate

descent algorithms [SM10, FZ13, AZ14].

2L1-norm regularization is also known as lasso regularization [FHT01].
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CHAPTER 3

A New Search Space for Learning Bayesian Network

Structures

In this chapter, we consider learning optimal Bayesian networks, with non-decomposable

scores. We generalize the order-graph approach [YM13], and propose a new search

space, called the Bayesian network graph (BN graph), to accommodate non-decomposable

scores. Moreover, we discuss how the BN graph can be explored efficiently by A*

search —in fact, we propose to use a tight heuristic function that can be evaluated

by state-of-the-art learning systems for decomposable scores. Finally, we use the BN

graph to enumerate the k-best Bayesian network structures, using decomposable scores,

and show empirically that our proposed approach is orders of magnitude more efficient

than the existing state-of-the-art. This chapter is based on [CCD15].

3.1 Introduction

Modern approaches for learning Bayesian network structures are typically formulated

as a combinatorial optimization problem, where one wants to find the best network

structure (i.e., best DAG) that has the lowest score, for some given scoring metric

[Dar09, KF09, Mur12]. Typically, one seeks a Bayesian network that explains the data

well, without overfitting the data, and ideally, also accommodating any background

knowledge that may be available.

Some of the earliest procedures for learning Bayesian network structures used scor-

ing metrics with a certain desirable property, called score decomposability. For ex-

20



ample, consider the K2 algorithm which exploited decomposable scores, in combina-

tion with an assumption on the topological ordering of the variables [CH92]. Under

these assumptions, the structure learning problem itself decomposes into local sub-

problems, where we find the optimal set of parents for each variable, independently.

Local search methods exploited decomposability in a similar way [CGH95]. Such

methods navigated the space of Bayesian network structures, using operators on edges

such as addition, deletion, and reversal. Score decomposability allowed these opera-

tors to be evaluated locally and efficiently. Indeed, almost all scoring metrics used for

Bayesian network structure learning are decomposable. Such scores include the K2

score, [CH92], the BDeu score [Bun91], the BDe score [HGC95], and the MDL score

[Bou93, LB94, Suz93], among many others.

Modern approaches to structure learning continue to exploit the decomposable na-

ture of such scoring metrics. In particular, the past decade has seen significant de-

velopments in optimal Bayesian network structure learning. These recent advances

were due in large part to dynamic programming (DP) algorithms, for finding optimal

Bayesian network structures [KS04, SM05, SM06]. Subsequently, approaches have

been proposed based on heuristic search, such as A* search [YMW11, YM13], as

well as approaches based on integer linear programming (ILP), and their relaxations

[JSG10, Cus11].

By exploiting the nature of decomposable scores, these advances have significantly

increased the scalability of optimal Bayesian network structure learning. There is, how-

ever, a notable void in the structure learning landscape due to the relative lack of sup-

port for non-decomposable scores. This includes a general lack of support for non-

decomposable priors, or more broadly, the ability to incorporate more expressive, but

non-decomposable forms of prior knowledge (e.g., biases or constraints on ancestral re-

lations). In this chapter, we take a step towards a more general framework for Bayesian

network structure learning that targets this void.

The modern approaches for optimal structure learning, mentioned earlier, are based
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on a search space called the order graph [KS04, YMW11]. The key property of the

order graph is its size, which is only exponential in the number of variables of the

Bayesian network that we want to learn. Our proposed framework however is based

on navigating the significantly larger space of all network structures (i.e., all DAGs).

Moreover, to facilitate the efficient navigation of this larger space, we employ state-

of-the-art learning systems based on order graphs as a (nearly) omniscient oracle.

In addition to defining this new search space, we show that it enables learning with

non-decomposable scores and use it to learn optimal Bayesian networks under order-

modular priors in Chapter 4, which are non-decomposable. We further demonstrate the

utility of this new search space by showing how it lends itself to enumerating the k-best

structures, resulting in an algorithm that can be three orders of magnitude more effi-

cient than existing approaches based on dynamic programming (DP) and integer linear

programming (ILP) [THR10, CBJ13].

This chapter is organized as follows. In Section 3.2, we propose our new search

space for learning Bayesian networks. In Section 3.3, we show how our search space

can be leveraged to find optimal Bayesian networks under a class of non-decomposable

priors. In Section 3.4, we show how our search space can be further used to efficiently

enumerate the k-best network structures. Proofs of theorems are provided in the Ap-

pendix.

3.2 A New Search Space: BN Graphs

In this section, we propose the new search space BN graph. Figure 3.1 illustrates a BN

graph over variables X = {X1, X2, X3}. In the BN graph, nodes represent Bayesian

network structures, i.e., DAGs, over different subsets of the variables X. A directed

edge Gi
XU−−→ Gj from a DAG Gi to a DAG Gj exists in the BN graph if and only

Gj can be obtained from Gi by introducing variable X as a leaf node with parents U.

Hence, the BN graph, like the order graph, is a layered graph, but where each layer
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adds one more leaf to an explicit, rather than just an implicit, DAG when we walk an

edge to the next layer. Correspondingly, when we refer to a DAG Gi, we assume it is

on the i-th layer, i.e., Gi has i nodes. The top 0-th layer contains the root of the BN

graph, a DAG with no nodes, which we denote by G0. The bottom n-th layer contains

DAGs Gn over our n variables X. Any path

G0
X1U1−−−→ · · · XnUn−−−→ Gn

from the root to a DAGGn on the bottom layer, is a construction of the DAGGn, where

each edge Gi−1
XiUi−−−→ Gi adds a new leaf Xi with parents Ui. Moreover, each path

corresponds to a unique ordering 〈X1, . . . , Xn〉 of the variables. Each edge Gi−1
XiUi−−−→

Gi is associated with a cost, score(Gi | D,P) − score(Gi−1 | D,P), and thus the

cost of a path from the empty DAG G0 to a DAG Gn gives us the score of the DAG,

score(Gn | D,P). We assume structure scores observe score(Gi | D,P)− score(Gi−1 |

D,P) > 0, such as the BDeu and MDL scores. Then we note that when the scores are

decomposable, edge Gi−1
XiUi−−−→ Gi has cost score(XiUi | D,P), corresponding to the

cost associated with an edge in the order graph.

X1

. . .

X1

X1

X1 X1 X1 X1 X1

G0

X2

X2 X2 X2 X2 X2 X2

X1 X1 X1 X1 X1

X3

X3 X3 X3 X3 X3 X3

X2 X3 X3 X3 X3 X3 X3X2 X2 X2 X2 X2

15年6月12⽇日星期五

Figure 3.1: A Bayesian network graph (BN graph) for variables X = {X1, X2, X3}.

For example, consider the BN graph of Figure 3.1 and the following path, i.e.,

sequence of DAGs:
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G0 G1 G2 G3

X1 X1 → X2 X1 → X2 X3

Starting with the empty DAG G0, we add a leaf X1 (with no parents), then a leaf X2

(with parent X1), then a leaf X3 (with no parents), giving us a DAG G3 over all 3

variables in X.

Finally, we note that both the order graph and the BN graph formulate the structure

learning problem as a shortest path problem. The BN graph is however much larger

than the order graph: an order graph has 2n nodes, whereas the BN graph has O(n! ·

2(n
2)) nodes. Despite this significant difference in search space size, we are still able to

efficiently find shortest-paths in the BN graph, which we shall illustrate empirically.

3.3 Structure Learning with Non-Decomposable Scores

In this section, we consider the problem of learning an optimal Bayesian network struc-

ture using non-decomposable scores. As mentioned in Section 2.4.1, the K2 algorithm

in general does not accommodate non-decomposable scores, since an optimal DAG

cannot be obtained by choosing the optimal set of parents for each variable X , from

those variables that precede X in the ordering ≺. To see this, suppose we are searching

for an optimal DAG that is compatible with topological ordering 〈X1, X2, X3〉, using

the following non-decomposable scores:
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G score(G | D,P) G score(G | D,P)

X1 1 X1 X2 X3
25

X1 X2 10 X1 X2 X3 20

X1 X2 15 X1 X2 X3
25

X1 X2 X3 25 X1 X2 X3 25

X1 X2 X3
25 X1 X2 X3

25

X1 X2 X3 25

The optimal DAG in this case is

X1 X2 X3

Yet, we cannot learn this DAG by choosing the optimal set of parents for each

variable X following ordering 〈X1, X2, X3〉. In particular, when considering X2 alone,

its best choice of parents from preceding variables is to have none; while in the optimal

DAG, the best parent is X1. Hence, the K2 algorithm and approaches based on the

order graph, which can be viewed as a generalization of K2, does not accommodate

non-decomposable scores.

The BN graph, on the other hand, naturally supports non-decomposable scores, as

the BN graph contains all the possible DAGs as its leafs. Next, we discuss how to use

the BN graph to find optimal DAGs using A* search. First, A* is an optimal search

algorithm, which we describe next. Next, A* search is suited for search spaces that are

graphs and not trees; in contrast, methods such as depth-first search would be inefficient

in the BN graph, as it could revisit nodes exponentially many times.
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3.3.1 Heuristic Functions for Non-Decomposable Scores

The A* search is a best-first search that uses an evaluation function f to guide the search

process, where we expand first those nodes with the lowest f cost [HNR68, RN10]. The

evaluation function for A* takes the form:

f(G) = g(G) + h(G), (3.1)

where G is a given DAG, function g denotes the path cost, i.e., the cost of the path to

reachG fromG0; and function h denote the heuristic function, which estimates the cost

to reach an optimal goal, starting from G. More specifically, in the BN graph, the path

cost g(G) is score(G | D,P); heuristic function h(G) estimates the score increase from

G to any leaf Gn, i.e., from score(G | D,P) to score(Gn | D,P); and f(G) represents

a best estimate of the lowest path from G0 to any leaf Gn that passes through G.

If the heuristic function h is admissible, i.e., it never over-estimates the lowest cost

to reach a goal, then A* search is optimal [HNR68]. That is, the first goal node Gn that

A* expands is one that has the lowest-cost path from the root G0, and Gn is an optimal

DAG. Moreover, when the heuristic function h is a more accurate estimate of the cost

to any goal state, the search becomes more efficient. In Chapter 4 and 6, we will show

how these admissible heuristics can be designed.

In a typical use of A* search, one tries to find a lowest-cost path from the root to a

given goal node. In the BN graph, we don not know the goal node except that it lies on

the last layer of the graph, i.e., a leaf node. Each such node represents a DAG over all

variables. Moreover, we use A* search to find a leaf node that has a lowest-cost path

from the root. Leaf nodes with such a property identify an optimal Bayesian network

structure. Hence, we use A* search in a somewhat non-standard way. We shall revisit

this distinction next, in the context of enumerate the k-best DAGs.
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3.4 Enumerating the k-Best Structures

In this section, we consider another learning task, using the BN graph — enumerating

the k-best Bayesian network structures. In some situations, learning a single optimal

DAG is not sufficient — a single best DAG is subject to noise and other idiosyncrasies

in the data. As such, a data analyst would want to be aware of other likely DAGs.

Hence, a number of algorithms have been proposed to enumerate the k-most likely

DAGs from a complete dataset, but with decomposable scores, using an augmented

order graph and ILP [THR10, BC13, CBJ13, CT14, CCD15]. Such methods further

facilitate approximate Bayesian model averaging [THR10, CT14]. We show that em-

pirically, the BN graph can be orders of magnitude more efficient than these previous

approaches on real-world datasets, on enumerating the k-best structures with decom-

posable scores.

Enumerating the k-best structures is straightforward when we perform the A* search

on the BN graph. In particular, the k-th best DAG can be obtained by finding the goal

node Gn that has the k-th lowest-cost path to the root G0. We can thus enumerate the

k-best DAGs by simply continuing the A* search, rather than stopping when we reach

the first goal node [DFM12].1 More specifically, an admissible heuristic function h for

finding the first goal remains admissible for the k-th best goal, as h still lower bounds

the cost to reach any goal. That is, it may just estimate the cost to reach a goal node that

was already enumerated, and hence has a lower cost. We can thus continue to employ

the same heuristic in A* search, to enumerate the remaining k-best goals.

We further note a distinction between the BN graph and the order graph. In the BN

graph, DAGs are represented explicitly, whereas in an order graph, DAGs are implicit.

In particular, each node Y in the order graph represents just a single optimal DAG over

the variables Y. Hence, the k-th best DAG may not be immediately recoverable. That

is, we may not be able to obtain the k-th best DAG starting from an optimal sub-DAG

1We remark, however, that [DFM12] is more specifically concerned with the enumeration of the
k-lowest-cost paths, rather than the k-lowest-cost goals.
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— we can only guarantee that we obtain a single optimal DAG. While it is possible to

augment the order graph, so that nodes in the order graph maintain additional informa-

tion to recover the k-best DAGs, and find the k-best DAGs with dynamic programming,

as in [THR10], this is not as effective as searching the BN graph, as we shall soon see.

Finally, we consider another approach to enumerating the k-best DAGs, based on

integer linear programming (ILP) [CBJ13]. Basically, once an optimal DAG is ob-

tained from an ILP, a new ILP can be obtained, whose optimal solution corresponds to

the next-best DAG. More specifically, we assert additional constraints that exclude the

optimal DAG that we found originally. This process can be repeated to enumerate the

k-best DAGs.

3.4.1 Heuristic Functions for k-Best Structures

In this section, we consider heuristic functions to enumerate the k-best Bayesian net-

works. Consider the special but extreme case, where we have access to a perfect heuris-

tic function h(G), which could predict the optimal cost from G to any goal node Gn.

That is,

h(G) = min
Gn:G Gn

score(Gn | D,P)− score(G | D,P). (3.2)

In this case, the A* search marches straight to the first optimal DAG, with appro-

priate tie-breaking that expands the deepest node first. Then the A* search enumerates

other DAGs with the optimal score.2 Once all the optimal DAGs are exhausted, h(G)

is no longer perfect, but still admissible for enumerating the remaining DAGs.

For decomposable scores, we do in fact have access to a perfect heuristic for finning

the single best structure — any learning system for decomposable sores could be used

as such, provided that it can accept a DAGG, and find an optimal DAGGn that extends

2Typically, Bayesian network structures that have the same scores are Markov equivalent.
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it. That is,

h(G) = min
Gn:G Gn

∑
XU∈Gn−G

score(XU | D,P), (3.3)

where we sum over families XU that appear in Gn but not in G.

Systems such as URLEARNING meet this criterion [YM13]3, which we use in our

subsequent experiments. Such a system is treated as a black-box, and used to evaluate

our heuristic function in the A* search, to potentially solve a learning problem that the

black-box was not originally designed for.

We also remark that using such a black-box to evaluate a heuristic function, as de-

scribed above, is also a departure from the standard practice of heuristic search. Con-

ventionally, in heuristic search, one seeks heuristic functions that are cheap to evaluate,

allowing more nodes to be evaluated, and hence more of the search space to be ex-

plored. Our black-box that finds an optimal extension of a DAG, in contrast, will be

relatively expensive to evaluate. However, for the particular learning tasks that we con-

sider, a strong heuristic can outweigh the expense to compute it, by more efficiently

navigating the search space, i.e., by expanding fewer nodes to find a goal.

3.4.2 Implementation of the A* Search

Finally, we describe two further design decisions that are critical to the efficiency of A*

search on the BN graph. First, if two DAGsG andG′ are over the same set of variables,

then they have the same heuristic value, i.e. h(G) = h(G′). Hence, we can cache the

heuristic value h(G) for a DAG G, and simply fetch this value for another DAG G′,

rather than re-invoking our black-box, when G′ has the same set of variables as G. As a

result, the heuristic function is invoked at most once for each subset Y of the variables

X. In addition, when we invoke our black-box on a DAG G, we can infer and then

prime other entries of the cache. In particular, when our black-box returns an optimal

completion Gn of a DAG G, then we know the optimal completion and heuristic values
3At sites.google.com/site/bmmalone/files/urlearning.
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of any DAG in between G and Gn in the BN graph — their optimal completion is also

Gn, from which we can infer the corresponding heuristic value.

Next, the branching factor of the BN graph is large, and hence we can quickly run

out of memory if we expand each node and insert all of its children into the open list,

i.e., the priority queue for the next node to expand by the A* search. We thus use partial-

expansion A* in our implementation, i.e., when we expand a node G and generate its

children, we insert childG′ into the open list if and only if f(G′) ≤ c, where c is a given

cut-off value. We can increase c and re-expand this node G, as many times as needed.

In this thesis, we initialize c as f(G), and increase its value by 1 with re-expansion.

While we may spend extra work re-expanding nodes, this form of partial-expansion

can save a significant amount of memory, without sacrificing the optimality of the A*

search [YMI00, FGS12].

More specifically, similar to [YM13], before the A* search starts, for each X , we

sort all of its possible parents in ascending order by score(XU | D). When we generate

a child DAG G′ by appending variable X to DAG G, we scan the list sorted parents to

find parents U, from variables in G; once f(G′) > c, since the parents are sorted, the

generation stops. Finally, we note that this procedure generalizes the child generation

approach of the A* search on order graph [YM13].

3.4.3 Experiments

We compare A* search, based on the BN graph, with two other recently proposed k-

best structure learning algorithms: (1) KBEST,4 which is based on an augmented order

graph and dynamic programming [THR10], and (2) GOBNILP,5 which is based on ILP

[Cus11].

We use real-world datasets, from the UCI machine learning repository [BL13], and

the National Long Term Care Survey (NLTCS). For learning, we assumed BDeu scores,

4At www.cs.iastate.edu/˜jtian/Software/UAI-10/KBest.htm
5At www.cs.york.ac.uk/aig/sw/gobnilp/
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benchmark 10-best 100-best 1, 000-best
BN graph KBEST BN graph KBEST BN graph KBEST

name n N t m t m t m t m t m t m

wine 14 178 0.07 1 5.24 1 0.10 1 162.69 1 0.44 1 4,415.98 4
nlts 16 16,181 2.59 1 18.84 1 4.10 1 787.52 1 5.60 1 ×t
letter 17 20,000 8.54 1 42.16 1 13.30 1 1,849.29 2 18.86 1 ×t
voting 17 435 2.66 1 59.29 1 2.85 1 2,507.72 2 7.87 1 ×t
zoo 17 101 4.24 1 58.25 1 4.74 1 2,236.13 2 7.34 1 ×t

statlog 19 752 38.29 1 291.88 1 61.31 1 ×t 64.12 1 ×t
hepatitis 20 126 39.79 2 675.34 2 76.34 2 ×t 154.27 2 ×t
imports 22 205 288.29 8 2,646.41 8 383.32 8 ×t 383.62 8 ×t

parkinsons 23 195 678.74 16 6,350.58 16 679.74 16 ×t 1,297.75 16 ×t

Table 3.1: The BN graph and KBEST: A comparison of the time t (in seconds) and memory

m (in GBs) used. An ×t corresponds to an out-of-time (7,200s), and an ×s corresponds to

segmentation fault. n denotes the number of variables in the dataset, and N denotes the size of

the dataset.

with an equivalent sample size of 1. Our experiments were run on a 2.67GHz Intel Xeon

X5650 CPU, with access to 144GB RAM. We further pre-compute the BDeu scores,

which are fed as input into each system evaluated. All timing results are averages over

10 runs. For each approach, we enumerate the 10-best, 100-best and 1, 000-best BNs,

over a variety of real-world datasets. We impose a 7,200 second limit on running time.

