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Abstract

Probing Many-body Localization with a Programmable Superconducting

Quantum Processor

by

Benjamin Thomas Chiaro

In many-body localized (MBL) systems, entanglement propagates throughout the

system despite the absence of transport. Early experiments have relied on population

measurements to indirectly probe these entanglement dynamics. However, because

the entanglement results from phase relationships between localized orbitals, it is more

naturally probed with phase sensitive algorithms and measurement. In this thesis, we

use an array of nearest neighbor coupled superconducting qubits to introduce phase

sensitive protocols to the experimental study of MBL systems. We establish that

system is MBL by demonstrating disorder induced ergodicity breaking and the pres-

ence of effective nonlocal interactions. We then use density matrix reconstructions to

observe the hallmark slow growth of entanglement and provide a site-resolved spatial

and temporal map of the developing entanglement. We also inspect the capacity of

the MBL phase to preserve quantum correlations by observing the decay of distillable
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entanglement when Bell pair embedded in an MBL environment and dephased by

remote excitation.

In superconducting quantum processors, such as that used in the MBL study

above, dissipation leads to computational errors and must be minimized. To that

end, we also describe coherence engineering experiments in terms of the low power

internal quality factor Qi of coplanar waveguide (CPW) resonators, a figure of merit

characterizing dissipation in the quantum computing regime. We investigate titanium

nitride as a superconducting base metal for quantum circuits. By optimizing the

deposition conditions, we achieve a record low-power Qi in CPW resonators. We also

characterize the dielectric loss due to flux trapping hole arrays. Since flux traps are

commonly used to prevent magnetic vortex formation and dielectric loss is a limiting

dissipation mechanism, it is important to estimate the contribution of flux traps to the

dielectric dissipation budget. We find that for reasonable hole patterns the dielectric

loss can be small while preventing vortex formation.
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Chapter 1

Introduction

1.1 Historical context

In 1926 Erwin Schrödinger proposed a wave theory governing the dynamics of

microscopic systems.[1] In the succeedng years, quantum mechanics would prove to be

extraordinarily accurate in predicting the subtle and surprising behavior of electrons,

photons, and atoms alike. Despite the success of the theory, the resulting equations

developed a reputation for being unmanagable with only the simplest cases being

exactly solvable. For this reason, approximation schemes have been an essential

part of quantum physics since the early days. With the developement of computers,

numerical methods have become among the most important of these approximation

schemes when applying quantum theory to real physical systems. The challenge
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is that for all but the simplest systems the computational resources required are

immense.

For this reason, people have long considered how to efficiently simulate quan-

tum systems using computers. In a 1982 lecture that is often considered the birth

of quantum simulation, Richard Feynman suggested that quantum systems could be

efficiently simulatable using quantum computational resources.[2] An insight that

arose around the same time Feynman’s was that the relevance of quantum mechanics

is not limited to microscopic objects. In particular, SQUIDs were identified as likely

candidates for the observation of macroscoptic quantum tunneling.[3] In 1985, Marti-

nis et al. demonstrated that macroscopic electrical circuits can also behave quantum

mechanically and thus form the basis of a superconducting quantum processor.[4] The

superconducting quantum bit (qubit), a controllable, macroscopic two level system

was demonstrated in 1999. [5]

Since that demonstration, superconducting qubit architectures have continuously

improved qubit performance and increased the number of qubits in a processor. This

progress culminated in the achievement of quantum supremacy in 2019, when a su-

perconducting quantum processor performed a well defined computational task that

is not possible to perform on a modern classical supercomputer.[6] This achievement

heralds the onset of an era in which quantum resources can meaningfully contribute

to computational tasks considered intractable on classical hardware alone. It is likely
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that many of the early contributions of quantum computers will be to understanding

the behavior of quantum systems, as was originally envisioned by Feynman. In that

spirit, the final chapter of this thesis uses a quantum processor as a programmable

quantum simulator to probe the entanglement dynamics of a many-body localized

system.

1.2 What is a qubit and why is it powerful?

Whereas one classical bit of information can be represented as either 0 or 1, the

state of a single ideal qubit can be represented as a vector pointing to the surface of a

sphere. This sphere is referred to as the Bloch sphere, and provides excellent physical

intuition for the behavior of a qubit.

Bloch sphere

Figure 1.1: Bloch sphere representation of the single qubit density matrix.
The states |ψ〉 = cos

(
θ
2

)
|0〉 + eiφ sin

(
θ
2

)
|1〉 for θ ∈ [0, π] and φ ∈ [0, 2π] are on the

surface of the Bloch sphere. The ground state |0〉 and excited state |1〉 are located at
the North and South poles.
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The points at the North and South poles of the Block sphere correspond to the

logical |0〉 and |1〉. The points away from the poles have amplitude in both the |0〉

state and the |1〉 state and are said to be "in superposition". A generic pure state of

a single qubit |ψ〉 can thus be written in terms of the single qubit basis states |0〉 and

|1〉 as

|ψ〉 = cos
(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉 (1.1)

where the angle θ characterizes the relative amplitude between the |0〉 state and the

|1〉 state, while φ characterizes the relative phase between the single qubit basis states.

The ability to encode superposition states in a single qubit suggests that quantum

bits provide a mechanism for higher density information encoding than is possible

with their classical counterparts. After all, the complete description a pure qubit

state requires the specification of θ and φ, two continuous variables, rather than

the simple one or zero description of a classical bit. However, the true power of a

quantum processor comes from the way that multiple qubits combine. For a system of

N qubits, the state of the composite system is described by 2N complex amplitudes.

For instance, the state of a two qubit system can be written as

|ψ2q〉 = c00 |00〉 + c01 |01〉 + c10 |10〉 + c11 |11〉 (1.2)

The fact that quantum systems combine in this way leads directly to the expo-

nential scaling of the power of a quantum processor. Whereas a classical processor

requires four times the physical resources to represent the complex amplitudes c00,
4



c01, c10, c11 as it would to represent any one of them, the quantum processor is

able to represent them all simultaineously on the same physical qubits. The straight-

forward - but amazing - consequence is that, roughly speaking, in order to double

the capacity of a classical processor you would need to double the number of classical

bits. In contrast, if you wish to double the capacity of the quantum processor you

only need to add one more qubit. The advantages of the quantum computer over its

classical counterpart arise from this ability to store and process exponentially more

information in an intrinsically parallel way.

1.3 Challenges

Although there is great promise in quantum computing, there are challenges that

must be overcome before a quantum computer can be realized. Foremost among these

challenges is that the information in a quantum computer is unstable and prone to

degradation. The errors arising from this instability can be roughly divided into two

main categories: relaxation and dephasing. These are illustrated in Fig. 1.2.

Relaxation events as illustrated in Fig. 1.2(a), arise when energy is lost from the

qubit system. Errors of this variety arise, for example, when a computational photon

is absorbed by a parasitic two-level system (TLS)[7]. Relaxation events manifest

as unintended downward transistions from the logical |1〉 state to the |0〉 state. An

example of characterizing this type of dissipation is provided in chapter 4. Dephasing,

5



as illustrated in Fig. 1.2(b), results from an increasing uncertainty in the relative

phase between the |0〉 state and |1〉 state of the qubit. Errors of this variety arise,

for example, as the energy difference between |0〉 state and |1〉 state fluctuates in

response to random, time varying, magnetic fields. Reducing the noise and dissipation

of superconducting qubit devices is a primary research direction and will continue to

be for the forseeable future.

relaxation

dephasing

initial �nal

Figure 1.2: a) Schematic of relaxation. Over time the excited state of the qubit
|1〉 tends to decay to the ground state |0〉 causing a logical error. b) Schematic of
dephasing. Over time uncertainty in the phase between the |1〉 and |0〉 states grows.
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1.4 Overview of this thesis

In this thesis we share contributions to the development of a superconducting

quantum processor and demonstrate the use of one as a programmable quantum

simulator to probe the phenomenon of many-body localization. In chapter 2, we

summarize the essential theory necessary to understand the experiments in the later

chapters. In chapter 3, we share a contribution to the basic materials science under-

lying the construction of a quantum processor by investigating Titanium Nitride, a

high kinetic inductance compound superconductor with excellent coherence proper-

ties - if made correctly. In chapter 4, we discuss a device characterization where we

isolate the excess dielectric loss due to the incorporation of flux trapping hole arrays.

These flux traps are commonly used to protect from magnetic vortex loss, but may

introduce excess dielectric loss. This is an important consideration as we strive for

the longest coherence times possible. Finally, in chapter 5, we perform a system level

algorithm demonstration where we use a 9 qubit, nearest-neighbor coupled, linear

chain device, featuring tunable qubit frequencies and tunable interqubit coupling to

compute the entanglement dynamics of an interacting, localized system.
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Chapter 2

Superconducting circuits for

quantum computation

In this chapter we give a practical introduction to superconducting circuits for

quantum computing applications. The derivations here follow closely those found in

refs [8–18]. For completeness we summarize the essential results from these sources

as necessary to describe the experiments in this thesis.

2.1 Coplanar waveguide (CPW) resonator

The CPW resonator is a ubiquitious resource in superconducting circuits. Here

we state the basic physics of CPW transmission lines, show that an oscillator can be

8



200 nm

500 μm

Substrate

Ground plane

Ground plane

Signal 

Electrode

εr

S W

Figure 2.1: A schematic diagram of a coplanar waveguide (CPW), shown in cross
section.

made from a terminated strip of transmission line, and outline the relationship of this

device with coherence metrology.

2.1.1 The CPW resonator as an LC oscillator

A coplanar waveguide (CPW) transmission line consists of a signal electrode that

is isolated from a surrounding ground plane. A cross sectional view of the basic CPW

geometry is shown in cross section in fig. 2.1. This device supports a propagating

transverse electromagnetic (TEM) mode with phase velocity [8]

vp = 1√
ClLl

(2.1)

The capacitance per unit length Cl between the signal electrode and the ground

plane is due to the geometry of the electrodes and the relative dielectric constant of

9



the substrate εr . Cl can be calculated from Schwarz-Christoffel conformal mapping

[9], the result is:

Cl =
(

1 + εr
2

)
ε0

4K (k)
K (k ′) (2.2)

where K is the elleptic integral of the first kind, k = S/ (S + 2W ), and k ′ =
√

1 – k.

The total inductance per unit length Ll consists of the geometric Lg as well as

kinetic inductance Lk , which can be significant in superconducting devices.

Ll = Lg + Lk (2.3)

Lg can be calculated in similar fashion to Cl [9]

Lg = µ0
4

K
(
k ′
)

K (k) (2.4)

The kinetic inductance, due to the inertia of superconducting Cooper pairs, is de-

pendent both on the superconducting material and the geometry of the transmission

line.

Lk = gLs (2.5)

The surface inductance of the superconductor Ls depends on the normal metal resis-

tivity and the thickness of the electrode. [19]

Ls = }ρn
π∆0t (2.6)

The geometric factor g can be estimated analyticaly for the CPW geometry [9, 10]

10



g = 1
4S(1 – k2)K2(k)

(
π + log 4πS

t – k log 1 + k
1 – k

)
+ (2.7)

k
4S(1 – k2)K2(k)

(
π + log 4π(S + 2W )

t – 1
k log 1 + k

1 – k

)
(2.8)

(2.9)

For high resistivity superconductors, such as titanium nitride considered in Chapter

3, Lk can be significant and even dominate Ll .

LC

e)

Figure 2.2: a) An optical micrograph of a CPW resonator. b) The voltage antinode
of the CPW resonator. c) The voltage node of the CPW resonator. d) A crosssectional
SEM image of a CPW resonator. e) The circuit representation of an LC oscillator
capacitively coupled to a transmission line.
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We can construct a quarter wave resonator by terminating a segment of the trans-

mission line in a short circuit to the ground plane. The physical layout of such a device

is the subject of Fig. 2.2. The resonance condition for the quarter wave resonator can

be found from the relation vp = f λ.

f0 = 1
4l

1√
LlCl

(2.10)

A consequence of eq. 2.10 is that high kinetic inductance materials can make res-

onators smaller in size while maintaining a constant frequency resonator. However,

eq. 2.10 also implies that in high kinetic inductance devices, the materials param-

eters (in particular the thin film resistivity) must be tightly controlled to prevent

inductance variability.

Following [8], it is apparent that a terminated segment of lossy transmission

line should behave like a damped parallel RLC oscillator by inspecting the input

impedance of such a line

Zin = Z0 tanh (α + iβ) l = Z0
1 – i tanhαl cot βl
tanhαl – i cot βl (2.11)

where α and β are the attenuation and propagation parameters of a TEM wave on the

line. For a transmisssion line with small loss and near resonance so that ω = ω0 +∆ω

this is approximated as

Zin = 1
1/R + 2i∆ω/2ω0

(2.12)

which has the same form as Zin for a "lumped circuit" parallel RLC oscillator.
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2.1.2 Coherence metrology with CPW resonators

Resonator qubit relationship

The superconducting qubit considered later in this chapter is also a weakly

damped LC oscillator. The damping is important because it causes relaxation events

of the variety sketched in Fig. 1.2(a), which in turn contribute to the qubit’s logical

error rate. Thus, in order to achieve the best qubit performance the dissipation must

be minimized.

Throughout the history of superconducting qubits the resonator has been used

for coherence engineering. This is because superconducting qubits and resonators

are subject to many of the same dissipation mechanisms, including quasiparticle loss,

magnetic vortex loss, and dielectric loss. This is not surprising given the similarity of

their construction. Fig. 2.3(a) shows an Xmon transmon superconducting qubit. It

can be thought of as two intersecting strips of CPW transmission line, such as those

that create the CPW resonator in Fig. 2.3(c). However, the resonator has the virtue

of being much simpler than the qubit. This permits rapid fabrication iterations and

protects against the performance degradation that can result from complex multi-step

fabrication sequences. For both of these reasons, the resonator is widely used in the

material science and fabrication of superconducting quantum circuits.
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75 μm 10 μm 200 μm

Figure 2.3: a) an Xmon transmon qubit, b) The capacitive end of a λ/4 resonator.
c) The full CPW resonator structure.

Quality factor

The figure of merit describing resonator dissipation is the quality factor Q, which

characterizes the rate at which energy stored in the resonator is lost from it. Q

is the number of oscillations the circuit performs within one energy relaxation time

constant, which can in turn be related to the qubit relaxation time T1.

Q = ωE
P = ωT1 (2.13)

The rate at which energy is lost from the resonator depends both on its coupling

to external circuitry as well as its internal dissipation so that

1/Qtotal = 1/Qc + 1/Qi (2.14)
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where Qc and Qi refer to the coupling and internal quality factors respectively. Note

that the quality factors sum in reciprocal since the energy loss rates are additive. The

internal quality factor Qi may be further decomposed in terms of the constituent loss

mechanisms.

1/Qi = 1/Qquasiparticle + 1/Qvortex + 1/Qdielectric + ... (2.15)

For a quarter wave resonator capacitively coupled to a transmission line, the inter-

nal quality factor Qi and the coupling quality factor Qc can be extracted separately

from simple transmission measurements. This is done by parametrically fitting mea-

surements of transmission S - parameter S21 vs frequency[20]

S–1
21 = 1 + Qi

Qc

1
1 + i2Qi

(
f –f0
f0

) . (2.16)

In chapters 3 and 4 of this thesis we focus on minimizing the internal dissipation 1
Qi

to improve the relaxation times of our qubits. Further discussion of the setup of such

an experiment can be found in chapter 4 and appendix A.

2.2 Quantum LC Oscillator
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LC

Q, Φ

Figure 2.4: An LC oscillator with position and momentum coordinates Φ and Q

The linear LC harmonic oscillator is closely related to the more complicated qubit

circuits and provides an excellent starting point for understanding superconducting

qubits. At low temperatures the LC oscillator behaves quantum mechanically. As

such its dynamics in this regime are described by the Schrödinger equation

īh d
dt |ψ(t)〉 = H |ψ〉 . (2.17)

Here we derive the Hamiltonian and show that the LC oscillator behaves as a harmonic

oscillator. The derivations here follow closely those found in refs [12–18].

The instantaneous power dissipated by a circuit element is

P = IV , (2.18)

and therefore the energy stored within a lossless element can be written as

E =
∫ t′=t

t′=t0
I (t′)V (t′)dt′, (2.19)

where t0 is normally taken to be –∞, at which time I (–∞) = 0 and V (–∞) = 0.

The customary approach for deriving the Hamiltonian H is to write down the

Lagrangian for a generalized coordinate of the circuit and compute H via the Lagendre
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transformation. This approach ensures that we arrive at a Hamiltonian in terms of a

generalized coordinate and it’s conjugate momentum. We choose the flux Φ, indicated

in Fig. 2.4, as our generalized coordinate. Φ is also known as the node flux or branch

flux. Φ is defined in terms of the voltage across the inductor.

Φ(t) =
∫ t

–∞
V (t′)dt′ (2.20)

The current I and voltage V at the node are simply related to Φ

I = Φ/L (2.21)

V = Φ̇ (2.22)

We can also write the energy of the capacitor and inductor in terms of Φ.

