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Abstract
In evolving populations where the rate of beneficial mutations is large, subpopulations of individuals with competing 
beneficial mutations can be maintained over long times. Evolution with this kind of clonal structure is commonly 
observed in a wide range of microbial and viral populations. However, it can be difficult to completely resolve clonal 
dynamics in data. This is due to limited read lengths in high-throughput sequencing methods, which are often in
sufficient to directly measure linkage disequilibrium or determine clonal structure. Here, we develop a method to 
infer clonal structure using correlated allele frequency changes in time-series sequence data. Simulations show 
that our method recovers true, underlying clonal structures when they are known and accurately estimate linkage 
disequilibrium. This information can then be combined with other inference methods to improve estimates of the 
fitness effects of individual mutations. Applications to data suggest novel clonal structures in an E. coli long-term 
evolution experiment, and yield improved predictions of the effects of mutations on bacterial fitness and antibiotic 
resistance. Moreover, our method is computationally efficient, requiring orders of magnitude less run time for large 
data sets than existing methods. Overall, our method provides a powerful tool to infer clonal structures from data 
sets where only allele frequencies are available, which can also improve downstream analyses.
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Introduction
Clonal interference refers to competition between 
subpopulations with different beneficial mutations. This 
phenomenon can occur in populations with sexual 
reproduction, but it is especially common in asexually re
producing populations without recombination. In such po
pulations, individuals can be grouped into competing 
clades or lineages, which are defined by shared sets of mu
tations. Clonal interference is common in a wide range of 
microbial and viral populations because of their larger 
population sizes and higher mutation rates. For example, 
long-term coexistence of competing clades is found in ex
perimental populations of Escherichia coli (Good et al. 
2017). Strong clonal interference has been observed in 
the evolution of influenza A (H3N2) in time-series data col
lected over 39 years (Strelkowa and Lässig 2012). Other ex
amples include yeast (Saccharomyces cerevisiae; Lang 
2013), the malaria parasite Plasmodium falciparum (Jett 
et al. 2020), and HIV-1 viruses (Pandit and de Boer 2014).

However, it can be difficult to fully recover clonal dynam
ics from data. To achieve high throughput and low cost, next 
generation sequencing techniques generally involve random
ly breaking a large number of genomes into smaller fragments 
and sequencing them in parallel (Metzker 2010). Estimates of 

individual allele frequencies can then be obtained by map
ping the generated short reads to a reference genome. 
While this approach allows for excellent estimates of allele 
frequencies, full haplotypes and a complete picture of linkage 
disequilibrium (LD) are generally lost.

Challenges in resolving clonal structure also make it 
more difficult to quantify the selective forces driving popu
lation evolution. Due to clonal interference, the fate of a 
mutation depends not only on its individual fitness effect 
but also on the fitness of the genetic background on which 
it appears. For example, even highly beneficial mutations 
can be outcompeted if they occur on a deleterious genetic 
background. Theoretical and experimental studies have 
shown that clonal interference extends the time required 
for mutations to fix and increases genetic diversity, among 
other effects (Park and Krug 2007; Fogle et al. 2008; Wiser 
et al. 2013; Maddamsetti et al. 2015; Harris et al. 2021; 
Guo and Amir 2022). Past work has also indicated that ac
counting for LD (due, for example, to clonal interference) is 
important to accurately estimate the fitness effects of indi
vidual mutations from data (Sohail et al. 2021). There are 
multiple methods that can use LD or haplotype frequencies 
to improve estimates of selection when such data are avail
able (Illingworth and Mustonen 2011; Illingworth et al. 
2014; Terhorst et al. 2015; Sohail et al. 2021).
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These challenges have motivated research into inferring 
haplotypes or LD from short-read sequencing data 
(Beerenwinkel et al. 2012). Some approaches use overlaps 
among short reads to assemble them into haplotype se
quences that span the entire genomic region of interest 
(Zagordi et al. 2011). Others take time-series allele fre
quencies as input and infer LD or haplotype information 
from evolutionary dynamics (Franssen et al. 2017; Barghi 
2019; Deitrick 2020; Pelizzola et al. 2021; Shen et al. 2021; 
Li and Barton 2023). For example, haploSep uses time- 
series allele frequency data to infer haplotype frequencies 
for evolving populations with stable haplotype structures 
(Pelizzola et al. 2021). Evoracle is a machine learning meth
od that reconstructs full-length haplotype frequency tra
jectories and fitness from time-series allele frequency data 
generated by directed evolution campaigns (Shen et al. 
2021). Lolipop (Deitrick 2020) clusters allele frequency trajec
tories based on measures of similarity and reconstructs hap
lotypes and their frequency trajectories. Previously, we 
provided a generic method to estimate LD from time-series 
allele frequency data with sufficiently dense temporal sam
pling (Li and Barton 2023). The haploReconstruct method 
was developed to automatically identify selected haplotype 
blocks from temporal allele frequencies using correlation 
coefficients between normalized trajectories as a measure 
of their LD (Franssen et al. 2017; Barghi 2019).