To analyze memory usage, we incrementally increased the amount of memory available

to each system, from 1GB, 2GB, 4GB, 8GB, 16GB, and up to 64GB, and recorded the

smallest limit that allowed each system to finish.

Table 3.1 summarizes our results for the A* search on the BN graph, and for the

order-graph-based dynamic programming approach of KBEST. We omit the results

for the ILP-based approach of GOBNILP, which ran out-of-memory (given 64GB) for

all instances, except for the case of 10-best networks on the wine dataset, which took

2, 707.13s and under 8GB of memory.6

6Note that GOBNILP is more effective in domains where, for example, we can constrain the number
of parents that a node can have [YM13, MKJ14]. However, for our experiments here, we consider the
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benchmark 10-best 100-best 1, 000-best
name n Th TA∗ Th TA∗ Th TA∗

wine 14 0.04 0.03 0.04 0.06 0.06 0.38
nltcs 16 2.58 0.01 4.08 0.02 5.36 0.24
letter 17 8.52 0.02 12.90 0.10 17.64 1.22
voting 17 2.62 0.04 2.66 0.19 5.39 2.48
zoo 17 4.22 0.02 4.72 0.02 7.16 0.18

statlog 19 38.22 0.07 61.14 0.17 63.75 0.37
hepatitis 20 39.61 0.18 75.91 0.43 151.60 2.67
imports 22 287.76 0.53 382.63 0.69 382.80 0.82

parkinsons 23 677.57 1.17 678.54 1.20 1,295.68 2.07

Table 3.2: The BN graph: The time Th to compute the heuristic function and the time TA∗ to

traverse the BN graph with A* (in seconds).

We observe a few trends. First, the A* search on the BN graph can be over three

orders of magnitude more efficient than KBEST, at enumerating the k-best DAGs. For

example, when enumerating the 100-best and 1000-best DAGs on the wine dataset.

Next, we observe that the A* search is consistently more efficient than KBEST at enu-

merating the k-best networks, scaling to larger networks, and to larger values of k. In

fact, KBEST appears to scale super-linearly with k, but the A* search appears to scale

sub-linearly with respect to k. These differences are due in part to: (1) the more ex-

haustive nature of dynamic programming, which needs to maintain all of the partial

solutions that can potentially be completed to a k-th best solution, and (2) the more

incremental nature of the A* search, i.e., the next best solutions are likely to be in the

open list already.7 Finally, we see that the memory usage of these two approaches is

comparable, although the A* search appears to be more memory efficient as we increase

the number k of networks that we enumerate.

To gain more insight about the computational nature and bottlenecks of the A*

more general case, where we do not assume such a constraint.
7In general, we expect heuristic search methods, such as A*, to be more efficient than more exhaustive

methods such as dynamic programming, as heuristic search methods can more intelligently navigate the
search space, when a good heuristic function is available.
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benchmark 10-best 100-best 1, 000-best
name n gen. exp. re-exp. gen. exp. re-exp. gen. exp. re-exp.

wine 14 6,615 1,948 0 10,767 8,110 0 49,809 40,992 39,992
nltcs 16 244 211 0 2,196 2,160 0 20,181 20,078 38,156
letter 17 293 285 0 2,213 2,178 12,468 18,223 18,165 171,650
voting 17 4,030 1,884 0 20,932 13,836 13,736 183,010 118,779 353,337
zoo 17 493 205 0 1,404 1,165 0 24,400 10,855 9,855

statlog 19 745 411 0 9,772 3,589 3,489 30,299 26,943 25,963
hepatitis 20 6,177 2,165 0 19,152 15,897 0 172,244 111,568 110,568
imports 22 883 251 0 7,703 2,416 0 32,718 15,924 0

parkinsons 23 305 104 0 4,968 1,679 0 50,450 16,197 0

Table 3.3: The BN graph: (1) The number of generated nodes. (2) The number of expanded

nodes. (3) The number of re-expanded nodes (in partial-expansion A*).

benchmark n 10-best 100-best 1, 000-best

wine 14 107 107 274
nltcs 16 182 441 628
letter 17 159 413 678
voting 17 318 798 1,678
zoo 17 234 384 1,067

statlog 19 156 491 794
hepatitis 20 273 4,653 13,269
imports 22 150 389 426

parkinsons 23 91 256 1,032

Table 3.4: The BN graph: The number of times the oracle is invoked to evaluate the heuristic

function.

search on the BN graph, consider Table 3.2, which looks at how much time Th that

was spent on evaluating the heuristic function, versus the time TA∗ that was spent in

navigating the BN graph.8 Table 3.3 further reports the number of nodes generated,

i. e., the number of nodes inserted into the open list, and expanded by the A* search.

First, we observe that the vast majority of the time spent in search is spent in evaluating

the heuristic function. This is expected, as evaluating our black-box heuristic function

8We note that t = Th + TA∗, with the total time t corresponding to those reported in Table 3.1.
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is relatively expensive. Next, we observe that the number of nodes expanded is rela-

tively small, which suggests that our black-box heuristic is indeed powerful enough to

efficiently navigate the large search space of the BN graph. We also remark again that

due to the caching of heuristic values, discussed in Section 3.4.2, the number of times

that our black-box is invoked can be much smaller than the number of nodes generated.

This is illustrated in Table 3.4.
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CHAPTER 4

Learning with Order-Modular Priors

In this chapter, we consider order-modular priors, which are non-decomposable and

whose evaluation is known to be #P -hard. We show that the order-modular prior can

be evaluated while performing A* search, with a slight variation on A* search. We

also show how the framework developed in Chapter 3 can be used to find an optimal

network structure under this prior. This chapter is based on [CCD15].

4.1 Introduction

In this chapter, we use the framework discussed in Chapter 3 to learn optimal Bayesian

networks under order-modular priors.

The simplest form of order-modular priors is the uniform order-modular prior Pr(G),

which is proportional to the number of topological orderings consistent with a DAG G,

i.e., the number of its linear extensions, which we denote by #G. Hence,

logPr(G) = log #G− logC, (4.1)

where C is a normalizing constant. For example, DAG G

X1 → X2 X3

is consistent with topological orderings 〈X1, X2, X3〉, 〈X1, X3, X2〉 and 〈X3, X1, X2〉.

Consequently, the order-modular prior Pr(G) of G is log 3 − logC. More generally,

order-modular priors can be viewed as a weighted count of linear extensions [KS04].
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For the remained of this chapter, we assume uniform order-modular priors, and discuss

the general order-modular priors in Appendix B.

Order-modular priors are notable, as they enable MCMC methods for approximate

Bayesian model averaging [FK00]. They also enable some dynamic-programming-

based methods for exact Bayesian model averaging, when there are a moderate num-

ber of network variables [KS04]. However, to our knowledge, only approximate ap-

proaches had been previously considered for this prior, when one wants a single op-

timal DAG. One significant difficulty is that counting the number of linear extensions

of a graph is #P-complete [BW91]. Hence, it is intractable to even evaluate the score

of a Bayesian network structure, using this prior. let alone to find an optimal Bayesian

network structuring [KS04]. We shall revisit this issue.

We next develop a variation on A* search and a corresponding heuristic function

for learning optimal network structures with order-modular priors. We then evaluate

the resulting system on real-world dataset.

4.2 A Heuristic for Order-Modular Priors

Recall the discussion in scoring Bayesian network structures in Section 2.2. Given

structure priors Pr(G) as background knowledge P , it can be incorporated into the

scores as

score(G | D,P) = score(G | D)− logPr(G), (4.2)

where scoring function score(G | D) evaluates − logPr(D | G). Moreover, score(G |

D) is typically decomposable. That is,

score(G | D,P) =
∑
XU

score(XU | D)− logPr(G). (4.3)

First, we note when scores in Equation 4.3 is used for the BN graph, the cost edge
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Gi
XU−−→ Gj can be written as:

score(XU | D)− log
Pr j(Gj)

Pr i(Gi)
,

where Pr 0(G0) = 1. We then propose a simple heuristic function for learning an

optimal DAG with a uniform order-modular prior. Let Gi  Gn indicate that a DAG

Gn is reachable from DAGGi in the BN graph. We propose to use the heuristic function

h(Gi) = h1(Gi) + h2(Gi), which has two components. The first component is:

h1(Gi) = min
Gn:Gi Gn

∑
XU∈Gn−Gi

score(XU | D), (4.4)

where we sum over families XU that appear in Gn but not in Gi. This component

corresponds to the shortest path to any goal, based on the decomposable part of the

score in Equation 4.3, ignoring the prior, i.e., maximizing the marginal likelihood. The

second component is:

h2(Gi) = min
Gn:Gi Gn

− log
Prn(Gn)

Pr i(Gi)
, (4.5)

This component corresponds to the shortest path to the goal, based on the prior part of

the score in Equation 4.3, but ignoring the data, i.e., maximizing the prior.

Theorem 1. The heuristic function h(Gi) = h1(Gi) + h2(Gi) of Equations 4.4 & 4.5

is admissible.

To use this heuristic function, we must perform two independent optimization prob-

lems, for h1 and h2. The first is the familiar optimization of a decomposable score, as

in Section 3.4.1 Equation 3.3, which can be evaluated with existing structure learning

algorithm for decomposable scores. The second is an optimization of the prior, indepen-

dently of the data. Next, we show how to both evaluate and optimize this component,

for uniform order-modular priors.

4.2.1 Optimizing the Prior

Here, we describe how to solve the component h2 for a uniform order-modular prior.

Again, we want to identify the most likely goal node Gn reachable from Gi, i.e., the
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DAG Gn with the largest linear extension count. Remember that DAG Gi has i nodes.

Since adding any edge to the DAG constrains its possible linear extensions, then the

DAG Gn with the largest linear extension count simply adds the remaining n− i nodes

independently to DAG Gi. If #Gi is the linear extension count of DAG Gi, then

#Gn = #Gi · (i+ 1) · · ·n

is the linear extension count of DAG Gn.1

Next, we have that:

Pr i(Gi) =
1

Ci
·#Gi and Prn(Gn) =

1

Cn
·#Gn

where Ck is a normalizing constant:

Ck =
∑
Gk

#Gk =
∑
Gk

∑
π∼Gk

1 =
∑
π

∑
π∼Gk

1 =
∑
π

2(k
2) = k! · 2(k

2)

and where π ∼ Gk denotes compatibility with an ordering π and a DAG Gk. Thus,

Prn(Gn)

Pr i(Gi)
=
Ci
Cn

#Gn

#Gi

=
Ci
Cn
· (i+ 1) · · ·n = 2(i

2)−(n
2)

Hence, h2(Gi) = [
(
n
2

)
−
(
i
2

)
] · log 2. We note that for all DAGs Gi in the same layer,

the heuristic function h2(Gi) evaluates to the same value, although this value differs for

DAGs in different layers.

Note, that we also need to be able to compute the linear-extension counts #Gi

themselves, which is itself a non-trivial problem (it is #P-complete). We discuss this

next.

4.2.2 Counting Linear Extensions

In Section 4.1, we highlighted the relationship between uniform order-modular priors

and counting linear extensions. We now show that the BN graph itself facilitates the
1For each linear extension π of Gi, there are (i+ 1) places to insert the (i+ 1)-th node, then (i+ 2)

places to insert the next, and so on. Thus, there are (i + 1) · · ·n ways to extend a given ordering over i
variables to n variables.
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counting of linear extensions, for many DAGs at once. Subsequently, we shall show

that this computation can be embedded in the A* search itself.

Recall that any path in the BN graph, from G0 to Gi, corresponds to an ordering

of variables 〈X1, . . . , Xi〉. In fact, this ordering is a linear extension of the DAG Gi.

Hence, the linear extension count #Gi of a graph Gi is the number of paths from the

root G0 to Gi, in the BN graph. For example, consider the BN graph in Figure 3.1 and

DAG:

X1 → X2 X3

There are 3 distinct paths in the BN graph from the root G0 to the DAG above, one

path for each topological order that the DAG is consistent with. Next, observe that the

number of linear extensions of a DAG Gi, or equivalently, the number of paths that

reach Gi, is simply the sum of the linear extensions of the parents of Gi, in the BN

graph. For example, our DAG above has 3 linear extensions, and 2 parents in the BN

graph:

X1 → X2 X1 X3

the first with one linear extension, and the second with two. In this way, we can count

the linear extensions of DAGs in a BN graph, from top-to-bottom, sharing computations

across the different DAGs.2

Consider how A* navigates the BN graph the BN graph during search. If A* ex-

pands a node only when all of its parents are expanded, then as described above, we

can count the number of linear extensions of a DAG, when it gets expanded.3 Thus, we

can evaluate its prior, and in turn, the function f . It so happens that, we can moderately

weaken the heuristic function that we just described, so that A* will in fact expand a

node only when all of its parents are expanded.
2A similar algorithm for counting linear extensions is described in [NK13]
3In particular, every time that we expand a node G, we can increment each of its children’s linear

extension counts by #G. Once we have expanded every parent of a child, the child’s linear extension
count is correct.
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Theorem 2. Assuming a uniform order-modular prior, the heuristic function

h(Gi) = h1(Gi) + h′2(Gi)

allows A* to count the linear extensions of any DAG it expands, where h′2(Gi) =

−
∑n

k=i+1 log k ≤ h2(Gi) with components h1 and h2 coming from Equations 4.4 & 4.5.

4.2.3 A* Search

Algorithm 1: A* search for learning an optimal BN with uniform a order-modular

prior Pr(G).
Data: A dataset D over variables X.

Result: An optimal Bayesian network structure G maximizing

Pr(G | D) ∝
∑

XU score(XU|D)− logPr(G).

begin
H ← min-heap with only (G0, f(G0), 1), where 1 is the number of linear extensions

of G0; and the heap is ordered by f

while H 6= ∅ do

extract the minimum item (G, f, l) from H

if V (G) = X then return G

foreach G′ obtained by adding a leaf to G do

if G′ is not in H then
insert into H: (G′, score(G′|D)− log l + h(G′), l)

else
let (G′, f ′, l′) be in H , decrease f ′ by log l′+l

l′ , increase l′ by l; and

reheapify

Algorithm 1 provides pseudo-code for the A* search using a uniform order-modular

prior. Note that this pseudo-code deviates slightly from the standard the A* search, as

the linear extension counts #G are computed incrementally during the search.
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Theorem 3. Algorithm 1 learns an optimal Bayesian network with a uniform order-

modular prior.

Finally, we note that Algorithm 1 can be generalized for general order-modular

priors, as discussed in Appendix B. We also note that Theorem 1 and the heuristic

functions of Equation 4.4 & 4.5 were proposed for order-modular priors. In principle,

the shortest-path formulation, and the heuristic function that we proposed, can support

a much broader class of non-decomposable priors. However, one must be able to op-

timize the probability of a graph, as in the component h2 of the heuristic function that

we proposed, in Equation 4.5. If we had access to some oracle that can solve this com-

ponent, then we would in principle have the pieces that are sufficient to perform A*

search over the BN graph, using the corresponding prior.

4.3 Experiments

We evaluate our A* search approach to learning optimal Bayesian networks with real-

world datasets, from the UCI machine learning repository [BL13], and the National

Long Term Care Survey (NLTCS). For learning, we assumed BDeu scores, with an

equivalent sample size of 1. Our experiments were run on a 2.67GHz Intel Xeon X5650

CPU, with access to 144GB RAM. We pre-compute the BDeu scores, which are fed as

input into our system, and impose a 64GB second limit on running time. All timing

results are averages over 10 runs.

In Table 4.1, we find that our approach can scale up to 17 variables on real-world

datasets, i.e., the letter and voting datasets. We also note that with more data, and with

more of the probability mass concentrated on fewer DAGs, traversing the BN graph

with A* search appears to become more efficient. In particular, consider the time spent

in A* search, i.e., TA∗, and the number of nodes generated, i.e., gen., in the datasets

adult and wine, which both have 14 variables. Similarly, consider the datasetsletter

and voting, which both have 17 variables. Moreover, consider dataset zoo, also over
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benchmark n N Th TA∗ t gen. exp. re-exp.

adult 14 30,162 1.03 0.26 1.29 106,832 12,620 33
wine 14 435 0.74 6.08 6.82 1559,900 244,694 57,259
nltcs 16 16,181 7.21 1.17 8.38 386,363 41,125 1
letter 17 20,000 29.42 3.79 32.20 360,899 37,034 16
voting 17 435 5.28 56.59 61.89 10540,132 1961,602 396,084
zoo 17 101 ×m

Table 4.1: The BN graph: The performance of A* search when learning with the uniform

order-modular prior: (1) The time Th to compute the heuristic function. (2) The time TA∗ to

traverse the BN graph with A* (in seconds) (3) The total time t = Th+TA∗ spent in A* (4) The

number of generated nodes. (5) The number of expanded nodes. (6) The number of re-expanded

nodes (in partial-expansion A*). An ×m corresponds to an out-of-memory (64 GB).

17 variables, which was a very small dataset, containing only 101 instances. Here,

A* search exhausted the 64GB of memory that it was allowed. We remark that, to

our knowledge, ours is the first system for finding optimal DAGs using order-modular

priors.4

In Figure 4.1, we consider a simple example, highlighting the effect that a uniform

order-modular prior can have on the structure we learn. In Figure 4.1(a), we have the

classical asia network, which we used to simulate datasets of different sizes. First,

we simulated a small dataset of size 27 and learned two networks, one with a prior,

Figure 4.1(b), and one without a prior, Figure 4.1(c). Ignoring nodeA, the two networks

are Markov-equivalent. However, including node A, their linear extension counts are

very different: 96 for network 4.1(b) but only 3 for network 4.1(c). This difference can

explain why variable A is disconnected in 4.1(b), as a disconnected node non-trivially

increases the linear extension count, and hence, the weight of the prior. In Figure 4.1(d),

both cases, with and without the prior, learned precisely the same network when we

4There are systems available for (a) finding optimal DAGs using structure-modular priors, (b) for
Bayesian model averaging using order-modular priors, and (c) for jointly optimizing over orders and
DAGs, using order-modular priors. These tasks are all discussed in [KS04], which further states that
finding optimal DAGs with order-modular priors is a more challenging problem (where we maximize
over DAGs, but sum over orders).
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Figure 4.1: A network asia (a), and networks learned with dataset size 27 with a prior

(b), without a prior (c), and a network learned with dataset size 214 (d).

raised the size of the dataset to 214. This network is Markov-equivalent to the ground

truth network that generated the data.
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CHAPTER 5

A New Search Space for Learning Markov-Equivalent

Network Structures

In this chapter, we consider specializing the BN graph to a more compact search space,

called the EC graph, over Markov-equivalent Bayesian network structures. The EC

graph is further canonized into another search space, called the EC tree, so that each

node in the search space is reached by exactly one path. Empirically, we show that our

proposed approach is in practice orders of magnitude more efficient than the existing

state-of-the-art, which is based on an augmented order graph and dynamic program-

ming [CT14]. This chapter is based on [CCD16].

5.1 Introduction

Learning the structure of a Bayesian network is a fundamental problem in machine

learning and artificial intelligence. Historically, approximate methods, such as Markov

Chain Monte Carlo (MCMC) and local search, were used for this task. In the past

decade, there has been a surge in interest, in finding optimal Bayesian network struc-

tures, i.e., learning a single best directed acyclic graph (DAG) from a complete dataset;

see, e.g., [KS04, SM05, SM06, JSG10, Cus11, YM13].