Ecapacitor =
∫ t′=t

t′=t0
I (t′)V (t′)dt′ =

∫ t′=t

t′=t0
C dV

dt′ V (t′)dt′ = 1
2CV 2 = 1

2C Φ̇2 (2.23)

and

Einductor =
∫ t′=t

t′=t0
I (t′)V (t′)dt′ =

∫ t′=t

t′=t0
I (t′)L dI

dt′dt′ = 1
2LI 2 = 1

2LΦ
2 (2.24)

By associating the potential energy with the position dependent term and the kinetic

energy with the velocity dependent term we can write the Lagrangian for the system

L = T – U = 1
2C Φ̇2 – Φ

2

2L (2.25)
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We calculate the momentum conjugate to Φ by differentiating the Lagrangian.

∂L
∂Φ̇

= C Φ̇ = CV = Q (2.26)

We recognize the conjugate momentum as the charge on the capacitor and hence

denominate it Q. The Hamiltonian H is obtained from L as

H = QΦ̇ – L = C Φ̇2 – (1
2C Φ̇2 – Φ

2

2L ) = 1
2C Φ̇2 + Φ2

2L (2.27)

or

H = 1
2CV 2 + 1

2LI 2 (2.28)

which is the sum of the electric energy stored in the capacitor and the magnetic

energy stored in the inductor.

The quantum mechanical Hamiltonian for the electrical LC oscillator can be ob-

tained by substituting the flux and charge operators Φ̂ and Q̂ in place of classical

coodinate Φ and momentum Q in Eq. 2.27.

H = Q̂2

2C + Φ̂2

2L (2.29)

We recognize this as the Hamiltonian of a harmonic oscillator in the charge and flux

coordinates. Thus the device inherits the properties of a harmonic oscillator. The

operators representing the conjugate variables obey the commutation relation[
Φ̂, Q̂

]
= īh (2.30)
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Additionally, we get the familiar ladder of energy levels.

En = h̄ω0

(
n + 1

2

)
(2.31)

Where we have introduced the characteristic frequency

ω0 = 1√
LC

(2.32)

We can also express the annihiliation and creation operators in terms of the charge

and flux operators:

â = 1√
2}Z0

(
Φ̂+ iQ̂Z0

)
(2.33)

and

â† = 1√
2}Z0

(
Φ̂ – iQ̂Z0

)
(2.34)

where we have introduced the characteristic impedance

Z0 =
√

L
C (2.35)

The Hamiltonian is often expressed in terms of the annihilation and creation

operators:

H = h̄ω0

(
â†â + 1

2

)
= h̄ω0

(
n̂ + 1

2

)
(2.36)

The use of the number operator n̂ = â†â makes it clear that the eigenstates of the

system are Fock states corresponding to the number of photonic excitations in the

oscillator. The equal spacing of the energy levels makes the linear harmonic oscillator

unusable as a qubit because we cannot drive the |0〉 → |1〉 transition independently
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of the |1〉 → |2〉 and higher transitions since all of the transitions are at the same

frequency. This challenge is resolved by introducing nonlinearity into the circuit by

incorporating a Josephson inductance.

It is convenient to write H in terms of the number of charges on the island n̂ and

the phase across the inductor φ̂.

n̂ = Q̂
2e (2.37)

φ̂ = 2πΦ̂
Φ0

(2.38)

where e is the electronic charge and we have introduced the magnetic flux quantum

Φ0 = h
2e (2.39)

We define the charging energy as

Ec = e2

2C (2.40)

and the inductive energy

EL =
Φ2

0
4π2L

(2.41)

In these coordinates

H = 4Ecn̂2 + 1
2El φ̂

2 (2.42)
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L1 L2C1 C2

CcQ1, Φ1 Q2, Φ2

Figure 2.5: Two capacitively coupled LC oscillators

2.3 Coupled resonators

The advantages of quantum computing stem from the exponential scaling of the

Hilbert space dimension as we combine quantum systems. Useful quantum circuits,

therefore, must provide a means for multiple qubits to interact. For superconducting

qubits the coupling mechanism may be either capacitive or inductive in nature. In

this section we show how these coupling mechanisms lead to a hopping term in the

Hamiltonian. The derivations here follow closely those found in refs [12–18].

2.3.1 Capacitive coupling

The circuit diagram for two capacitively coupled oscillators is shown in Fig. 2.5.

Maintaining the convention of associating the node fluxes Φ with potential energy
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and the node charges Q with kinetic energy, we can immediately write down the

Lagrangian for the capacitively coupled system.

L = T – U =
[

1
2C1Φ̇

2
1 + 1

2C2Φ̇
2
2 + 1

2Cc
(
Φ̇1 – Φ̇2

)2
]

–
[

1
2L1

Φ2
1 + 1

2L2
Φ2

2

]
(2.43)

Which can be written as

L = 1
2Φ̇

T CΦ̇ – 1
2Φ

T L–1Φ (2.44)

Where

Φ =
[
Φ1
Φ2

]
, C =

[
C1 + Cc –Cc

–Cc C2 + Cc

]
, and L =

[
L1 0
0 L2

]
(2.45)

We find the conjugate momenta by differentiating the Lagrangian:

Q1 = ∂L
∂Φ̇1

= C1Φ̇1 + Cc(Φ̇1 – Φ̇2) (2.46)

Q2 = ∂L
∂Φ̇2

= C2Φ̇2 + Cc(Φ̇2 – Φ̇1) (2.47)

We can solve for the Φ̇ in terms of the Qi by writing the above expressions as a

matrix equation. [
Q1
Q2

]
=

[
C1 + Cc –Cc

–Cc C2 + Cc

][
Φ̇1
Φ̇2

]
(2.48)

or

Q = C Φ̇ (2.49)
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We can invert this expression to get the Φ̇1 and Φ̇2 in terms of the cannonical momenta

of the coupled system.

[
Φ̇1
Φ̇2

]
= C–1Q = 1

(C1 + Cc)(C2 + Cc) – C2c

[
C2 + Cc Cc

Cc C1 + Cc

][
Q1
Q2

]
=

C–1
11 C–1

12

C–1
21 C–1

22


[

Q1
Q2

]

(2.50)

We can write the Lagrangian in terms of the Qi . Since:

Q = C Φ̇ =⇒ Φ̇ = C–1Q (2.51)

and

Φ̇T =
(

C–1Q
)T

=⇒ Φ̇T = QT C–1T
=⇒ Φ̇T = QT C–1 (2.52)

Now we can write the lagrangian in terms of the node fluxes and the conjugate

charges.

L = 1
2QT C–1Q – 1

2Φ
T L–1Φ (2.53)

which is explicitly written as

L = 1
2

[
Q1 Q2

]C–1
11 C–1

12

C–1
21 C–1

22


[

Q1
Q2

]
– 1

2

[
Φ1 Φ2

] [ 1
L1

0
0 1

L2

][
Φ1
Φ2

]
(2.54)

= 1
2

[
C–1

11 Q2
1 + C–1

12 Q1Q2 + C–1
21 Q1Q2 + C–1

22 Q2
2
]

–
[

1
2L1

Φ2
1 + 1

2L2
Φ2

2

]
(2.55)
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The Hamiltonian is

H =
∑

i
ẋi
∂L
∂ẋi

– L =
∑

i
ẋipi – L =

∑
i
Φ̇iQi – L (2.56)

We can compute the sum by 2.50 and 2.53 into 2.56

Φ̇1Q1 + Φ̇2Q2 = (C–1
11 Q1 + C–1

12 Q2)Q1 + (C–1
21 Q1 + C–1

22 Q2)Q2 (2.57)

So that

H = 1
2

[
C–1

11 Q2
1 + 2 ∗ C–1

12 Q1Q2 + C–1
22 Q2

2
]

+
[

1
2L1

Φ2
1 + 1

2L2
Φ2

2

]
(2.58)

This Hamiltonian is the Hamiltonian of two harmonic oscillators with increased ef-

fective capacitances and the addition of a charge - charge interaction. The third term

C–1
12 Q1Q2 is the charge - charge interaction that permits excitations to transfer (swap)

between qubits. Using the Harmonic oscillator relations in eqns 2.33 and 2.34

Q1Q2 = (–i)
√

}
2Z1

0
(a1–a†1)(–i)

√
}

2Z2
0

(a2–a†2) = –}2
1√

Z1
0 Z2

0

(a1a2+a†1a†2–a1a†2–a2a†1)

(2.59)

The non photon conserving terms eliminated by the rotating wave approximation

since they oscillate rapidly, and quickly average to zero.

Q1Q2 ∼ (a1a†2 + a†1a2) (2.60)

Written in this way it is clear that the capacitive charge - charge coupling mediates

a swapping interaction.
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Figure 2.6: Two inductively coupled LC oscillators

2.3.2 Inductive coupling

The gmon circuit considered in this work features fixed capacitive coupling as

described above in combination with a tunable inductive coupling. Fig. 2.6 shows

the case of two inductively coupled oscillators. In this case we expect to generate a

flux - flux interaction term in the Hamiltonian.

By the definition of mutual inductance we have

Φ1 = L1I1 + MI2, (2.61)

Φ2 = L2I2 + MI1. (2.62)

Which can be written as a matrix equation[
Φ1
Φ2

]
=

[
L1 M
M L2

][
I1
I2

]
(2.63)
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Which implies

I = L–1Φ = 1
L1L2 – M 2

[
L2 –M
–M L1

][
Φ1
Φ2

]
=

L–1
11 L–1

12

L–1
21 L–1

22


[
Φ1
Φ2

]
(2.64)

The energy in the inductors is written in terms of the flux variable is

Einductor = 1
2I

TLI = 1
2Φ

T L–1Φ (2.65)

The energy in the capacitors is the same as in the uncoupled case:

Ecapacitor = 1
2C1Φ̇1

2 + 1
2C2Φ̇2

2 (2.66)

The full Lagrangian is

L =
[

1
2C1Φ̇1

2 + 1
2C2Φ̇2

2
]

–
[
L–1

11Φ
2
1 + L–1

12Φ1Φ2 + L–1
21Φ1Φ2 + L–1

22Φ
2
2
]

(2.67)

The conjugate momenta are

Q1 = ∂L
∂Φ̇1

= C1Φ̇1 (2.68)

Q2 = ∂L
∂Φ̇2

= C2Φ̇2 (2.69)

And finally the Hamiltonian is

H =
∑

i
Φ̇iQi – L =

Q2
1

2C1
+

Q2
2

2C2
+ L–1

11Φ
2
1 + 2 ∗ L–1

12Φ1Φ2 + L–1
22Φ

2
2 (2.70)
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This is again the Hamiltonian for a harmonic oscillator, but this time with a flux -

flux coupling term L–1
12Φ1Φ2 Since Φ = 2

√
}Z0

2 (a† + a) and involking the RWA again,

we find

Φ1Φ2 ∼ (a1a†2 + a†1a2) (2.71)

so that the flux - flux coupling also generates a hopping term in the Hamiltonian.

2.4 Josephson junction

As noted above the linear LC oscillator is not suitable for use as a qubit because

of its ladder of equally spaced energy levels. This challenge is addressed by using

the nonlinear inductance of a Josephson junction in place of the linear inductance

considered above. This nonlinearity creates an unevenly spaced ladder of energy levels

and gives rise to an interaction term in the Hamiltonian. The Josephson junction

provides us with a lossless, nonlinear inductance.[21] The Josephson junction consists

of two superconducting electrodes separated by a thin insulating barrier. This is

illustrated in Fig. 2.7. The Josephson relations for the current through the junction

Ij and the voltage across the junction V to the phase:

Ij = Ic sin δ (2.72)

and

V = Φ0
2π

dδ
dt (2.73)
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Superconductor

Superconductor

Insulator

Figure 2.7: a) A Josephson junction b) The circuit symbol for a Josephson junction

from these we can compute the Josephson inductance

V = LdI
dt =⇒ Lj = Φ0

2πIc cos δ (2.74)

The parameter Ic is known as the critical current, which is the maximum super-

current that the junction can support. The critical current is related to the normal

resistance of the junction via the Ambegaokar - Baratoff Relation [22]

IcRn = π∆

2e tanh
(

∆

2kbT

)
(2.75)

As the Josephson junction is dissipationless, work done on the junction is stored

as energy within it. We can compute this energy from the Josephson relations above.

–dU
dt = IV =

(
Ic sinφ(t)

)( h̄
2e

dφ
dt

)
(2.76)
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–
∫

dU = Ic
h̄
2e

∫
sinφdφ (2.77)

U = EJ cosφ, EJ = Ic
h̄
2e (2.78)

We can configure two Josephson junctions in parallel to form a DC squid. This

device behaves as a Josephson junction with a critical current that is tunable with

magnetic flux. The effective critical current of the DC squid is [15]

Ic(Φext) = 2Ic

∣∣∣∣cos πΦext
Φ0

∣∣∣∣ (2.79)

The tunability of the SQUID inductance forms the basis for frequency tunable su-

perconducting qubits and coupling circuits that provide an adjustable interaction

strength between the qubits. Such frequency and coupling tunability are essential

capabilities for quantum simulations such as that in chapter 5 of this thesis.

2.5 Transmon superconducting qubits

The transmon is a variety of superconducting qubit that is realized by replacing

the linear inductance of an LC oscillator with a Josephson junction. The resulting

device can be thought of as a Josephson junction with a large shunting capacitance,

making it a weakly anharmonic LC oscillator. The idea behind the transmon is
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that the shunting capacitance exponentially surpresses charge noise by trading away

anharmonicity[16].

In 2011, a 3D version of the transmon was developed at Yale and demonstrated

remarkable coherence properties.[23] This is due to the fact that the geometry of the

device made it possible to store most of the qubit mode energy in the lossless vacuum,

reducing dissipation. Challenges of this 3D implementation are that they are too large

to scale easily, cannot be microfabricated, and it is difficult to retain the coherence

properties when coupling two or more of these devices together. In 2013, planar

variant of the transmon, compatible with standard microfabrication techniques and

ammenable to scaled-up multi-qubit systems, was introduced.[24] Future iterations

saw the device incorporate tunable inter-qubit coupling (gmon).[25] This design is

the basis for the processor used in the quantum simulation of chapter 5 of this thesis.

2.5.1 Hamiltonian of the transmon

We obtain the transmon Hamiltonian by substituting the Josephson junction en-

ergy from Eq. 2.78 into the LC oscillator Hamiltonian Eq. 2.42 in place of the linear

inductor energy.

H = 4Ecn̂2 – Ej cos φ̂ (2.80)
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A key point here is that increasing the capacitance decreases the charging energy.

Thus by forming the oscillator with a large capacitor the device is less sensitive to

fluctuations in the charge.

The nonlinear Josephason inductance slightly modifies the level structure of our

(nearly) harmonic oscillator so that the energy levels are no longer evenly spaced. This

has at least two important consequences. 1) For uncoupled qubits, we can drive the

|0〉-|1〉 transition without exciting the |1〉-|2〉 transition. 2) The nonlinearity gives rise

to a Hubbard interaction term in the Hamiltonian. This interaction is fundamental to

the design of entangling gates between transmon qubits, is essential to integrability

breaking in analog algorithms, and leads directly to the many-body entanglement

propagation in the localized phase that we observe in the last chapter.

2.5.2 Nonlinearity of the transmon

Following [13, 16] we can compute the nonlinearity of the transmon from pertur-

bation theory. For the purposes of our MBL simulation the nonlinearity gives rise to

a Hubbard interaction and facilitates entanglement propagation without excitation

transport. The large Ej/Ec ratio of the transmon motivates an expansion of the

cosine potential in φ about φ = 0. With this expansion the potential energy is

U = –Ej + Ej
(
φ2/2

)
– Ej

(
φ4/24

)
(2.81)
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The quadratc term combines with the term quadratic in the charge to give a har-

monic oscilator with level spacing
√

8EcEj . The quartic term is responsible for the

nonlinearity to leading order.