However, populations with significant genetic diversity 
could present a challenge to computational methods 
based on haplotype reconstruction. The number of pos
sible haplotypes grows exponentially with the number of 
mutations, making it challenging to explore the space of 
haplotypes and estimate haplotype frequencies. In such 
cases, methods that rely on pairwise statistics (e.g. cluster
ing of allele frequency trajectories) may remain more com
putationally tractable for highly diverse populations.

Here, we present a method that uses pairwise allele fre
quency statistics to infer clonal structure from time-series 
sequence data. We assume that the population consists 
of groups of alleles that evolve collectively as clades in 
the absence of recombination (later, we will consider relax
ing these assumptions). We define the inference of clonal 
structure as inferring the number of clades in the popula
tion, estimating their time-varying frequencies, and reco
vering clonal identities (i.e. which clade(s) does an allele 
belong to) for all alleles. We view clades as families of closely 
related haplotypes with shared alleles. Reconstructing 
clades and their dynamics thus gives a more coarse-grained 
view of the population than approaches that aim to pre
cisely recover haplotypes. Our approach works by examin
ing the matrix of correlations between allele frequency 
changes over time, where we assume that changes in allele 
frequency will tend to be positively correlated for muta
tions on the same genetic background and negatively cor
related for mutations on competing genetic backgrounds.

Based on the correlation matrix of allele frequency 
changes, we classify alleles into a number of clades and es
timate the fraction of the population represented by each 
clade at each time. We then use the recovered clonal 

structure to estimate LD for each pair of alleles: alleles 
that belong to the same clade are likely to be positively 
correlated and alleles belonging to competing clades are 
likely to be negatively correlated. LD estimates can then 
be used by inference methods such as marginal path like
lihood (MPL; Sohail et al. 2021) to improve estimates of the 
fitness effects of individual alleles. Our assumption that the 
population consists of competing clades allows us to ap
proach the problem of recovering evolutionary dynamics 
at an intermediate level of detail, without attempting to 
explicitly reconstruct all haplotypes.

Simulations and tests on real data show that our meth
od recovers the clonal structure of evolving populations 
when they are known. This allows for accurate estimates 
of LD and improves inference of the fitness effects of in
dividual mutations. Applying our method to data from 
the E. coli long-term evolution experiment (LTEE) reveals 
potential clonal structure beyond previous descriptions. 
Tests on data from bacterial parallel evolution experi
ments also allow us to make better inferences about 
the effects of mutations on bacterial fitness and antibiot
ic resistance than with alternative methods. The method 
we describe is computationally efficient, requiring orders 
of magnitudes less run time than alternative methods 
that aim to reconstruct full-length haplotypes. Overall, 
our method provides a powerful tool to infer clonal struc
tures from short-read sequencing data with only allele 
frequencies available. In turn, this enables the use of 
linkage-aware methods for inferring selection, which are 
able to better recover underlying fitness values than 
methods that ignore LD.

Results
Method Overview
Here we consider an evolving population consisting of a 
number of clades, which are defined by shared mutations. 
We will typically think of these “mutations” as single nu
cleotide polymorphisms, but more complicated genetic al
terations such as duplications, deletions, inversions, or 
translocations could be treated as an “allele” in the same 
way. We assume that each allele has a fixed identity: it is 
either exclusively possessed by a single clade or shared 
among two or more clades, and this property remains un
changed during the period of clonal interference. We first 
cluster all alleles into clades based on how their frequen
cies co-vary, quantified by the matrix of products of 
changes in allele frequencies over time (Fig. 1). Clades 
and their frequencies are then recursively refined following 
a metric for clade reconstruction quality that accounts for 
both co-varying allele frequencies and sampling probabil
ities. Finally, we compute measures of LD over time based 
on the recovered clonal structure and use these data to in
fer selection coefficients with MPL.