In some situations, learning a single optimal DAG is not sufficient—a single DAG

is subject to noise and other idiosyncrasies in the data. As such, a data analyst would

want to be aware of other likely DAGs. Hence, a number of algorithms have been pro-

posed to enumerate the k-most likely DAGs from a complete dataset [THR10, CBJ13,
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CT14, CCD15]. Such methods further facilitate approximate Bayesian model averag-

ing [THR10, CT14].

There is a fundamental inefficiency in enumerating the k-most likely DAGs, namely

that any given DAG may be Markov equivalent to many other DAGs, which are all

equally expressive in terms of representing probability distributions. Thus, by enu-

merating DAGs, one may spend a significant amount of effort in enumerating redun-

dant Bayesian networks. In this chapter, we consider instead the enumeration of their

equivalence classes, with each equivalence class representing a potentially large (even

exponential) number of DAGs, which we show can be the case in practice empirically.

In this chapter, we propose a new approach to enumerating equivalence classes

that is in practice orders of magnitude more efficient than the existing state-of-the-art

based on dynamic programming [CT14]. Our approach is based on the framework

of navigating the BN graph, which we discussed in Chapter 3. We propose a specific

instance of this framework, where we specialize the BN graph to a more compact search

space over equivalence classes.

This chapter is organized as follows. This chapter is organized as follows. Sec-

tion 5.2 reviews Markov equivalence and related concepts. In Section 5.3, we propose

the EC graph, and then canonize the EC graph to the EC tree. Finally, we evaluate our

approach empirically in Section 5.4.

5.2 Markov-Equivalent Bayesian Network Structures

In this section, we review related previous work on Markov-equivalent Bayesian net-

work structures, i.e., DAGs. Two given DAGs are considered Markov-equivalent if and

only if they encode the same conditional independencies, and consequently, represent

the same class of probability distributions. For example, the following three DAGs are

Markov-equivalent:

45



X1 → X2 → X3 X1 ← X2 ← X3 X1 ← X2 → X3

Markov equivalence can be characterized by a graphical criterion, based on the structure

of a DAG. First, the skeleton of a DAG is the undirected graph found by ignoring the

orientation of the edges. Second, a v-structure in a DAG is a set of three nodes X, Y, Z

with edges X → Y ← Z, but with no edge between X and Z. The following theorem

characterizes Markov-equivalent DAGs.

Theorem 4. [VP90] Two DAGs are Markov-equivalent if and only if they have the same

skeleton and the same v-structures.

A set of Markov-equivalent DAGs can be summarized by a partially directed acyclic

graph (PDAG), which is a graph that contains both directed and undirected edges, but

with no directed cycles [Chi02]. Given a PDAG P , we can induce a set of Markov-

equivalent DAGs by directing the undirected edges of a PDAG, but as long as we intro-

duce no directed cycles and no new v-structures. We use class(P ) to denote this set of

Markov-equivalent DAGs.

In an equivalence class of DAGs, each edge of their common skeleton can be clas-

sified as compelled or reversible. An edge connecting X and Y is compelled to a

direction X → Y if every DAG in the equivalence class has the directed edge X → Y .

Otherwise, an edge is reversible, and there exists a DAG in the equivalence class with

edge X → Y , and another DAG with edge Y → X . In a PDAG, if all compelled edges

are directed in the appropriate orientation, and all reversible edges are left undirected,

then we obtain a completed PDAG (CPDAG).1 A CPDAG uniquely characterizes an

equivalence class of DAGs [Chi02]. That is, there is a one-to-one correspondence be-

tween CPDAGs and equivalence classes. Further, a given CPDAG represents all DAGs,

and only those DAGs, of a given equivalence class.

As an example, the CPDAGX1−X2−X3 represents the Markov equivalence class

for the three DAGs given in our example from the start of this section. We provide
1CPDAGs are also sometimes referred to as essential graphs or maximally oriented graphs.
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another example below, of a CPDAG, in Figure 5.1(a); and its corresponding DAGs in

Figure 5.1(b)-(d).
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Figure 5.1: A CPDAG and the DAGs it represents. (a) CPDAG (b) - (d) DAGs.

Finally, we note that some scores of Bayesian network structures do not observe

Markov equivalence, i.e., the scores may assign different values to structures encode

the same conditional independencies, and consequently, represent the same class of

probability distributions. For example, scores with uniform order-modular prior is not

Markov-equivalent, as among structures that represents the same conditional indepen-

dencies, the scores favors the ones with a larger number of linear extensions. In the rest

of this chapter, we assume Markov-equivalent scores, which includes the MDL and

BDeu scores.

5.3 A New Search Space: EC Trees

In this section, we propose a new search space for Bayesian network structures, but

more specifically, for their equivalence classes. This is a more compact search space

where each node now represents an equivalence class of DAGs, called the EC graph.

We further propose a canonization of the EC graph, leading to the EC tree, which has

desirable properties for heuristic search methods, such as the A* search, improving

efficiency it terms of both time and memory.
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5.3.1 EC Graphs

We now propose a new search space for Markov-equivalent Bayesian network struc-

tures, called the EC graph, where each node now represents an equivalence class of

DAGs.

X1

. . .

P0

X2

X1 X2 X1 X2

X3

X2 X3 X2 X3 X1 X3 X1 X3

X1 X1 X1 X1 X1X2 X3 X3 X3 X3 X3X2 X2 X2 X2

15�10�9����

Figure 5.2: An EC graph for variables X = {X1, X2, X3}.

In an EC graph, each node represents a CPDAG P , which denotes a set of Markov-

equivalent DAGsG. Intuitively, we can obtain an EC graph by aggregating the Markov-

equivalent DAGs of a BN graph into a single node, and labeling the resulting node with

the corresponding CPDAG P .

Recall that in a BN graph, a directed edgeGi
XU−−→ Gj indicates that DAGGj can be

obtained from DAG Gi by adding to Gi a leaf node X with parents U. In an EC graph,

we have a corresponding directed edge Pi
XU−−→ Pj . Here, the CPDAG Pi represents the

equivalence class class(Pi), containing DAGs Gi. We can view the edge as adding a

leaf node X with parents U to each of the DAGs Gi ∈ class(Pi). First, we observe that

any of the resulting DAGs Gj must belong to the same equivalence class Pj .

Proposition 1. Let Pi denote a CPDAG and let Gi denote a DAG in class(Pi). If we

add a new leaf Xi with parents Ui to the DAGs Gi, the resulting DAGs Gj belong to
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the same equivalence class Pj .

Figure 5.2 illustrates an EC graph over variables X = {X1, X2, X3}. Consider,

as an example, the CPDAG X1 − X2, which corresponds to the Markov-equivalent

DAGs X1 → X2 and X1 ← X2. Adding a new leaf X3 with parent X2, we obtain

X1 → X2 → X3 and X1 ← X2 → X3, with CPDAG X1 − X2 − X3. We remark

that there is a third DAG X1 ← X2 ← X3 in this equivalence class, which we did not

obtain here since X3 is not a leaf. This DAG is obtained on a different path of the EC

graph, where we add X1 as a leaf to the CPDAG X2 −X3.

Proposition 2. For a given CPDAG P , and any DAG G ∈ class(P ), there exists a path

that constructs G from root P0 to node P in the EC graph.

We remark that when we traverse an edge Pi
XU−−→ Pj , we add a new leaf to the

DAGs of class(Pi), yet the new edges in the resulting CPDAG Pj may be directed or

undirected. Thus, to traverse the EC graph, we need to a way to orient the new edges

from parents U to leaf X in CPDAG Pj . Previously, [Chi95] proposed a polytime

algorithm that, given a DAG G, finds the corresponding CPDAG P . In principle, we

could construct Pj from Pi by (1) picking some DAG Gi ∈ class(Pi) (2) adding a new

leaf X with parents U, and then (3) running Chickering’s algorithm on the resulting

DAG Gj , which is in class(Pj). We next observe that Chickering’s algorithm can be

run incrementally, by labeling only the new edges from U to X .

Proposition 3. Consider a DAG Gi, its CPDAG Pi, and a DAG Gj obtained by adding

a new leaf X to DAG Gi, with parents U. The CPDAG Pj for Gj can be obtained

locally from Pi, by applying Algorithm 2.

Given a DAG G, Chickering’s original algorithm traverses the nodes of a DAG

G, in topological order, and labels the edges incoming a node as either compelled or

reversible. Hence, running the same algorithm on a DAG Gj will first obtain the sub-

CPDAG Pi. The edges incoming to the new leaf X can then be labeled by running an

additional iteration of Chickering’s algorithm, which is given by Algorithm 2.
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Algorithm 2: LABELEDGES(P,XU)
Data: CPDAG P , new variable X with parents U in P .

Result: Label edges from X to U as compelled or reversible.

begin

label each edge between X and U as unknown

let G be any DAG in class(P )

while there exists an unknown edge do
let X ′ −X be the unknown edge with the greatest X ′ in a topological ordering

of G

foreach X ′′ → X ′ ∈ P do

if X ′′ 6∈ U then label all unknown Y −X incident to X as compelled to X

else label X ′′ −X as compelled to X

if ∃Z ∈ U s.t. Z → X ′ /∈ G then label all unknown Y −X incident to X as

compelled to X

else label all unknown Y −X incident to X as reversible

As in the BN graph, each edge Pi−1
XiUi−−−→ Pi is associated with a cost, score(Gi |

D) − score(Gi−2 | D), where DAG Gi is in class(Pi) and DAG Gi−1 is in class(Pi−1).

Hence, the CPDAG Pn that has the shortest path from the root P0 is an optimal equiva-

lence class, whose DAGs have the lowest cost.

Finally, we note that since the EC graph can be viewed as a search space obtained

aggregating the Markov-equivalent DAGs of a BN graph into a single node, a heuristic

function is admissible in the EC graph if and only if it is admissible in the BN graph.

As a result, heuristic functions design and caching used for the BN graph, as discussed

in Section 3, and also be exploited by the EC graph. Similarly, partial-expansion A*

search, discussed in Section 3, can also be incorporated.
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5.3.2 EC Trees

For heuristic search methods such as the A* search, the structure of the search space

has a significant impact on the efficiency of search. Consider the EC graph in particular.

A CPDAG node P can be reached from the root P0 via possibly many paths. Further,

each path has the same cost, as Markov-equivalent DAGs have the same score. Thus,

after we visit a node for the first time, we do not care about other paths that reach the

same node.

This redundancy introduces significant memory and computational overheads to the

A* search. Thus, we propose a canonization of the EC graph, that ensures that every

CPDAG node P can be reached by a unique, canonical path. Here, each node has a

single parent, and hence, we obtain a search tree.2 Hence, we refer to the canonized

space as the EC tree. Figure 5.3 depicts an EC tree over variables X = {X1, X2, X3}.

X1

. . .

P0

X2

X1 X2 X1 X2

X3

X2 X3 X2 X3 X1 X3 X1 X3

X1 X1 X1 X1 X1X2 X3 X3 X3 X3 X3X2 X2 X2 X2

15�11�16����

Figure 5.3: An EC tree for variables X = {X1, X2, X3}.

Consider any path P0
X1U1−−−→ · · · XiUi−−−→ Pi from the root node P0 to a node Pi,

in the EC graph, which corresponds to an ordering of nodes, πi = 〈X1, . . . , Xi〉. To

define a canonical path from P0 to Pi, it thus suffices to define a canonical ordering of
2In more technical terms, the savings that we obtain are: (1) duplicate detection is no longer needed,

i.e., the closed list, and (2) fewer edges in the search space implies smaller a branching factor and fewer
heuristic function evaluations.
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the variables of Pi. In turn, to define an EC tree from an EC graph, it suffices to (1)

associate each CPDAG node P with a canonical ordering π, and (2) show which edges

of the EC graph remain in the EC tree, with respect to the canonical orderings.

First, let us define a canonical ordering for a given DAG G: let us use the largest

topological ordering that is consistent with a given DAG G, but in reverse lexico-

graphic order, where the right-most element in an order is the most significant.3 We

can construct such an order, from right-to-left, by iteratively removing the leaf with the

largest index. For example, the DAG X1 ← X2 → X3 has two topological orderings:

πa = 〈X2, X1, X3〉 and πb = 〈X2, X3, X1〉, where πa is larger in reverse lexicographic

order, i.e., we remove X3 first, then X1, and then X2.

We now define a canonical ordering for a CPDAG P : let us use the largest canonical

ordering of its Markov-equivalent DAGs G ∈ class(P ). Consider the CPDAG X1 −

X2 −X3, and its Markov-equivalent DAGs:

X1 → X2 → X3 X1 ← X2 ← X3 X1 ← X2 → X3

with the canonical orderings: πa = 〈X1, X2, X3〉, πb = 〈X3, X2, X1〉, and πc =

〈X2, X1, X3〉. Among these DAGs, ordering πa is the largest, and is thus the canonical

ordering of CPDAG X1 −X2 −X3.

Given a CPDAG P , we can construct its canonical ordering π, again from right-

to-left, by iteratively removing the largest leaf among the Markov-equivalent DAGs in

class(P ). As for obtaining the structure of the EC tree, this iterative process provides

a local condition for determining whether an edge Pi−1
XiUi−−−→ Pi belongs in the EC

tree. That is, variable Xi must be the largest leaf among the Markov-equivalent DAGs

in class(Pi). This is summarized by the following result.

Proposition 4. Let πi−1 be the canonical ordering of CPDAG Pi−1, and let Pi be the

CPDAG found by adding leaf Xi with parents Ui to the DAGs Gi−1 ∈ class(Pi−1).

3Here, we assume comparisons are made based on the natural ordering of variables, i.e., by index.

52



In this case, πi = 〈πi−1, Xi〉 is the canonical ordering of Pi if and only if Xi has the

largest index among all leaves in DAGs Gi ∈ class(Pi).

It remains to show how to identify, for a given CPDAG P , the largest leaf among

the Markov-equivalent DAGs in class(P ). Consider the following CPDAG:

X1

X2 X4

X3

We note that P cannot be obtained by appending X4 as a leaf. If it could, then the

resulting DAG would have a new v-structure X2 → X4 ← X3, since there is no edge

connecting X2 and X3 (i.e., such a DAG would not belong in the equivalence class of

P ). As we cannot append X4 as a leaf, it cannot be the last variable of any topological

ordering of a DAG in class(P ). However, there is a DAG in class(P ) where X3 is a

leaf. The canonical ordering for P thus mentions X3 last.

For a given CPDAG Pi, the following theorem allows us to enumerate all leaves

among the DAGs in class(Pi), allowing us to easily test whether a node X appears as

the largest leaf in some DAG of a given CPDAG P . Algorithm 3 further provides a

polytime procedure for this test.

Theorem 5. Consider a CPDAG P and variable X , with no compelled edges directed

away from X . Let set S be the nodes adjacent to X through a reversible edge. In this

case, there exists a DAG G ∈ class(P ) where X is a leaf if and only if nodes S form a

clique in P .

Finally, we remark that the only difference between the EC tree and the EC graph

is that each node in the EC tree can be reached through exactly one path, compared
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Algorithm 3: VALIDEDGE(Pi−1, XiUi)
Data: CPDAG Pi−1 and candidate family XiUi

Result: true if Pi−1
XiUi−−−→ Pi is valid, false otherwise

begin

let Pi be the CPDAG obtained by appending Xi to Pi−1 (using Algorithm2)

foreach node Xk in Pi where k > i do

if there exists compelled edge Y ← Xk then

continue

let S = {Y | Y −Xk is reversible in P}

if variables in S form a clique then

return false

return true

to multiple paths in the EC graph. This distinction results in memory and computa-

tional savings for A* search, as discussed earlier. Otherwise, A* search in the EC tree

proceeds in the same manner as in the EC graph. In particular, a heuristic function is

admissible in the EC tree if and only if it is admissible in the EC graph.

5.4 Experiments

We compare our approach with the recently proposed algorithm for finding the k-best

equivalence classes of Bayesian networks, called KBESTEC,4 based on an augmented

order graph and dynamic programming [CT14].

Our experiments were performed on a 2.67GHz Intel Xeon X5650 CPU. We use

real-world datasets from the UCI ML Repository [BL13], and assume BDeu scores

with an equivalent sample size of 1. We adapt the URLEARNING structure learning

4Open-source, available at web.cs.iastate.edu/˜jtian/Software/
AAAI-14-yetian/KBestEC.htm
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benchmark 10-best 100-best 1, 000-best

EC tree KBESTEC EC tree KBESTEC EC tree KBESTEC

name n N t m t m t m t m t m t m

wine 14 178 0.05 1 15.35 2 0.15 1 270.14 2 0.86 1 5,569.34 4

letter 17 20,000 18.11 1 120.26 2 48.31 1 2,559.38 2 81.72 1 ×t

voting 17 435 1.89 1 141.66 2 2.11 1 3,289.75 2 6.67 1 ×t

zoo 17 101 2.89 1 139.37 2 3.59 1 3,206.18 2 6.03 1 ×t

statlog 19 752 29.28 1 618.73 2 41.99 1 ×t 43.89 1 ×t

hepatitis 20 126 36.33 1 1,328.27 2 63.37 1 ×t 101.05 2 ×t

imports 22 205 174.84 4 ×s 223.78 4 ×s 224.11 4 ×s

parkinsons 23 195 897.81 8 ×t 897.97 8 ×t 898.68 8 ×t

Table 5.1: The EC tree and KBESTEC: A comparison of the Time t (in seconds) and memory

m (in GBs) used. ×t denotes an out-of-time (7,200s), and ×s denotes a segmentation fault. n

is the number of variables in the dataset, and N is the size of the dataset.

package of [YM13] and [FYM14],5 We pre-compute the BDeu scores, which are fed

as input into into each system evaluated. All timing results are averages over 10 runs.

For each approach, we enumerate the 10-best, 100-best and 1, 000-best CPDAGs,

with a 7,200 second limit on running time. To analyze memory usage, we incrementally

increased the amount of memory available to each system (from 1GB, 2GB, 4GB, to

8GB), and recorded the smallest limit that allowed each system to finish.

Table 5.1 summarizes our results for A* search on the EC tree, and for the order-

graph-based dynamic programming approach of KBESTEC. First, we observe that on

instances where both the A* search and KBESTEC are successful, A* search is con-

sistently more efficient, both in terms of computation time and in memory usage. In

terms of time, A* search can be orders of magnitude more efficient: for example, in

the zoo dataset, the A* search is over 893 times faster than KBESTEC. We further ob-

serve that the A* search is capable of scaling to larger networks, and to larger values

5Open-source, available at urlearning.org.
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of k. In fact, KBESTEC appears to scale super-linearly with k, but A* search appears

to scale sub-linearly with respect to k. This trend can in part be attributed to the more

exhaustive nature of dynamic programming, which maintains all partial solutions that

can potentially be completed to a k-th best solution.

benchmark 10-best 100-best 1, 000-best
name n Th TA∗ Th TA∗ Th TA∗

adult 14 0.25 0.01 0.49 0.05 0.63 0.56
wine 14 0.03 0.02 0.05 0.10 0.09 0.77
nltcs 16 3.35 0.01 5.44 0.12 8.08 1.50
letter 17 18.07 0.04 47.74 0.57 75.54 6.18
msnbc 17 145.64 0.07 152.87 0.18 154.61 0.46
voting 17 1.88 0.01 1.92 0.19 4.16 2.51
zoo 17 2.88 0.01 3.55 0.04 5.83 0.20

statlog 19 29.27 0.01 41.94 0.05 43.49 0.40
hepatitis 20 36.24 0.09 62.79 0.58 96.82 4.23
imports 22 174.82 0.02 223.71 0.07 223.81 0.30

parkinsons 23 897.74 0.07 897.82 0.15 898.25 0.43

Table 5.2: The EC Tree: The Time Th to compute the heuristic function and the time TA∗ to

traverse the EC tree with A* (in seconds).

