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Abstract

It is generally accepted that the process of forming a new
category is biased by the learner’s prior knowledge. In this
context, numerous studies and models have paid attention to
the effects of prior domain theories on the process of forming
new categories. What is yet to be understood is how this
process of acquiring new knowledge might be affected by
background knowledge of the very same type, i.e. by prior
categories. This paper presents a few experiments showing
how the formation of new categories might be facilitated by a
high overlap between the new and the old categories, where
overlap is operationalized as the mutual entropy between the
two.

Introduction

The idea that the acquisition of new knowledge is biased by
the learner’s prior knowledge is one of the basic tenets of
cognitive science with respect to learning phenomena. The
idea goes back, at the very least, to the Piagetian notion of
assimilation, according to which new knowledge is con-
structed onto, and consequently constrained by, existing
knowledge. Piaget stressed the idea that background
knowledge acts as a lens through which meaning is attrib-
uted to one’s observations, in a way that helps the cognitive
system maintain a high degree of internal coherence or
equilibrium,

Since Piaget, several researchers have explored the bias-
ing (or guiding) role of background knowledge in learning.
Just to mention a few, Wisniewski and Medin (1994), and
Pazzani, (1991) have studied the interactions between prior
theories and observation in the formation of new categories.
Murphy and Medin (1985) attribute prior theories the im-
portant role of “holding cateogries together™, a role that can
also be traced to Barsalou’s work on ad-hoc categories
(1983) and to studies of children’s conceptual development
(Keil, 1989). In addition to prior theories, other forms of
background knowledge might also have similar effects.
Cabrera and Billman (1996), for example, found that
knowledge of one’s language can bias the process of cate-
gory formation in a way that is not very different from the
effects of prior theories.

On the machine learning side of cognitive science, several
models have been proposed that deal with the effects of
theory-driven inductive process in learning (e.g. Mooney,
1993; Mitchell, Keller & Kedar-Cabelli, 1986; DeJong &
Mooney, 1986).

In all these cases, the assumption is that one type of prior
knowledge (domain theories or language) affects the for-
mation of knowledge of a different kind (concepts or cate-
gories). In contrast, this paper focuses on how prior knowl-
edge of one kind (categories) can bias the formation of
knowledge of that very same kind.

Categories as mediators of generalization

One way to start analyzing how existing categories might
influence the formation of new ones consists of looking at
the role played by categories in generalization. Categories
have been shown to play an important role in induction by
acting as conducting surfaces spreading the generalization
of new knowledge from one object to a whole class of ob-
jects. In an illustrative developmental study by Gelman and
Markman (1987) children showed a strong tendency to
generalize new properties they had learned about one object
to all the members of that object's basic-level category.
Furthermore, when the categories were made more con-
spicuous by being explicitly labeled, the effect was rein-
forced, and category mediated generalizations outnumbered
generalizations driven by the appearance of the objects.
Other examples of category mediated generalizations can be
found in the area of language development. For instance, in
the acquisition of the past tense, children find no trouble in
generalizing morphological rules such as those required to
form the past tense to all members of the VERB category
(e.g. ““she jumped very high”, “he goed to bed”) and to no
other classes of words (see Pinker, 1989, for a discussion).

So, if categories constitute a milieu for the generalization
of new knowledge, it would seem reasonable to expect that
they also help guide the generalization of membership to a
new category being formed, since category membership is
not but a particular kind of knowledge. In other words, if 1
learn that Lassie is a MAMMAL, I can use my prior cate-
gory DOG to generalize this new piece of (categorical)
knowledge to all dogs. If this interpretation is correct, we
might be able to look at existing categories as conducting
surfaces spreading the pgeneralization of new category
membership, a view that will help us understand the process
of building new categories over old ones.

Overlap and Mutual Entropy

According to this view, the formation of new categories will
be facilitated if the new categories tend to respect the
boundaries of existing categories, i.e. if they tend to hold
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together items that also belong together according to the
existing categories. Conversely, if the new categories re-
quire distinctions not present in prior categories, their
learning might be hindered.