Quantifying Correlated Allele Frequency Changes
Intuitively, alleles that belong to the same clade are likely 
to experience changes in frequency that are positively 
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correlated, while alleles on different backgrounds are more 
likely to change in ways that are negatively correlated (for 
example, due to the growth of one clade at the expense of 
another). To quantify this, for time-series genetic data 
sampled at times t1, t2, . . . , tK , we consider the matrix of 
products of allele frequency changes ΔxΔx, which has en
tries

ΔxΔxij(tk) = (xi(tk+1) − xi(tk))(xj(tk+1) − xj(tk)).

Here, xi(tk) denotes the frequency of allele i at time tk. For 
other genetic alterations (deletions, etc.), xi(tk) represents 
the fraction of haplotypes in the population at time tk that 
have feature i. If two alleles i and j both increase or de
crease in frequency at generation tk, then ΔxΔxij(tk) will 
be positive. However, if one allele increases in frequency 
while the other decreases, then ΔxΔxij(tk) will be negative. 
In this way, the sign and magnitude of the entries of ΔxΔx 
quantify correlated frequency changes for different alleles. 
Because of the central role of the product of allele fre
quency changes in our analysis, we refer to our method 
as dxdx below.

To reduce the influence of finite sampling noise on ob
served changes in allele frequencies, we weight ΔxΔx va
lues by allele frequency variances and compute their 
sums over time (supplementary material Methods, 
Supplementary Material online). We refer to this rescaled 
matrix as D. To prevent confusion, we emphasize that this 
matrix is not the same as the matrix of LD values (Hedrick 
1987), which is sometimes also written as D.

Forming Initial Clades
To form clades, we aim to construct groups of alleles such 
that alleles exhibit cooperating behavior (defined as having 

positive entries in D) within each clade, and exhibit com
peting behavior (negative entries in D) across clades. For 
each allele i, we quantify its cooperating behavior with a 
group of alleles, g, by a cooperation score, ρcoop, computed 
as the mean D entries of itself and each allele in that group,

ρcoop(i, g) =
1

Ng

􏽘

j∈group g

Dij, 

where Ng is the number of alleles in group g. When 
ρcoop(i, g) is positive, allele i is considered to cooperate 
with group g. When it is negative, allele i is considered to 
compete with group g.

We begin sorting alleles into clades by identifying the 
pair of alleles that appear to compete the most (i.e. the 
ones with the most negative entry in D) and assigning those 
as members of the first two clades. We then proceed through 
all the remaining alleles, classifying them as a member of 
an existing clade if they cooperate with that clade and 
compete with others, or as a shared allele if they cooperate 
with multiple clades (supplementary material Methods, 
Supplementary Material online). Alleles that compete 
with all existing clades can form a new clade.

Iterative Refinement of Clade Membership and Frequencies
During the course of evolution, a population can exhibit 
different patterns of clonal interference at different times. 
For example, consider a population with multiple clades, 
where one of the clades ultimately outcompetes the 
others and fixes. At a later time, new beneficial mutations 
can arise on different backgrounds and compete with one 
another, initiating another period of clonal interference.

To account for this possibility, we detect times when 
alleles fix and then split the time interval into different 

Fig. 1. An overview of the method. We first compute the D matrix and cluster alleles into groups according to D matrix. The clustering results are 
reflected by the heatmap of the rearranged and segmented matrix D, where each block corresponds to a group. Aside from the group that 
consists of shared alleles which may or may not exist, each group consists of alleles that collectively compete with other groups. We then detect 
fixation events of alleles that are not shared. Once detected, we split time into competition periods at the fixation time(s). (n fixation events will 
result in n + 1 competition periods.) We cluster alleles for each period. We then take the groups as initial clades and iteratively refine clonal 
identities and clade frequencies. Finally, we merge results from all periods into a complete reconstruction of the clonal interference throughout 
the evolution. The allele frequency trajectory data plotted in the figure are from a simulation, where a population of 1,000 sequences were si
mulated to evolve for 1,000 generations.
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“competition periods” that feature different clonal 
structures (Fig. 1). We then repeat the steps described 
above for each competition period, iteratively assigning 
alleles to clades and estimating clade frequencies, before 
merging the results for all competition periods together 
(supplementary material fig. S1, Supplementary Material
online). Full details of this procedure are described 
in supplementary material Methods, Supplementary 
Material online.

Estimating LD
Estimates of clade frequencies and the alleles that belong 
to each clade can be used to estimate LD. Specifically, 
we are interested in the allele frequency covariance matrix, 
which is a measure of LD (Hedrick 1987) and is defined as

Cij(x(t)) : = xi(t)(1 − xi(t)), i = j,
xij(t) − xi(t)xj(t), i ≠ j.