To gain more insight about the computational nature of A* search on the EC tree,

consider Tables 5.2 & 5.3, which includes 3 additional datasets, adult,nltcs, and msnbc6.

In Table 5.2, we consider the amount of time Th spent in evaluating the heuristic func-

tion, i.e., invoking our oracle, and the time TA∗ spent traversing the EC tree in A*

search.7 Table 5.3 further reports the number of nodes generated, i.e., inserted into the

open list, expanded, and re-expanded by partial-expansion in A* search. We also re-

port the number of oracle invocations. First, observe that the A* search spends almost

all of its time in evaluating the heuristic function, which we already know is relatively

expensive. Next, observe that the the number of nodes generated is relatively low. This

suggests that the oracle is powerful enough to efficiently navigate the search space of

6We were unable to generate score files for these datasets using KBESTEC
7We note that t = Th + TA∗, with the total time t corresponding to those reported in Table 5.1.
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benchmark 10-best 100-best 1, 000-best

name n gen. exp. re-exp. invoke gen. exp. re-exp. invoke gen. exp. re-exp. invoke

adult 14 243 220 630 67 2,045 1,865 12,355 265 15,072 13,574 163,462 465

wine 14 2,205 1,874 0 39 12,691 10,256 10,156 206 68,403 56,612 111,224 358

nltcs 16 252 249 2,151 287 1,407 1,389 27,069 689 11,431 11,193 356,755 1363

letter 17 377 377 2,936 324 2,705 2,704 59,915 1,562 16,057 15,979 659,076 3,373

msnbc 17 555 555 5,450 1,147 969 965 22,490 1,269 2,662 2,561 78,050 1,313

voting 17 1,617 1,419 0 147 15,971 11,613 23,026 413 114,498 106,378 421,512 1,402

zoo 17 192 151 0 166 1,978 1,029 929 377 9,330 8,812 7,812 864

statlog 19 393 369 0 212 3,379 3,065 2,965 444 26,698 24,063 46,126 685

hepatitis 20 2,431 2,281 0 667 17,875 15,852 15,752 2,191 121,022 99,956 197912 6423

imports 22 666 270 0 103 4181 2,034 0 244 21,544 14,064 0 259

parkinsons 23 836 524 0 214 4,222 2,616 0 237 26,390 17,134 0 318

Table 5.3: The EC tree: (1) The number of generated nodes. (2) The number of expanded

nodes. (3) The number of re-expanded nodes (in partial-expansion A*). (4) The number of

times the oracle is invoked to evaluate the heuristic function.

the EC tree. Further, we observe that the number of oracle invocations is also low,

which is further minimized by caching and inferring heuristic values.

We further count the equivalent number of DAGs represented by the k-best CPDAGs,

in Table 5.4. Previously, [GP01] observed that when the number of variables is small

(not greater than 10), a CPDAG represents on average 3.7 DAGs. Here, we observe

that for a moderate number of variables, a CPDAG may represent a much larger num-

ber of DAGs. That is, when we learn equivalence classes, the data may prefer CPDAGs

with many reversible edges, deviating from the average case. For example, the larger

datasets, i.e., larger N tend to have equivalence classes that contain many more DAGs.

When we compare the enumeration of the 10-best, 100-best and 1, 000-best equiva-

lence classes, with the enumeration of an equivalent number of DAGs, using the system

in Section 3, we can again see orders-of-magnitude improvements in efficiency; see Ta-

ble 5.5. We observe similar gains by the EC tree, compared to the BN graph, in terms

of nodes explored by A* search, as would be expected; see Table 5.6.
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benchmark n N 10-best 100-best 1, 000-best

adult 14 30,162 68 1,399 15,572
wine 14 178 60 448 4,142
nltcs 16 16,181 3,324 27,798 248,476
letter 17 20,000 884 15,796 569,429
msnbc 17 291,326 231,840 1,720,560 16,921,080
voting 17 435 30 413 3,671
zoo 17 101 52 377 5,464

statlog 19 752 44 444 4,403
hepatitis 20 126 89 892 8,919
imports 22 205 12 136 1,493

parkinsons 23 195 132 476 3,444

Table 5.4: Number of DAGs in the k-best equivalent classes.

benchmark 10-best EC 100-best EC 1, 000-best EC
EC tree BN graph EC tree BN graph EC tree BN graph

name n N t m t m t m t m t m t m

adult 14 30162 0.26 1 0.47 1 0.54 1 1.49 1 1.19 1 11.87 1
wine 14 178 0.05 1 0.09 1 0.15 1 0.33 1 0.86 1 3.89 1
nltcs 16 16181 3.36 1 11.34 1 5.56 1 46.91 1 9.58 1 1,126.05 4
letter 17 20,000 18.11 1 20.68 1 48.31 1 84.07 1 81.72 1 4,666.29 4
msnbc 17 291,326 145.71 1 896.45 2 153.05 1 ×t 155.07 1 ×t
voting 17 435 1.89 1 2.86 1 2.11 1 3.70 1 6.67 1 17.89 1
zoo 17 101 2.89 1 5.09 1 3.59 1 5.85 1 6.03 1 10.34 1

statlog 19 752 29.28 1 51.89 1 41.99 1 73.77 1 43.89 1 76.99 1
hepatitis 20 126 36.33 1 86.05 2 63.37 1 176.83 2 101.05 2 284.46 4
imports 22 205 174.84 4 455.65 8 223.78 4 603.68 8 224.11 4 604.14 8

parkinsons 23 195 897.81 8 779.90 16 897.97 8 1,034.50 16 898.68 8 1,450.46 16

Table 5.5: The EC Tree and the BN graph: A comparison of the Time t (in seconds) and

memory m (in GBs) used. n is the number of variables in the dataset, and N is the size of the

dataset. A ×t corresponds to an out-of-time (7,200s).
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benchmark 10-best EC 100-best EC 1, 000-best EC

name n gen. exp. re-exp. invoke gen. exp. re-exp. invoke gen. exp. re-exp. invoke

adult 14 1,672 1,352 3,852 173 30,619 27,015 179,312 634 245,687 215,753 2,602,353 1,050

wine 14 8,203 3,714 0 107 44,209 23,572 23,124 274 461,799 254,154 500,024 595

nltcs 16 56,719 53,572 452,232 633 326,813 314,528 6,021,330 1,372 2,727,808 2,605,978 82,512,570 2,180

letter 17 16,296 16,227 153,430 678 230,931 230,931 4,948,105 2,726 5,443,620 5,424,968 213,643,716 4,963

msnbc 17 1,288,695 1,288,339 10,564,990 2,695 ×t ×t

voting 17 5314 4,364 346 147 72,658 50,004 99,182 413 114,498 106378 421512 3965

zoo 17 1049 704 0 330 12,003 3,875 3,498 539 53,562 47,162 41,698 1695

statlog 19 1,915 1,558 0 212 19,653 12,847 12,403 628 153048 101570 194334 1029

hepatitis 20 18,726 15470 0 4,645 167,033 105,997 105,105 13,223 1,378,039 720,381 1422,924 31,854

imports 22 1023 295 0 150 8,041 2,724 0 404 41,007 21475 0 426

parkinsons 23 8,233 2,732 0 290 32,136 10,189 0 652 151,200 58,802 0 1273

Table 5.6: The BN graph, for enumerating the DAGs in k-best EC: (1) The number of generated

nodes. (2) The number of expanded nodes. (3) The number of re-expanded nodes (in partial-

expansion A*). (4) The number of times the oracle is invoked to evaluate the heuristic function.
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CHAPTER 6

Learning with Ancestral Constraints

In this chapter, we consider ancestral constraints, which are non-decomposable.

Ancestral constraints are important practically as they allow one to assert direct or in-

direct cause-and-effect relationships, or lack thereof, between random variables. More-

over, we show that certain decomposable constraints can be inferred from the ancestral

constraints, and can be exploited to tighten the heuristic function. Empirically, our ap-

proach is orders of magnitude more efficient than the state-of-the-art, which is based in

integer linear programming. This chapter is based in [CSC16].

6.1 Introduction

Bayesian networks learned from data are broadly used for classification, clustering, fea-

ture selection, and to determine associations and dependencies between random vari-

ables, in addition to discovering causes and effects; see, e.g., [Dar09, KF09, Mur12].

In this chapter, we consider the task of learning Bayesian networks optimally, sub-

ject to background knowledge in the form of ancestral constraints. Such constraints

are important practically as they allow one to assert direct or indirect cause-and-effect

relationships (or lack thereof) between random variables. Moreover, one would intu-

itively expect that their presence should improve the efficiency of the learning process

as they reduce the size of the search space. However, nearly all mainstream approaches

for optimal structure learning make a fundamental assumption, that the scoring func-
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tion is decomposable (i.e., the prior and likelihood are decomposable). This in turn

limits their ability to integrate ancestral constraints, which are non-decomposable. In

particular, such approaches only support structure-modular constraints such as the pres-

ence or absence of edges, or order-modular constraints such as pairwise constraints on

topological orderings; see, e.g., [KS04, PK13].

In this chapter, we show how to effectively incorporate non-decomposable con-

straints into the structure learning approach discussed in earlier chapters, which makes

use of an oracle to evaluate the heuristic function in A* search. In particular, we con-

sider learning with ancestral constraints, and inferring decomposable constraints from

ancestral constraints to empower the oracle. In principle, structure learning approaches

based on integer linear programming (ILP) can also incorporate ancestral constraints

(as well as other non-decomposable constraints) [JSG10, BC15].1 We empirically eval-

uate the proposed approach against those based on ILP, showing orders of magnitude

improvements.

This chapter is organized the follows. In Section 6.2, we discuss scoring Bayesian

network structure with non-decomposable constraints. In Section 6.3, we provide a

review on ancestral constraints. In Section 6.4, we show how to learn optimal Bayesian

network structures with ancestral constraints using our EC tree. In Section 6.5, we

show how to project ancestral constraints, which are non-decomposable, to infer edge

and ordering constraints, which are decomposable. Finally, we evaluate our approach

empirically in Section 6.6.

1To our knowledge, however, the effectiveness of the ILP approach has not been previously evaluated,
in terms of their efficacy in structure learning with ancestral constraints.
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6.2 Scoring with Non-Decomposable Constraints

When the background knowledge P is given in the form of constraints, any Bayesian

network structure that violates the constraints is given a score of infinity. That is,

score(G | D,P) =


score(G | D), if G satisfies the constraints in P .

∞, otherwise.
(6.1)

As discussed in Section 3.3.1, in principle, the BN graph can find an optimal

Bayesian network structure, when non-decomposable scores are used, as long as an

admissible heuristic function can be designed.

In this chapter, we assume the structure scores with respect to data, i.e., score(G |

D), are the typical scores that observe Markov equivalence; BDeu and MDL scores fall

into this category. Consequently, more compact search space that assumes Markov-

equivalent scores, such as the EC tree discussed in Section 5, can be used to learn an

optimal network structure.

Finally, we note that structure learning approaches based on ILP can enforce non-

decomposable constraints, when they can be encoded as linear constraints [Cus08].

However, to our knowledge, these approaches have not been evaluated for learning

structures with ancestral constraints. We provide such an empirical evaluation in Sec-

tion 6.6.2

6.3 Ancestral Constraints

An ancestral constraint specifies a relation between two variables X and Y in a DAG

G. If X is an ancestor of Y , then there is a directed path connecting X to Y in G. If

X is not an ancestor of Y , then there is no such path. Ancestral constraints can be used

2We also make note of [BT12], which uses ancestral constraints, i.e., path constraints, for constraint-
based learning methods, such as the PC algorithm. [BT13] further proposes a prior based on path beliefs,
i.e., soft constraints, and evaluated using greedy local search.
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to express background knowledge on the known causal relations between variables. In

diagnosis, for example, we may know that certain diseases, i.e., causes, are ancestors

of certain symptoms, i.e., effects.

When X is an ancestor of Y , we have a positive ancestral constraint, denoted X  

Y . When X is not an ancestor of Y , we have a negative ancestral constraint, denoted

X 6 Y . In this case, there is no directed path from X to Y , but there may still be a

directed path from Y to X . Positive ancestral constraints are transitive, i.e., if X  Y

and Y  Z then X  Z. Negative ancestral constraints are not transitive. For

example, in the DAG

X → Z Y

we have X 6 Y and Y 6 Z but not X 6 Z.

Ancestral constraints are non-decomposable in the following sense. We cannot gen-

erally check whether an ancestral constraint is satisfied or violated by independently

checking the parents of each variable. To see this, assume the structure scores with

respect to data, i.e., score(G | D), are decomposable, and suppose we are searching

for an optimal DAG that is compatible with ordering 〈X1, X2, X3〉, using the following

family scores:

X U score(XU | D)

X1 {} 1

X2 {}, {X1} 1, 2

X3 {}, {X1}, {X2}, {X1, X2} 10, 10, 1, 10

The optimal DAG in this case is

X1 X2 → X3

If we assert the ancestral constraint X1  X3, then the optimal DAG is

X1 → X2 → X3
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Yet, we cannot enforce this ancestral constraints using independent, local constraints on

the parents that each variable can take. In particular, the choice of parents for variable

X2 and the choice of parents for variable X3 will jointly determine whether X1 is an

ancestor of X3. Hence, the K2 algorithm and approaches based on the order graph

cannot enforce ancestral constraints.

These approaches, however, can enforce decomposable constraints, such as the

presence or absence of an edge U → X , or a limit on the size of a familyXU. Interest-

ingly, one can infer, or project, some decomposable constraints from non-decomposable

ones. We will discuss this technique extensively, showing how it can lead to significant

results.

6.4 EC Trees and Ancestral Constraints

A DAG G satisfies a set of ancestral constraints A, where both are over the same set of

variables, if and only if the DAG G satisfies each constraint inA. Moreover, a CPDAG

P satisfies A iff there exists a DAG G ∈ class(P ) that satisfies A. For example,

CPDAG X1 −X2 and CPDAG X2 X3 both satisfy the constraint X1  X2.

We enforce ancestral constraints by pruning a CPDAG node P from an EC tree

when P does not satisfy the constraints A. Satisfaction is checked as follows. First,

consider an ancestral constraint X1 6 X2 and a CPDAG P containing a directed

path from X1 to X2. This CPDAG violates the given constraint, as every structure

in class(P ) contains a path from X1 to X2. Next, consider an ancestral constraint

X1  X2 and a CPDAG P with no partially directed paths from X1 to X2, i.e., paths

whose directed edges are oriented towards X2, such as X1 → X3 −X2. This CPDAG

also violates the given constraint, as no structure in class(P ) contains a path from X1 to

X2. Given a CPDAG P , we first test for these two cases, which can be done efficiently.

If these tests are inconclusive, we exhaustively enumerate the structures of class(P ), to

check if any satisfies the given constraints. If not, we can prune P and its descendants
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from the EC tree. The soundness of this pruning step is due to the following.

Theorem 6. In an EC tree, a CPDAG P satisfies ancestral constraintsA, both over the

same set of variables X, iff its descendants satisfy A.

6.5 Projecting Constraints

BN graphs and EC trees are expressive enough to support structure learning with non-

decomposable constraints such as ancestral constraints. Order graphs, in contrast, do

not directly support ancestral constraints, as we discussed previously. However, order

graphs support edge constraints that enforce the presence or absence of edges, and pair-

wise constraints on topological orderings. In this section, we show how one can project

ancestral constraints onto edge and ordering constraints. That is, we show how one

can identify all edge and ordering constraints which are implied by a set of ancestral

constraints. The projected constraints are later employed in our experiments to improve

the efficiency of structure learning. In particular, recall that our approach to structure

learning uses a heuristic function which is obtained from an order-graph system for op-

timal structure learning (the oracle). We tighten this heuristic by passing the projected

edge and ordering constraints to the order-graph system, leading to an overall improved

efficiency of our structure learning approach.

6.5.1 More on Ancestral Constraints

We first consider some properties of ancestral constraints, which we need for our

projection algorithm. We consider constraints on DAGs over a set of nodes that we

leave implicit in our notation. We consider both positive ancestral constraints X  

Y and negative ancestral constraints X 6 Y . We let A denote a set of ancestral

constraints, which may include positive and negative constraints. We further let G(A)
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denote the set of DAGs G over the variables X that satisfy all ancestral constraints in

the set A.

Given a set of ancestral constraints A, we say that A entails a positive ancestral

constraint X  Y iff G(A) ⊆ G(X  Y ). Equivalently, we have that

G(A) = G(A) ∩ G(X  Y ) = G(A ∪ {X  Y }).

A set of ancestral constraintsA can similarly entail negative ancestral constraints X 6 

Y . If the set A entails another ancestral constraint not in A, we can add that constraint

to A without changing the set of DAGs G(A) that the constraints represent. Hence,

we can obtain a maximal set of ancestral constraints A found by adding any ancestral

constraint entailed by it.

The following lemma characterizes every positive ancestral constraint that can be

entailed by a set A.

Lemma 1. Given a set of ancestral constraints A, then A entails a positive ancestral

constraint X  Y iff either X  Y is contained in A or there exists another variable

Z such that A entails both X  Z and Z  Y .

The above Lemma is based on the transitivity of ancestral relations. Correspond-

ingly, when we start with a set of positive ancestral constraints A, the maximal set that

one obtains from A is the transitive closure of A.3

The next definition shall simplify the discussions to follow.

Definition 1. For a given set of ancestral constraints A and a given variable X , let X

and X denote the set of entailed ancestors and descendants, both including X:

X
def
= {Z | A entails Z  X} ∪ {X}

X
def
= {Z | A entails X  Z} ∪ {X}.

3The transitive closure of a DAG G is another DAG G+ where there is an edge X → Y in G+ iff X
is an ancestor of Y in G.
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Further, for variables X and Y , let X  Y and X  Y denote the sets of ancestral

relations whose elements would individually imply X  Y and X 6 Y , respectively:

X  Y =
def
= {X ′  Y ′ | X ′ ∈ X and Y ′ ∈ Y }

X 6 Y =
def
= {X ′ 6 Y ′ | X ′ ∈ X and Y ′ ∈ Y }.

The following lemma characterizes every negative ancestral constraint that can be

entailed by a set A.

Lemma 2. Given a set of ancestral constraints A, then A entails a negative ancestral

constraint X 6 Y iff A entails a constraint in Y  X or X 6 Y .

Intuitively, this theorem says that an ancestral relation X  Y is excluded by a

set of ancestral constraints A iff either (1) it would create a directed cycle through

Y  X ,4 or (2) it would lead to violating a negative ancestral constraint X 6 Y .5

Lemmas 1 & 2 can be used to identify a maximal set of ancestral constraints A,

e.g., by iteratively searching for new constraints X  Y and X 6 Y , by looking

for existing constraints in A that entail them. As an example, consider DAGs over the

variables X, Y and Z, and two initial ancestral constraints Y  Z and X 6 Z. First,

we can infer a new negative constraint Z 6 Y from Y  Z (otherwise, there would

be a directed cycle). Next, suppose that X  Y ; since Y  Z, this contradicts the

existing constraint X 6 Z, hence X 6 Y . In this case, we can infer two new negative

constraints (via Lemma 2), and no new positive constraints, leading to a maximal set of

four ancestral constraints.