H =
√

8EcEj(a†a + 1/2) – Ej – Ec/12(a + a†)4 (2.82)

Here the a, a† are the standard harmonic oscillator annihilation and creation operators

operators. From perturbation theory, the first order correction to the energies for level

n coming from the quartic term is is

δEn = 〈n| δH |n〉 = Ec/12 〈n| |(a + a†)4| |n〉 (2.83)

〈n| |a2a†2 + a†aa†a + a†aaa† + aa†a†a + aa†aa† + a†2a2| |n〉 (2.84)

δEn = Ec/12
(

6n2 + 6n + 3
)

(2.85)

2.6 Composite gmon Hamiltonian.

More complex devices, such as the gmon circuit employed in Chapter 5, can be un-

derstood by combining the concepts in the preceding sections [26]. A circuit schematic

for the gmon is shown in fig. 2.8. The frequency detuning term hi n̂i can be understood

as the energy of an LC harmonic oscillator with frequency hi . The correction to the

harmonic oscillator Hamiltonian due to the nonlinearity of the Josephson junctions
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Figure 2.8: a) An optical micrograph of a gmon device. b) Circuit schematic for
3 qubit subsection of the gmon. c) The resulting Bose-Hubbard Hamiltonian that
describes the gmon dynamics.

is represented by term U
2 n̂(n̂ – 1). It should be noted that this can be thought of as a

single term in an expansion, it gives 0 for ni = 0, 1 and U for n = 2. This expression

is not valid for higher occupations. Finally, the hopping term J (aia†i+1 + a†i ai+1)

arises from the sum of direct capacitive coupling between the qubits and inductive

coupling mediated by the coupler circuit shown in green. In Appendix B, we provide

benchmarking data confirming that the dynamics of the gmon circuit are described

by the Bose-Hubbard Hamiltonian shown in fig. 2.8.
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Chapter 3

Room temperature deposition of

sputtered TiN films for

superconducting coplanar

waveguide resonators1

3.1 Introduction

Superconducting coplanar-waveguide (SCPW) resonators are used for photon de-

tection and quantum information processing. Recently, there has been a growing
1This chapter was published as: "Room temperature deposition of sputtered TiN films for super-

conducting coplanar waveguide resonators",S. Ohya, B. Chiaro, et al. SUST 27, 015009 (2014)

34



interest in titanium nitride (TiN) thin films due to their widely tunable critical tem-

perature Tc, large surface inductance, and ability to produce high intrinsic quality-

factor Qi resonators.[27–38] Although excellent performance has been achieved with

TiN SCPW resonators, their loss mechanisms are still not clear due to the complex

properties of TiN. TiN films are known to absorb contaminants when they are exposed

to air.[39–41] In fact, a high concentration of oxygen, up to ∼20%, has been reported

in TiN films.[42–44] Since the contaminants absorbed from the air are strong can-

didates for two-level systems (TLSs) that can cause degradation in the performance

of superconducting devices[7], a systematic investigation of the film quality of TiN

is quite important. Although many studies have been done on TiN since the 1980’s,

it remains difficult to relate sputtering conditions to the properties of the resulting

films and there is little information linking the film properties to the performance of

microwave electronic devices made from the films. Here, we show a detailed analysis

focusing on stoichiometric Ti1–xNx films (x=0.5) obtained by adjusting the N2 flow

rate. We show that the kinetic energy of the sputtered TiN particles, which is a

function of the pressure, radial position, and target-substrate (T-S) distance, plays a

crucial role in determining film properties such as strain, resistivity, grain structure,

crystallographic texture, and contaminant levels. We find that the quality factors

of resonators made from TiN depend strongly on the material properties of the thin

films. Specifically, we find the low power Qi to be correlated with reduced film strain
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and increased O content. We find that resonators with a low power Qi > 106 can be

reliably produced from low film strain TiN.

3.2 Film preparation

TiN films were deposited by DC reactive magnetron sputtering in an ultra-high

vacuum deposition chamber (AJA International, Inc.) with a background pressure

in the lower 10–10 Torr range. This system has a high-vacuum load lock chamber

connected to the main deposition chamber. We used a 6-inch gun with a 99.995%

purity, 4-inch Ti target. The substrate and target face one another and are centered on

a common axis. Ultra-high purity (99.9999%) Ar and N2 gas sources were introduced

to the deposition chamber through Micro Torr purifiers (SAES Pure Gas, Inc.). All

depositions were done at room temperature with a fixed Ar flow rate of 15 sccm and

with a constant DC plasma power of 600 W. Under these conditions the nominal

incident energy of Ar+ ions on the Ti target is from 350 to 380 eV, depending on the

deposition pressure and N2 flow rate. During deposition, the substrate holder was

rotated at ∼30 rpm. No substrate bias was applied. We used high-resistivity Si(001)

substrates (>10,000 Ω cm, Addison Engineering, Inc.) for all depositions. Before

installing a Si substrate in the load lock, the substrate was cleaned with Nano-Strip

(Cyantek Corp, Inc.) for 10 minutes, followed by buffered-HF cleaning for 1 minute

to remove any native oxide and terminate the Si surface with hydrogen. We installed
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the Si substrate in the load lock as quickly as possible after cleaning, typically within

45 minutes. Before deposition of TiN, the Ti target was pre-sputtered for 2 minutes

with the same conditions as for the subsequent TiN deposition. In sections 3.3 to

3.5 of this paper, we used a fixed target-substrate (T-S) distance of 88 mm, whereas

in section 3.6, we investigated the effect of the T-S distance on the properties of the

TiN films. Film thicknesses varied from 100 to 900 nm.

3.3 Basic properties

Figure 3.1(a)-(c) shows the N2 flow-rate dependence of the TiN thin film room

temperature resistivity, Tc, and composition x , defined as the N content divided by

the sum of the Ti and N contents. The film thickness, Tc, and x were measured

by scanning electron microscopy (SEM), a Physical Property Measurement System

(Quantum Design, Inc.), and Rutherford Back Scattering (RBS), respectively. Us-

ing RBS we can determine the film composition with an error of 1-2%. In the RBS

measurements, we detected Ti, N, C, and O signals. We did not see any clear Ar

signal, which was previously reported in sputtered TiN films.[45] Resistivity values

were measured within several hours of deposition. Although a gradual evolution in

the film oxygen content has been reported over the timescale of 100 hours after depo-

sition[41], our films only show 7% increase in resistivity one month after deposition,

which means that our films are relatively stable. We measured Tc and x several weeks
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after deposition. Here, the films were deposited on quarter pieces of 3-inch Si wafers.

All measurements were done near the center of these pieces.

Increasing the N2 flow rate increases the N concentration on the target surface,

which increases x . By comparing Fig. 3.1(a) with (c), we see that the resistivity min-

imum corresponds to the stoichiometric condition (x=0.5) regardless of deposition

pressure. This is consistent with previous studies of TiN carried out at a relatively

low deposition pressure.[46, 47] Our results show that the resistivity minimum of the

resistance vs. N2 flow at constant pressure curve is a good indicator of the stoichio-

metric point even with a high contamination density. This is important because in

section 3.4 it will be shown that resistivity is a strong function of O content which

varies from ∼0.1% to ∼10% over this pressure range. We note that the lowest resis-

tivity film obtained in this study was 34.2 µΩ cm. This is a typical value obtained for

TiN films deposited at room temperature and slightly higher than single-crystal TiN

(18 µΩ cm).[48] In Fig. 3.1(b), Tc increases and saturates at 4.5 K while increasing

the N2 flow rate. As x increases in Ti1–xNx , the dominant phase of the film is changed

from Ti2N, whose Tc is 50 mK, to TiN, with Tc around 5.6 K.[49–51] This phase

change can explain the steep change of Tc when x<0.5. In Fig. 3.1(b), we see that

the Tc of the stoichiometric TiN film decreases by increasing the deposition pressure,

which we believe is due to the increase in contaminant concentrations discussed in
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Figure 3.1: (Color) N2 flow-rate dependence of the (a) room-temperature resistivity,
(b) Tc, and (c) x of Ti1–xNx films deposited at 2, 4, 5, 7, and 9 mTorr, where we
estimated x by using RBS. The curves are guides for eyes. All of these depositions
were done at room temperature with the Ar flow rate fixed at 15 sccm and the plasma
power of 600 W. For the measurements of the resistivity and Tc, the film thickness
was ∼200 nm for the TiN films deposited at 2 mTorr and was ∼100 nm for others.
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section 3.4 (See Fig. 3.1 with the N2 flow rate at 3.5, 3.5, 2.5, and 2.25 sccm when

the deposition pressure is 2, 4, 7, and 9 mTorr, respectively).

In Fig. 3.1(a), the resistivity rises substantially when increasing the deposition

pressure, and the stoichiometric point shifts to a smaller N2 flow rate. The resistivity

increase can be explained by the morphology and contamination changes discussed

below. The shift of the stoichiometric point is probably due to the effect of the

Ar neutrals reflected from the Ti target to the substrate during sputtering. These

neutrals have the same order of mean free path as the sputtered particles,[52] and re-

sputter the TiN film surface during the deposition. It is known that the film surface is

always covered with a stable N-rich TiN thin layer due to the high reactivity of atomic

N, which has an important role in determining the N content of the film. When the

reflected Ar neutrals have a high energy at a low deposition pressure, re-sputtering

by the Ar neutrals removes this N-rich surface. However, at high pressure, this effect

becomes less important due to the higher collision probability of the Ar neutrals, so

stoichiometric TiN is obtained at a smaller N2 flow rate as the deposition pressure

increases.[53]

3.4 Properties of stoichiometric films

In this section, we focus on nearly stoichiometric Ti1–xNx films (x ' 0.5). Films

were deposited by setting the N2 flow rate at 3.5, 3.5, 3.0, 2.5, and 2.25 sccm when
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the deposition pressure was 2, 4, 5, 7, and 9 mTorr, respectively. These N2 flow rates

correspond to the resistivity minimum points in Fig. 3.1(a). We fixed the Ar flow rate

at 15 sccm and the T-S distance at 88 mm.

Figure 3.2(a) and (b) show SEM images of the stoichiometric TiN films for depo-

sition pressures of 2 and 9 mTorr, respectively. The incident electron-beam direction

is tilted by 70◦ from the film-surface normal. These images were taken near the center

of the substrates (quarter pieces of 3-inch Si wafers). We see that these TiN films are

polycrystalline with columnar grains. In the film deposited at 2 mTorr, these grains

are intimately bound to their neighbors. In contrast, in the film deposited at 9 mTorr,

the grain boundaries are clear, and the surface is rough. The grain boundaries seen

in (b) are thought to allow contaminants into the film, which is consistent with the

increase in the C + O concentration from 0.3% at 2 mTorr to 13.5% at 9 mTorr, as

shown in table 3.1.

The morphology change due to the pressure increase is similar to the effect of the

application of a substrate bias, which has been well studied previously.[39] The grains

tend to bind as the negative substrate-bias voltage becomes larger. It is known that

the atomic peening mechanism leads to a dense structure [as in Fig. 3.2(a)], where

the gas atoms reflected from the target with a high momentum pack together the

sputtered atoms and increase the density of atoms in each column.[54] This effect is

more significant at lower pressure, where the reflected atoms have higher momenta.
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Figure 3.2: (Color online) SEM images of the stoichiometric TiN films deposited
at (a) 2 and (b) 9 mTorr. The incident SEM electron-beam direction is tilted by 70◦
from the film-surface normal.

The higher momentum of the sputtered particles at a lower pressure also can help to

make such a dense structure.

The relatively high-atomic-density TiN columns obtained in a low pressure depo-

sition generate a large stress in the film. Figure 3.3(a) shows the deposition pressure

dependence of the in-plane stress in 100-nm thick stoichiometric TiN films. The strain

values were determined with a wafer bow measurement (FLX-2320, KLA Tencor, Inc.)

at the center of the TiN films deposited on 3-inch Si wafers at room temperature.

When the deposition pressure is low, the film has a strong in-plane compressive strain.

By increasing the deposition pressure, the in-plane strain is reduced and changes to

a weak tensile strain. This is a very common feature in films deposited by sputtering

and is consistent with the SEM results shown in Fig. 3.2.
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Figure 3.3: (Color online) (a) Stress measured in the stoichiometric TiN films as
a function of the deposition pressure. The stress values shown here were measured
at the center of 3-inch wafers. (b) The ω-2θ x-ray diffraction scans of 200-nm-thick
stoichiometric TiN films deposited at 2, 5, and 9 mTorr (from bottom to top).

Figure 3.3(b) shows x-ray diffraction ω-2θ scans of the 200-nm-thick stoichiometric

TiN films deposited at 2, 5, and 9 mTorr (from bottom to top). In all the spectra, we

see two peaks at ∼36.5◦ and ∼42.5◦ corresponding to the TiN(111) and (200) planes,

respectively. The only other peaks detected in our stoichiometric TiN films were

from the Si substrate. With increasing pressure, these TiN peaks shift toward larger

angles, and the (111) peak becomes sharper. The lattice constants in the surface-

normal direction estimated from these peaks are 0.4260 nm at 2 mTorr and 0.4237

nm at 9 mTorr (corresponding to a 0.5% decrease in the lattice constant). Since

the intrinsic lattice constant of TiN is 0.424 nm, these values are consistent with the

tendency of the stress to change as seen in Fig. 3.3(a).
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By increasing the deposition pressure, the dominant crystal orientation changes

from (200) to (111). As the mobility of the adatoms is increased by decreasing the

deposition pressure, they tend to make closer-packed structures. Thus, the high

adatom mobility causes the crystal growth along the (200) orientation, which has the

lowest surface free energy.[55]

We carried out x-ray texture measurements on the 200-nm-thick stoichiometric

TiN films, which give us a more complete understanding of the crystallinity of these

films. Figure 3.4(a) shows the schematic x-ray beam alignment in our measurements.

We define φ as the in-plane angle between the Si in-plane <110> axis and the x-ray

beam plane [the pink plane in Fig. 3.4(a)], whereas ψ expresses the angle between the

measurement direction (broken orange line) and the surface normal of the film. Figure

3.4(b) and (c) show the measurement results of the TiN films deposited at 2 mTorr,

when θ is fixed at 36.66◦ corresponding to TiN(111), and at 42.61◦ corresponding to

TiN(200), respectively. We see that the (111) and (200) planes are nearly parallel to

the film surface (corresponding to the center yellow zones). The ψ direction of these

planes fluctuates slightly (ψ=0-20◦). As can be seen in the SEM image of Fig. 3.2(a),

the growth directions of the grains are not perfectly aligned in the surface normal

direction but have some fluctuation, so these ψ distributions observed in the x-ray

texture measurements are probably due to these grains’ tilt. In addition, we see that

there are randomly oriented (111) and (200) planes (many red areas). Figure 3.4(d)
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Table 3.1: Ar and N2 flow rates used to deposit nearly stoichiometric TiN films, and
the concentrations of C and O relative to the sum of the Ti and N content. The C
and O concentrations were estimated from SIMS intensities integrated over the film
thickness, using RBS data of the TiN film deposited at 9 mTorr as a reference.

Pressure Flow rate (sccm) Concentration (%)
(mTorr) Ar N2 C O

2 15 3.5 0.2 0.1
4 15 3.5 0.9 0.6
7 15 2.5 3.6 8
9 15 2.25 2.5 11

and (e) show the same measurement results on the TiN film deposited at 9 mTorr.

In this case, (111) planes nearly parallel to the film surface become dominant. The

(200) planes observed at ψ=40-70◦ are thought to be the same crystal phase with the

(111) plane observed at the center in (d). From these results, we see that the (111)

plane is selectively grown in the growth direction in the high pressure condition with

a ψ fluctuation up to ∼20◦.

Figure 3.5(a)-(d) shows the secondary ion mass spectroscopy (SIMS) results from

the TiN films deposited at 2, 4, 7, and 9 mTorr. The thicknesses of these films are

200, 100, 100, and 100 nm, respectively. These TiN films were deposited on quarter

pieces of 3-inch Si substrates. We etched the film from the surface toward the Si

substrate with different etching rates depending on the sample. The Si interface is

identified by the increase in the Si signal. Here, all the signals are normalized by

the intensity of TiN in the TiN-layer region in each graph. Thus, we can directly

compare the relative concentrations between the samples. We note that the low level
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Figure 3.4: (Color) (a) Schematic x-ray beam alignment in our texture measure-
ments. (b), (c) Results of the texture measurements on the stoichiometric TiN film
deposited at 2 mTorr when θ is fixed at (b) 36.66◦ and (c) 42.61◦. (d), (e) The same
measurement results when the deposition pressure is 9 mTorr.46



Figure 3.5: (Color) SIMS depth profile of the stoichiometric TiN films deposited at
(a) 2 mTorr, (b) 4 mTorr, (c) 7 mTorr, and (d) 9 mTorr as a function of the Ar+

etching time from the surface toward the Si substrate. We show the SIMS signals of
the H, C, O, Si, and TiN. Here, all the signals are normalized by the intensity of TiN in
the TiN-layer region. (e) Deposition pressure dependence of the concentrations of H,
C and O. Since it is difficult to determine the H content, we plot the integrated SIMS
intensity of H over the thickness divided by that of TiN. The actual concentrations
of C and O were estimated from the total SIMS signals in (a)-(d) using the RBS data
of the TiN film deposited at 9 mTorr as a reference. (f) The dependence of resistivity
on O content for the nearly stoichiometric TiN films.
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signals of Si in the TiN layer (see the arrows) are not coming from Si, but probably

coming from a contaminant that has the same mass number (29) as is used to detect

Si, such as COH. The concentrations of H, C, and O strongly increase with increasing

deposition pressure. The TiN films incorporate the contaminants when they are

exposed to air after deposition.[41] We have observed this directly by witnessing the

films change color from the golden color of stoichiometric TiN to the green color of

titanium oxynitride as the load lock is being vented.

From our RBS measurements on the 100-nm thick TiN film deposited at 9 mTorr,

C and O contents relative to the sum of the Ti and N contents are estimated to be

2.5% and 11%, respectively. Using these values and integrating the SIMS intensities

shown in Fig. 3.5(a)-(d), we can estimate the contamination levels of C and O as

shown in Table 3.1. The deposition pressure dependence of these concentrations is

shown in Fig. 3.5(e). As shown in Fig. 1, the resistivity increases and T c decreases

as the deposition pressure is increased; this change is likely due to rising contaminant

levels in the TiN. In Fig. 3.5(f) we show the strong dependence of resistivity on

oxygen content, indicating that the regulation of oxygen content is essential to the

control of the electronic properties of the film.