􏼚

(1) 

Here, xij(t) is the frequency of haplotypes in the population 
with mutant alleles at sites i and j at time t.

To estimate LD, we first assume that a pair of alleles i and 
j are in linkage equilibrium (Cij(t) = 0) if one or both of the 
alleles is classified as a shared mutation. For alleles that be
long to the same clade, we assume xij(t) = min (xi(t), xj(t)), 
and for alleles that are in competing clades, we set 
xij(t) = max(0, xi(t) + xj(t) − 1).

Inferring Selection with MPL
Together with the allele frequencies themselves, we can 
use estimates of LD to infer the fitness effects of individual 
mutations using methods such as MPL (Sohail et al. 2021, 
2022). MPL is a framework for statistical inference of selec
tion from evolutionary histories. While originally devel
oped in the context of population genetics, it has also 
been recently applied to other problems (Shimagaki and 
Barton 2023), including disease transmission in epidemio
logical models (Lee 2022). The main idea of this approach 
is to estimate a set of selection coefficients for individual 
alleles that best explain an observed evolutionary history, 
in the sense that these selection coefficients maximize 
the posterior probability of the data. In MPL, this is accom
plished using a diffusion approximation (Ewens 2012) for 
the likelihood, ultimately yielding an analytical expression 
for the maximum a posteriori selection coefficients

ŝ =
􏽘K−1

k=0

ΔtkC(x(tk)) + γI

􏼢 􏼣−1

× x(tK) − x(t0) + μ
􏽘K−1

k=0

Δtk(2x(tk) − 1)

􏼢 􏼣

.

(2) 

Here, Δtk = tk+1 − tk, μ is the mutation rate, x(tk) is the 
vector of mutant allele frequencies at time tk, and γI is a 
multiple of the identity matrix serving as a regularization 
term. In a Bayesian sense, the regularization term γI can 

be interpreted as a Gaussian prior distribution over the se
lection coefficients with zero mean and 1/γN variance. We 
set γ = 1 by default, which slightly constrains magnitudes 
of inferred selection coefficients and helps to ensure that 
the matrix term is invertible. A more detailed introduction 
to MPL can be found in the supplementary material 
Methods, Supplementary Material online.

MPL assumes simple, directional selection, which may 
not apply in all cases. For example, some alleles may exhibit 
frequency-dependent selection. Different clades may also 
occupy distinct ecological niches which prevent them 
from directly competing with one another. Such cases 
do not pose an additional challenge for clade reconstruc
tion, but they should be considered when interpreting the 
selection coefficients inferred by MPL.

Validation in Simulations
To benchmark the performance of our method, we gener
ated artificial time-series sequence data by simulating the 
evolution of a population of N = 1,000 haploid individuals 
under an infinite sites model. In this model, each mutation 
happens on a unique site, with a total mutation rate μ = 
2 × 10−4 per sequence per generation. We assume that 
the probability of back mutations (i.e. a mutant allele re
verting to wild-type) is zero, and that there is no recombin
ation. These assumptions generate a population with a 
strong clonal structure. Selection coefficients for each 
new mutation are drawn from a Gaussian distribution cen
tered at 0.03 with a standard deviation of 0.01. In the ana
lysis described below, we filtered the resulting sequence 
data from simulations to remove mutations that never ex
ceeded a frequency of 5%.

Recovering Clonal Structure
Figure 2 shows an example of our clade reconstruction 
from simulated data. Based on allele frequency trajectories, 
our method is able to identify groups of mutations that 
compete collectively as clades. Reconstructed clades clear
ly match in identity and frequency with individual haplo
types or groups of haplotypes that emerge successively 
from a common ancestor (Fig. 2c).

Recovering LD, Selection Coefficients, and Fitness
As shown in Fig. 3, the reconstructed clade competition 
from our method is typically able to provide an accurate 
estimate of the allele frequency covariance matrix and im
prove inference of fitness values. We benchmarked the 
performance of our method on 40 simulations and com
pared our results with estimates of selection obtained 
using equation (2) with the true covariance matrix. The 
true, underlying covariance matrix is not available in pool- 
sequenced data, and so this approach can be viewed as an 
ideal limit for optimal performance. Our method, which 
we refer to as dxdx, uses the covariance matrix computed 
with inferred clonal structures.