6.5.2 Edge Constraints

We first consider (decomposable) constraints on the presence of an edge, which we

denote by X → Y , or the absence of an edge, which we denote by X 6→ Y . We
4If there is a sequence of constraints Y  Y ′  X ′  X, where Y ′ ∈ Y and X ′ ∈ X , then another

constraint X  Y would create a directed cycle.
5If we have constraints X ′  X and Y  Y ′ where X ′ 6 Y ′, the additional constraint X  Y

would imply X ′  Y ′.
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refer to edge presence constraints as positive constraints and edge absence constraints

as negative constraints. We let E denote a set of edge constraints, which may include

positive and negative constraints. We further let G(E) denote the set of DAGs G that

satisfy all edge constraints E . A set of ancestral constraints A entails a positive edge

constraint X → Y iff G(A) ⊆ G(X → Y ), and it entails a negative edge constraint

X 6→ Y iff G(A) ⊆ G(X 6→ Y ).

Our goal is to find a maximal set of edge constraints E that exclude as many DAGs

as possible, without excluding any DAGs in G(A). It suffices to find: (1) all edges

X → Y appearing in all DAGs G ∈ G(A) (all positive constraints), and (2) all edges

X → Y that appear in none of the DAGs G ∈ G(A) (all negative constraints).

As an example, consider all DAGs over the variables X, Y and Z which satisfy the

two ancestral constraints X 6 Z and Y  Z. Of the 25 DAGs over three variables,

there are four DAGs satisfying these constraints:

Y Z X Y Z X Y Z X Y Z X

First, we note that no DAG above contains the edge X → Z, since this would immedi-

ately violate the constraint X 6 Z. Next, no DAG above contains the edge X → Y .

Suppose this edge appeared; since Y  Z, we can infer X  Z, which contradicts the

existing constraint X 6 Z. Hence, we can infer the negative edge constraint X 6→ Y .

Finally, no DAG above contains the edge Z → Y , since this would lead to a directed

cycle with the constraint Y  Z. The following theorem characterizes the cases where

negative edge constraints can be inferred from a set of ancestral constraints.

Theorem 7. Given a set of ancestral constraints A, then A entails the negative edge

constraint X 6→ Y iff A entails a constraint in X 6 Y .

Intuitively, this theorem says that an edge X → Y is excluded by a set of ancestral

constraints A iff it would lead to violating a negative ancestral constraint X 6 Y .

Note that this also excludes an edge X → Y that would create a directed cycle through

Y  X (since Y  X already implies X 6 Y , via Lemma 2).
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In our earlier example, we note that all DAGs contained the edge Y → Z. Suppose

for contradiction that this edge was not required, and some DAG did not have this edge.

The only other possible path from Y to Z must go through X . However, we have the

constraint X 6 Z and hence no path from Y to Z may go through X . Thus, to satisfy

Y  Z, we must have the edge Y → Z. The following theorem characterizes the cases

where positive edge constraints can be inferred from a set of ancestral constraints.

Theorem 8. Given a set of ancestral constraints A, then A entails the positive edge

constraint X → Y iff A entails X  Y and for all Z 6∈ X ∪ Y , the set A entails a

constraint in either X 6 Z or Z 6 Y .

Intuitively, this theorem says that if X must be an ancestor of Y , then a direct path

must connect X to Y (i.e., a positive edge constraint X → Y ) iff there is no other

indirect path X  Z  Y through any other node Z.

6.5.3 Topological Ordering Constraints

We next consider constraints on the topological orderings of a DAG. An ordering sat-

isfies a constraint X < Y iff X appears before Y in the ordering. Further, an ordering

constraint X < Y is compatible with a DAG G iff there exists a topological ordering

of DAG G that satisfies the constraint X < Y . The negation of an ordering constraint

X < Y is the ordering constraint Y < X . A given ordering satisfies either X < Y or

Y < X , but not both at the same time. A DAG G may be compatible with both X < Y

and Y < X through two different topological orderings. We let O denote a set of or-

dering constraints. We further let G(O) denote the set of DAGs G that are compatible

with each ordering constraint in O.

Our goal is to infer ordering constraints from ancestral constraints A. In particular,

we want a maximal set of ordering constraints O such that G(A) ⊆ G(O). This task is

more subtle than the one for edge constraints.

For example, consider the set of ancestral constraints A = {Z 6 Y,X 6 Z}.
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We can infer the ordering constraint Y < Z from the first constraint Z 6 Y , and

Z < X from the second constraint X 6 Z. Assuming both ordering constraints,

we can infer the third ordering constraint Y < X , by transitivity. However, consider

the following DAG G which satisfies A: X → Y Z . This DAG is compatible

with the constraint Y < Z as well as the constraint Z < X , but it is not compati-

ble with the constraint Y < X . Consider the three topological orderings of the DAG

G: 〈X, Y, Z〉, 〈X,Z, Y 〉 and 〈Z,X, Y 〉. The first topological ordering satisfies the first

constraint Y < Z, and the third ordering satisfies the second constraint Z < X . How-

ever, none of the orderings satisfy both ordering constraints at the same time. Hence,

we cannot justify the inference of the third constraint Y < X . More precisely, we

cannot infer both ordering constraints Y < Z and Z < X at the same time, as it would

eliminate all topological orderings of the above DAG.

Consider another example over variables W,X, Y and Z with a (maximal) set of

ancestral constraints: A = {W 6 Z, Y 6 X}. The following DAG G satisfies

A: W → X Y → Z . However, inferring the ordering constraints Z < W and

X < Y from each ancestral constraint of A leads to a cycle in the above DAG: W <

X < Y < Z < W .

Roughly, for a set of ancestral constraints A to imply a set of ordering constraints

O, only enough ordering constraints X < Y are allowed to be inferred from ancestral

constraints Y 6 X , so long as the ordering constraints do not induce a cycle. This idea

is formalized in the following result.

Theorem 9. Let A be a maximal set of ancestral constraints, and let O be a closed set

of ordering constraints. The set O is entailed by A if the constraints of O satisfy the

following two conditions:

1. if X < Y is in O then Y 6 X is in A

2. if X < Y and Z < W are in O, where X, Y, Z and W are distinct, then at least

one of the following constraints are in A:
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X  Y Z  W

X  Z Y  W

X  W Y 6 Z

Theorem 9 implies a greedy (heuristic) procedure for finding a set of ordering

constraints O entailed by ancestral constraints A: add a constraint X < Y for any

Y 6 X ∈ A, as long as it introduces no cycles, such as W < X < Y < Z < W . In

the Appendix, we show to find an optimal set of ordering constraintsO by reduction to

(partial) MaxSAT. This MaxSAT based approach, for projecting ancestral constraints

onto ordering constraints, is evaluated in the next section.

6.6 Experiments

We now empirically evaluate the efficacy of our approach to learning with ancestral

constraints. We start with several standard Bayesian network benchmarks: ALARM,

ANDES, CHILD, CPCS54, and HEPAR2.6 We simulated different structure learning prob-

lems from these networks, by (1) taking a random sub-network N of a given size,7 (2)

simulating a training dataset from N of varying sizes, and (3) simulating a set of an-

cestral constraints of a given size, by randomly selecting ordered pairs (X, Y ), whose

ground-truth ancestral relations in N were used as constraints. In our experiments,

we varied the number of variables in the learning problem (n), the size of the training

dataset (N ), and the percentage of the n(n−1)
2

total ancestral relations that were given

as constraints (p). We report results that were averaged over 50 different datasets: 5

datasets were simulated from each of 2 different sub-networks, which were taken from

each of the 5 original networks mentioned above. Our experiments were run on a

2.67GHz Intel Xeon X5650 CPU. We assumed BDeu scores with an equivalent sample

6The networks used in our experiments are available for download at http://www.bnlearn.
com/bnrepository

7We select random sets of nodes, and all of their ancestors, until we obtain a connected sub-network
of a given size.
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n = 10

N 512 2048 8192
p EC TREE GOBNILP EC TREE GOBNILP EC TREE GOBNILP

0 0.003 ± 0.001 7.808 ± 3.791 0.003 ± 0.001 112.982 ± 8.513 0.003 ± 0.001 19.702 ± 14.419
0.01 0.003 ± 0.001 9.608 ± 4.463 0.003 ± 0.001 15.408 ± 9.816 0.003 ± 0.001 23.579 ± 16.896
0.05 0.003 ± 0.002 11.558 ± 3.437 0.002 ± 0.001 14.541 ± 7.224 0.002 ± 0.001 19.853 ± 12.67
0.1 0.005 ± 0.008 10.742 ± 2.978 0.001 ± 0.001 11.601 ± 4.649 0.001 ± 4 E-4 13.873 ± 6.96
0.25 0.014 ± 0.034 4.035 ± 2.026 0.002 ± 0.004 3.426 ± 1.691 3 E-4 ± 2 E-4 3.367 ± 1.832
0.5 0.004 ± 0.009 0.866 ± 0.535 0.001 ± 0.001 0.705 ± 0.343 1 E-4 ± 4 E-5 0.718 ± 0.342
0.75 3 E-4 ± 4 E-4 0.314 ± 0.144 1 E-4 ± 8 E-5 0.746 ± 0.352 1 E-4 ± 4 E-5 0.304 ± 0.116
1 9 E-5 ± 9 E-6 0.205 ± 0.045 9 E-5 ± 8 E-6 0.310 ± 0.117 9 E-5 ± 3 E-5 0.207 ± 0.053

n = 12

N 512 2048 8192
p EC TREE GOBNILP EC TREE GOBNILP EC TREE GOBNILP

0 0.014 ± 0.007 70.852 ± 30.442 0.015 ± 0.006 98.280 ± 50.842 0.017 ± 0.006 144.214 ± 97.053
0.01 0.010 ± 0.003 73.392 ± 32.285 0.011 ± 0.003 99.460 ± 45.628 0.012 ± 0.002 145.750 ± 98.051
0.05 0.016 ± 0.031 60.157 ± 19.169 0.008 ± 0.006 75.397 ± 29.952 0.274 ± 1.857 95.107 ± 46.408
0.1 0.213 ± 1.282 52.016 ± 11.817 0.098 ± 0.623 53.291 ± 14.243 0.356 ± 2.560 59.415 ± 21.809
0.25 4.910 ± 22.067 22.468 ± 8.335 0.175 ± 0.564 20.880 ± 7.276 0.166 ± 0.618 19.677 ± 6.618
0.5 0.510 ± 2.207 6.106 ± 4.267 0.029 ± 0.083 6.101 ± 4.470 0.008 ± 0.023 5.847 ± 4.319
0.75 0.002 ± 0.004 2.661 ± 0.733 2 E-4 ± 0.001 2.618 ± 0.610 1 E-4 ± 9 E-5 2.570 ± 0.663
1 1 E-4 ± 2 E-5 2.291 ± 0.235 1 E-4 ± 2 E-5 2.302 ± 0.289 1 E-4 ± 2 E-5 2.272 ± 0.256

n = 14

N 512 2048 8192
p EC TREE GOBNILP EC TREE GOBNILP EC TREE GOBNILP

0 0.058 ± 0.039 625.081 ± 178.822 0.065 ± 0.012 839.460 ± 369.335 0.088 ± 0.024 1349.239 ± 986.919
0.01 0.049 ± 0.031 673.003 ± 196.424 0.064 ± 0.036 901.497 ± 426.888 0.077 ± 0.040 1356.628 ± 885.504
0.05 0.078 ± 0.090 243.681 ± 82.484 0.053 ± 0.052 287.449 ± 137.948 0.039 ± 0.024 411.219 ± 271.415
0.1 0.583 ± 2.098 176.500 ± 39.837 1.263 ± 5.843 198.176 ± 69.237 0.029 ± 0.078 218.935 ± 102.884
0.25 55.074 ± 268.997 126.312 ± 42.324 0.905 ± 4.288 112.800 ± 24.027 0.022 ± 0.129 107.435 ± 23.663
0.5 0.483 ± 1.300 73.236 ± 47.896 0.020 ± 0.056 67.291 ± 32.449 0.002 ± 0.008 62.602 ± 32.178
0.75 0.004 ± 0.009 44.074 ± 8.713 0.001 ± 0.001 42.948 ± 8.951 2 E-4 ± 0.001 41.207 ± 7.977
1 2 E-4 ± 6 E-5 39.484 ± 3.736 2 E-4 ± 7 E-5 39.662 ± 4.621 2 E-4 ± 5 E-5 37.775 ± 4.045

Table 6.1: Time t (in seconds) used by the EC tree and and GOBNILP to find optimal Bayesian

networks. n is the number of variables, N is the size of the dataset, and p is the percentage of

the ancestor constraints.
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n = 16

N 512 2048 8192
p t s ∆ t s ∆ t s ∆

0 0.486 ± 0.365 1 12.26 0.582 ± 0.256 1 7.26 0.733 ± 0.326 1 4.64
0.01 0.299 ± 0.196 1 12.56 0.409 ± 0.229 1 7.52 0.544 ± 0.321 1 5.18
0.05 1.709 ± 5.554 1 11.06 0.410 ± 0.695 1 6.42 0.189 ± 0.135 1 3.96
0.1 143.066 ± 784.804 0.98 9.63 4.800 ± 20.404 1 5.08 0.733 ± 4.389 1 2.90
0.25 279.377 ± 1076.302 0.92 6.48 6.428 ± 38.239 0.94 3.17 5.157 ± 30.363 1 0.94
0.5 114.624 ± 455.318 0.98 4.51 27.201 ± 133.496 1 1.80 0.028 ± 0.131 1 0.40
0.75 0.027 ± 0.079 1 2.16 0.001 ± 0.003 1 0.88 0.001 ± 0.001 1 0.20
1 2 E-4 ± 7 E-5 1 0.84 3 E-4 ± 1 E-4 1 0.60 3 E-4 ± 6 E-5 1 0.20

n = 18

N 512 2048 8192
p t s ∆ t s ∆ t s ∆

0 2.250 ± 1.302 1 16.74 2.780 ± 2.067 1 8.32 3.111 ± 1.601 1 7.06
0.01 2.216 ± 2.145 1 16.58 3.458 ± 2.619 1 8.60 3.628 ± 3.190 1 7.38
0.05 41.146 ± 216.095 0.96 15.02 2.912 ± 7.939 0.98 6.96 2.116 ± 6.292 1 5.56
0.1 149.404 ± 311.223 0.94 12.72 73.029 ± 337.478 0.96 5.81 7.353 ± 34.795 1 3.78
0.25 251.735 ± 630.021 0.78 6.33 338.098 ± 870.234 0.94 3.79 30.897 ± 192.365 0.96 1.96
0.5 95.179 ± 381.632 0.98 5.49 13.917 ± 42.572 0.98 2.69 116.288 ± 797.095 0.98 1.24
0.75 9.068 ± 63.205 1 3.30 5.826 ± 40.530 1 1.66 0.721 ± 4.928 1 0.72
1 4 E-4 ± 1 E-4 1 0.72 4 E-4 ± 1 E-4 1 0.48 4 E-4 ± 1 E-4 1 0.26

n = 20

N 512 2048 8192
p t s ∆ t s ∆ t s ∆

0 19.403 ± 24.539 1 23.44 20.615 ± 13.667 1 10.60 28.218 ± 20.990 1 7.22
0.01 30.378 ± 50.539 1 23.67 30.458 ± 41.297 1 10.53 34.340 ± 37.932 1 7.09
0.05 87.74 ± 250.173 0.96 18.44 39.252 ± 151.223 1 8.20 17.401 ± 56.342 1 5.00
0.1 492.588 ± 1131.446 0.82 14.67 185.823 ± 778.689 0.94 7.21 24.458 ± 113.15 0.98 3.94
0.25 507.019 ± 1223.195 0.58 6.17 572.676 ± 1553.382 0.88 4.46 153.811 ± 770.801 0.96 2.28
0.5 163.191 ± 378.992 0.88 6.36 46.425 ± 179.856 0.96 2.19 70.153 ± 282.016 1 1.07
0.75 1.471 ± 9.206 1 4.49 0.284 ± 1.685 1 1.36 0.375 ± 2.403 1 0.60
1 0.001 ± 3 E-4 1 2.02 0.001 ± 3 E-4 1 0.47 0.001 ± 3 E-4 1 0.18

Table 6.2: Time t (in seconds) used by the EC tree to find optimal Bayesian networks, with a

32G limit on memory, and a 2 hour limit on running time. n is the number of variables, N is

the size of the dataset, p is the percentage of the ancestor constraints, s is the percentage of test

cases that finishes, and ∆ is the edge difference of the optimal networks learned and the true

networks.
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n
=

1
0

N 512 2048 8192
p EC TREE (t/s) GOBNILP EC TREE (t/s) GOBNILP EC TREE (t/s) GOBNILP

0.01 0.003± 0.001 1 7.631± 3.502 0.003± 0.001 1 11.251± 5.688 0.733± 0.326 1 15.879± 11.497
0.05 0.008± 0.011 1 9.465± 2.797 0.004± 0.003 1 11.780± 5.337 0.003± 0.001 1 15.448± 8.652
0.10 0.112± 0.395 1 9.697± 2.736 0.007± 0.010 1 9.925± 3.288 0.004± 0.002 1 11.872± 5.221
0.25 0.446± 0.824 1 3.456± 1.839 0.086± 0.394 1 2.952± 1.221 0.005± 0.006 1 2.862± 1.032
0.50 0.699± 1.539 1 0.835± 0.408 0.053± 0.139 1 0.767± 0.312 0.009± 0.022 1 0.753± 0.300
0.75 0.336± 0.747 1 0.402± 0.120 0.026± 0.056 1 0.398± 0.108 0.008± 0.014 1 0.399± 0.110
1.00 0.222± 0.537 1 0.309± 0.023 0.017± 0.028 1 0.307± 0.023 0.005± 0.002 1 0.309± 0.019

n
=

1
2

N 512 2048 8192
p EC TREE (t/s) GOBNILP EC TREE (t/s) GOBNILP EC TREE (t/s) GOBNILP

0.01 0.013± 0.007 1 63.532± 28.977 0.014± 0.005 1 83.588± 41.358 0.015± 0.004 1 128.234± 89.292
0.05 0.064± 0.175 1 55.202± 17.445 0.031± 0.073 1 70.198± 32.189 1.175± 8.040 1 90.588± 46.001
0.10 2.535± 11.087 1 50.334± 10.436 2.363± 10.371 1 52.798± 12.934 0.910± 5.989 1 57.663± 17.712
0.25 70.186± 222.557 0.98 23.292± 7.55 4.571± 12.315 1 20.736± 6.283 1.626± 4.92 1 21.155± 6.862
0.50 137.308± 367.122 1 7.741± 4.463 15.53± 73.340 1 7.801± 5.255 1.434± 4.844 1 7.360± 4.087
0.75 21.858± 61.294 1 4.384± 0.650 1.731± 5.051 1 4.394± 0.746 0.496± 1.630 1 4.296± 0.607
1.00 2.305± 3.932 1 4.095± 0.225 0.349± 0.695 1 4.067± 0.243 0.151± 0.308 1 4.024± 0.226

n
=

1
4

N 512 2048 8192
p EC TREE (t/s) GOBNILP EC TREE (t/s) GOBNILP EC TREE (t/s) GOBNILP

0.01 0.013± 0.007 1 634.192± 179.048 0.123± 0.128 1 738.254± 281.88 0.120± 0.071 1 1295.898± 1012.983
0.05 0.064± 0.175 1 228.565± 74.187 0.868± 2.921 1 276.678± 134.768 0.176± 0.138 1 404.350± 268.617
0.10 2.535± 11.087 1 174.669± 37.257 34.979± 143.439 0.98 183.926± 40.567 0.603± 2.09 1 210.124± 87.371
0.25 280.588± 853.874 0.84 137.670± 28.532 88.802± 293.489 1 126.794± 18.796 1.851± 7.157 1 126.242± 24.151
0.50 609.175± 1562.083 0.88 90.915± 47.224 35.62± 108.154 1 85.575± 34.392 4.739± 16.845 1 83.808± 30.041
0.75 258.797± 756.941 1 64.509± 7.748 6.489± 14.54 1 63.683± 7.925 2.275± 11.555 1 64.044± 7.804
1.00 21.176± 34.265 1 61.438± 5.052 1.385± 1.918 1 60.55± 4.445 0.536± 0.727 1 61.062± 5.944

Table 6.3: Time and standard deviation t ± σ (in seconds) used by the EC tree and

GOBNILP to find optimal structures, without any projected constraints, using a 32G

limit on memory, and a 2 hour limit on time. n is the number of variables, N is the size

of the dataset, p is the percentage of ancestral constraints, and s is the percentage of

test cases that finishes.
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size of 1. We further pre-computed the scores of candidate parent sets, which were fed

as input into each system evaluated.