This idea of “agreement” or ‘“disagreement” between
alternative categorizations of a domain can be captured by a
construct that I will refer to as overlap. From all the possi-
ble operational definitions of overlap 1 have chosen one that
borrows from information theory, a framework with a suc-
cessful predictive record in the area of human categorization
(Corter & Gluck, 1992; Cabrera, 1995). The definition goes
as follows.

Let us refer to each possible way of partitioning a domain
as a [1. A partition IT consists of a set of exhaustive, mutu-
ally exclusive classes of objects, I1 = {C;}. Let IT] = {C},

C2, C3,..., Cp}, be a partition of the domain, and let P(C})
be the (prior) probability of occurrence of each class within
the domain. Information theory defines the entropy associ-

ated with the set of P(C;)’s as -Z P(G)log2 P(G), an
i=1

expression that represents the average amount of uncer-

tainty (measured in bits), associated with deciding which

class any given instance belongs to.

For example, a partition consisting of two equi-probable
classes has an entropy of 1 bit, whereas a partition of 8
equi-probable classes will convey an entropy of 3 bits.
Intuitively speaking, entropy represents the average number
of binary questions one would need to ask in order to figure
out which category any given object belongs to. In general,
the more classes in a partition, the more uncertainty the
partition will convey. Also, the closer the probabilities are
to being uniformly distributed the higher the uncertainty.

Now suppose that we have two partitions, I1] and Ilp,
where ITj consists of a set of n classes B; and I consists of
a set of m classes Cj. Saying that IT{ and ITp have a high
overlap amounts to saying that knowing the class member-
ship of an object according to one of them reduces signifi-
cantly our uncertainty (entropy) about the class membership
of the object with respect to the other one. Overlap can
therefore be measured as the average reduction in uncer-
tainty that one partition provides with respect to the other:

Overlap(I1,,T1,) == P(C;)log, P(C;)+

1
+Z P(B;)Y P(C;|B;)log, P(C,|B;) @
J !

where P(CjBj) represents the probability of an instance
belonging to é‘; given that we already know that it belongs
to B;. This expression is known by information theorists as
mutual entropy. The first term in this equation represents
the prior entropy associated with partition ITj, or Ilp’s
intrinsic uncertainty in the absence of any additional infor-
mation. The term inside the brackets, which we can call
conditional entropy, represents the uncertainty that is left
with respect to partition I'l] conditionally upon knowing the
class membership of the object with respect to Ilp. This
conditional entropy is weighed by the probability of occur-
rence of each of the categories Bj, P(Bj), and averaged
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across all the categories in IT2. Altogether, overlap repre-
sents how much more certain 1 am about the class of an
unknown stimulus according to one partition when I know
the class the stimulus belongs to according to the other
partition.

The “overlap™ operator can be thought of as a dot-
product between partitions, representing the size of the
‘‘projection” of one over the other. Mutually uninformative
partitions have an overlap of zero bits, a situation that, fol-
lowing dot-product terminology, can be referred to as or-
thogonality. Saying that partitions ITj and Iy are orthogo-
nal amounts to saying that P(C,—|B,-) =P(C;) and
P(B;|C;) = P(B;) forany C; €I, and B; €Il,.

A situation of particular interest when dealing with hu-
man categories is what we can call embedded partitions.
We say that partition ITj is embedded in IT (or that IT»
embeds I11), and we denote it as [T} < Ilp, if for every
category C; €I, there is a category B; €Il such that
C; < B;. Embedded partitions are at the opposite extreme

from orthogonal partitions in terms of overlap. Between
these two extremes there is a continuous range of possible
degrees of overlap between partitions.

Notice that claiming a learning bias towards highly over-
lapping sets of categories implies a preference for hierarchi-
cally organized systems of categories over systems of cate-
gories which cut across each other’s boundaries (orthogonal
organization). This prediction is consistent with the often
noted hierarchic character of human categories (e.g. Mervis
& Rosch, 1981; Keil, 1983).

Experimental Evidence

This section summarizes the results of three experiments
that were conducted in order to test this hypothesized hu-
man preference for highly overlapping sets of categories. In
each of the experiments, subjects first learned to classify a
set of 16 Phoenician characters' into a number of categories
following the feedback signals provided by the experi-
menter. Immediately after, subjects had to leamn to classify
the same items in a different way. The experiments varied
the amount of overlap between the first and second sets of
categories and measured the experienced difficulty in the
second task.