We further compared our method with three alterna
tives that use time-series allele frequencies as input. They 
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either directly estimate allele frequency covariance infor
mation (Li and Barton 2023) or reconstruct haplotypes 
and their time-series frequencies (Deitrick 2020; Pelizzola 
et al. 2021; Shen et al. 2021), which also provide covariance 
information. Lolipop evaluates the pairwise similarity of all 
allele frequency trajectories, clusters similar alleles into 
genotypes, and then nests successive genotypes (Deitrick 
2020). Evoracle first proposes a number of possible haplo
types present in the evolution based on the observed allele 
frequency trajectories, then infers haplotype frequency 
trajectories by optimizing a loss function with gradient 
descent (Shen et al. 2021). The loss function includes a 
data-fitting term that measures how allele frequencies 
are recovered, a fidelity term that measures how the geno
type frequency trajectories follow fitness-based dynamics, 
and a regularizer (Shen et al. 2021). The LB method directly 
estimates covariance at each time with the matrix of pro
ducts of allele frequencies changes (Li and Barton 2023).

Figure 4 shows that our method provides the best re
sults among all methods that do not use true covariance 
information for inferring selection coefficients and fitness 
values, in terms of both rank correlation (Spearman’s ρ) 
and mean absolute error (MAE). Correlations between 
true and inferred allele frequency covariances are roughly 
equal between dxdx and Lolipop, and Lolipop tends to have 
lower MAEs for this quantity. However, this does not al
ways yield better estimates of selection.

Due to the regular succession of more beneficial mu
tants, inferring the correct order of haplotypes’ fitness va
lues is not difficult in our simulations. However, inferring 
the correct order among selection coefficients is much 

more challenging. Multiple beneficial mutations can 
emerge and fix within a clade quickly, after which they 
are linked indefinitely. Thus, the time period containing in
formation that can separate each mutation’s effect is lim
ited. This is why all methods yield high correlations for 
inferred fitness values, but much lower correlations for in
ferred selection coefficients. While accurate inference of 
fitness values for haplotypes is sufficient to explain the ob
served evolution itself, inferring selection coefficients is im
portant because it allows for predicting the fitness of 
haplotypes unseen in existing data, and for explaining 
the underlying drivers of fitness.

Effects of Different Temporal Sampling Intervals
Our method uses changes in allele frequencies at consecu
tive sampling time points to quantify the relationship be
tween each pair of alleles. To test its dependence on 
sampling intervals, we subsampled the simulated data 
using different time gaps Δg between samples. We then 

a d

b e

c f

Fig. 3. Allele frequency covariance and fitness are accurately inferred 
from recovered clonal structure. a) True and b) recovered integrated 
allele frequency covariance matrices, and c) their difference are plot
ted for the simulation example in Fig. 2. The fitness of all haplotypes 
present in the evolution, inferred with d) the true covariance, e) co
variance recovered with dxdx, and f) only variances (ignoring LD) are 
compared against true fitness values. Both allele frequency covari
ance and fitness values are accurately recovered. In this example, 
the fitness values inferred when ignoring LD are also strongly corre
lated with true values, but not as accurate as those inferred with our 
method.

a

b

c

Fig. 2. Clonal structure is accurately recovered from simulated allele 
frequency trajectories. a) Allele frequency trajectories for 13 muta
tions that occurred in an example simulation and exceeded a fre
quency threshold of 5%. Six mutations eventually fixed in the 
population, while the rest were lost. These data serve as input for 
our method. b) The succession of true, underlying haplotype fre
quency trajectories. Haplotypes inferred to be in the same clade 
are colored with the same hue and saturation, but different bright
ness. c) True haplotype frequency trajectories versus reconstructed 
clade frequency trajectories. Reconstructed clades can consist of a 
single haplotype, e.g. the final dominant clade, or several haplotypes 
that emerge consecutively on top of their predecessors.
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compared the performance of our method and alterna
tives for Δg = 1, 10, 20, 50, and 100 generations in 
supplementary material fig. S2, Supplementary Material
online. Patterns of recovered covariances (evaluated by 
rank correlation coefficients and MAE) are similar to those 
shown in Fig. 4, except that Evoracle improves relative to 
other approaches for larger time gaps. In terms of inferring 
the correct value of selection coefficients and haplotype 
fitness, our method displays better performance for 
Δg < 20, while Evoracle gains a slight advantage over other 
approaches for Δg > 20. Interestingly, we found that the 
performance of Evoracle tends to improve when data are 
sampled less frequently, hitting a maximum in the range 
of Δg ∼ 10–50 generations before declining with larger 
time gaps.

Performance Under Different Evolutionary Scenarios
In developing our approach, we made several simplifying 
assumptions, focusing on haploid genomes and assuming 
no recombination. Our initial tests in simulations also as
sumed that all individuals are identical in the starting 
population. In this section, we consider alternative scen
arios and explore the effects of changing the population 
size.