In our first set of experiments, we compared our approach with the prominent ILP-

based system of GOBNILP,8 where we encoded ancestral constraints using linear con-

straints (details are given in the supplementary Appendix); we further supplied the ILP

with the constraints inferred from constraint projection (we shall revisit this subject

later). We remark that while in principle, approaches such as ILP can be used to encode

ancestral relations [Cus08], they have not previously been evaluated as a constraint used

in score-based structure learning (to our knowledge). Table 6.1 summarizes our results.

Our approach, which navigates the EC tree and which empowers our structure-learning

oracle with projected constraints, is consistently orders-of-magnitude faster than GOB-

NILP, for all values of n, N and p that we varied. This difference increased as the num-

ber of variables n is increased. We remark that approaches based on heuristic search

(such as ours) have been observed to scale better than ILP-based approaches when no

limits are placed on the sizes of families (as was done here); see, e.g., [YM13, MKJ14].

Next, we evaluate (1) the effect that introducing ancestral constraints have on the

efficiency of search, and (2) the scalability of our approach as the number of variables

in the learning problem increases. In Table 6.2, we report results where we varied the

number of variables n ∈ {16, 18, 20}, and where we set a 2 hour time limit and a

32GB memory limit. First, there appears to be an easy-hard-easy trend as we increase

the proportion p of ancestral constraints to include in the learning problem. When

this proportion p is small, then the learning problem is similar to the unconstrained

problem, and our oracle can produce an accurate estimate. When this proportion p

is large, then the problem is heavily constrained, and the (valid) search space is also

significantly reduced. In contrast, the ILP approach more consistently became easier as

more constraints were provided (from Table 6.1). As would be expected, the learning

problem becomes more challenging with an increasing number of variables n, and with

8www.cs.york.ac.uk/aig/sw/gobnilp
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smaller training set sizes N . We remark that our approach scales to n = 20 variables

here, which is comparable to the scalability of modern score-based approaches reported

in the literature (for BDeu scores); e.g., [YM13] reported results up to 26 variables (for

the case of BDeu scores).

Table 6.2 also reports the average structural Hamming distance ∆ between the

learned network and the ground-truth network used to generate the data. We see that

as the dataset size N and the proportion p of constraints available increases, the more

accurate the learned model becomes.9 We remark that a relatively small number of

ancestral constraints (say 10%–25%) can have a similar impact on the quality of the ob-

served network (relative to the ground-truth), as increasing the amount of data available

from 512 to 2048, or from 2048 to 8192. This highlights the impact that background

knowledge can have, in contrast to collecting more (potentially expensive) training data.

Next, we consider the effect of projecting ancestral constraints onto edge and or-

dering constraints. In Table 6.3, we performed structure learning in the EC tree and

with ILP, but without projecting any of the constraints, in contrast to Table 6.1. When

learning with the EC tree, the projection of constraints has a significant impact on the

efficiency of learning (often several orders of magnitude). When learning with ILPs,

there is some mild overhead with smaller numbers of variables (n = 10, 12), but with

a larger number of variables (n = 14), there were consistent improvements when pro-

jected constraints are used.

9Note that ∆ can be greater than 0 when p = 1, since there may be many DAGs that respect the same
set of ancestral constraints. For example, the DAG X → Y → Z expresses the same ancestral relations,
after we add the edge X → Z.
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CHAPTER 7

Asymptotic Analysis on Structures Learned with

Order-Modular Priors

In this chapter, we consider large random Bayesian network structures generated by the

uniform order-modular prior, but where each node has relatively few parents. We ana-

lyze the asymptotic, expected properties of these random Bayesian network structures,

such as the expected number of parents a node may have, and the expected size of the

Markov blanket. This chapter is based in [CP14].

7.1 Introduction

In this chapter, we propose a particular model for the distribution of large random

Bayesian networks, that is, DAGs where the edges appear at random, each node has

at most k parents, and k is much less than the number of nodes n. Using this model

and basic combinatorics tools, we can provide a set of characterizations of a random

Bayesian network structure. We estimate the expected size of a Bayesian network.

In addition, we estimate the expected size of the Markov blanket and a minimal d-

separator, where both can render the variables inside a Bayesian network independent,

and therefore simplify problems such as inference in Bayesian networks [Dar09, KF09,

Mur12]. More specifically, we show that the expected size of a Bayesian network is

O
(
kn − k2 lnn

)
, and the expected size of the Markov blanket is O

(
k2 − k3 lnn/n

)
.

We also show that the maximum size of a minimal d-separator is k; and that on the

average, a revised version of the algorithm for finding a minimal d-separator by [AD96]
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and [TPP98] has time complexity upper-bounded by O
(
k2(k3 + 1)n − k2 lnn). We

discuss further estimates in Section 7.4-7.6. In addition, we compare our estimates

against Bayesian networks for analyzing gene expression data learned from the Gene

Expression Omnibus database [EDL02, FLN00]. The results suggest that this model

provides a useful characterization of the Bayesian networks.

The Bayesian network distribution of our model has been used as a prior for Bayesian

network learning, known as the order-modular prior [FK00]. To the best of our knowl-

edge, the mathematical properties of the model have yet to receive much attention.

Most work on random graphs is about undirected graphs [Bol01, JLR00, New09].

In addition, a node in Bayesian networks usually has a limited number of parents

[IC02]. The studies on random DAGs have not considered DAGs with this property

[BE84, CRS03, DMS01, KN09, PT01].

This chapter is organized as follows. In Session 7.2, we propose our model for

the distribution of large random Bayesian networks. In Section 7.3, we provide a

mathematical background. In Section 7.4, we consider the basic properties of a ran-

dom Bayesian network structure. In Section 7.5, we consider the moral graph and the

Markov Blankets of a random Bayesian network structure. In Section 7.7, we con-

sider isolated nodes in a random Bayesian network structure. Finally, we evaluate our

random Bayesian network model against real-world Bayesian networks in Section 7.8.

7.2 Radnom Bayesian Network

We consider random DAGs generated by the following model.1

Definition 2. (Random Bayesian Network)

Given a set of nodes V , where |V | = n, and an integer k, let Gn,k denote the random

Bayesian network for V where each node has at most k parents. Then let L denote a list

of DAGs constructed as follows: Consider all possible orderings (V,<) of the nodes in

1We note that the uniform order-modular prior is considered for random graph generation by [BE84].
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V . For each ordering (V,<), every node v has zero to k parents v′, where v′ < v. Then

P (Gn,k = G) = nG/|L|, where nG is the number of times that G appears in L.

For example, consider V = {X, Y, Z} and k = 1. In Definition 2, when (V,<) =

〈X, Y, Z〉 or 〈X,Z, Y 〉, the DAGs constructed are

X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z

X Z Y X Z Y X Z Y

X Z Y X Z Y X Z Y

Figure 7.1: Given V = {X, Y, Z} and k = 1, when (V,<) = 〈X, Y, Z〉 or 〈X,Z, Y 〉,

the DAGs constructed in Definition 2.

Note that there are six possible (V,<). Let G be the edgeless DAG, that is, X Y

Z. Since G appears once for each (V,<), and each (V,<) induces six possible DAGs,

P (Gn,k = G) = 1/6. Then consider the DAG G′ : X → Y → Z. Since G′ only

appears once when (V,<) = 〈X, Y, Z〉, P (Gn,k = G′) = 1/36.

From the example above, it appears that Gn,k is likely to contain isolated nodes.

Section 7.7 shows that when n is large, Gn,k contains no isolated nodes almost surely.

In addition, note that for a graph G in L, since there exists a (V,<) such that the

parents are always smaller than the children, G does not contain cycles, and is therefore

a DAG. Moreover, since all possible (V,<) are considered, L contains all the possible

DAG configurations for Gn,k.

Now we discuss some fundamental properties of our random Bayesian network

model. Given a (V,<), consider distinct nodes v, v′, pa, ch where pa < v, v′ < ch.

Recall that each node has at most k parents. Consequently if v is already a parent of ch,

then v′ is less likely to be a parent of ch. However since the constraint is only on the
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number of parents, whether pa is a parent of v is independent of whether pa is a parent

of v′. We state the properties formally as the following theorems.

Theorem 10. (Children Dependence)

Given a random Bayesian network Gn,k and an ordering (V,<), for distinct nodes

v, v′, ch where v, v′ < ch, the event that whether ch is a child of v and the event that

whether ch is a child of v′ are dependent.

Theorem 11. (Parent Independence)

Given a random Bayesian network Gn,k and an ordering (V,<), for distinct nodes

v, v′, pa where pa < v, v′, the event that whether pa is a parent of v and the event that

whether pa is a parent of v′ are independent.

7.3 Mathematical Tools

Now we discuss the combinatorics tools that we use to analyze our random Bayesian

network model.

First we show the absorption and extraction identities of the binomial coefficients.

Let i be a non-negative integer. Then

(i+ 1)

(
n

i+ 1

)
= n

(
n− 1

i

)
(7.1)

(n− i)
(
n

i

)
= n

(
n− 1

i

)
. (7.2)

Then we consider some fundamental tools in probabilistic combinatorics. Let I1, . . . , Ii

be random variables and In be a non-negative random variable that depends on n. Then

E[I1 + . . .+ Ii] = E[I1] + . . .+ E[Ii]. (7.3)

If lim
n→∞

E[In]→ 0, then In is zero almost surely. (7.4)

Equation (7.3) is known as the linearity of expectation. Note that I1, . . . , Ii may be

dependent. Consequently (7.3) is a valuable tool for tackling problems involving de-

pendent events. Equation (7.4) can be intuitively understood as follows: Since random
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variable In is non-negative and its expected value approaches zero, it is almost always

zero [AS08].

In addition, we use integral to approximate summation [GKO94]. Let f(r) be a

smooth function defined for all reals r in [m,n], then

n∑
i=m

f(i) ≈
∫ n

m

f(r) dr.

In the following, when integral is used to approximate
∑n

i=m f(r) to a real number r′,

we write
∑n

i=m f(r) ∼ r′. In addition, approximations made without explanation are

based on the fact that k � n.

Moreover, let IA denote the indicator random variable of event A, that is, IA = 1

when A occurs, and IA = 0 when A does not. Note that E[IA] = P (A).

7.4 Basic Properties

In this section, we study the probability that a given edge occurs, the expected Bayesian

network size, and the expected number of parents for a node in our random Bayesian

network model.

Recall that the definition of our model involves all possible (V,<). Consider map-

ping each (V,<) to integers between 1 and n. For example, for (V,<) = 〈X, Y, Z〉,

map X, Y, Z to 1, 2, 3. The mapping preserves the node ordering, and therefore can be

used to represent (V,<).

7.4.1 Edge Probability

In this subsection, we consider the probability that there exists edge X → Y for given

X, Y in Gn,k. Let A denote the event that there exists X → Y , and let O denote the

event that in (V,<), X, Y map to integers x, y. Note that the edge exists only if x < y.
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Consequently

P (A) =
∑

1≤x<y≤n

P (A|O)P (O).

When x < k, Y does not have k nodes to serves as parents. Since n � k, we ignore

these cases. Hence

P (A) ≈
∑

k≤x<y≤n

P (A|O)P (O).

Clearly P (O) = 1/ (n(n− 1)). Then note that P (A|O) is the ratio of the number of

DAGs where X is a parent of Y to the number of DAGs where X may or may not be

a parent of Y when given X < Y . By Theorem 10 and 11, this ratio is the same as the

ratio of possible parents of Y when X is a parent of Y to possible parents of Y when X

may or may not be a parent of Y . When X is a parent, there are y− 2 nodes, other than

X , smaller than Y and may be parents of Y . Consequently there are
∑k−1

i=0

(
y−2
i

)
ways

to choose parents of Y . When X may or may not be a parent, there are
∑k

i=0

(
y−1
i

)
ways to choose parents of Y . Hence

P (A|O) =

∑k−1
i=0

(
y−2
i

)∑k
i=0

(
y−1
i

)
A partial summation of the binomial coefficients such as the numerator and denomi-

nator in the equation above does not have a closed form [GKO94]. Therefore we now

simplify this equation. Let S1 =
∑k−1

i=0

(
y−2
i

)
and S2 =

∑k
i=0

(
y−1
i

)
. Then

S1 =
1

y − 1

k−1∑
i=0

(i+ 1)

(
y − 1

i+ 1

)(
by (7.1)

)
=

1

y − 1

k∑
i=0

i

(
y

i

)
(7.5)

S1 =
1

y − 1

k∑
i=0

(y − 1− i)
(
y − 1

i

)
−
(
y − 2

k

)(
by (7.2)

)
= S2 − S1 −

(
y − 2

k

)(
by (7.5)

)
.
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Consequently

P (A|O) =
1

2

(
1−

(
y−2
k

)∑k
i=0

(
y−1
i

)) .
Since when y is not small,

(
y−1
k

)
+
(
y−1
k−1

)
=
(
y
k

)
are dominant in

∑k
i=0

(
y−1
i

)
, we ap-

proximate
∑k

i=0

(
y−1
i

)
with

(
y
k

)
. Similarly, we approximate y − 1 with y. As a result,

P (A|O) ≈ k

y
− k(k + 1)

2y2
. (7.6)

Then by using integral to approximate summation,

P (A) ∼ k

n
− k(k + 3) lnn

2n2
.

7.4.2 Expected Size and Number of Parents

Since E[IA] is the expected number of times X → Y exists for given X, Y , by (7.3),

summing E[IA] over all possible X, Y gives the expected size of Gn,k:∑
X,Y ∈V

E[IA] =
∑

X,Y ∈V

P (A)

≈ kn− k(k + 3) lnn

2
.

Then since each edge induces exactly one parent and there are n nodes, the expected

number of parents a node has is approximately

k − k(k + 3) lnn

2n
.

7.5 Moral Graph and Markov Blanket Analysis

In this section, we apply the analysis used in Section 7.4 to moral graphs and Markov

blankets. We first provide a review on Markov blanket and the related d-separation

concepts.
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7.5.1 d-separation and Markov Blankets

In a Bayesian network, if two random variables X and Y are d-separated given another

set of variables, known as the d-separator, Z, then they are conditionally independent

given variables Z. More specifically, d-separation can be determined through graphical

tests that involve checking if certain types of paths that involve X, Y and Z exist; see

[Dar09, KF09, Mur12]. Given variableX , its Markov blanket is a particular d-separator

Z, that consists of all the parents, children, and children’s parents of X , such that given

Z, variable X is d-separation from any other variable Y .

7.5.2 Moral Graph

In this subsection, we first consider the v-structure for given parents X, Y and child Z,

that is, X → Z ← Y where there are no edges between X and Y . Then we consider

the expected size increase of moralizing a Bayesian network.

Let B denote the event that there exists X → Z ← Y and there do not exist edges

between X and Y in Gn,k. Let B1 denote the event that there exists X → Z ← Y ,

and let B2 denote the event that there do not exist edges between X and Y . Let O

denote the event that in (V,<), X, Y, Z map to x, y, z. By Theorem 11, B1 and B2 are

independent given O. Consequently

P (B) ≈
∑

k≤x<y<z≤n
k≤y<x<z≤n

P (B1|O)P (B2|O)P (O).

Consider when k ≤ x < y < z ≤ n. Note that edges between X and Y can only be

X → Y . Then similar to Subsection 7.4.1,

P (B1|O) =

∑k−2
i=0

(
z−3
i

)∑k
i=0

(
z−1
i

) ≈ k(k − 1)

4z2

(
3− 2(k + 1)

z

)
P (B2|O) = 1−

∑k−1
i=0

(
y−2
i

)∑k
i=0

(
y−1
i

) ≈ 1− k

y
+
k(k + 1)

2y2
.

Please see the Appendix for details. When k ≤ y < x < z ≤ n, the case is essentially

84



identical. As a result,

P (B) ∼ 3k(k − 1)

4n2
− k(k − 1)(7k + 1) lnn

2n3
.

Each v-structure induces exactly one edge to be added in moralization. Consequently

the expected number of edges added when moralizing Gn,k is∑
{X,Y }⊂V
Z∈V

E[IB] ≈ 3k(k − 1)n

8
− k(k − 1)(7k + 1) lnn

4
.

7.5.3 Markov Blanket

The Markov blanket of a node consists of its parents, spouses, and children. Recall

Subsection 7.4.2. Note that since each edge induces a parent and a child, the expected

number of parents is identical to the expected number of children. In addition, since

each v-structure induces two spouses, following Subsection 7.5.2, the expected number

of spouses is approximately

3k(k − 1)

4
− k(k − 1)(7k + 1) lnn

2n
.

Then the expected size of the Markov blanket is approximately

k(3k + 5)

4
− k(7k2 − 5k + 2) lnn

2n
.

7.6 d-Separator Analysis

In this section, we consider the problem of finding a minimal d-separator for given

X, Y , that is, a d-separator such that none of its subsets d-separates X and Y . We study

the maximum size of a minimal d-separator, and the time needed to find one.

7.6.1 Maximum Size

If there exists a d-separator for X and Y , at least one of the following two sets d-

separates X and Y : the set consisting of the parents of X , and the set consisting of the
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parents of Y [Pea88]. As a result, the maximum size of a minimal d-separator is k.

7.6.2 Complexity

We first review some results on this problem by [AD96] and [TPP98]. Let G be a

DAG in Gn,k, and let GA denote the subgraph induced by the ancestral set of X
⋃
Y . A

minimal d-separator ofX and Y only needs to d-separate them inGA, and can be found

by running two breadth-first searches on (GA)m, where m denotes the moral graph.