As shown in Fig. 3.2, the grain boundaries become more defined as the deposition

pressure increases, and the surface area, which can absorb the contaminants, becomes

larger as a consequence. It has been reported that x-ray photoemission spectroscopy
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measurements on sputtered TiN films show a Ti 2p3/2 peak at 458 eV which cor-

responds to TiO2,[41] which suggests that some of the O atoms may enter the TiN

crystal and react with Ti atoms. Under high pressure conditions, bonds between Ti

and N become weak due to the low kinetic energy of the sputtered particles, which

is also thought to be the origin of such a high level of contaminants in the TiN films

deposited at high pressure.

3.5 In-plane distribution

As shown above, the TiN film properties directly depend on the kinetic energy of

the sputtered particles, which can be controlled by deposition pressure. In magnetron

sputtering, the in-plane energy distribution of the sputtered particles is inevitable

because there is an in-plane inhomogeneity of the plasma intensity caused by the

spatial variation of the magnetic field from the magnetron. Figure 3.6(a) shows

the cross-sectional SEM images of a stoichiometric TiN film deposited on a 3-inch

Si(001) wafer at 7 mTorr. We show the images taken at 6-35 mm from the center

of the wafer. There is a similar tendency seen in the pressure dependence; the grain

boundary becomes clearer from the center to the edge. In Fig. 6(b), we show the

measured sheet resistance Rsheet (blue circles) and the film thickness (red triangles) as

a function of the distance from the center of the wafer. We see that the film thickness

is reduced by 5% from 890 to 850 nm, whereas, Rsheet increases by 70% from 1.5 to 2.5

49



Ω. This large increase in Rsheet cannot be explained by the 5% thickness reduction

alone.

Figure 3.7 (a)-(d) shows the SIMS depth profiles of TiN, H, C, and O on the sto-

ichiometric TiN film deposited at 7 mTorr. The solid curves are the SIMS intensities

at the center, and the dotted curves are the ones at the edge of the 3-inch wafer.

Here, we show the raw data. We see that the TiN contents are the same between

at the center and at the edge. However, all the contaminant levels are higher at the

edge than those at the center. This suggests that the in-plane energy distribution of

the sputtered particles causes the large distribution of the resistance as well as the

contamination.
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Figure 3.6: (Color online) (a) Cross-sectional SEM images of the stoichiometric
TiN film deposited at 7 mTorr on a 3-inch Si(001) wafer. Here, we show the images
taken at positions from 6 to 35 mm measured from the center of the wafer. (b) Rsheet
(red triangles) and film thickness (blue circles) as a function of the distance from the
center of the wafer.
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Figure 3.7: (Color online) SIMS depth profiles of (a) TiN, (b) H, (c) C, and (d)
O obtained in the stoichiometric TiN film deposited at 7 mTorr. The solid curves
are those at the center, and the dotted curves are the ones at the edge of the 3-inch
wafer.
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3.6 Target - Substrate (T-S) distance dependence

The energy of the sputtered particles just before reaching the film surface also

depends on the T-S distance. The sputtered particles experience more collisions

for larger T-S distances. Here, we studied the effect of the T-S distance on film

quality. The orange (triangle) and blue (inverse triangle) points in Fig. 3.8 show the

resistivities of the TiN films as a function of the N2 flow rate when the T-S distance

was 266 mm and the deposition pressure was 7 and 4 mTorr, respectively. As a

reference, we show the films deposited at 4 mTorr with a T-S distance of 88 mm

(the same T-S distance as was used for all depositions of the TiN films shown in the

previous sections). The resistivity becomes two orders of magnitude higher as the

T-S distance is changed from 88 to 266 mm. The films deposited with a large T-S

distance (288 mm) have a green color, which is the typical color of titanium oxynitride

(TiNO). By carrying out RBS analysis on the film deposited at 7 mTorr with a N2

flow rate of 3 sccm and a T-S distance of 266 mm, the carbon and oxygen contents

are estimated to be 5% and 27%, respectively. We found that the color of these

films was gold just after the deposition when they are still in the vacuum chamber.

However, while venting the load lock with N2 gas (purity: 99.999%) with TiN samples

inside, the film color was observed to change from gold to green. This shows that the

grain boundary surfaces of the TiN films are highly reactive since H, C, and O were

gettered from the nearly pure N2. This result indicates that TiN films deposited with
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Figure 3.8: (Color online) The orange (triangle) and blue (inverse triangle) points
are the resistivities of the TiN films as a function of the N2 flow rate when the T-S
distance is 266 mm and the deposition pressure is 7 and 4 mTorr, respectively. As a
reference, we show data for films deposited at 4 mTorr with the T-S distance at 88
mm (gray rectangles), which is the same T-S distance used for all the depositions of
the TiN films shown in sections 3.3 through 3.5. The solid and the broken curves are
guides for eyes.

low sputtered-energy particles absorb a high amount of these contaminants, and the

contaminant levels strongly depend on the sputtered particle energy. Therefore, the

T-S distance is important for the production of high-quality TiN films.[56]
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3.7 Properties of the scpw resonators

The application of superconducting films to circuits that detect photons and pro-

cess quantum information motivates our investigation of the relationships between

deposition conditions and the properties of the obtained material. Coupling this

knowledge with an understanding of the impact that these materials properties have

on device performance enables the realization of thin films optimized for quantum

circuits. Whereas in the previous sections we discussed the response of TiN thin films

to the reactive sputtering parameters used in their production, here we inspect the

influence of specific TiN film features on the performance characteristics of devices

into which the films are made. In order to evaluate these effects, we have deposited

a series of nearly stoichiometric thin films at several pressures (2,4,5, and 7 mTorr)

using the procedure outlined in the preceding sections with a T-S distance of 88 mm.

Next, we patterned these films into SCPW microwave resonators and compared the

performance of these devices to the material properties of either an unprocessed sec-

tion of the same sample or of a companion wafer deposited under nominally identical

conditions. The resonators in our experiment take the form of a quarter wavelength

segment of coplanar waveguide terminated at opposite ends by an electrical open

circuit and short circuit to the ground plane.

Among the virtues of the SCPW resonator is the simplicity of its fabrication.

The SCPW resonator thus provides a context for our study of material vs device
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performance that is protected against the conflation of fundamental material data

and complications arising from involved cleanroom proceedings. In this experiment,

the substrate preparation and deposition described previously were followed by a

single optical lithography and etching sequence. The nominally 100 nm TiN films

were etched in an inductively-coupled plasma etcher with Cl2 as the reactive species,

under conditions yielding an etch rate of approximately 5.5 nm/sec. This primary

etch was followed with a secondary, 5 sec SF6 etch, as this has been shown to reduce

loss [57]. This reliably produced a SCPW structure with a silicon substrate trench

depth of 56 ± 11 nm. Once etched, the wafers were diced to yield chips measuring 6.25

x 6.25 mm square. Dies drawn from the center regions of our wafers were packaged

in an Al sample box with an approximate linear wirebond density of 3/mm from the

box to the device ground plane, in preparation for measurement.

During measurement, the sample box was mounted on the cold plate of an adi-

abatic demagnetization refrigerator with a base temperature of ∼ 70mK. This cold

plate is shielded in stages from infrared radiation and external magnetic fields.[58]The

output of the test chip was connected to a high-electron-mobility transistor amplifier

at 4K, followed by a room temperature amplifier chain. A vector network analyzer

(Agilent 5230A or 5242A) was used for excitation and detection. We characterized

the SCPW by measuring the transmission scattering parameter S21 of a microwave
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transmission line capacitively coupled to a resonator. Details of the measurement and

analysis are supplied by Megrant et al. [20]

Because energy relaxation events form an important error class in quantum in-

formation processing, this study focused on maximizing the low power Qi , which is

generally agreed to be limited by coupling to TLSs in the low energy excitation regime

that is relevant to quantum computing and accessed in the limit where the number

of photons in the resonator is small. Figure 3.9 (a) reports the dependence of Qi on

the microwave drive power for devices made from the nearly stoichiometric films de-

posited at 2,4,5, and 7 mTorr with N2 flow rates of 3.5, 3.5, 3.5, and 2.5 sccm, which

had compressive film strain values of 3800, 800, 1500, and 150 MPa, respectively. The

5mTorr sample was deposited under slightly nitrogen-rich conditions and we believe

that this explains the nonmonotonicity of film strain vs deposition pressure for these

samples. Figure 3.9 (b) shows the measured quality factors, at resonator excitation

energies approximately equal to that of a single photon at the resonance frequency,

versus the strain of the film from which they were produced. For Fig. 9 (a) and (b)

we have selected the best performing device from each sample to establish an upper

bound on device performance for a given set of material parameters, independent of

such systematic issues as cleanroom process variability and time dependent external

magnetic fields. We note that Qi is enhanced as the film strain decreases and the oxy-

gen content increases. In particular, the lowest strain film produced a resonator with
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a measured low power Qi = 3.8 × 106, the highest reported value to date; however,

a subsequent reproduction attempt with a nominally identical film was unsuccessful.

Aside from that, we find that a respectable low power Qi > 1 × 106 can be reliably

achieved with low strain TiN SCPW resonators.

Since surface oxides of superconducting electrodes and their substrates are sup-

posed to harbor the TLS populations[59] responsible for limiting the low power quality

factors of SCPWs, the result that increased oxygen concentration in our compound su-

perconducting films is associated with an increase in quality factor was not expected.

More surprising, perhaps, is the absolute magnitude of the oxygen concentration; in

the best performing films the ratio of O to TiN was measured to be 8%. We interpret

this result to suggest that the presence of oxygen is not, in and of itself, deleterious

to the resonator quality factor. Rather, oxygen incorporation by the TiN crystal

may be an innocuous byproduct of the low strain condition which we suspect is itself

fundamentally responsible for the quality factor increase in our experiment.

Although significant oxygen impurity concentrations in our TiN films do not di-

rectly translate to increased loss in our microwave resonators, the presence of oxygen

in the TiN crystal is not inconsequential. As seen in Fig. 5(f), the normal state resis-

tivity of our films depends strongly on the oxygen content. From a SCPW resonator

perspective, the salient consequence of increased resistance is a resonant frequency

reduction via kinetic inductance augmentation. This is a large effect in TiN, where
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Figure 3.9: (Color online) (a) The power dependence of the SCPW resonator Qi for
the nearly stoichiometric films deposited at 2,4,5, and 7 mTorr and respective strain
values -3800, -800, -1500, and -150 M Pa, expressed in terms of the expectation value
of the resonator’s photonic occupation number. (b) The strain dependence of the low
power Qi measured near 〈Nphoton〉 = 1.
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the kinetic inductance is often larger than the geometric inductance for common de-

vice geometries. Applying these facts to the uniformity data in Fig. 3.6(b) presents

an engineering dilemma to those who would make quantum integrated circuits from

reactively sputtered TiN: in this material system, oxygen may not function as an

instrument of excess loss, but the uncontrolled manner by which it installs itself in

the crystal, and the corresponding lack of uniformity, renders engineering large-scale

circuits on reactively sputtered TiN difficult at this time.

3.8 Summary

We have shown a detailed picture of the properties of TiN films deposited at room

temperature by varying the deposition pressure and the N2 flow rate. When fixing the

deposition pressure, the resistivity minimum corresponds to the stoichiometric point

(x=0.5). By increasing the deposition pressure, while keeping x=0.5, the resistivity

rises and Tc decreases. The strong in-plane compressive stress changes to weak tensile

stress as the deposition pressure increases. The dominant crystal orientation changes

from (200) to (111). The grain boundaries become clearer, and the contamination

levels, including H, C, and O, significantly increase. The grain boundaries play a

crucial role in the absorption of the contaminants. This morphology change is thought

to be induced by the energy change of the sputtered particles due to the change of

the deposition pressure.
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The in-plane particle energy distribution caused by the in-plane inhomogeneity of

the plasma leads to a large radial resistivity change (70 %) across a TiN film deposited

at 7 mTorr on a 3-inch wafer. From the center to the edge of this sample, the grain

boundaries become clearer, which is very similar to the effect of deposition pressure

increase. We have found that larger amounts of the contaminants H, C, and O exist

at the edge of the wafer than at the center. By increasing the T-S distance from 88

mm to 266 mm, the film color was changed from gold to green, and we detected a

higher amount of H, C, and O in the film deposited with the T-S distance at 266 mm

than at 88 mm. The energy of the sputtered particles, which decreases with distance

from the substrate center and with increasing the T-S distance, is also responsible for

these phenomena.

Following the method developed in section III of this paper, we deposited nearly

stoichiometric films at 2,4,5, and 7 mTorr and found that increasing the deposition

pressure decreased the film strain and increased the oxygen content. These changes

were associated with an increase in the Qi factor of SCPW resonators made from

these films. However, the film resistivity is a strong function of oxygen content and

was found to vary considerably with distance from the center of the substrate. The

variation in resistivity, which translates to a surface inductance variation in the super-

conductor, makes it difficult to design and produce large circuits without addressing

this issue first. However, the resonator performance achieved with TiN implies that
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this material is immediately useful for smaller circuits and justifies efforts to engineer

more uniform deposition methods for larger devices.
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Chapter 4

Dielectric surface loss in

superconducting resonators with

flux-trapping holes1

Superconducting coplanar waveguide (SCPW) resonators are extensively used in

astronomy[60, 61] and quantum information [62–64]. An important frontier in SCPW

resonator development is increasing the intrinsic quality factor Qi = 1/loss. This is an

especially important proxy for qubit performance, since the resonator Qi is strongly

correlated with the qubit relaxation time T1 because qubits and resonators are subject

to many of the same dissipation mechanisms.[65–72] Quantum computers require low
1This chapter was published as: "Dielectric surface loss in superconducting resonators with flux-

trapping holes", B. Chiaro, et al. SUST 29, 10 (2016)
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operating temperatures . 100 mK, single-photon excitation energies, low magnetic

fields . 5µT, and high coherence Qi & 106. In this quantum computing regime,

dominant loss mechanisms are two-level state (TLS) defects in amorphous dielectrics

located at surfaces and loss from trapped flux in magnetic vortices.

We examine the tradeoff between increased TLS loss and reduced magnetic vortex

loss that occurs when the ground plane of SCPW resonators is patterned with an array

of holes. Fractal resonators also reduce magnetic losses, but are typically optimized

for use in high magnetic fields and have not demonstrated quality factors as high as

coplanar designs in small field environments.[73] Although hole arrays have long been

known to eliminate dissipation from trapped flux, [74–76] these structures have not

been studied in the quantum computing regime for the possibility of increasing TLS

loss. Our data shows that dielectric TLS loss from flux-trapping holes is an important

physical limitation if designed incorrectly.

When a thin-film superconductor is cooled through its transition temperature Tc

in a magnetic field Bcool, it is energetically favorable for magnetic flux to be trapped

as vortices at some defect[77]. The typical spacing between vortices or an edge of

the superconducting film to a vortex is
(
Φ0/Bcool

)1/2. As the superconducting order

parameter has to vanish[78], this normal core produces dissipation in response to

currents flowing past the core[67]. With a hole in the film, vortices form without a

normal core and produce no dissipation. We note that suitably positioned normal-
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core vortices may be beneficial as quasiparticle traps[68, 69]. For this application,

hole arrays should be positioned properly to engineer the number and position of the

normal-core vortices.

Because the holes have sharp edges and expose the substrate, they introduce new

dissipation sites from surface TLS defects. As modern high-Q resonators are sensitive

to nanometer thick amorphous dielectrics at surfaces[79], these additional edges can

increase loss if the holes are placed near the resonator where the electric fields are

the largest. Consequently, we must determine how closely holes can be safely placed

from the resonator.

We characterize this loss with quarter-wavelength SCPW resonators that are ca-

pacitively coupled to a feedline, with frequency multiplexing to measure 10 resonators

per chip. An optical image of a device wirebonded in a mount is shown in Fig. 4.1(a).