Experiment 1

In the first experiment, 38 Georgia Tech undergraduate
students underwent two successive supervised classification
tasks of 240 trials each: one task with two categories and
the other one with four. At each trial, subjects were pre-
sented for 500 ms with a Phoenician character inside an

1 The stimuli were intended to be as novel to the subjects as
possible in order to control for possible contaminating effects of
prior theories. Similarly, categories were formed by grouping
characters as independently as possible from their appearance in
order to control for possible contaminating effects of topological
structure.



imaginary 60 by 60 pixel square in the center of a Macin-
tosh high resolution 13’ color monitor and had to classify
the character by pressing a given key in the computer key-
board. If they did not know how to classify the character
they could just guess and proceed with the next trial.

In the two-category tasks (labeled as “A” and “B” in

Figure 1), subjects were told that some Phoenician charac-
ters come from Persian and others come from Egyptian, and
that they were required to figure out, based on the provided
feedback, what characters come from what language, by
pressing either “E” (for Egyptian) or “P” (for Persian).
After their response, the incorrect label was removed from
the screen, and the character was displayed again flanked by
the correct label and the message “Correct !” or “Wrong.”
Subjects were instructed to respond as fast as they could
while trying to be maximally correct. After responding,
they could wait as long as they wished before pressing the
space bar to move on to the next trial.
In the four category tasks, the trials were identical, except
that subjects were told that Phoenician writers used to store
their typesettings in four different boxes and that their goal
was to figure out what letters went into what boxes by
pressing either 4, “5” 7 or “8” on the numeric key-
pad.
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Figure 1. Categories in Experiment 1.

Subjects were split into two experimental groups. In one
group (2-4), the four categories in the second task (see Fig-
ure 1, left panel) were embedded in (hierarchically related
to) the two categories in the first task (Overlap = 1 bit ac-
cording to Eq. 1). In the other group (2-4x), the four cate-
gories in the second task (Figure 1, right panel) were or-
thogonal to the two categories in the first task (Overlap = 0
bits). According to the hypothesis, experience with the first
task should make the second task in the embedded situation
easier than in the orthogonal situation.

Results. Two subjects in the 2-4 condition performed two
SD’s below the mean in the first task and were discarded for
further analyses, thus leaving 18 subjects in each of the two
conditions. The analysis of variance of the learning curves
resulting from grouping trials in blocks of 20 yielded sig-
nificant main effects of block, F(11, 374) = 192.39, p =
.000, and task (first and transfer in both conditions), F(1,
34) =43.10, p = .000. The main effect of block reflects the
learning progress across trials in all conditions. The effect
of task reflects the different baseline (chance) performance
between the two- and the four-category tasks (chance level

was 50% in the two-category tasks and 25% in the four-
category tasks). There was also a significant task by block
interaction, F(11, 374) = 10.65, p = .000, which reflects the
fact that the effects of task vanished with block, as subjects
approached perfect performance in all conditions.

According to the hypothesis, an interaction was expected
between task and condition, that would show a facilitation
from hierarchy in the transfer, four-category task. How-
ever, this crossover was too small to reach statistical reli-
ability, F(1, 34) = 1.02, p = .32. The analysis of variance
also showed no main effect of experimental condition, F(1,
34) = .00, and no significant interaction of block with either
experimental condition or task.

In order to test the possible effects of individual learning
ability, subjects in the 2-4 and 2-4x were split into two
groups according to the total number of correct responses
during the first task. Statistical analyses of this interaction
were conducted by including a dichotomized variable repre-
senting learning ability with respect to the group median (9
fast learners and 9 slow learners in each condition). The
results showed a significant interaction between condition
and learning ability, F(1, 32) = 5.72, p = .023, showing that
fast learners and not slow learners showed the predicted
benefit from hierarchical structure.