The results can be improved by exploiting the fact that a d-separator of X and Y

only needs to d-separate them in G′A, the subgraph of GA consisting of paths between

X and Y , as shown in Figure 7.2. Consequently a minimal d-separator can be found

by (1) construct G′A, in O(|GA|) time (2) run two breadth-first searches on (G′A)m, in

O (|(G′A)m|) time. Then since G′A is a subgraph of GA, the time complexity for finding

a minimal d-separator O(|GA| + |(G′A)m|) = O(|GA| + |Em|), where Em is the edges

added in G′A moralization.

X Z3

Z2

Y

Z1

Z4

Z5

(a) DAG G.

X Z3

Z2

Y

Z1

(b) DAG G′A.

Figure 7.2: A DAG G and its G′A.

Below, we show that the expected time complexity for finding a minimal d-separator

in Gn,k, that is, O(|GA|+ |Em|), is asymptotically upper bounded by k3(k−1)2n/20+

k2n/4− k2 lnn.
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7.6.2.1 Expected Size of GA

Let Z,Z ′ be two nodes in (V,<) where Z < Z ′, and let S denote the event that edge

Z → Z ′ is in GA. Then

E[|GA|] =
∑

{Z,Z′}⊂V

E[IS].

Let A denote the event that Z,Z ′ are ancestors of X in G, and let B denote that for Y .

Let O denote the event that in (V,<), X, Y, Z, Z ′ map to x, y, z, z′. Note that an event

may not hold for some (V,<), such as A when x < z < z′ < y. Then

E[IS] <
∑

1≤y<z<z′<x≤n
1≤z<y<z′<x≤n
1≤z<z′<x<y≤n
1≤z<z′<y<x≤n

E[IA|O]P (O)

+
∑

1≤x<z<z′<y≤n
1≤z<x<z′<y≤n
1≤z<z′<x<y≤n
1≤z<z′<y<x≤n

E[IB|O]P (O).

First note that
∑
E[IA|O]P (O) =

∑
P (A|O)P (O). Then since event A states there

exists path Z → Z ′ → . . .→ X , consider such a path for a (V,<), as below:

z z + 1 · · · z′ − 1 z′ z′ + 1· · · x− 1 x

Figure 7.3: Path Z → Z ′ → . . .→ X for a (V,<).

Note that the edges on the path appear independently. By (7.6), we approximate the

probability that there exists Z → Z ′ with k/z′, and that for Wi → X with k/x, where

Wi are nodes between Z ′ and X . Then let pi be the probability that there exist paths

from Z ′ toWi. Since the events that there existsWi → X are dependent, and the events

that there exist paths from Z ′ to Wi may also be dependent,

P (A|O) <
k2

xz′
(p1 + . . .+ px−z′−1) <

k2(x− z′ − 1)

xz′
.
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As a result, ∑
1≤y<z<z′<x≤n
1≤z<y<z′<x≤n
1≤z<z′<x<y≤n
1≤z<z′<y<x≤n

E[IA|O]P (O) <
k2

4n
− k2 lnn

n2
.

The second term is essentially the same. Consequently

E[|GA|] <
k2n

4
− k2 lnn.

7.6.2.2 Expected Size of Em

Let Z,Z ′ be two nodes in (V,<) where Z < Z ′, and let S ′ denote the event that edge

Z − Z ′ is added when moralizing G′A. Then

E[|Em|] =
∑

{Z,Z′}⊂V

E[IS′ ].

Edge Z − Z ′ is added when there does not exist Z → Z ′, and there exist paths of the

following types: (a) X → . . .→ Z → Z ′′ ← Z ′ → . . .→ Y , where Z ′′ is an ancestor

of Y (b) X ← . . . ← Z → Z ′′ ← Z ′ ← . . . ← Y , where Z ′′ is an ancestor of X (c)

X ← . . .← Z → Z ′′ ← Z ′ → . . .→ Y , where Z ′′ is an ancestor of X or Y , or both.

To see this, first note that in (a) Z ′′ cannot be an ancestor of X or otherwise G

contains a loop. Then consider path X ← Z1 → Z2 ← Z3 → Z4 ← Z5 → Y

in Figure 7.4(a). It appears to induce two edges Z1 − Z3 and Z3 − Z5 to be added,

and yet is not any of the three types. Nevertheless, since in G′A, nodes other than

X and Y are ancestors of X or Y , there exist paths of the three types that induce

Z1 − Z3 and Z3 − Z5, which in this case are X ← Z1 → Z2 ← Z3 → Z4 → Y and

X ← Z2 ← Z3 → Z4 ← Z5 → Y .

By reasoning similar to that for E[|GA|],

E[|Em|] <
431k3(k − 1)2n

9216
.

Please see the Appendix for details.
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X

Z1

Z2

Z3

Z4

Z5

Y

(a) G′A.

X

Z1

Z2

Z3

Z4

Z5

Y

(b) (G′A)m.

Figure 7.4: DAG G′A and its (G′A)m.

7.7 Isolated Nodes

In this section, we prove thatGn,k contains no isolated nodes almost surely, that is, with

probability 1.

Let A denote the event that a given node X is isolated, that is, in (V,<), none of the

nodes smaller than X is a parent of X , and none of the nodes greater than X is a child

of X . Let A1 denote the event that none of the nodes smaller than X is its parent, and

let A2 denote the event that none of the nodes greater than X is its child. Let O denote

the event that in (V,<), X maps to x. By Theorem 11, A1 and A2 are independent

given O. Hence similar to Subsection 7.4.1,

P (A) ≈
n∑

x=k+1

P (A1|O)P (A2|O)P (O)

P (A1|O) =
1∑k

i=0

(
x−1
i

) .
Then by Theorem 11, whether a node greater than X is a child of X is independent of

whether another such node is a child of X . By (7.6), we approximate the probability

that there exists X → Y with k/y. Hence

P (A2|O) ≈
n∏

i=x+1

1− k

i
.

Then

P (A) <
1

n

n∑
x=k+1

∏n
i=x+1 1− k

i(
x
k

) <
1

n

n∑
x=k+1

k!

(n− k + 1)k

∼ k!

(n− k + 1)k
.
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As a result, the expected number of nodes that are isolated

∑
X∈V

E[IA] <
k!n

(n− k + 1)k
.

Since k > 1, this number approaches zero when n→∞. Hence by (7.4),Gn,k contains

no isolated nodes almost surely.

7.8 Experiments

In this section, we compare our estimates of the expected size and the expected size

increase of moralization against Bayesian networks learned from real data.

We use Bayesian network learning software Banjo [Har05] and the Gene Expression

Omnibus database [EDL02] to learn Bayesian networks for analyzing gene expression

data [FLN00]. Banjo learns Bayesian network structures with the Bayesian Dirich-

let scoring metric for a given maximum number of parents k. We learned about 30

Bayesian networks for n = 250, 300, 350, 400, 450, 500, 550 and k = 3, 4 respectively

with an equivalent sample size that grows with k. Figure 7.5 shows the mean absolute

percentage error (MAPE) of the estimates.

0.00
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0.50
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1.00

250 300 350 400 450 500 550
n
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A
P
E
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k= 4

(a) The expected size.

0.00

0.25
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0.75

1.00

250 300 350 400 450 500 550
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M
A
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k= 4

(b) The expected moralization size increase.

Figure 7.5: MAPE of the expected size and the expected size increase of moralization

estimates.
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The MAPE for the expected size is lower than 0.15 when k = 3, and lower than 0.2

when k = 4, though both slightly increase with n. The MAPE for the expected size

increase for n = 250 is 0.27 when k = 3, and 0.23 when k = 4; and for n = 550

the MAPE drops to 0.17 when k = 3, and 0.20 when k = 4. The MAPEs suggest

that our model provides a useful characterization of Bayesian networks with important

applications. They also suggest that though our estimates are asymptotic ones, they

may be applied to relatively small Bayesian networks.
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CHAPTER 8

Conclusion

In this thesis, we proposed a general framework for learning Bayesian network struc-

tures from the given data and background knowledge that supports the use of non-

decomposable scores. Our framework can be viewed as a generalization of the existing

search-based approach to structure learning, but with decomposable scores, where we

proposed a much more expressive search space, called the BN graph, that accommo-

dates non-decomposable scores. We showed that the BN graph, in spite of its size, can

be explored efficiently by the A* search, by using a highly accurate heuristic function

that can be evaluated by existing approaches for structure learning with decomposable

scores.

Using our framework, we developed the first system to learn an optimal Bayesian

network structure with the order-modular prior, scaling up to 17 variables in real-world

datasets. We also developed a system for learning an optimal network structure with

ancestral constraints, that is empirically orders of magnitude faster than the state-of-the-

art, integer-linear-programming based approach in real-world datasets. We also showed

that ancestral constraints, though non-decomposable, imply decomposable constraints

that can be used to improve the efficiency of both our framework and the integer linear

programming approach.

In addition, we used our framework to enumerate the k-best Bayesian network

structures, and the k-best Markov-equivalent Bayesian network structures, using de-

composable scores. In both cases, our framework is empirically orders-of-magnitude

more efficient in real-world dataset, compared to the state-of-the-art, dynamic-programming-
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based approaches. More specifically, for enumerating the k-best Markov-equivalent

Bayesian network structures, we specialized the BN graph into a more compact search

space, and then further canonized the search space, so that the search space is of the

form of a tree, where each search node is reached through exactly one path.
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APPENDIX A

Proofs of Theorems in Chapter 4

Theorem 1.

h(Gi) = min
Gn:Gi Gn

∑
XU∈Gn−Gi

score(XU | D) + min
Gn:Gi Gn

− log
Prn(Gn)

Pr i(Gi)

≤ min
Gn:Gi Gn

( ∑
XU∈Gn−Gi

score(XU | D)− log
Prn(Gn)

Pr i(Gi)

)
= min

Gn:Gi Gn

g(Gn)− g(Gi)

Since heuristic function h lower-bounds the true cost of to a goal node, it is admissible.

Below we consider the correctness of Algorithm 1.

Lemma 3. In Algorithm 1:

1. all Gi that generate Gi+1 are extracted from H before Gi+1 is extracted;

2. when (Gi+1, fi+1, li+1) is extracted from H ,

fi+1 = score(Gi+1|D)− log #Gi+1 + h(Gi+1),

and li+1 is the number of linear extensions of Gi+1, i.e., #Gi+1.

where h(Gi) = h1(Gi)−
∑n

j=i+1 log j.

Proof. Consider a minimum item (Gi+1, fi+1, li+1) extracted from H . Below we show

by induction that (1) all Gi such that Gi generates Gi+1 are extracted from H before
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Gi+1 (2) fi+1 = score(Gi+1|D)− log #Gi+1 +h(Gi+1), and li+1 is the number of linear

extensions of Gi+1, which is also the number of paths from G0 to Gi+1.

For i = 0, clearly (1) and (2) are true. Assume (1) and (2) are true for all (Gi, fi, li).

Then when (Gi+1, fi+1, li+1) is extracted, li+1 is the number of paths from G0 to Gi+1

that pass the Gi extracted from H before Gi+1. To see this, note that l is the number

of path from G0 to Gi. Moreover, since li+1 is the number paths from G0 to Gi+1 that

pass the Gi extracted from H before Gi+1, when (Gi+1, fi+1, li+1) is in H ,

fi+1 = score(Gi+1|D)− log
∑

Gi≺Gi+1

N(G0 → . . .→ Gi → Gi+1) + h(Gi+1),

where Gi ≺ Gi+1 denotes that Gi is extracted before Gi+1, and N(G0 → . . .→ Gi →

Gi+1) denotes the number of paths G0 → . . .→ Gi → Gi+1. Note that fi+1 decreases

as more Gi are extracted.

Consider when (Gi, fi, li) and (Gi+1, fi+1, li+1) are both in H . Below we show that

all Gi that generates Gi+1 are extracted from H before Gi+1. Consider

fi = score(Gi|D)

− log
∑

Gi−1≺Gi

N(G0 → . . .→ Gi−1 → Gi) + h1(Gi)−
n∑

j=i+1

log j

fi+1 = score(Gi+1|D)

− log
∑

G′i≺Gi+1

N(G0 → . . .→ G′i → Gi+1) + h1(Gi+1)−
n∑

j=i+2

log j

We simply need to show fi+1 > fi. Since h1 is a consistent heuristic function for

learning with score, score(Gi+1|D)+h1(Gi+1) ≥ score(Gi|D)+h1(Gi). Then we only

need to show

(i+ 1)
∑

Gi−1≺Gi

N(G0 → . . .→ Gi−1 → Gi)

>
∑

G′i≺Gi+1

N(G0 → . . .→ G′i → Gi+1)
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First, for any pair of DAGs Gi and G′i that can generate a DAG Gi+1, there exists a

unique DAG Gi−1 that can generate both Gi and G′i. For each G′i on the right-hand

side, there thus exists a corresponding (and unique) Gi−1 on the left-hand side that can

generate both G′i and Gi. Further, since G′i was expanded, Gi−1 must also have been

expanded (by induction). For each such Gi−1, if G′i has a linear extension count of

L, then Gi−1 must have at least a linear extension count of L/i, and hence the corre-

sponding N(G0 → . . . → Gi−1 → Gi) is at least L/i. On the left-hand side, we the

corresponding term is thus at least (i+ 1) · L/i > L. Since this holds for each element

of the summation on the right-hand side, the above inequality holds.

Since all Gi that generates Gi+1 are extracted from H before Gi+1, as a result,

fi+1 = score(Gi+1|D)− log #Gi+1 +h(Gi+1), and li+1 is the number of all paths from

G0 to Gi+1.

of Theorem 3. To see the correctness of the algorithm, simply note that by Lemma 3,

when (Gi+1, fi+1, li+1) is extracted from H , i.e. the open list, fi+1 = f(Gi+1).

of Theorem 2. By Lemma 3, Algorithm 1 can count the number of linear extensions.
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APPENDIX B

Weighted Linear Extensions and the A* Search

Now we consider general order-modular priors:

Pr(G) =
∑
π∼G

∏
XU

ρX(XU) · σX(π:X)− logC, (B.1)

where π is an ordering of variables; π ∼ G indicates that ordering π is compatible

with DAG G; π:X represents the set of variables in the prefix of π ending with variable

X; ρX and σX are non-negative scoring functions; and C is a normalizing constant.1

The uniform order-modular prior arises when ρX = 1 and σX = 1 for all X . When

the scoring functions ρX and σX are not equal to 1, Pr(G) corresponds to a weighted

count of linear extensions, where each count is weighted by
∏

XU ρX(XU)σX(π:X).

Consequently, ideas for the uniform order-modular prior can be used for general order-

modular priors.

The heuristic function h′2 in Theorem 2 can be generalized by changing a lower

bound of the linear extension count to a lower bound on the weighted linear extension

count:

h′2(Gi) = −
n∑

k=i+1

log(ρmax · σmax · k) (B.2)

where ρmax is the maximum of ρX(XU), and σmax is the maximum of σX(π:X). Algo-

rithm 1 can be generalized for order-modular priors, which is given in Algorithm 4.

Theorem 12. Algorithm 4 learns an optimal Bayesian network with an order-modular

prior.

1For our purposes, we can ignore the normalizing constant of the prior, since it is independent of the
DAG G that we want to optimize; we make this assumption for the remainder of the section.
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Algorithm 4: A* search for learning an optimal BN with order-modular priors

Pr(G).
Data: A dataset D over variables X.

Result: An optimal Bayesian network structure G maximizing

Pr(G | D) ∝
∑

XU score(XU|D)− logPr(G).

begin

H ← min-heap with only (G0, f(G0), 1), where the heap is ordered by f

while H 6= ∅ do

extract the minimum item (G, f, l) from H

if V (G) = X then return G

foreach G′ obtained by adding a leaf X to G do

let w be l · ρX(XU) · σX(V (G))

if G′ is not in H then
insert into H: (G′, score(G′|D)− logw + h(G′), w)

else
let (G′, f ′, l′) be in H , decrease f ′ by log l′+w

l′ , increase l′ by w; and

reheapify

Proof. Recall the proof of Algorithm 1, to show the correctness of Algorithm 4, we sim-

ply need to generalize Lemma 3 for order-modular prior, where li+1 is now a weighted

count of linear extensions. Recall the proof of Lemma 3, and let Nρσ(G0 → . . . →

Gi−1 → Gi) denote a weighted count of paths G0 → . . .→ Gi−1 → Gi. Then we only

need to show

ρmaxσmax(i+ 1)
∑

Gi−1≺Gi

Nρσ(G0 → . . .→ Gi−1 → Gi)

>
∑

G′i≺Gi+1

Nρσ(G0 → . . .→ G′i → Gi+1)

To see this, first note that by the inductive hypothesis, all the G′i−1 that generate G′i

are extracted. Moreover, since Gi and G′i both generate Gi+1, among all G′i−1, there

exists at least one G∗i−1 that generates Gi. Then note that when the weighted count of
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linear extensions of G′i is L, the weighted count of linear extensions of G∗i−1 is at least

L/(ρmaxσmaxi).
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APPENDIX C

Proofs of Theorems in Chapter 5

Proof of Theorem 5

First recall the following theorem from [VP92, Mee95].

Theorem 13. Given a PDAG where all the v-structures are oriented, then the CPDAG

can be obtained by repeatedly applying the following orientation rules:

R1 Orient b− c into b → c whenever there is an arrow a → b such that a and c are

nonadjacent.

R2 Orient a− b into a→ b whenever there is chain a→ c→ b.

R3 Orient a− b into a→ b whenever there are two chains a− c→ b and a− d→ b

such that c and d are nonadjacent.

R4 Orient a−b into a→ b whenever there are two chains a−c→ d and c→ d→ b

such that c and b are nonadjacent and a and d are nonadjacent.

Proof of Theorem 5. (If:) First, note that there are no compelled edges directed away

from X (which would make X a non-leaf). Next, note that we can compel each edge

S−X towardsX one-by-one, each time checking if Theorem 13 compels another edge

in S ′−X towards S ′ instead. If this never happens, then all edges S−X can be oriented

towards X (which makes X a possible leaf).

We start by orienting one edge S − X towards S. Consider each of the rules in

Theorem 13:

100



R1 cannot be used to orient the edge from X → S. First, if there were some other

compelled edge Y → X where Y 6∈ S and Y is not adjacent to S, then the

edge S − X should already have been compelled (i.e., P was not a CPDAG).

Otherwise, we only orient edges from S → X and all S ∈ S are adjacent.

R2 cannot be used to orient the edge from X → S, since there is no chain from X

to S (which would imply X was a non-leaf).

R3 cannot be used to orient the edge from X → S, since all potential neighbors c

and d via an unoriented edge must be adjancent.

R4 cannot be used to orient the edge from X → S, since all potential neighbors c

and b via an unoriented edge must be adjancent.

Since no rule compels us to orient an edge away from X , we can orient the edges

one-by-one to make X a leaf.

(Only if:) We show that if S is not a clique, then X is not a leaf. If S is not a clique,

then there is a pair S and S ′ in S that are non-adjacent. If we orient S −X as S ← X ,

then X is not a leaf. If we orient S −X as S → X , then by Theorem 13, Rule R1, we

must orient S ′ −X as S ′ ← X . Hence, X is not a leaf.

Proofs of Propositions

Proof of Proposition 1. Follows from the definition of equivalence classes.

Proof of Proposition 2. This path can be constructed by following any path to G in the

BN graph, and then identifying the corresponding CPDAGs in the EC graph.

Proof of Proposition 3. Follows from Theorem 10 in [Chi95].