First, we assessed the performance of our approach and 
alternatives at both smaller (N = 100) and larger 
(N = 10,000) population sizes. A smaller population size 
places greater emphasis on genetic drift, while a larger 

population size de-emphasizes drift and increases the sup
ply of mutations. For the smaller population size, we find 
overall patterns for the recovery of LD that are qualitative
ly similar to those for the N = 1,000 case, but the recovery 
of individual selection coefficients is more difficult 
(supplementary material fig. S3, Supplementary Material
online). For the larger population size, patterns of recov
ered LD are again similar (supplementary material fig. S4, 
Supplementary Material online). However, methods that 
rely on haplotype reconstruction have more difficulties 
in revealing underlying selection for the simulations with 
larger population sizes. This appears to be related to the 
challenge of reconstructing haplotypes in a more genetic
ally diverse population. Errors in reconstructing haplotypes 
then lead to spurious correlations between alleles, which 
can skew estimates of selection.

Next, we considered the effects of occasional recombin
ation on our results by introducing a recombination prob
ability r = 10−6 per replication event. This results in an 
average of 175 recombination events per simulation. 
Supplementary material fig. S5, Supplementary Material
online, shows that dxdx performs quite well in this case, 
even though we assumed no recombination in developing 
our approach. Overall, the results in this case are similar to 
those in Fig. 4, but with occasional larger errors for all 
methods.

We also performed simulations of diploid populations 
with random mating. In this case, “clades” represent 

a

b

c

Fig. 4. Recovered clonal struc
ture improves inference of se
lection in simulated data. 
Performance of five methods 
for inference of a) integrated 
allele frequency covariance, b) 
selection coefficients, and c) 
haplotype fitness. The left col
umn shows rank correlations 
with true values, and the right 
column shows the mean abso
lute error (MAE) of inferred va
lues versus true values. The 
True method uses the true al
lele frequency covariance ma
trix, which is not available in 
short-read data, and represents 
the ideal performance.
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haplotypes with shared genetic variation. For simplicity, 
we set dominance to 0.5 for determining selection. 
While this choice does not affect the reconstruction of 
clades, different choices for dominance would affect our 
interpretations of inferred selection. In this scenario, the 
results across all methods were similar to those observed 
in the previous case with rare recombination 
(supplementary material fig. S6, Supplementary Material
online).

Finally, we performed simulations including more ex
tensive standing variation, rather than starting with a clo
nal population. Here we start simulations with a random 
combination of 3–11 haplotypes containing 30 non-shared 
mutations in total. The initial haplotype frequencies are 
then selected uniformly at random. Despite somewhat lar
ger errors on inferred LD, dxdx performs well in this scen
ario, with low errors on inferred selection coefficients and 
haplotype fitness values (supplementary material fig. S7, 
Supplementary Material online). Here Lolipop also per
forms particularly well compared to other simulations.

Applications to Temporal Genetic Data
Here we apply our approach to several temporal genetic 
data sets. When applied to data from the E. coli LTEE, we 
find some patterns of clade competition that are consist
ent with past work (Good et al. 2017) and, because we con
sider the possibility of multiple clades, some that are novel. 
We also study data from a pair of parallel evolution experi
ments (Scribner et al. 2020; Harris et al. 2021), where our 
approach yields inferred fitness values that match well 
with those measured experimentally.

Reconstructing Long-Term Clade Competition in LTEE Data
The E. coli LTEE has propagated 12 populations of E. coli in 
the same environment for more than 60,000 generations 
(Lenski et al. 1991). Prominent patterns of clonal interfer
ence have been observed in 9 out of these 12 populations. 
Previous work developed a hidden Markov model to assign 

mutations to basal, major, or minor clades, and to infer 
their frequencies over time (Good et al. 2017).

This work showed that the coexistence of multiple 
clades is sustained for over 10,000 generations in some po
pulations, during which mutations continue to fix in each 
clade. The remarkable difference between timescales of 
within-clade and population-wide fixation events is diffi
cult to explain by clonal interference, and instead is likely 
driven by ecological interactions. For example, it has been 
demonstrated that negative frequency-dependent selec
tion exists in the population m2 and can explain the sus
tained coexistence of two clades (Rozen and Lenski 2000; 
Plucain 2014). Regardless of the mechanism of coexistence, 
the LTEE provides a valuable data set to test the ability of 
our method to recover clonal structure.