The resonators have fundamental frequencies between 4.6 GHz and 5.5 GHz and center

trace and gap dimensions of 15µm and 10µm. Our circuit contains both resonators

with and without ground-plane holes for direct comparison. Our arrays are made

from square holes of side length 2µm and an edge to edge separation d of 2µm, 6µm,

or 10µm. The distance d is also the distance between the edge of the resonator gap

and the nearest hole. An example is shown in Fig. 4.1(b). The equivalent circuit

diagram for this device near resonance is shown in Fig. 4.1(c) and was analysed in

detail in Ref. [80].
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Our resonator circuits were fabricated from 100 nm aluminium thin films grown on

c-plane sapphire substrates. The first type is made in a conventional electron beam

deposition system with base pressure of 3 × 10–8 Torr. Films from this tool yield

resonators with Qi ' 8 × 105 near a measurement photon number Nphoton = 1 and

are thus representative of resonators made with standard deposition techniques. The

second type was prepared in a molecular beam epitaxy (MBE) system with a base

pressure of 1 × 10–11 Torr. With an in-situ O2 plasma cleaning of the substrate at

650 ◦C [80], we found lower resonator loss Qi ' 1.5 × 106 for Nphoton = 1. The high

quality factors make the MBE grown resonators sensitive probes of subtle decoherence

mechanisms that may be induced by the holes. We report measurements from two

circuits from each film for a total of four circuits. The resonators and holes were

etched simultaneously in an inductively coupled plasma. The etch was performed at

0.7 Pa using BCl3 and Cl2 flow rates of 20 and 40 SCCM and 70 W bias power.

For measurement, individual devices were wirebonded in Al sample mounts and

anchored to the cold stage of an adiabatic demagnetization refrigerator (ADR). A

schematic of our apparatus is shown in Fig. 4.1(d). The 40 mK ADR base tem-

perature is well below the transition temperature Tc ' 1.1 K of Al, so the thermal

quasiparticle density is negligible. Additionally, our cryostat includes extensive infra-

red (IR) radiation shielding composed of in-line coaxial IR filters and a light-tight

sample compartment that reduces the non-equilibrium quasiparticle population be-
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Figure 4.1: (color) Device and apparatus. (a) Optical micrograph of a chip wire-
bonded inside sample mount, showing hole edge to edge separation d. (b) Scanning
electron microscope (SEM) image showing a λ/4 resonator with a ground-plane hole
array, displayed near the antinode of current. (c) The equivalent circuit for a λ/4
resonator capacitively near resonance[80], coupled to a transmission line. Included
is the effect of small in-line impedance asymmetries characterized by ∆Z1 and ∆Z2.
(d) Apparatus diagram and wiring schematic with signal path in red.
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low our measurement sensitivity [81]. A circulator on the output line of the chip

reduces noise from the input of the high electron mobility transistor (HEMT) ampli-

fier. A solenoid encircles the sample compartment allowing us to apply a magnetic

field perpendicular to the film, with 50 nT resolution to measure the magnetic field

dependence of our resonator Qi . We surround the mount with a magnetic shield

and remove all magnetic components. We test each component that we use inside the

sample compartment for magnetism and use non-magnetic SMA connectors (EZ Form

Cable Corp. model #705626-301), cables (EZ Form Cable Corp. model #301844),

brass screws, and custom experimental hardware. This reduces the ambient magnetic

field at the device to . 1.5µT.

The loss is determined by measuring the resonator intrinsic quality factor Qi

using transmission spectroscopy[80]. In the initial measurement phase, we measure Qi

versus applied magnetic field at high power for better signal to noise ratio, since vortex

loss has weak power dependence[75]. To vary Bcool, we raise the device temperature

above Tc, set the applied magnetic field Bcool
applied, and cool the sample back through

its Tc in this field thereby trapping magnetic vortices. Once the device has returned

to its base temperature we extract the resonator Qi from S21 measurements with a

vector network analyzer (VNA).

Figure 4.2 (a) shows the magnetic field dependence of Qi for resonators with and

without ground plane holes from the MBE device. For resonators without a pat-
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Figure 4.2: (Color) Measurement results (a) and (b) Loss 1/Qi and resonator
fractional frequency shift δf versus applied magnetic field when cooled through Tc
Bcool

applied, taken at high power Nphoton ∼ 107. Data is for the MBE-grown film and
hole patterns of varying density. The resonators with no holes have the greatest sen-
sitivity to magnetic fields, so the minimum of loss identifies the true zero giving the
cryostat offset field. (c) The dependence of Qi on measurement drive power for the
MBE sample, fit to a standard TLS dissipation model from Eqn. 4.1. (d) - (g) Ex-
tracted TLS model parameters from power dependence measurements as shown in (c)
for the MBE and e-beam samples, showing loss attributed to unsaturated TLS (low
power) and due to power independent mechanisms (high power) vs the edge to edge
hole spacing d. In all plots the data shows mean value for resonators of a common
hole density, with error bars indicating 1 standard deviation.
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terned ground plane there is a well defined maximum of Qi that identifies the applied

field that zeros the total magnetic field.[82] The offset between Bcool
applied and Bcool is

indicated by the arrow. We observe a gradual but significant increase in loss away

from this field that is attributed to a greater density of magnetic vortices trapped in

the ground plane. As expected, for resonators with holes we find that Qi is nearly

independent of applied magnetic field until the critical field for vortex formation in

the center trace has been exceeded. Figure 4.2 (b) shows the fractional frequency shift

δf = (f0(Bcool
applied = 0) – f0(Bcool

applied))/f0(Bcool
applied = 0) we observe that resonators with

patterned ground planes are less susceptible to field induced frequency shifts.

For MBE grown resonators with hole patterns we consider data in the field range

of Bcool
applied = 1.4 – 6.4µT. Fields in this range are less than the critical field for

vortex formation in the center trace of the resonator and allows us to estimate the

residual magnetic loss in the absence of local magnetic vortices. By assuming an

excess loss model that is linear in Bcool
applied, we estimate the residual magnetic loss

to be 8.6 ± 1.3 × 10–10 /µT. We show the data supporting this estimate in the sup-

plement.[82] Although additional experiments are required to determine the origin

and proper functional dependence of this excess loss, we suggest likely models are

coupling to vortices in remote areas of the device not protected by the hole overlays

or quasiparticles generated by the local suppression of Tc due to the magnetic field.
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For typical shielded devices, this estimate is several orders of magnitude below the

loss of the best SCPW resonators.[80, 83, 84]

After measuring the magnetic field dependence of the high power Qi we quantify

the surface loss from TLS defects by measuring the power dependence of the resonator

Qi . We use the value of Bcool
applied that maximizes Qi at high power, so that Bcool =

0µT as described previously. The power dependence data for the MBE device is

shown in Fig. 4.2(c), where the lines are fits to a standard TLS loss model [85]

1
Qi

= 1
QTLS

1√
1 +

(
Nphoton

Nsat

)α
+ 1

Q0
(4.1)

This model decomposes the total internal loss of the resonator 1/Qi into a power

independent loss term 1/Q0 that includes such loss modes from quasiparticles and

radiation, and a power dependent term of magnitude 1/QTLS that comes from TLS

defects. Here Nphoton is the excitation number of photons in the resonator and Nsat

describes the saturation field of the TLS bath. The parameter α is related to the

electric field distribution of the resonator, and may be influenced by interactions

between TLS defects within the bath.[86, 87]

Figure 4.2(d) and (e) show the quality factors for the low power (QTLS) and

high power (Q0) regimes, extracted from the fits in (c). The data points represent

resonators from two circuits from each film. In (d), we see that the densest hole

pattern increases TLS loss by roughly 25% relative to resonators without holes for
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both the MBE and ebeam grown resonators. Dielectric TLS loss is often decomposed

as 1/QTLS = Σi pi tan δi where tan δi is the loss tangent of dielectric volume i and the

participation ratio pi is the fraction of the electric energy of the resonator excitation

that is stored within that volume.[65, 72, 88] We presume that the increase in TLS

loss is not due to an increase in the dielectric loss tangent, but rather due to an

increase in the participation ratio resulting from a redistribution of the electric field.

To quantify the excess loss due to the dense hole pattern we perform linear regres-

sion analysis controlling for the difference between the MBE and ebeam films.[82] This

analysis includes the results from 23 resonators, 11 measured on two circuits from the

MBE film and 12 measured on two circuits from the ebeam film. We find that the

TLS loss 1/QTLS directly attributable to the dense hole pattern is 2.5 ± 1.3 × 10–7,

where the uncertainty represents the standard error. The p-value for this regression

coefficient is 0.07.

When using the resonators for quantum devices at low magnetic fields, this in-

crease in loss is undesirable. The hole spacing should thus be carefully chosen, first

to be close enough to provide protection from external fields of magnitude ∼ Φ0/d2,

where d is the edge to edge spacing between holes[77]. However, the spacing from

the resonator to the first row of holes should be greater than about 6µm, a value

that did not exhibit measurable excess TLS loss. In (e) we observe that the Q0 of

resonators with the densest hole pattern is nearly the same as that without any hole
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overlay. This indicates that power independent loss mechanisms were not affected by

the hole patterns.

We have characterized dissipation from arrays of flux-trapping holes in SCPW

resonators. We find that excess dielectric loss can be made vanishingly small by

increasing the distance between the resonator edge and the array. In our experiment,

a 6µm separation was enough to remove excess dielectric loss; power-independent loss

mechanisms were not affected by the arrays. We also estimate the residual magnetic

loss in resonators with ground plane holes to be ∼ 10–9 /µT, showing that SCPW

resonators can be made insensitive to small magnetic fields without magnifying other

loss mechanisms.
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Chapter 5

Growth and preservation of

entanglement in a many-body

localized system, 1

In non-interacting systems disorder leads to Anderson localization, where par-

ticle diffusion and entanglement propagation are absent. Interactions between the

constituent particles modify this picture, leading to a many-body localized (MBL)

phase. A key challenge is to measure interaction induced dynamics of entanglement

between the localized sites in this phase. By studying interacting photons in an array

of superconducting qubits, we observe ergodicity breaking and directly measure the
1This chapter is currently under consideration for publication as: "Growth and preservation of

entanglement in a many-body localized system", B. Chiaro, et al.
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effective non-local interactions. We probe the entanglement signatures of MBL in 1D

and 2D and observe the slow growth of entanglement entropy. Finally, we characterize

the potential of the MBL phase to be used as a quantum memory by demonstrating

the slow decay of entanglement of a distant bell pair. Our work elucidates the funda-

mental mechanisms of entanglement formation, propagation, and preservation in the

MBL phase of matter.

5.1 Introduction

Disorder-induced localization is a ubiquitous phenomenon that occurs in both

classical and quantum systems. In 1958 Anderson showed that in non-interacting

systems disorder can change the structure of electronic wave-functions from being

extended to exponentially localized [89]. This localized phase has been observed for

systems of non-interacting phonons, photons, and matter-waves [90–94]. The conven-

tional wisdom had long been that systems of interacting particles do not localize and

ultimately reach thermal equilibrium regardless of the disorder magnitude. However,

recent work suggests that localization may persist even with the introduction of in-

teractions between particles, thus establishing the concept of many-body localization

as a robust, non-ergodic phase of matter at finite temperature [95–97].

Various experimental studies show that some characteristics of the MBL phase

resemble a conventional non-interacting Anderson phase in which relaxation is ab-
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Figure 5.1: Many-body localization with superconducting qubits. (a) In
1D, Anderson localization occurs for arbitrarily weak disorder potentials. Interactions
between the particles facilitate delocalization and entanglement propagation. When
disorder is large, the MBL phase is realized and the particles remain localized but
entanglement spreads. As the interactions are increased, the system transitions to a
thermalized phase with fully delocalized and entangled particles. (b) The localized
orbitals (local integrals of motion, LIOM) decay exponentially in space with a broad
distribution of localization lengths ξ and couplings J̃ij between them. The shaded
region indicates effective non-local interactions between two LIOMs.

sent [98–104]; both Anderson localized and MBL phases do not thermalize. Theoret-

ical studies suggest that the MBL phase has significantly different dynamical prop-

erties [97, 105–116]. In particular, resulting from the non-local interaction between
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particles it is anticipated that locally observed dephasing arises during the coherent

closed-system dynamics (Fig. 5.1). It has been predicted that this dephasing leads to

the slow growth of entanglement entropy in the MBL phase. The direct study of this

physics is experimentally challenging as it is best accomplished with phase sensitive

algorithms and measurement. Superconducting qubit systems allow a comprehensive

study of interaction effects in the MBL phase, since they offer capabilities to perform

versatile wave function initialization, Hamiltonian generation, and measurements in

different bases.

Using an array of superconducting qubits, we realize a bosonic lattice and study

the dynamics of photon excitations as a function of disorder. The Hamiltonian of the

chain is described by the Bose-Hubbard model

HBH =
nQ∑
i

hia†i ai︸ ︷︷ ︸
on-site detuning

+ U
2

nQ∑
i

a†i ai(a†i ai – 1)︸ ︷︷ ︸
Hubbard interaction

+ J
∑
〈
i,j

〉
(

a†i aj + aia†j
)

︸ ︷︷ ︸
NN coupling / hopping

(5.1)

where a† (a) denotes the bosonic creation (annihilation) operator, hi ∈ [–w, w] is

the random on-site detuning drawn from a uniform distribution of width 2w, J is

the hopping rate between nearest neighbour lattice sites, U is the on-site Hubbard

interaction, and nQ is the number of qubits [117]. The qubit frequency, the nearest

neighbor coupling, and nonlinearity set hi , J , and U , respectively. We are able to

tune the hi and J independently at a fixed nonlinearity U = 160 MHz.
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The localized regime of Eqn. (1) is obtained when the frequency detunings hi are

large compared to J . In this regime, the eigenstates of the Hamiltonian are product

states of localized orbitals, referred to as local integrals of motion (LIOM), which

are nearly qubit states but have a spatial extent that decays exponentially across the

neighboring qubits (Fig. 5.1(b)). In the localized regime, Eqn. (1) can be brought into

a diagonal form by a set of local unitary transformations [108, 109]. In this basis there

is no hopping and the Hamiltonian can be written in terms of on-site detunings and

non-local interactions,

H̃τ =
∑

i
h̃iτ

z
i︸ ︷︷ ︸

on-site detuning

+
∑
i,j

J̃ijτ
z
i τ

z
j +

∑
ijk

J̃ijkτ
z
i τ

z
j τ

z
k + . . . .

︸ ︷︷ ︸
non-local interaction

(5.2)

The τ z
j operators commute with H̃τ and are hence conserved; the system is localized.

However, the non-local interactions J̃ , which follow a broad log-normal distribution,

generate entanglement throughout the localized system [118].

5.2 Breakdown of ergodicity

Evidence for the breakdown of ergodic dynamics can be obtained by measuring

the mobility of excitations in a 1x9 qubit array. In Fig. 5.2, we initialize the system

with a number of photon excitations nph by preparing 1, 2, or 3 qubits in the single
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Figure 5.2: Ergodicity breakdown. (a) Disorder averaged on-site population vs.
time for nph = 2. In a chain of 9 qubits, two qubits were excited (’q6’, ’q9’). The
on-site population of ’q9’ was measured with resolution of |0〉, |1〉, |2〉 for various
magnitudes of disorder w/J , with J = 40 MHz. The overline indicates average over
disorder realizations, and each data point is the average of 50 realizations. The
parameter τhop = (2πJ )–1 has been introduced to connect the laboratory time t
with the hopping energy. Nref is defined to be the average on-site population across
instances of disorder at the reference time tref = 100 ns, after initial transients have
been damped. The dashed black line indicates expected photon loss for a single qubit
measured in isolation. (b) Histograms of Nq9 (t) at the times and disorders indicated
in (a) by numerals i - vi. (c) Nref vs. disorder for nph = 1, 2, 3. Inset shows which
qubits were excited at t = 0 ns.

excitation Fock state. We measure the population on one of the initially excited

qubits as the system evolves under Hamiltonian (1).

The disorder averaged population at q9 (the observation site) Nq9 (t) for nph = 2

is shown in panel (a). We choose a reference time tref , in which Nq9 (t) approaches

an asymptotic value after initial transients have been damped, before the dynamics

of our system are dominated by relaxation to the environment at large time scales

(dashed black line), or delocalization within our closed system driven by extrinsic

dephasing [117, 119–123]. The distribution of Nq9 (t) for selected disorder magnitudes

at t = 1 ns and t = tref are shown in panel (b). At t = 1 ns the excitations have
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not propagated, and there is a tight distribution close to the initial values, regardless

of the value of disorder. At t = tref the distribution is narrow for low disorder and

becomes wider with tails at larger disorders. This can be understood because at high

disorder, level resonances are increasingly rare which inhibits mobility. The tail of the

distribution results from these rare cases. At low disorder, excitations can propagate

freely between qubits and the behavior of each disorder instance is typical, giving rise

to narrow distributions.

Fig. 5.2(c) shows the disorder averaged population after tref = 100 ns of evolution

as a function of the disorder strength. At low disorder, in the diffusive regime, we

expect the dynamics to satisfy the ergodic hypothesis that each of the two photon

states is equally likely to be observed. Here, a uniform averaging over the available

phase space implies that the expected occupancy of a given qubit should be nph /nQ .

For multiple photon excitations our observations are consistent with ergodic dynamics

at weak disorder; however, as we increase the disorder strength, significant deviations

from the thermal value are observed, which indicates that our system becomes many-

body localized. We note that with more photons in the system, the population

converges to its thermal expectation value at higher disorders. This is expected

because the increased interactions assist with the thermalization process and drive

delocalization. In the case of a single excitation our system is non-interacting and

hence localized for all disorder magnitudes. The apparent approach of the population
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to the thermal value at extremely weak disorder indicates the regime where the single-

particle localization length exceeds our system size. The ergodicity breaking shown

here is general and the results for the 2D system can be found in the supplement

[117].