Proof of Proposition 4. Follows from the fact that the canonical ordering is the order-

ing with the largest reverse lexicographic order.
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APPENDIX D

Proofs of Theorems in Chapter 6

D.1 ILP with Ancestral Constraints

Here, we review an encoding of ancestral relations in ILP. This is an adaptation (and

extension) of the MaxSAT encoding described in [Cus08].

First, we have transitivity of positive ancestral constraints:

¬A(X, Y ) + ¬A(Y, Z) + A(X,Z) ≥ 1

For ancestor and family variables: we let edge/ancestor variables E(X, Y, Z) be 0-1

variables that denote X  Y → Z. We have

¬E(X, Y, Z) + A(X,Z) ≥ 1

¬A(X,Z) +
∑
Y

E(X, Y, Z) ≥ 1

and

¬E(X, Y, Z) + A(X, Y ) + I(Z,U) ≥ 1

¬A(X, Y ) + ¬I(Z,U) + E(X, Y, Z) ≥ 1

where Y ∈ U.

D.2 Inferring Orderings via MAXSAT

We can encode Theorem 9 as a (partial) MaxSAT problem to find an optimal set O,

where the number of ordering constraints added is maximized. First, we have the hard

constraints:
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1. transitivity of ordering constraints: for all X < Y and Y < Z in O:

(X < Y ) ∧ (Y < Z)⇒ (X < Z)

2. ordering constraint only if negative ancestral constraint: for all X < Y inO:

(X < Y )⇒ (Y 6 X)

3. acyclicity: for all X < Y and Z < W in O:

(X < Y ) ∧ (Z < W )

⇒ (X  Y ) ∨ (X  Z) ∨ (X  W ) ∨ (Z  W ) ∨ (Y  W ) ∨ (Y 6 Z)

Second, we have the soft constraints:

4. candidate ordering constraint: for all X 6 Y in A

(X 6 Y )⇒ (Y < X)

The optimal (partial) MaxSAT solution maximizes the number of soft constraints sat-

isfied. The above soft constraint is satisfied when X 6 Y 6∈ A (the number of such

clauses satisfied in this manner is fixed by the input set A). The above soft constraint

is otherwise satisfied when X 6 Y ∈ A and Y < X ∈ O. Since Y < X ∈ O only

if X 6 Y ∈ A (via the corresponding hard constraint), the partial MaxSAT solution

maximizes the number of ordering constraints Y < X in O.

In our experiments, we used the EVASOLVER partial MaxSAT solver, available at

http://www.maxsat.udl.cat/14/solvers/eva500a__.

D.3 Proof of Theorem 6

Lemma 4. In a EC tree, if a CPDAG with variables X, Y does not satisfy X  Y , its

descendants do not satisfy X  Y either.
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Proof. Assume the contrary, i.e., consider CPDAG Pi that does not satisfy X 6 Y ,

and Pi → . . . → Pk−1
XkUk−−−→ Pk → . . . → Pj , where Pk is the first CPDAG from

Pi to Pj that satisfies X  Y , i.e., there exists a DAG Gk in class(Pk) with path

X → . . . → Z → Xk → W → . . . → Y . By the EC tree edge generation rules, Gk

also contains edge Z → W . Then consider DAG Gk−1 in class(Pk−1), constructed by

removing Xk from Gk. Since Gk−1 contains X → . . . → Z → W → . . . → Y , Pk is

not the first CPDAG with a DAG satisfying X  Y .

Lemma 5. In a EC tree, if a CPDAG with variables X, Y satisfies X  Y , its descen-

dants also satisfy X  Y .

Proof. Follows directly from the fact that variables are added as leaves to all the DAGs

in a CPDAG.

Theorem 6 follows directly from the two lemmas.

D.4 Proofs for Section 6.5.1

Proof of Lemma 1. This lemma is simply based on the transitivity of positive ancestral

relations.

Before we prove Lemma 2, we first consider a few lemmas.

Lemma 6. If a constraint in Y  X is entailed by A, then Y  X is entailed by A.

If a constraint in X 6 Y is entailed by A, then X 6 Y is entailed by A.

Proof of Lemma 6. If Y ′ ∈ Y and X ′ ∈ X , then Y  Y ′ and X ′  X . Hence, if

Y ′  X ′ then Y  X .

If X ′ ∈ X and Y ′ ∈ Y , then X ′  X and Y  Y ′. Hence, if X ′ 6 Y ′ then

X 6 Y .

104



Lemma 7. If X  Y is entailed by A, then Y 6 X is entailed by A. Conversely, if

Y 6 X is not entailed by A, then X  Y is not entailed by A.

Proof of Lemma 7. Suppose for contradiction that Y 6 X is not entailed by A, and

there exists a DAG G ∈ G(A) where Y  X . Since X  Y is entailed by A, then

DAG G must have a directed cycle, which is a contradiction.

Proof of Lemma 2. First, if A entails a constraint in Y  X , then A entails Y  X ,

by Lemma 6. Next, if A entails Y  X then A entails X 6 Y , by Lemma 7. Finally,

A entails a constraint in X 6 Y , by Definition 1.

It thus suffices to show that A entails X 6 Y iff A entails a constraint in X 6 Y .

The only if direction follows by Definition 1, and the if direction follows by Lemma 6.

D.5 Proofs for Section 6.5.2

Lemma 8. For a given set of ancestral constraints A, if there is a DAG G ∈ G(A)

satisfying the ancestral constraint X  Y , then G(A) also contains a DAG with the

additional edge X → Y .

Proof of Lemma 8. Let G be a DAG in G(A) where there is a path from X to Y . Let

G′ be the DAG where we add the edge X → Y to G. First, G′ satisfies any positive

ancestral constraint in A, since any such constraint satisfied by G remains satisfied in

G′. Second, G′ satisfies any negative ancestral constraint in A, since adding an edge

X → Y introduces no new ancestral relations that were not already present in G, since

G already satisfies X  Y . Thus, G′ must also be in G(A)

Proof of Theorem 7. (⇐) IfX 6 Y , then by Lemma 6,X 6 Y , which in turn implies

X 6→ Y .
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(⇒) Suppose for contradiction that no constraint in X 6 Y is entailed by A. In

this case, there exists a DAG G ∈ G(A) where X  Y . By Lemma 8, there is also a

DAG G′ ∈ G(A) with the edge X → Y , which is a contradiction. Hence, A entails a

constraint in X 6 Y .

Lemma 9. Given a set of ancestral constraints A, if G(A) contains a DAG satisfying

X  Z, and a DAG satisfying Z  Y , but it does not contain a DAG satisfying both

X  Z and Z  Y , then A entails X 6 Y .

Proof. First, if A entails Y  X , then by Lemma 7, A entails X 6 Y . Assume

instead that A does not entail Y  X .

Let A+ = A ∪ {X  Z}. Let X+ and X+ denote the entailed ancestors and

entailed descendents of X with respect to A+. Note that:

X+ = X and Z+ = Z ∪X.

Further, since A does not entail Y  X , adding X  Z does not introduce new

entailed descendants of Y , so:

Y + = Y .

First,A does not entail Z 6 Y since G(A) contains a DAG satisfying Z  Y . Further,

A does not entail any constraint in Z 6 Y , by Lemma 2.

Second, A+ entails Z 6 Y since G(A) does not contain a DAG satisfying both

X  Z and Z  Y . Further, A+ entails a constraint in Z+ 6 Y +, by Lemma 2.

Let Z ′ 6 Y ′ denote one of the entailed constraints in Z+ 6 Y +, where Z ′ ∈ Z+

and Y ′ ∈ Y +. The constraint Z ′ 6 Y ′ could not have been in Z 6 Y ; otherwise

Z 6 Y would be entailed by A, by Lemma 6. Hence, the constraint Z ′ 6 Y ′ must

have a Z ′ ∈ Z+ that is in X but not in Z (and otherwise Y ′ ∈ Y + = Y ). That is,

Z ′ 6 Y ′ is a constraint in X 6 Y . Hence, A entails X 6 Y , again by Lemma 6.

Proof of Theorem 8. (⇐) First, for any Z ∈ X ∪ Y , there is no path from X to Y

through Z, since by Definition 1 either Z  X or Y  Z, and thus by Lemma 7
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either X 6 Z or Z 6 Y . Second, for any Z 6∈ X ∪ Y , there is no path from X to

Y through Z, since either X 6 Z or Z 6 Y , and thus by Lemma 6 either X 6 Z

or Z 6 Y . Since there is no path from X to Y through any other variable Z, for A to

entail X  Y , then A must also entail the edge X → Y .

(⇒) Assume for contradiction that X  Y is not entailed by A. In this case there

exists a DAG in G(A) where X 6 Y , and hence X 6→ Y , which is a contradiction.

Assume instead thatX  Y is entailed byA, but there exists a variable Z /∈ X∪Y

such that A entails no constraint in X 6 Z and no constraint in Z 6 Y . Hence, there

is a DAG in G(A) satisfying X  Z, and a DAG satisfying Z  Y . By Lemma 9,

there must also be a DAG satisfying X  Y (if there was not, then X 6 Y , which

would be a contradiction). Thus, there must also be a DAG in G(A) without the edge

X → Y (since removing the edge does not violate any positive ancestral constraints),

which is a contradiction.

D.6 Proofs for Section 6.5.3

We assume here that sets of ordering constraints O are closed, i.e., if X < Y and

Y < Z are in O, then X < Z is in O. Given an arbitrary set of ordering constraints,

we can compute its closure efficiently using standard algorithms.

We say that a set of ancestral constraints A is maximal if any constraint that is

entailed by A is also an element of A. We can obtain a maximal set of ancestral

constaints, using Lemmas 1 & 2, which allows us to enumerate all constrained entailed

by A. For the rest of this section, we assume that all sets of ancestral constraints A are

maximal.

Note that a DAG G is a (consistent) set of ordering constraints O, and vice versa.

Both are also partially ordered sets (posets). Further, a set of ordering constraints O is

consistent (i.e., it corresponds to a non-empty set of orderings) iff the directed graph

induced by O is acyclic.
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Hence, a DAG G is compatible with a set of ordering constraints O iff the union of

their edges yield a graph that is acyclic. We define another type of graph below, which

is acyclic iff a DAG G is compatiable with a set O.

Definition 3. For a given DAG G ∈ G(A) and a set of ordering constraints O, let

GO denote the extension of G with respect to O, which is a directed graph found by

taking DAG G and adding dashed directed edges X 99K Y iff (1) X < Y ∈ O and (2)

X 6 Y in G.

Let G(A,O) = {GO | G ∈ G(A)} denote the set of all extensions, with respect to

A and O.

Lemma 10. A entails O iff all graphs GO ∈ G(A,O) do not contain directed cycles.

Hence, in Theorem 9, it suffices to consider the extensions GO of G(A,O). In our

proof of Theorem 9, we make use of the following lemmas.

Lemma 11. For a DAG G ∈ G(A), if the extension GO contains an edge X 99K Y ,

then X  Y /∈ A.

Proof. By Defintion 3, we add an edge X 99K Y in GO iff X 6 Y in G. Since G is a

DAG in G(A) without a path from X to Y , then X  Y is not entailed by A.

Lemma 12. Let GO be an extension in G(A,O) with a path X → Y → Z. There

exists another extension HO in G(A,O) which also has the edge X → Z.

Proof. The extension GO has a corresponding DAG G ∈ G(A). Since X  Z in G,

by Lemma 8, there is another DAG H ∈ G(A) which also includes the edge X → Z.

Hence, the extension HO is also in G(A,O).

Lemma 13. Let GO be an extension in G(A,O) with a path X 99K Y 99K Z. There

exists another extension HO in G(A,O) which also has an edge X → Z or X 99K Z.
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Proof. If X 99K Y and Y 99K Z are edges in GO, then X < Y and Y < Z are

constraints in O. Since O is closed, X < Z is also in O. Hence, edge X 99K Z is also

in GO, unless there is a path X  Z. By Lemma 12, then there must be an extension

HO with the edge X → Z.

To prove Theorem 9, we prove the contrapositive. That is, if there is an extension

GO ∈ G(A,O) with a directed cycle, then it violates one of the conditions of Theo-

rem 9. We prove this by induction on the length of the directed cycle in GO. In such

cases, we may refer to a cycle of length m as an m-cycle.

Proof of Theorem 9. First, by construction, we know that there are no cycles of purely

solid edges (since G is acyclic), and no cycles of purely dashed edges (since O is

consistent). We can thus assume, without loss of generality, that the “first” edge of our

cycle is a dashed edge X 99K Y , since we can pick any edge to be the “first” edge.

We first consider cycles of length m = 2. Given the above assumptions, it suffices

to consider the cycle X 99K Y → X , which violates Condition 1 (if X < Y is in O

then Y 6 X is in A).

For cycles of length m = 3: either we have two dashed edges followed by one solid

edge, or one dashed edge followed by two solid edges. We can reduce a 3-cycle to a

2-cycle, using either Lemma 12 or 13, which shows that Condition 1 is violated.

For cycles of length m = 4: if the cycle has consecutive solid edges or consecutive

dashed edges, we can use Lemmas 12 and 13 to reduce a 4-cycle to a 2-cycle or 3-cycle,

which are handled above. Otherwise, we must have a cycle

X Y

ZW

First, we have dashed edges X 99K Y and Z 99K W , so by Lemma 11, constraints
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X  Y and Z  W are not in A. Second, constraints X  Z and Y  W are not

in A, otherwise they would have created a shorter cycle. Finally, we have solid edges

W → X and Y → Z, so the constraints X  W and Y 6 Z are not in A. Hence,

Condition 2 is violated.

Given the cases of cycle lengths of m − 1 or fewer, we now consider cycles of

length m. First, it suffices to consider cycles where dashed and solid edges alternate.

Otherwise, we can use Lemma 12 or 13 to produce a shorter cycle. Second, we can

assume that there is no directed path of solid edges connecting two non-adjacent nodes

in the cycle; we can again obtain a shorter cycle in this case. Third, we note that any

odd-length cycle must have two consective edges of the same type. Hence, it suffices

to consider only cycles of even length:

X 99K Y → Z 99K W → · · · 99K V → X

(we assume without loss of generality that the “first” edge is dashed). First, we have

dashed edges X 99K Y and Z 99K W , so by Lemma 11, constraints X  Y and

Z  W are not in A. Second, constraints X  Z and Y  W and X  W are not

in A, otherwise they would have created a shorter cycle. Finally, we have a solid edge

Y → Z so the constraint Y 6 Z is not in A. Hence, Condition 2 is violated.
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APPENDIX E

Proofs of Theorems in Chapter 7

Moral Graph

Consider P (B1|O). Let S1 =
∑k−2

i=0

(
z−3
i

)
and S2 =

∑k
i=0

(
z−1
i

)
. Let i be a positive

integer. Note that (
n

i

)
=

(
n−1

i

)
+

(
n−1

i−1

)
. (E.1)

Then similar to Subsection 7.4.1,

S1 =
1

z−2

k−1∑
i=0

i

(
z−2

i

) (
by (7.1)

)
, (E.2)

S1 =
1

z−2

k−2∑
i=0

(z−2−i)

(
z−2

i

) (
by (7.2)

)
=

1

z−1

k−2∑
i=0

(z−1−i)

(
z−1

i

)
−S1+

(
z−3

k−2

)(
by (7.1, 7.2, E.2)

)
= S2−

(
z

k

)
−

1

z−1

k−2∑
i=0

i

(
z−1

i

)
−S1+

(
z−3

k−2

)(
by (E.1)

)
.

Let S3 =
∑k−2

i=0 i
(
z−1
i

)
. Then

S3 =
k−3∑
i=0

(z−1−i)

(
z−1

i

) (
by (7.1) (7.2)

)
= −S3+(z−1)

(
S2−

(
z

k

)
−

(
z−1

k−2

)
+

(
z−2

k−3

))(
by (7.1, E.1)

)
.

Consequently

S1

S2

=
1

4

(
1+
−
(
z
k

)
+
(
z−1
k−2

)
−
(
z−2
k−3

)
+2
(
z−3
k−2

)∑k
i=0

(
z−1
i

) )
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and again we approximate
∑k

i=0

(
z−1
i

)
by
(
z
k

)
. Then

P (B1|O) ≈ k(k−1)

4z2

(
3−

2(k+1)

z

)
.

Expected Size of Em

Let A denote the event that in G′A there does not exist Z → Z ′ and there exists a path

of Type (a). Similarly, let B,C denote that for Type (b), (c) paths. Then

E[IS′ ] ≤
∑

x<z<z′<z′′<y

P (A|O)P (O)

+
∑

y<z<z′<z′′<x

P (B|O)P (O)

+
∑

z<x<z′<z′′<y
z<z′<x<z′′<y
z<z′<z′′<x<y
z<y<z′<z′′<x
z<z′<y<z′′<x
z<z′<z′′<y<x

P (C|O)P (O).

Consider the first term. Recall Section 7.5. We approximate the probability that there

exists W → Y ← W ′ with 3k(k − 1)/(4y2), and approximate the probability that

v-structure Z → Z ′′ ← Z ′ exists with 3k(k − 1)/(4z′′2) (1− k/z′) = 3k(k − 1)(z′ −

k)/(4z′z′′2). Then similar to Subsection 7.6.2.1,

P (A|O) <
9k3(k−1)2(z′−k)(z−x−1)(y−z′−1)(y−z′′−1)

16y2zz′z′′2

and ∑
x<z<z′<z′′<y

P (A|O)P (O) <
5k3(k−1)2

3072n2
.

The case for the second term is the same as the first. Then consider the third term∑
P (C|O)P (O). First note that the case for

∑
z<x<z′<z′′<y P (C|O)P (O) is essentially

identical to
∑

x<z<z′<z′′<y P (A|O)P (O). Then when z < z′ < x < z′′ < y,

P (C|O) <
9k3(k−1)2(z′−k)(x−z−1)(y−z′−1)(y−z′′−1)

16xy2z′z′′2
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and

∑
z<z′<x<z′′<y

P (C|O)P (O) <
49k3(k−1)2

18432n2
.

Then consider when z < z′ < z′′ < x < y. Recall that Z ′′ is an ancestor of X or

Y , or both. First consider when Z ′′ is an ancestor of X:

P (C|O) <
9k3(k−1)2(z′−k)(x−z−1)(x−z′′−1)(y−z′−1)

16x2yz′z′′2
.

Then consider when Z ′′ is an ancestor of Y :

P (C|O) <
9k3(k−1)2(z′−k)(x−z−1)(y−z′−1)(y−z′′−1)

16xy2z′z′′2
.

Consequently

∑
z<z′<z′′<x<y

P (C|O)P (O) <
251k3(k−1)2

6144n2
.

The remaining cases are the same as the above.
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dicting the hardness of learning Bayesian networks.” In Proceedings of the
Twenty-Eighth Conference on Artificial Intelligence, 2014.

[Mee95] C. Meek. “Causal inference and causal explanation with background
knowledge.” In Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, 1995.

[MW03] A. Moore and W.-K. Wong. “Optimal reinsertion: A new search operator
for accelerated and more accurate Bayesian network structure learning.” In
Proceedings of the 20th International Conference on Machine Learning,
volume 3, pp. 552–559, 2003.

[Mur12] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2012.

[Nea04] R. E. Neapolitan. Learning Bayesian networks. Pearson Prentice Hall,
2004.

[New09] M. E. J. Newman. Networks: an introduction. Oxford University Press,
2009.
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