Figure 5 shows the clonal structure that we recover 
across LTEE populations. Initial analyses treated the entire 
trajectory as one competition period due to the difficulty 
of automatically determining period boundaries with the 
large number of alleles in this data set. Our results match 
very closely with previous findings (Good et al. 2017) in 7 
of 12 cases. As one example, Fig. 6 shows clades inferred by 
our approach for population m6, which are almost identi
cal to those obtained in Good et al. (2017). This lends add
itional support to the previously inferred clonal structure 
in these cases, as our analysis does not specify a priori 
the number of clades to cluster alleles into.

1wIn two cases we infer clonal structure that differs 
more substantially from those in previous work (Good 
et al. 2017). One such example is population p3, which dis
plays complex clonal dynamics that are difficult to fully re
solve (supplementary material fig. S8, Supplementary 
Material online). In the final three cases, we find evidence 
for some clonal structure where none was previously in
ferred. For example, in population m3, we observe compe
tition between sub-clades of one dominant lineage (Fig. 7). 
The clonal structure that we infer for population p4 is sub
tle, however, so this case also displays good agreement with 
past analysis (Good et al. 2017).

a

b C

Fig. 5. Clustering results are consistent with previous results for most populations. a) Cases where clonal structure inferred by our method is 
clearly consistent with previous analysis. b) Divergent results are obtained for populations p1 and p3. Here, clustering for p3 was obtained by 
splitting the trajectory into two periods and merging the results (supplementary material fig. S8, Supplementary Material online). c) For three 
populations, we infer some clonal structure where none was previously detected.
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Inferring Clonal Structure and Fitness from Parallel Evolution
We applied our method to recover clonal structure and in
fer fitness from time-series allele frequency data from two 
parallel evolution experiments (Scribner et al. 2020; Harris 
et al. 2021). In the first experiment, six populations of P. 
aeruginosa strain PA14 were propagated for 90 days (600 
generations; Harris et al. 2021). Time-series allele frequen
cies, obtained by longitudinal whole-population genome 
sequencing, revealed high genetic diversity that is sus
tained through the end of the 90-day evolution (Fig. 8a). 
This genetic diversity was due to the prevalence of muta
tor alleles, which increase genome-wide mutation rates, 
and clonal interference among multiple lineages, which 
slows down the fixation of fitter haplotypes.

We applied our method to this data set to recover clo
nal structure, infer selection coefficients, and compute fit
ness values for all the evolved populations at the end of the 
90-day evolution. Figure 8 shows the recovered clonal 
structure and estimated covariance matrix for one of the 
six populations (B1), and performance on inferring popu
lation fitness compared with three other methods. Here, 
fitness was measured experimentally through competition 
assays (Harris et al. 2021). Applying Evoracle to this data set 
resulted in an error (i.e. NaN values), which meant that the 
correlation between experimentally measured and in
ferred fitness values could not be computed for this meth
od. Among the other approaches, dxdx provided the 
highest correlation with experimental fitness values.

In a second parallel evolution experiment, two bacterial 
species from different families, A. baumannii and P. aerugi
nosa, were propagated for 12 days (80 generations) in 
media with increasing concentrations of tobramycin 
(TOB; Scribner et al. 2020). The experiment begins with 
TOB-sensitive ancestor clones. After 12 days of evolution 
under TOB selection, the populations exhibit higher TOB 
resistance levels relative to the ancestral clones, quantified 
by larger values of minimum inhibitory concentration 

(MIC) of TOB. Lineages with different driver mutations 
are found to compete with each other during evolution. 
MIC values for different genotypes were then measured 
from isolated clones using whole-genome sequencing 
(Scribner et al. 2020).

We used our method to study clonal structure, infer se
lection coefficients for all mutant alleles, and compute fit
ness values for eight genotypes with measured TOB MICs. 
Supplementary material fig. S9, Supplementary Material
online, shows the reconstructed clade frequencies, allele 
frequency covariance matrix, and performance on infer
ring fitness compared with three other methods. Here, 
our method and Evoracle provide the best correlation be
tween inferred genotype fitness and measured MICs.