Distribution of Errors. Finally, subjects’ use of their prior
categories in generalizing the knowledge acquired during
the transfer task was assessed by looking at the distribution
of erroneous responses produced by subjects to stimuli from
each of the categories in the transfer task of the hierarchical
2-4 condition. This distribution was compared to the re-
sponses of subjects from a different task who faced the
same categories with no prior experience. This was done
for slow and fast learners separately, in order to simultane-
ously assess whether the use of the prior categories in gen-
eralizing new knowledge was affected by degree of learning
of the prior categories. Figure 2 summarizes the results,
expressed as the proportion of incorrect responses that were
consistent with the superordinate category membership of
the stimulus, for each of the four categories.

Distribution of Errors

@ Fast Learners
Slow Leamners
[ No Prior Exp.

Percent of Errors within Superordinate

Average

Category
Figure 2. Distribution of errors in Experiment 1

In an unbiased situation, only 33% of the incorrect re-
sponses should correspond to the responses associated with
members of the same superordinate category, because for
every stimulus there were always three possible “incorrect”



responses. Subjects with no prior experience performed
very close to this chance level (average of 31%). Slow
learners with prior experience with the superordinate cate-
gories generalized across the superodinates with a slight
higher probability (39%), and more so fast learners, who
averaged 46%. So, not only did subjects seem to be using
the categories formed during the first task to guide the for-
mation of categories during the second task, but also the
capacity of those categories to mediate the generalization of
new knowledge was more noticeable the better had the first
categories been learned.

Experiment 2

The goal of this experiment was to further test whether
degree of overlap with prior categories affects learning
difficulty in a setting that is neither strictly hierarchical nor
strictly orthogonal, but somewhere in between. In addition,
this experiment introduced a new experimental design that
allowed for more powerful within subjects analyses.

The categories used in each of the tasks are depicted in
Figure 3. In the 4B task there were two categories contain-
ing half of the stimuli each, i. e. P(4) = P(B)=.5. Inthe LO
task?, one category, L, contained all eight characters in cate-
gory A plus half of the characters in B, while the other cate-
gory, O, contained the remaining half of B. In other words,
P(L) = .75, and P(O) = .25. The AB category set had an
uncertainty of 1 bit, the LO set had an uncertainty of .81
bits, and the two sets overlapped in .31 bits. The 4B task
was based on the Persian-Egyptian story line of the previous
experiment. The story line in the LO task was about how
Phoenician writers organized their type-settings, keeping
some in one box and others in a different box.
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Figure 3. Category sets in Experiment 2.

The key characteristic of the current arrangement as com-
pared to the previous experiment is the fact that each of the
categories in each partition had a different individual over-
lap with respect to the categories in the other partition.
Category L overlapped in .061 bits with the 4B set, while
category O overlapped in .25 bits with that same set. At the
same time, category A overlapped in .406 bits with the LO
set, while category B had a negative overlap of -.094 with
that set. Interestingly (and not so intuitively!) this negative
overlap reflects the fact that we are less certain about
whether an instance belongs to L or O when we know that it

2 The labels L and O represent, roughly, the shapes of the Venn
diagrams of the respective categories they refer to.
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belongs to B than when we know nothing at all about the
instance. If we do not know anything about the instance,
we can only guess that it belongs to L. more likely than to O
(probability of .75 vs. .25), whereas, if we know that the
instance belongs to B and we use that information to guess
whether it belongs to L or O, we are in a situation of maxi-
mum uncertainty (.5 vs. .5).

There were two experimental conditions. In condition
AB-LO subjects experienced the AB task prior to the LO
task. The opposite order took place in the LO-4B condition.
According to the hypothesis, it was expected that, after
forming categories L and O, learning 4 would be easier than
learning B. Analogously, when transferring to LO from the
AB task, the learning of O was expected to be facilitated
relative to L. However, the effect in the latter case could be
less noticeable than in the former case, given the relative
values of overlap.’ In both cases, comparisons between
categories in the same task were carried out as within sub-
jects.

There were 192 4B learning trials and 192 LO trials. The
trials were randomly ordered in blocks of 48 trials. Within
each block, each of the 16 characters appeared three times.
Twenty-four subjects were randomly assigned to condition
AB-LO and twenty-two to condition LO-AB.

Results. Across all conditions and categories, subjects
averaged between 73% and 86% correct responses in the
first learning task. Subjects who scored at least two stan-
dard deviations below the mean for either of the two catego-
ries in the first phase were excluded from further analyses.
This was the case with three subjects in the 4B-LO group
and two in the LO-A4B group.