5.3 Interferometric methods

Nonlocal interactions between the LIOMs can be unambiguously established by

adopting interferometric methods inspired by NMR protocols [110]. Fig. 5.3(a) il-

lustrates a conventional spin-echo (SE) sequence and its extension double electron-

electron resonance echo (DEER) which we use to provide a differential measurement

of phase accumulation with and without a remote perturbation. The construction and

effects of these pulse sequences can be understood from Eqn. (2). Deep in the MBL

phase, the LIOMs are nearly localized on individual qubits. The SE π-pulse between

free precession intervals essentially negates the local frequency detuning, reversing

the evolution and hence phase accumulation. The role of the additional π/2-pulse in

the DEER sequence is to make the SE refocusing incomplete, directly probing the

strength of the non-local interaction. The measurement of on-site population, de-

picted in panel (b), shows that the remote π/2-pulse in the DEER sequence does not

appreciably alter the population on the observation site, assuring that the system is in

the localized regime. Therefore, comparing SE and DEER, the contrast observed in

81



the single qubit purity (panel (c)), is a pure interference effect that directly measures

the non-local interaction between distant localized sites. In addition, the difference

between SE and DEER decreases as the distance between the SE site and remote

disturbance site is increased. This can be understood from the decaying nature of the

interactions between the LIOMs with distance. The interferometric protocol is thus

demonstrating the foundational interaction effects of MBL states.
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Figure 5.3: Interferometric signatures of remote entanglement. (a) SE
and DEER pulse sequences. DEER differs from SE by the addition of a remote
π / 2-pulse simultaneous with the SE π-pulse between the free precession intervals.
(b)

〈
σz〉 =

〈
1 – 2a†a

〉
, and (c) purity of the single qubit for SE (red dashed) and

DEER (solid) experiments. The remote DEER pulse induces dephasing, decreasing
the purity. The contrast between SE and DEER probes the non-local interaction J̃ij
between the SE lattice site and the DEER site.
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5.4 Entanglement entropy

A hallmark of the MBL phase is the slow growth of entanglement, contrasting with

Anderson localization where the entanglement is constant. To study the development

of entanglement entropy, we designate two qubits as a subsystem and the rest of

the chain as the environment (Fig. 5.4(a)), and directly measure the evolution of the

reduced density matrix of the subsystem. The subsystem qubits are initialized into

superposition states. Fig. 5.4(b) shows that
〈
σz〉 initially rises because population

from the subsystem qubits is transferred to the environment which has a smaller

photon density. After this initial rise,
〈
σz〉 takes a stationary value which decreases

with decreasing coupling strength, establishing the localization of our system.

We use the von Neumann entanglement entropy

SvN = –Trρ2qlogρ2q (5.3)

to quantify the entanglement between the subsystem and the environment (panel (c)).

The initial increase in SvN occurring simultaneously with the increase in
〈
σz〉 is un-

derstood as the result of the subsystem exchanging population with the environment.

Thereafter, while the system is demonstrably localized, we observe logarithmic growth

of von Neumann entropy. We can understand the slow growth in terms of the LIOM

framework: The non-local and exponentially decaying interactions between the LI-

OMs give rise to dephasing between the qubits and follow a broad log-normal distri-

bution [118]. As a consequence, the entanglement of individual runs is strongly fluc-
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tuating on different time scales leading to a logarithmic growth of the entanglement

of the subsystem. We note that preparing subsystem qubits in an x-polarized state

is key for the success of this measurement as it enhances the measurement visibility

by being highly phase sensitive. The von Neumann entropy quantifies entanglement

with all external degrees of freedom and is not able to disambiguate entanglement

with the environmental qubits due to unitary dynamics from open systems effects. As

such, our observed entropy is an upper bound on the entanglement generated within

our qubit array. The J = 0 curve (black) provides an estimate of the amount of en-

tropy that is due to open system effects. Next, we introduce entanglement measures

that are more robust against open systems effects and lower bound the entanglement

between parts of the system.
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A B C

Figure 5.4: Localization and slow growth of entanglement (a) Partitioning
of our 9-qubit chain into a subsystem and environment. The subsystem qubits (A
and B) are initialized into superposition states, and the system is loaded with an ad-
ditional excitation (site C) to enhance many-body interactions. We tomographically
reconstruct the density matrix of the subsystem. (b)

〈
σz〉 for subsystem qubits. (c)

von Neumann entanglement entropy of the two qubit subsystem for several coupling
strengths.

86



5.5 Growth and preservation of entanglement

We investigate the formation and preservation of entanglement between two qubits

A and B that are embedded in a MBL environment as illustrated in Fig. 5.5(a). The

entanglement of formation (EOF) quantifies the amount of entanglement directly be-

tween qubits A and B that would be required to produce the observed two-qubit

mixed state density matrix [124]. This entanglement can be viewed as the elemental

building block of the SvN in Fig. 5.4. We emphasize that because we are affirma-

tively detecting a quantum correlation between sites of the subsystem, the observed

EOF cannot be attributed to open system effects which would tend to suppress the

correlation. The EOF is therefore a more conservative entanglement measure than

SvN and a valuable tool for characterizing realistic experimental systems, which are

semi-open.

In (a) to (c), we initialize the subsystem in a product state of single qubit superpo-

sitions and observe the development of entanglement between the subsystem qubits.

Regardless of geometry of the qubit array, entanglement grows gradually between

the localized, spatially separated sites over several hopping times. Intuitively, the

entanglement grows faster and achieves a higher maximum value when the subsystem

qubits are closer to each other. This can be understood by considering two isolated

qubits, which exhibit a cosine shaped growth and collapse of their mutual entangle-

ment at a frequency that is set by the effective interactions J̃ij , explaining the shift
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of the first maximum toward much larger times as the distance is increased. Due to

the presence of the other qubits in our system, the entanglement deviates from the

cosine shape after the first maximum [107]. At long times open systems effects be-

come important. The EOF results are in contrast to the von Neumann entropy, which

continuously increases because it includes entanglement with all degrees of freedom

external to the subsystem.

As the system geometry is transformed from 1D into a ladder and finally 2D (pan-

els (a) to (c)) there is an overall trend of suppressed EOF. This can be understood by

considering the mobility in combination with the monogamy of entanglement prin-

ciple [125]. Compared with 1D, in 2D each qubit has additional neighbors, which

changes the structure of the LIOMs and provides more transport channels, enhancing

the spread of entanglement. The monogamic principle states that there is a maximum

degree to which two qubits may be correlated, and that entangling (correlating) either

member of this pair with other qubits necessarily decorrelates the first two. Thus in

the higher dimensional systems shown here the subsystem qubits entangle with the

environmental qubits to a greater extent thereby reducing the degree to which the

subsystem qubits can be correlated.

At long times, the interaction between subsystem qubits is out competed by the

interaction of the subsystem with the environmental qubits and the open system

and the EOF declines. We highlight the capability of EOF, an affirmative correlation
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measure, to detect correlation between sites with large separation, e.g. (A, B3) despite

being embedded in a large entangled array with open system effects.

The results thus far illustrate how interaction effects propagate entanglement

throughout the system. However, because MBL systems are non-thermal and lo-

calized, features of their initial state remain imprinted on them. This ability of MBL

systems to retain quantum correlations as a computational resource for later retrieval

suggests their potential as a quantum memory [108, 126, 127]. To probe this aspect,

we prepare a maximally entangeled Bell state between two subsystem qubits in a 3×7

qubit array and monitor the subsystem density matrix as the pair is dephased by a

remote photon. We focus on the distillable entanglement (DE), i.e. the entanglement

which can be extracted from the mixed density matrix. The upper and lower bounds

of the DE are the logarithmic negativity entropy and the coherent information entropy

respectively, shown in Fig. 5.5 (d) and (e).

The initial drop of DE, on the single hopping timescale, is attributed to population

transfer from the Bell pair into the environmental qubits. Thereafter, interaction

with the remote photon induces local dephasing in the subsystem, decorrelating the

subsystem qubits according to the monogamy of entanglement principle. With the

remote photon at larger distances, the DE remains finite over several hopping times.

The entanglement is increasingly disturbed as the remote photon is brought closer to

the Bell pair and the coherent information that lower bounds the DE approaches zero
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at earlier times. This data illustrates the potential of the MBL phase as a quantum

memory and highlights excitation density as a critical parameter for this application.
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Figure 5.5: Growth and preservation of entanglement between localized
sites Entanglement of formation between qubits in various 2-qubit subsystems (A,Bi).
To observe the development of entanglement between sites A and B the subsystem
is initialized in a product of single qubit superposition states and the entanglement
of formation of the two qubit density matrix is extracted, for subsystems of (a)
1 × 10, (b) 2 × 5, and (c) 3 × 5 array of qubits with J = 30 MHz and w/J = 10.
In a 2 qubit subsystem (A,B) of a 3 by 7 array of qubits, a Bell pair is created,
and the Logarithmic negativity (d) and coherent information (e) are extracted from
measurements of the subsystem density matrix and averaged over 80 realizations of
disorder for J = 30 MHz with w/J = 12. We initialize the environment with an
excitation at a position Ci which is varied
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Chapter 6

Conclusion and Outlook

Over the past twenty years superconducting qubits have made remarkable progress

in the engineering and control of single and few qubit systems. This progress has

been facilitated, in no small part, by leveraging concepts originally developed in the

atomic physics community. Modern supremacy era quantum processors, are large

scale systems of many interacting "atoms" and describing the collective behavior of

such an object is the domain of condensed matter physics. A fundamental motivation

of this thesis is the suggestion that the quantum computing community will benefit

from adopting the mindset, insights, and techniques of condensed matter physics.

This thesis represents a conceptual step in that direction with implications in the

areas of algorithm development and system level metrology.

92



In this work we have demonstrated the use of a large scale quantum processor as

a programmable quantum simulator and used it to provide a comprehensive survey of

the many-body localized phase. The fact that part of this work was performed on the

device that was used in the demonstration of quantum supremacy[6] indicates that

in the near future we will be using quantum hardware to address open questions in

condensed matter physics and quantum dynamics more generally. As such, our work

indicates analog quantum simulation as a viable pathway for near-term quantum pro-

cessors to demonstrate a quantum computational advantage on meaningful questions

of scientific interest even before quantum error correction has been achieved.

Considering large scale quantum processors as condensed matter systems is also

valuable for system level metrology development. It is equally true for digital, gate-

based quantum processors and analog quantum simulators that the underlying dy-

namics are fundamentally analog. An obvious consequence of this is that the error

mechanisms and "dirt physics" of the device can only be understood by considering

the underlying analog nature of the device. Consider the fixed coupling Xmon trans-

mon style designs. In this style of device, the interactions between qubits are turned

off by large frequency detunings between qubits with fixed couplings. One concern

for such an architecture is the parasitic ZZ interaction that results from the "always

on" coupling. This parasitic entanglement growth within a disordered interacting lat-

tice results from the same basic physics as the entanglement dynamics of many-body
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localized phase discussed in chapter 5. Thus tools developed in the condensed matter

physics community for the study of many-body localization can be easily translated

provide us with system level metrology techniques. Explicitly, the echo protocols

of chapter 5 were designed to capture the non-local MBL interactions J̃ij , but can

equivalently characterize the parasitic interactions of a fixed coupling Xmon chain.

The analog quantum simulation work in this thesis has also inspired new technical

directions. For example, one shortcoming of our approach to analog control is that

we do not presently have the ability to recover the coefficients of the Hamiltonian

that was actually applied in our experiments. Our ability to benchmark the control

fidelity is limited to a comparison of the eigenvalues predicted by a circuit model with

the eigenvalues extracted by many-body Ramsey spectroscopy. The primary issue

with this is that when there is a disagreement between the predicted and measured

eigenvalues we are not presently which parameter(s) were the source of the error.

We have a time domain method for this "Hamiltonian recovery" under development,

but at the time of this thesis it remains a future direction. Once complete, this

will enhance our ability to capture errors in our assumed device Hamiltonian model,

as well as compensate for departures from the desired Hamiltonian during analog

simulations.

Another avenue of ongoing research sparked by the investigations in this thesis is

the use entanglement measures, especially the entanglement of formation and distill-
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able entanglement, as a means of experimentally determining (or at least bounding)

the complexity of algorithms being run on the quantum computer. It has been sug-

gested that development of entanglement based complexity metrics are expected to

provide valuable information in the search for algorithms with a quantum advan-

tage.[128]
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Appendix A

Supplementary information for

"Dielectric surface loss in

superconducting resonators with

flux-trapping holes"

We show the data and analysis estimating residual magnetic loss in superconduct-

ing resonators with flux-trapping hole arrays. We describe the design rules used to

embed a meandered resonator in a rectangular array of holes. We show data sup-

porting the claim that the maximum in Qi is obtained at an applied magnetic field

that cancels the ambient field. We report the TLS model parameters for resonators
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from the MBE and ebeam deposited films from which we estimate the excess loss

attributable directly to the densest hole pattern.

A.1 quality factor extraction

In the main text, we infer resonator loss 1/Qi by measuring the system scat-

tering parameters (S-parameters) of superconducting coplanar waveguide (SCPW)

resonators capacitively coupled to a feedline. The circuit model for this system has

been analysed previously [80] and gives the result

S̃–1
21 = 1 + Qi

Q∗c
eiφ 1

1 + i2Qi
f –f0
f0

(A.1)

Here S̃–1
21 is the inverse of transmission data calibrated to enforce S21 = 1 far off

resonance. f0 and φ are the resonant frequency and impedance mismatch angle and

Q∗
c is the coupling quality factor scaled by an impedance ratio.

We extract the internal quality factor Qi and its statistical uncertainty σQi by

fitting measurements of our device to this model. Figure A.1 shows example data from

the MBE sample for which the Qi = 1.86 × 107 ± 2.58 × 105. This is representative

of the data points shown in Fig A.2.
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Figure A.1: (Color online) The transmission spectroscopy data for the extraction
of Qi shown as (a) magnitude and phase and (b) in the complex plane.
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A.2 Residual magnetic loss

Fig. A.2 breaks out the data in Fig. 2a of the main text for resonators with ground

plane holes from the MBE sample in the region from Bcool
applied = 1.4µT to 6.4µT .

This is below the critical field for vortex formation in both the center trace of the

resonator and in the ground plane near the resonator where there are ground plane

holes. Thus, we do not expect magnetic loss in this region. In Fig. A.2 we apply a

linear loss model 1/Qi = m ×Bcool
applied + b to the data and obtain the parameters m

and b with a weighted least squares fit. We use weighting factors 1/σ2(
1/Qi

), where

σ(1/Qi
) =

(
–1/Q2

i
)
σQi in terms of parameters extracted directly from device data.

We obtain our estimate of residual magnetic loss from the parameter m in these fits.

This estimate is m = 8.6× 10–10 ± 1.3× 10–10 /µT , where the uncertainty represents

the standard error.
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Figure A.2: (Color) The small magnetic field dependence of internal loss for 11
resonators with ground plane hole arrays. Data points of a common color correspond
with a single resonator.
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A.3 Hole pattern design rules

In the main text, we describe the hole pattern as having a constant distance

between the edges of adjacent holes and between the resonator edge and the nearest

hole. However, the curved portion of our meandered resonator geometry does not

allow us to easily satisfy both of these constraints simultaneously. We expect that

excess dielectric loss from hole patterns will be primarily determined by the resonator

edge to hole edge distance and dominated by the row of holes nearest the resonator

edge. The compromise that we have adopted is to have two rows of holes follow

the contour of the resonator with a constant spacing between adjacent holes and the

resonator edge. This composite structure is then embedded in a rectangular array of

regularly spaced holes. An example is shown in fig. A.3. This allows us to maintain

a constant resonator to hole edge distance for the entire length of the resonator.

In the main text, we claim that the maximum in Qi is obtained at an applied

magnetic field that cancels the ambient field. If the Qi maximum were due to vor-

tex mediated quasiparticle recombination[69] rather than field cancellation then we

would expect to observe a second maximum at a symmetric, negative magnetic field.

Fig A.4 shows the field dependence of Qi at both positive and negative fields for four

resonators without flux-trapping holes on one circuit from the ebeam deposited film.

The absence of a second maximum at negative fields shows that vortex mediated

quasiparticle recombination does not play an important role in determining Qi in
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Figure A.3: The meandered section of a λ/4 resonator with a flux trapping holes
showing two rows holes following the contour of the meander and the rectangular
array of holes in which the resonator is embedded.
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Resonator A
Resonator B

Resonator C
Resonator D

Figure A.4: The full field dependence of Qi for four resonators without flux-trapping
holes from the ebeam deposited film (Resonator A, B, C, and D). The single loss
minimum is observed when the total magnetic field is zero.

our system. This is expected because our cryostat features extensive shielding and

filtering to reduce the number of nonequilibrium quasiparticles and we operate the

resonators well below Tc so that the number of thermal quasiparticles is also small.