Discussion
Here we proposed a computational method to reconstruct 
clonal structure from time-series allele frequency data. 
Evaluation on simulated data shows that it accurately re
covers the covariance information from time-series allele 
frequencies, and, when used with MPL, improves the infer
ence of the fitness effects of individual mutations. We then 
applied our approach to several experimental data sets, 
finding clonal structure in Lenski’s LTEE and in other mi
crobial evolution experiments. Importantly, tests on the 
LTEE data with large numbers of alleles show that our 
method requires 1–2 orders of magnitudes less run time 
than two alternative methods of haplotype reconstruction 
(supplementary material fig. S10, Supplementary Material
online), allowing us to study data sets that would be im
possible with other approaches. However, the haplotype 
reconstruction problem considered by the two alternative 
methods is also more computationally challenging than 
the clade reconstruction task that we consider. This differ
ence should be kept in mind when considering the compu
tational performance of each method.

a c

b

Fig. 6. Inferred clonal structure for population m6 of LTEE data is consistent with previous analysis. The clustering results from a) our method 
and b) previous results (Good et al. 2017) on the population m6 are almost identical. Both results indicate that m6 features long-term coex
istence and competition between two clades. c) D matrix segmented into groups during the initial clustering process. The competition between 
two clades is reflected clearly in the D matrix as two major blocks of entries. Alleles that belong to the same clade have frequency changes that 
are positively correlated with one another (positive D values), while those in competing clades have anti-correlated frequency changes (negative 
D values).
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While we expect that our approach should be applic
able to a wide range of data sets, some features may be dif
ficult to incorporate. We assume that populations do not 
undergo recombination, and violation of this assumption 
would make it challenging to sort sequences into nonover
lapping clades. By introducing multiple competition peri
ods, our method can capture cases with hierarchical 
clonal structure, when a single clade (i.e. the clade that 
dominates the population at the end of a period) branches 
into sub-clades for each period. However, when multiple 
coexisting clades branch into sub-clades simultaneously, 
our method may not infer all the details of the sub-clonal 
structure.

Overall, our method aims to reveal the evolutionary dy
namics at an intermediate granularity, between completely ig
noring LD and fully reconstructing all haplotypes. Specifically, 
our method reconstructs clades (collections of alleles with 

correlated frequencies) and their time-series frequencies, 
from which pairwise LD can be computed and used for infer
ence of selection coefficients. However, the reconstruction of 
specific haplotypes and their time-series frequencies are not 
inferred at this level. An advantage of approaching this prob
lem at an intermediate level is that our method maintains ac
curacy while reducing computational costs. This allows us to 
apply our method to data featuring a large number of alleles 
and a high degree of sampling noise. Methods that recon
struct full haplotype information (Franssen et al. 2017; 
Barghi 2019; Deitrick 2020; Pelizzola et al. 2021; Shen et al. 
2021; Li and Barton 2023), however, can potentially reveal 
the dynamics of evolution at a finer level.

Future work could extend the method that we have de
scribed here. First, when such data are available, longer 
reads that cover multiple polymorphisms could be used 
to place stronger constraints on clonal structure. 

a c

b

Fig. 7. Evidence of clonal structure for population m3. a) Our method suggests patterns of clade competition around generation 42,000 (be
tween clade 1 and clade 2) and during the last 5,000 generations (between clade 4 and clade 5), b) in contrast with previous results (Good 
et al. 2017). c), The D matrix segmented into groups during the clustering process. We can see prominent competition signals (negative entries) 
between clade 1 and clade 2, and between clade 4 and clade 5 in the D matrix. The population m3 is one of the mutator populations which have 
notably higher mutation rates and more mutations than other populations.

a d

b

c

Fig. 8. Clonal structure and fitness inference for B1 replicate of P. aeruginosa evolution data. a) Mutant allele frequency trajectories and b) clade 
frequency trajectories inferred by our method. c) We find a strong correlation between our fitness estimates and experimental measurements, 
exceeding those from Lolipop and similar to results following the LB method. Applying Evoracle to this data set yielded NaN results. d) The 
recovered integrated covariance matrix segmented into blocks according to clustering results of our method. The number of alleles in each clade 
is shown in brackets. Alleles in the same clades tend to show cooperating behaviors, as indicated by positive entries. Alleles tend to show com
peting behaviors across clades, as indicated by negative entries.
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Similarly, other sources of prior knowledge could also be 
incorporated into the fitting procedure to generate clades. 
Incorporating “soft” clade identities, where a mutation can 
be associated in varying degrees with more than one clade, 
could also extend the viability of our approach to systems 
with frequent recombination. The method that we use to 
infer the fitness effects of mutations could also be ex
tended in different ways. Past work has considered the in
ference of pairwise epistasis (Sohail et al. 2022), but not 
global “diminishing returns” epistasis (Johnson et al. 
2023). The frequent observation of diminishing returns 
epistasis in experiments (Rokyta et al. 2009; Wiser et al. 
2013; Kryazhimskiy et al. 2014; Jerison 2017) would make 
this a logical baseline fitness model in future work. Other 
natural extensions to the model include selection that is 
frequency-dependent or time-varying.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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