LO-AB Transfer. The analysis of variance of accuracy
yielded a significant main effect of condition, F(1, 39) =
5.12, p = .029, and block, F(3, 117) = 130.84, p = .000.
However, the predicted condition by category interaction
was only marginally significant, F(1, 39) =2.92, p = .096.

The predicted interaction was more obvious in terms of
response time. As expected, experience with the LO task
made responses to instances from the A category faster than
responses to instances from the B category, even though
category A produced slower responses in the absence of
prior experience. The analysis of variance yielded a signifi-
cant main effect of condition F(1, 39)= 8.10, p = .007, and
block, F(3, 117)= 39.00, p= .000, a significant condition by
block interaction, F(3, 117)= 7.72, p= .000, and, most im-
portantly, a significant condition by category interaction,
F(1, 39)= 9.63, p= .004 that is consistent with the predic-
tions.

AB-LO Transfer. It was expected that prior experience
with the 4B would facilitate the learning of O relative to L,
although the effect was expected to be smaller than in the
previous scenario. Statistical comparisons of accuracy in the
LO task with and without prior 4B experience yielded a
significant main effect of experience, F(1, 39) = 5.96, p =
.019, block, F(3, 117)= 118.64, p= .000, and category, F(1,
39) = 71.53, p = .000, but no significant interaction, F(1,

! Notice that Overlap(A, LO) - Overlap(B, LO) > Overlap(O, AB)
- Overlap(L, AB).



39) =.18. Analogous analyses performed on response time
data did not show the expected condition by category inter-
action either, F(1, 39)=.79.

Experiment 3

Experiment 3 was very similar to Experiment 2 but was
based on a different arrangement of categories. The catego-
ries used in this experiment did not differ in overlap as
much as those in the previous experiment but they had the
advantage of allowing us to examine the distribution of
subjects’ errors (as we did in Experiment 1) by including a
task with three categories instead of two (which gave sub-
jects two possibilities for error in each trial).

The arrangement of categories that was used in this ex-
periment is shown in Figure 4. Again there was a symmet-
rical two category task that I will refer to as AB. The other
task, /23, involved three categories of comparable sizes
(P(1) = P(3) = 5/16; P(2) = 6/16), that were not embedded
in the AB set but overlapped highly with it. The uncertainty
associated with the 4B set was 1 bit, the uncertainty associ-
ated with the /23 set was 1.58 bits, and the overlap between
the two sets was .625 bits,
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Figure 4. Design of categories in Experiment 3.

Categories A and B had an overlap of .3125 bits each
with respect to the 123 set. Categories 1 and 3 overlapped
also in .3125 bits with respect to the AB set, while category
2 was orthogonal to this set (zero overlap). Consequently, it
was expected that experience with the AB task would fa-
cilitate the learning of / and 3 as compared to 2. Con-
versely, prior experience with the /23 task should not alter
the relative difficulty of 4 and B. These hypotheses were
tested by comparing relative performance on each category
between the groups of subjects with and without prior expe-
rience with the alternative category set.

There were 45 subjects. Twenty-four of them were ran-
domly assigned to the 4B-/23 condition, and twenty-one
were assigned to the /23-4B condition. The rest of the
design was identical to experiment 2.

Results. Across all conditions and categories, subjects
averaged between 75% and 84% correct responses in the
first learning task they experienced. Three subjects in the
AB-123 group and three subjects in the /23-4B group
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scored less than two standard deviations below the mean for
at least one of the categories. The data from these subjects
were excluded from further analyses. This left 21 and 18
subjects in each condition.

AB-123 Transfer. According to the between-within
ANOVA, the expected interaction fell short of reaching the
normative 5% reliability level, F(2, 74) = 2.52, p = .087.
The main effect of experience also approached statistical
significance, F(1, 37) = 3.04, p = .09, thus indicating that
there might have been some practice effect. Finally, there
was a significant effect of category, F(2, 74) = 8.40, p =
.001, with category 3 leading to the overall highest scores
(85.4%, SD = 5.3), and category I, to the lowest (80.6%,
SD = 8.3). Neither the main effect nor the interaction were
significant in terms of response times.