A.4 Dielectric loss estimate

In the main text, we claim that the TLS loss due to the densest hole pattern is

2.5±1.3×10–7. This claim is derived from measurements of 23 resonators summarized

in table A.1. We use the R statistics package[129] to apply a linear regression to this

data set, accounting for both the deposition technique and the hole pattern. No
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Table A.1: Deposition condition, hole density, and TLS model parameters extracted
from the power dependence at Bcool

applied = 0

Deposition 1/d (µm–1) 1/Qtls 1/Q0 Nsat α
MBE 0 7.3e-07 3.55e-08 21.8 0.81
MBE 0 6.59e-07 4.92e-08 35.4 0.73
MBE 0 1.19e-06 5e-08 10.7 0.71
MBE 0 7.44e-07 5.82e-08 71.3 0.73
MBE 0 7.3e-07 3.32e-08 54.1 0.82
MBE 0 8.73e-07 4.44e-08 34.1 0.79
MBE 0 9.4e-07 6.64e-08 52.7 0.75
MBE 0.5 8.9e-07 4.01e-08 24.6 0.71
MBE 0.5 9.26e-07 5.29e-08 16.4 0.68
MBE 0.5 1.03e-06 4.23e-08 39.1 0.81
MBE 0.5 1.56e-06 5.35e-08 36.4 0.86
ebeam 0 1.1e-06 3.77e-08 20.1 0.75
ebeam 0 1.26e-06 5.61e-08 9.7 0.69
ebeam 0 1.2e-06 7.21e-08 34.8 0.74
ebeam 0 1.63e-06 8.55e-08 37.3 0.80
ebeam 0 1.88e-06 4.18e-08 8.0 0.78
ebeam 0 1.23e-06 5.24e-08 10.6 0.64
ebeam 0 1.63e-06 5.92e-08 20.5 0.70
ebeam 0 1.18e-06 8.75e-08 30.5 0.61
ebeam 0.5 1.06e-06 5.25e-08 50.8 0.82
ebeam 0.5 1.54e-06 7.52e-08 30.8 0.80
ebeam 0.5 1.55e-06 5.06e-08 25.8 0.74
ebeam 0.5 2.3e-06 7.83e-08 12.6 0.77

interaction term was included in this model because the interaction between hole

pattern and deposition technique was found to be statistically insignificant. This

analysis yields an estimate for TLS loss due to the dense hole pattern, the standard

error of that estimated value, and a p-value indicating the statistical significance of

this finding. Those values were respectively 2.5 × 10–7, 1.3 × 10–7, and 0.07.
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Appendix B

Analog Control

Using a quantum computer to simulate quantum dynamics requires the ability to

generate Hamiltonians with programmable coefficients. This requires us to develop

a mapping between control voltages set by the experimentalist and the resultant

Hamiltonian parameters. We refer to this mapping as a control model. We arrive at

a control model with a two step calibration process described in this appendix. In

the first stage of the control model calibration, we use a series of single and two qubit

measurements to infer the parameters of the circuit model describing the device. The

details of the effective circuit model for this tunably coupled device were first worked

out in [26]. In the second stage of the control model calibration, we use the many-

body Ramsey technique to benchmark the collective dynamics of the circuit, with all

qubits coupled and near resonance with one another. Next, we numerically optimize
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the control model parameters using the difference between the benchmarking data

and control model predictions as a cost function. This is the calibration procedure

that was used to make the many-body localization measurements of chapter 5.

B.1 Spectroscopy

In the first stage of calibration we use conventional probe tone spectroscopy to

measure the |0〉 → |1〉 and |1〉 → |2〉 transition frequencies for each qubit. These

measurements are made with all other qubits biased far off resonance.

In order to make these measurements, we apply a bias voltage to the qubit’s flux

bias control and apply a variable frequency probe tone to the qubit’s microwave con-

trol. Then we read out the qubit’s |1〉 population. We identify the qubit’s transition

frequency as the probe frequency that gives maximum population transfer to the

excited state. This procedure is repeated as a function of qubit bias. We similarly

measure the |1〉 → |2〉 transition frequency, which captures the nonlinearity of the de-

vice and ultimately controls the "Hubbard U" interaction term of our Bose-Hubbard

Hamiltonian. The resulting curves are fit parametrically to give circuit element values

for our physical device model. This is shown in Fig. B.1(a).

It is important to note that the effective inductance qubit is sensitive to the

inductance of the coupler. This enables us to infer the circuit parameters of the
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coupler by measuring the qubit frequency as a function of coupler bias. Example

data from this procedure is shown in Fig. B.1(b).

The direct qubit - qubit interaction strength cannot be characterized from single

qubit measurements alone. In order to measure the direct interaction, we use a two

qubit swapping experiment as shown in Fig. B.1(c). The hopping strength is inferred

from the on resonance hopping rate.
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Figure B.1: a) Qubit spectroscopy measurement circuit diagram, pulse sequence,
and example data. The error plot in the example data corresponds to the difference
between the data points and prediction from the parameterized control model. b)
Coupler spectroscopy measurement circuit diagram, pulse sequence and example data.
c) Direct interaction "Chevron" measurement. The Hamiltonian hopping coefficient
is obtained from the on resonance hopping rate.

In the tables below we report our measured circuit model parameters. We find

circuit model parameters in good agreement with previous characterizations of this

device.[26]
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Table B.1: Measured qubit parameters

Qubit C (fF) Lj0 (nH) Lgtotal (nH) Voffset (A.U.) V /Φ0 (A.U.) greadout (MHz)
q1 87.0 6.28 1.00 0.037 0.756 95.5
q2 84.2 6.20 1.07 0.076 0.762 90.6
q3 84.4 6.27 1.02 0.073 0.764 92.1
q4 82.8 6.52 1.11 0.057 0.762 76.0
q5 85.0 6.14 0.97 0.095 0.763 93.3
q6 88.3 6.13 0.82 0.057 0.760 105.1
q7 80.7 6.58 1.25 0.054 0.747 76.4
q8 85.4 6.27 0.96 0.064 0.762 99.2
q9 85.6 6.38 0.95 0.044 0.785 97.0

Table B.2: Measured coupler parameters

Coupler Mleft (pH) Mright (pH) βmax f0 (GHz) Voffset (A.U.) V /Φ0 (A.U.)
c1,2 45.0 42.3 0.675 15.1 0.694 0.965
c2,3 45.4 41.6 0.678 14.9 0.683 0.964
c3,4 45.1 42.8 0.684 15.0 0.682 0.956
c4,5 46.1 41.3 0.681 14.9 0.685 0.961
c5,6 42.9 37.5 0.669 14.4 0.682 0.963
c6,7 41.2 42.0 0.676 14.5 0.672 0.952
c7,8 47.0 40.9 0.691 14.9 0.676 0.963
c8,9 44.6 38.6 0.680 15.0 0.686 0.958
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B.2 Many-body Ramsey spectroscopy

Many-body Ramsey spectroscopy is the primary benchmarking technique for our

multi-qubit, time-independent Hamiltonians [103]. This technique allows us to ex-

tract the eigenvalues of a time independent Hamiltonian. We can then compare the

extracted eigenvalues with those predicted from our control model to establish a mea-

sure of fidelity. In this appendix we give a detailed discussion of many-body Ramsey

spectroscopy and its use in validating and optimizing our control model.

For a wavefunction |ψ〉 evolving under a time independent Hamiltonian H we can

write down the time dependence of |ψ〉 by expanding it in the energy eigenbasis.

|ψ(t)〉 = e–iHt |ψ0〉 =
∑
α

Cαe–iEαt |φα〉 (B.1)

The coefficients Cα are given by the overlap of the initial state with the eigenstates

of H .

Cα = 〈φα|ψ0〉 (B.2)

Looking at Eq. B.1, it is clear that if we could simply Fourier transform the wavefunc-

tion, the task ef extracting the eigenvalues of H would be complete. Unfortunately,

|ψ〉 is not an observable and our ability to interogate |ψ〉 is limited to measuring the

expectation values of Hermitian operators. Such an observable Ô can be expanded

in the energy basis as

Ô =
∑
α,α′

Oα,α′ |φα′〉 〈φα| (B.3)
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The time dependent expectation value of this operator is

O(t) ≡ 〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉 =∑
β

C∗
βeiEβt |φβ〉


∑

α,α′
Oα,α′ |φα′〉 〈φα|


∑

β′
Cβ′e

–iEβ′ t |φβ′〉

 =

∑
α,α′,β,β′

〈φβ′|φα′〉 〈φβ |φα〉C∗
β′CβOα,α′ei(Eβ′–Eβ)t =

∑
α,α′

C∗
α′CαOα,α′e–i(Eα′–Eα)t

The time dependence of O(t) exposes our central challenge. For a generic initial

state and a generic Ô the time series O(t) does not isolate the eigenvalues of H .

Instead, the Fourier transform of O(t) reports all energy differences in the spectrum.

In order to isolate the eigenvalues, we must engineer the initial state and measurement

observables such that we keep only terms with Eα′ = 0.

From an engineering perspective, the above equation is still somewhat opaque be-

cause it describes the time dependence of an observable only in terms of the eigenbasis

of H . Typically, however, we use the Fock basis for initialization and measurement.

Thus, although the Hamiltonian evolution of the multi-qubit system is most natu-

rally described in terms of the the eigenstates of H , the initial state and measurement

observable that we wish to engineer are best described in terms of a product of single

qubit states. Schematically, we can diagram our algorithm as follows:
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Initialization

{|ϕ〉}

Hamiltonian evolution

{|φ〉}

Measurement

{|ϕ〉}

where ϕ and φ represent the Fock basis and Hamiltonian eigenbasis.

It is useful to work this out explicitly for the many-body Ramsey algorithm,

demonstrating the extraction of Hamiltonian eigenvalues from the single photon man-

ifold of a small three qubit system.

The relevant Fock basis states are:

{|ϕ}〉 = |000〉 , |001〉 , |010〉 , |100〉 (B.4)

Initializing to a superposition state by doing a Y/2 rotation on a single qubit we have:

|ψ0〉 = 1√
2
(
|000〉 + |001〉

)
= 1√

2
(
|ϕ0〉 + |ϕ1〉

)
Let C be the matrix that changes basis from the Fock basis to the eigenbasis of H.

|ψ0〉φ = 1√
2


1 0 0 0
0 c11 c12 c13
0 c21 c22 c23
0 c31 c32 c33


ϕ→φ


1
1
0
0


ϕ

= 1√
2


1

c11
c21
c31


φ

(B.5)

Where the subscripts indicate which basis we are working in. The time dependence

of |ψ〉 is

|ψ(t)〉φ =


1

c11e–iE1t

c21e–iE2t

c31e–iE3t


φ

(B.6)
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We can apply the inverse transformation C–1 to recover the time dependence of

|ψ〉 in the Fock (measurement) basis.

|ψ(t)〉ϕ = C–1 |ψ(t)〉 = 1√
2


1 0 0 0

0 c–1
11 c–1

12 c–1
13

0 c–1
21 c–1

22 c–1
23

0 c–1
31 c–1

32 c–1
33


φ→ϕ


1

c11e–iE1t

c21e–iE2t

c31e–iE3t


φ

= 1√
2


1

c–1
11c11e–iE1t + c–1

12c21e–iE2t + c–1
13c31e–iE3t

c–1
21c11e–iE1t + c–1

22c21e–iE2t + c–1
23c31e–iE3t

c–1
31c11e–iE1t + c–1

32c21e–iE2t + c–1
33c31e–iE3t


ϕ

≡ 1√
2


1

ϕ001

ϕ010

ϕ100


ϕ

In the zero and one photon manifolds of the 3 qubit system

Î ⊗ Î ⊗
(
σ̂x + iσ̂y) =


0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (B.7)

and therefore, if we measure 〈σx + iσy〉(t) on the rightmost site, then we have

[
1 ϕ∗001 ϕ∗010 ϕ∗100

]
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




1
ϕ001

0
0

 =
[
1 ϕ∗001 ϕ∗010 ϕ∗100

]
ϕ001

0
0
0

 = ϕ001.

(B.8)
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In this case we can recover the eigenvalues of H because the Fourier transform

of ϕ001(t) reports tones only at the eigenfrequencies, since ϕ001 = c–1
11c11e–iE1t +

c–1
12c21e–iE2t + c–1

13c31e–iE3t .

This calculation makes the roles of the initial state and measurement observable

clear. It is essential that the initial state be a superposition of a reference state, and

a state in the manifold that we wish to extract the eigenvalues of. It is critical that

the reference state is member of a manifold with trivial internal dynamics, in this

case |ψ〉ref = |000〉. This state serves as an interference partner for our generalized

Ramsey experiment, and its triviality assures that the spectrum of our interference

pattern is exclusively due to the dynamics of the target manifold and not the internal

dynamics of the reference manifold.

The choice of Ô = â = σ̂x + iσ̂y is also clarified by this calculation. This operator

interferes the dynamic manifold with the reference state, isolating the eigenvalues.

If we had instead chosen Ô = σ̂x we would observe both positive and negative

eigenvalues since

[
1 ϕ∗001 ϕ∗010 ϕ∗100

]
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




1
ϕ001
ϕ010
ϕ100

 =
[
1 ϕ∗001 ϕ∗010 ϕ∗100

]
ϕ001

1
0
0

 = ϕ001+ϕ∗001

(B.9)
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This is intuitive because for a single qubit precessing on the equator of the Bloch

sphere measuring < σx > alone does not indicate which direction the Bloch vector is

precessing!

The naive attempt of measuring the on-site population of qubit 1 n̂1 yields the

eigenvalue differences since

[
1 ϕ∗001 0 0

]
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




1
ϕ001

0
0

 =| ϕ001 |2 (B.10)

The numerics below illustrate these points:
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frequency

Eigenvalues

0

Figure B.2: The spectrum of Ô = σz is comprised of the differences of eigenvalues.
The spectrum of Ô = σx contains the eigenvalues and their mirrored frequencies.
The spectrum of Ô = σx + iσy isolates the eigenvalues.
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B.3 Control model optimization

Predicted Eigenvalues

Figure B.3: Many-body Ramsey five qubit data. The fourier domain data
for measurement observables 〈Ô〉 = 〈σz〉 (red) and 〈σx + iσy〉 (blue). The spectrum
of

〈
σz(t)

〉
is composed of artifacts from eigenvalue differences. The spectrum of〈

σx(t)
〉

+ i
〈
σy(t)

〉
recovers the eigenvalues of H .

Because the many-body Ramsey extracts the eigenvalues of the Hamiltonian that

was actually generated in the experiment, we can compare the extracted eignevalues

with those predicted by our circuit parameterization and use the difference as a control

error metric. A comparison of predicted eigenvalues for a single Hamiltonian instance

and observed Fourier domain data from the Many-body Ramsey technique is the

subject of Fig. B.3. With this error metric established, we can optimize the parameters

of our control model to give a more accurate parameterization of the circuit.
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Validation
error = 8.5 MHz

Training
error = 9.1 MHz

Before control model optimization

Predicted
Observed

Figure B.4: Five qubit many-body Ramsey spectroscopy data overlayed with pre-
dictions from control model prior to optimization.

After using the conventional spectroscopy, described in above in section B.1, to

measure the circuit model parameters using a series of single and two qubit measure-

ments we benchmark the collective dynamics of the full system using the many-body

Ramsey technique described in section B.2

The result is shown in fig. B.4. The 2D color plot is the raw Fourier data for each of

100 training instances. This data is overlayed with the control model predictions (red

circles) and peak positions extracted with our analysis algorithm (black circles). The

error per eigenvalue is extracted to be 9 MHz. This large error results primarily from

the fact that the control bias conditions are different in the case that we characterize
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the single and two qubit systems from the case that we characterize the full system

collective dynamics with many-body Ramsey. This idea is sketched in Fig. B.5.
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One qubit active

Algorithm con�guration
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a) b)

Figure B.5: Schematic illustrating the qubit frequency configurations for the mod-
elling spectroscopy experiments (a) and the Many-body Ramsey benchmarking ex-
periments (b).

We can improve the control model by numerically optimizing the circuit param-

eters, using the error per eigenvalue as a cost function. In this optimization step we

only allow physically justified parameters to vary. That is, the flux offsets are ex-

pected to benefit from optimization because the control bias currents are different in

the spectroscopic modelling configuration and the many-body Ramsey benchmarking

configuration. In contrast, parameters such as the capacitance and geometric induc-
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Figure B.6: Error per eigenvalue for the training and validation splits during opti-
mization. Data shown is for five qubit Hamiltonians.

tance are not expected to have changed between bias configurations and are held

fixed during the optimization. Next, we follow the standard optimization procedure

of dividing our full data set into training and validation subsets. We then optimize

the control model by minimizing the average error per eigenvalue of the training data

only. The error per eigenvalue at each iteration of the optimization process is shown

in Fig. B.6. The predictions from the optimized control model are overlayed on the

original fourier data in Fig. B.7

In Fig. B.8 we show 9 qubit validation data with a validation error rate of 1.2

MHz per eigenvalue. This shows that the MHz level error rate is maintained as we

scale to larger numbers of qubits.
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Training
error = 1.6 MHz

Validation
error = 1.5 MHz

After control model optimization

Predicted
Observed

Figure B.7: Five qubit many-body Ramsey spectroscopy data overlayed with pre-
dictions from control model after optimization.
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Nine qubit validation data
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Figure B.8: Manybody Ramsey calibration data for a nine qubit linear
chain a) Raw Fourier data from Many-body Ramsey spectroscopy. b) Histogram of
errors for each eigenvalue.
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B.4 Connection between many-body Ramsey

spectroscopy and unitary tomography (2

qubit particle conserving evolution)

In the recent demonstration of quantum supremacy [6] the two qubit gates were

photon number conserving unitaries from a class of unitaries known as the Fermionic

Simulation or FSim class[130]. The matrix elements for the two qubit unitaries were

inferred by optimizing the gate parameters to the cross-entropy benchmarking fidelity.

The initial guesses for this optimization process were provided by a technique we

refer to as unitary tomography. This technique is now widely used for two qubit

gate calibration in the Martinis group / Google AI Quantum lab. Here we highlight

the connection between the many-body Ramsey technique discussed in the previous

section and the simple, powerful unitary tomography technique.

We wish to measure the matrix elements of a generic two qubit photon conserving

unitary U . In order to probe U , we can apply the unitary to an initial state of our

choice. We can also perform tomographic rotations prior to measurement.〈
Ô
〉

= 〈ψ0|U †ÔU |ψ0〉 (B.11)
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where the experimenter has control over |ψ0〉 and Ô A generic two qubit unitary U

has a matrix representation as below using the basis |00〉 , |01〉 , |10〉 , |11〉

U =


U00 U01 U02 U03
U10 U11 U12 U13
U20 U21 U22 U23
U30 U31 U32 U33

 (B.12)

which can be simplified for the FSim class.