Distribution of Errors. Figure 5 (left) shows the prob-
ability of erroneously assigning to category / an instance of
category 2 that also belonged to A4, for subjects with and
without prior experience with the AB task. Subjects with no
prior experience with the 4B set erred equally frequently by
classifying instances of 2 as / and 3 (averaging about 50%
to each category). On the contrary, subjects with prior ex-
perience with the AB task tended to err more frequently by
assigning to / the characters that also belonged to A4, con-
sistent with the membership of the instances during the first
task. Overall, category-consistent errors were 60% follow-
ing AB training, but just 50%, or chance, with no prior AB
training,

B No Prior Exp.
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Frequency of I Responses
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Figure 5. Distribution of errors in Experiment 3.

Similarly, Figure 5 (right) shows the probability of erro-
neously assigning an instance of category 2 that also be-
longed to B, to category 3. For all three instances, the prob-
ability of being erroneously assigned to 3 was higher for
subjects with prior experience with the 4B task. These
results are consistent with the predictions and the findings
of Experiment 1.

123-AB Transfer. Because 4 and B have identical overlap
with the 123 category set, prior éxperience with the 123 task
was not expected to affect the relative difficulty of learning
of A and B. The results did not contradict this prediction. A
mixed ANOVA showed no significant experience by cate-
gory interaction in terms of either accuracy, F(1, 37) = .00,
or response time, F(1, 37) = .44. Accuracy did show a
significant main effect of experience, probably indicating
practice effects. There was no main effect of category in
terms of accuracy or response time.



Discussion

The results of Experiment 1 showed that fast learners had
less trouble transferring from a two-way classification task
to a four-way task when the categories in the four-way task
were embedded in (were hierarchically related to) the cate-
gories in the two-way task, than when the category sets
were orthogonal to each other. On the contrary, slow learn-
ers did not show such a pattern. When looking at the distri-
bution of errors evidence was found supporting the idea that
all learners (but even more so fast learners) had a tendency
to generalize category membership during the second task
across the categories formed during the first task.

Experiment 2 showed that people transferring from an
asymmetric two-way classification task to a symmetric two-
way task had less trouble forming the category with the
highest overlap with respect to the initial two categories,
thus supporting the predictions. This result indicates that
overlap may affect category formation even in intermediate,
neither fully hierarchical nor fully orthogonal situations.
When the sequencing of the two tasks was reversed, the
predictions were more modest as far as possible effects of
overlap, but the results failed to yield significant effects.

When subjects in Experiment 3 transferred from a three
category task to a symmetric two category task, overlap
predicted no effects. Not willing to support the null hy-
pothesis based simply on a lack of statistical significance, it
is of interest to note that the ANOVA of the non expected
interaction yielded a null value of F. In the opposite case,
when subjects transferred from the two to the three-category
task, overlap predicted an effect favoring categories 1 and 3
over 2, although this effect was predicted to be of less mag-
nitude than that observed in Experiment 2. The results were
in the direction that had been predicted, but they were only
marginally significant.

Summing up, effects tended to show up when differences
in overlap were large, were either not observed or only
marginally so when differences in overlap were small, and
were not observed at all when the overlap differences were
null. At a general level then, this pattern of results is con-
sistent with the hypothesis that overlap with respect to prior
categories influences the process of constructing new cate-
gories. At a detailed level, the absolute predictive validity
of mutual entropy as a measure of overlap remains to be
determined.

The current work indicates that the process of building a
new category can be considered as a particular case of
knowledge generalization, and, as such, it is susceptible to
be guided by whichever prior categories might be available
to the learner. When a child learns that a particular dog is a
mammal (a category label never encountered before), he
might be able to generalize the “mammalness”™ property to
all dogs. As a conclusion, prior categories will bias the
process of forming new ones. In Keil’s (1990) terms, prior
categories constitute a domain-specific, acquired constraint
on category formation.

Interestingly, the claim that overlap with prior categories
facilitates category formation might not only contribute to
the further understanding of the process of category forma-
tion, but might also provide a parsimonious causal explana-
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tion for the generally accepted claim that human categories
tend to be organized hierarchically.
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