U =


1 0 0 0
0 U11 U12 0
0 U21 U22 0
0 0 0 U33

 (B.13)

We wish to ascertain the matrix elements of this unitary transformation.

The procedure for doing this is exactly the same as for many-body Ramsey spec-

troscopy and is illustrated in Fig. B.9. It consists of preparing a qubit in the su-

perposition state with a π/2 pulse, acting on the two qubit system with the unitary

of interest, and measuring the observable 〈σx〉 + i〈σy〉. In this case our choice of

which qubits were initialized and measured determines which unitary matrix element

is extracted. Also in contrast with many-body Ramsey spectroscopy, we do not need

to measure a full time series, but rather obtain our answer by analyzing a single

application of the Unitary.
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Figure B.9: A schematic diagram of the unitary tomography procedure for measur-
ing the matrix elements of U

The mechanics of this method are best clarified by working a simple example. If

we initialize the left qubit

|ψ0〉 = 1√
2


1
1
0
0

 (B.14)

then

U |ψ0〉 = 1√
2


U00 + U01
U10 + U11
U20 + U21
U30 + U31

 = 1√
2


1

U11
U21
0

 (B.15)
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So that it is clear we are selecting elements from the first column of the single photon

subspace. On the other hand, if we initialize the second qubit then we select the

corresponding column of the unitary

|ψ0〉 = 1√
2


1
0
1
0

 =⇒ |ψf 〉 = 1√
2


1

U12
U22
0

 (B.16)

Isolating a particular row of the unitary is achieved through the choice of which

qubit is used to measure
〈
σx + iσy〉. Explicitly, the measurement operator for a

measurement on qubit 1 is :

Ô = 1
2I ⊗ (σx + iσy) =

[
1 0
0 1

]
⊗

[
0 1
0 0

]
=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (B.17)

so that

ψf =


1

U11
U21
0

 =⇒ 〈ψf |Ô|ψf 〉 =
[
1 U ∗

11 U ∗
21 0

]
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




1
U11
U21
0

 = U11

(B.18)

For a measurement on qubit 2

Ô = 1
2(σx + iσy) ⊗ I =

[
0 1
0 0

]
⊗

[
1 0
0 1

]
=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 (B.19)
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so that

ψf =


1

U11
U21
0

 =⇒ 〈ψf |Ô|ψf 〉 =
[
1 U ∗

11 U ∗
21 0

]
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




1
U11
U21
0

 = U21

(B.20)

We have succeeded in measuring a single matrix element of the unitary, by map-

ping its magnitude and phase onto the single qubit magnitude and phase. This pro-

cedure generalizes trivially to the single photon manifold of multi-qubit systems.
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Appendix C

Supplemental information for

Growth and preservation of

entanglement in a many-body

localized system

C.1 Device and calibration, Figs. C.1-C.3

C.1.1 Circuit schematic

The nearest-neighbor coupled, linear chain device used in Figs. 5.2 - 5.4 features

9 frequency tunable transmon qubits with tunable inter-qubit coupling. An optical
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a) b)

coupling (hopping) frequency detuning qubit nonlinearity

readout
resonator

qubit
coupler

11
.5

 m
m

Figure C.1: The 9 qubit linear chain device. This device was used in Figs. 5.2
- 5.4. (a) Optical micrograph of the 9 qubit linear-chain device. (b) Circuit diagram
for a three qubit subsection of the device.

micrograph is of this device is shown in Fig. C.1 (a). The design details are discussed

further in [26]. The effective circuit model for a three qubit, two coupler subsection of

the device is shown in panel (b). Following [26], we infer the values of the circuit model

parameters for this device from spectroscopic measurements. The dynamics of this

device are described by a Bose-Hubbard Hamiltonian with tunable coefficients. We

use the parameterized circuit model to create a mapping between the experimentally

controlled bias currents and the resultant Hamiltonian coefficients. The circuit model

measurements are made as a series of single and two qubit measurements. Once the

circuit model has been developed, we benchmark the 9-qubit collective dynamics as

described in Fig. C.3.
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Figure C.2: Single qubit gate performance. Clifford based randomized bench-
marking (RB), shown in red, characterizes the total error rate per Clifford. Purity
benchmarking, shown in black, characterizes the total incoherent error rate per Clif-
ford.

C.1.2 Single qubit gate error rate

We use Clifford based randomized benchmarking (RB) and purity benchmarking

to quantify the total error rate and the error rate due to decoherence per Clifford

for the single qubit gates in our algorithm. The data shown in Fig. C.2 is for a

typical qubit. The total and incoherent error rates per Clifford are extracted to be

3.1 × 10–3 and 2.7 × 10–3. Since there are relatively few single qubit gates in our

analog algorithms this is not a significant source of error.
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Figure C.3: Many-body Ramsey calibration data for 9 qubit randomly
generated Hamiltonians. (a) Fourier data for 18 instances of randomly generated
Hamiltonians overlayed with the control model predictions of the eigenvalues. (b) A
histogram of the difference between the control model predicted eigenvalues and the
experimentally observed peaks.

C.1.3 Manybody Hamiltonian benchmarking

In order to benchmark our ability to set multi-qubit time-independent Hamiltoni-

ans we compare the eigenvalues predicted by our control model with those observed

by using the manybody Ramsey spectroscopy technique103. We prepare a qubit in

the superposition state |ψ0〉 =
(

|0〉+|1〉√
2

)
⊗ |0, ..., 0〉Other, evolve the system under

a 9 qubit time-independent Hamiltonian, and observe 〈σx + iσy〉 of the initialized

qubit vs evolution time. The eigenvalue spectrum can then be recovered by Fourier

transforming this time-series. This procedure is repeated for each of the qubits in

our system and a composite spectrum is assembled from these measurements. We

then compare the eigenvalues predicted by the parameterized circuit model and with
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those extracted experimentally. Example calibration data for the 9 qubit linear chain

geometry is shown is Fig. C.3.

To make a stressful test and benchmark our control model over a wide parameter

space we perform manybody Ramsey spectroscopy over several instances of randomly

generated Hamiltonians. In the 9 qubit data shown here, the coefficients of our

target Bose-Hubbard Hamiltonian were taken to be independent random variables

with Jij ∈ [0, 45]MHz and hi ∈ [–200, 200] MHz. In Fig. C.3 (a) the 2D color map

shows the composite spectra for these instances. The 2D plot is overlayed with the

eigenvalue predictions from the control model (red circles) and the detected peak

locations (black circles). In (b) we report the distribution of errors obtained from the

difference of the predicted and observed eigenvalues for each instance. The average

error per eigenvalue for these Hamiltonian instances is 1.2 MHz.

C.2 Transport measurements, Figs. C.4-C.6

C.2.1 Transport measurement instances

In Fig. C.4 we show data from the transport measurements before disorder aver-

aging. The data shown is for nph = 2 and selected values of disorder parameter w

for J = 40 MHz. The disorder averaged data (black lines) is contained in Fig. 5.2 (a),

and the histograms in Fig. 5.2 (b) of the main text are time slices of this data at
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Figure C.4: Transport measurement instances. Instances of N (t) for the
transport protocol of Fig. 5.2 prior to disorder averaging. Data shown here is for
J = 40 MHz and nph = 2.

100 ns. The spread in values at short time is primarily due to readout error, as state

preparation error is small.

C.2.2 Decoherence effects

In chapter 5 we report on short-time dynamics t . 100 ns, before our system is

dominated by decoherence. In reality, our 9 qubit chain is an open system, subject

to both relaxation and dephasing because of its coupling to the environment. The
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characteristic relaxation time T1 is ∼ 10µs and the characteristic dephasing time is

a few µs. In Fig. C.5 we provide additional data as an estimate of the importance

of these open system effects. In panel (a) we show the disorder averaged popula-

tion vs time data for nph = 1. In panel (b) we show the population vs time data

for nph = 1 after correcting for relaxation (photon loss) using a simple single qubit

T1 model N corrected (t) = N (t)/e
(
–t/10µs

)
. At high disorder, where the localization

length is shorter than one lattice site, single qubit T1 (photon loss to the environ-

ment) is the dominant mechanism by which a photon leaves the observation site and

this correction works well, as indicated by the fact that the population has taken a

stationary value. At low disorder, in the diffusive regime, the excitations are able

to distribute themselves evenly across the chain and we expect the T1 correction to

work well in this case as well. Referring to Fig. 5.2 (c) we see that at 100 ns in the

diffusive regime at low disorder we measure the thermal expectation values. This in-

dicates clearly that relaxation effects are not significant in the first 100 ns. And that

any apparent loss is due to transport within the 9 qubit chain and not photon loss.

For intermediate disorders there appears to be additional photon loss since the onsite

population declines. However, the decrease in observed population at the observation

site is attributed to dephasing assisted delocalization.119–123

When the LIOM extends over multiple lattice sites, dephasing between the sites

breaks down the localized wave-packet by destroying the quantum interference pattern
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that causes the localization. This breakdown of coherence between different parts of

the wave packet enables transport of the excitation across the 9 qubit chain. Crucially,

we note that neither T1 relaxation nor dephasing between the lattice sites significantly

influence the dynamics at higher disorders or short times. This feature is captured in

Fig. 5.4 (b) where we note that 〈σz〉 is nearly constant between 10 ns and 100 ns. In

Fig. C.5 (c) and (d) we show the raw and T1 corrected data for nph = 2.

C.2.3 Two state occupation

A critical feature of our system is that multiple excitations in the system

may interact via the Hubbard interaction. The form of this interaction Hint =

U
2

nQ∑
n=1

a†nan(a†nan – 1) indicates that it is only activated when there are multiple

excitations on the same lattice site. Thus the interaction effects that we report in

the main text require occupation of the higher levels of our Bose-Hubbard lattice.

In Fig. C.6 we report the |2〉 population vs time for a system initially in the state

|ψ0〉 = |000000101〉 and observed on the right-most qubit. We find that the |2〉 state

population is typically at the 2 % level, achieves its maximum value early in the

evolution, and does not progressively grow larger with time.
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Figure C.5: Transport Measurements: Decoherence Effects. (a) The raw
disorder averaged transport data for nph = 1 (b) The data from (a) corrected for
a simple energy relaxation model N corrected (t) = N (t)/e

(
–t/10µs

)
. (c) The raw

disorder averaged transport data for nph = 2. (d) The disorder averaged transport
data with T1 correction.
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Figure C.6: Transport Measurements: Two state occupation.
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C.3 Interferometric protocols, Figs. C.7-C.10

In order to gain some insights about the echo sequences, we first consider the

case of very strong disorder, where the local integrals of motion (LIOMs) τ z
i are close

to the physical spins Sz
i (represented by the two lowest energy levels of a qubit),

and assume that we directly manipulate LIOMs. First, we will consider the spin echo

sequence illustrated graphically in Fig. C.7 [110]. Assuming we start from the vacuum

state |ψ0
〉

= |0
〉
⊗ |{τj}〉, we initiate the dynamics by applying a π/2 pulse:

|ψ〉 = 1√
2

(|0〉 + i |1〉) ⊗ |{τj}〉 (C.1)

When the system evolves for times t/2, the spin at site i experiences an effective

magnetic field, that depends on the states of the other LIOMs, see Eq. (2) in the

main text,

∆i = h̃i +
∑

j
Jijτ

z
j +

∑
j,k

Jijkτ
z
j τ

z
k + . . . . (C.2)

C.3.1 Echo pulse sequences

spin echo DEER

i

j

i

j

Figure C.7: Pulse sequence schematics for spin and DEER echo. DEER
echo differs from spin echo by the addition of a remote π/2 pulse simultaneous with
the spin echo π pulse between the free precession intervals.
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The π rotation halfway through the spin-echo sequence then inverts the effective

magnetic field ∆i → –∆i which is precisely canceled after another time evolution for

t/2. At the end of the protocol we measure the purity, which is advantageous over

measuring a single spin component, because it is less prone to running field gradients

and external perturbations. For the spin-echo sequence on the LIOMs we find a

perfect purity of one. In a true measurement on our device the echo is performed on

the physical spins, which possess a finite operator overlap with the LIOMs which is

less than one. This leads to a spin echo signal that saturates to a finite value that

decreases with decreasing disorder strength [110].

In the DEER echo sequence we similarly perform a spin echo measurement on site

i as before, However, half-way through the time evolution we modify a second part of

the system, say site j by applying a π/2 pulse, see Fig. S7. The effective magnetic field

for the backward evolution ∆̃i , deviates from the field ∆i of the forward evolution in

all the terms containing τ z
j . In summary, the state after the second time evolution is

therefore

|ψD(t)〉 = 1
2[ |1〉 ⊗ |...0j ...〉 + ei(∆i–∆̃i)t–i∆j t |1〉 ⊗ |...1j ...〉 –

|0〉 ⊗ |...0j ...〉 – e–i(∆i–∆̃i)t–i∆j t |0〉 ⊗ |...1j ...〉]
(C.3)

and the measurement of the purity then yields

tr
(
ρ2
)

= cos2
[(
∆i – ∆̃i

)
t
]

. (C.4)
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Due to the interaction between the τ bits at site i and j, the phases do not cancel

anymore and the signal decays. The difference between spin and DEER echo is

thus a pure interaction effect which would not appear in the noninteracting localized

phase. The advantage of performing a differential measurement of the two echo

protocols is that even in the presence of noise, deviations of the two echo signals,

demonstrates a clear interaction effect and hence is able to unambiguously measure

the interacting character of the LIOMs. Because these interaction effects are due

to the local occupation of higher orbitals we numerically estimate the population of

multiply excited states nmax
i = 1, 2 during the DEER echo protocol for a evolution

time of t = 63 ns in Fig. C.8.

In the experimental measurement of the purity, local occupations higher than

two are not taken into account. This leads to a leakage of the measurement as

characterized by the finite value of 〈σz
i 〉 in Fig. 3 (b) of the main text. Moreover,

we numerically estimate this effect by resolving the probabilities for maximum local

occupations nmax
i = 1, 2 during the DEER echo protocol for a evolution time of

t = 63 ns in Fig. C.8. From that it can be deduced that leakage effects are not severe,

and in particular does not change the qualitative difference between the spin echo

and DEER echo protocols.
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Figure C.8: Numerical estimate of the occupation of higher transmon
levels during the DEER echo protocol. Calculation shown here for for the one,
and two excitation states
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C.3.2 Maximum local occupation

Probability for maximum local occupations of nmax
i = 1, 2 during the DEER echo

protocol for L = 9 sites, an evolution time of T = 63ns, coupling J = 2π · 40MHz,

disorder strength w/J = 10 and interaction U/J = 4.

C.3.3 Comparison with numerics for echo experiments

In Fig. C.9 we compare the data from the interferometric pulse sequences presented

in Fig. 5.3 of the main text with numeric predictions. In panels (a) and (b) we

compare the onsite population at the spin echo qubit. Although there is a strong

correspondence, we observe greater diffusion off site (larger σz)) in the experiment

than in the numerics. There is also less contrast in the experiment than in the

numerics. It is likely that these differences are related to the transient pulse response

of our system and open systems effects, however further investigation is needed to

make a conclusive determination.

C.3.4 Extended data

In Fig. C.10 we show extended data for echo sequence measurements for several

values of of the disorder parameter w with J held fixed at 40 MHz. Compared with

Fig. 3 of the main text, the initial state for these measurements had an additional

excitation at the indicated position (purple). We observe a strong interferometric
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Experiment Numerics

Figure C.9: Comparison with numerics for echo experiments. (a) and (b)
Disorder averaged expectation value of σz showing population at the observation site
for experimental observations and numerical prediction. The lack of dependence of〈
σz〉 on the DEER pulse indicates localization in our system. (c) and (d) Disorder

averaged purity of the reduced single qubit density matrix at the observation site.
The contrast between spin-echo and DEER echo demonstrates that the local phase
accumulation is conditional on the remote population. This is a direct measure of the
nonlocal interaction strength.
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9 qubits

ρ1q

2

Spin Echo

DEER Echo

Figure C.10: Interferometric Protocols: Extended Data. (a) Spin and DEER
echo pulse sequences. We the blue outline indicates the position of the DEER echo
pulse, and the position of an additional excitation is indicated in purple. (b) purity
of the single qubit density matrix after the spin echo (dashed red lines) and DEER
echo (solid lines) experiments. (c)

〈
σz〉 monitored over the echo experiments.
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signature in the purity, indicating nonlocal interaction. In these measurements σz

does not depend on the position of the echo pulses, indicating localization.
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C.4 Entanglement measures

The distillable entanglement of the two qubit density matrix ED(ρ2q) is lower

bounded by the coherent information entropy

ED(ρ2q) ≥ S(ρ1q) – S(ρ2q), (C.5)

where ρ1q,2q are the reduced density matrices of one of the two qubits and the two

qubit subsystem, respectively, and S(ρ) is the von Neumann entanglement entropy.

An upper bound to the distillable entanglement is provided by the logarithmic nega-

tivity131 which is defined as

EN (ρ2) = log2 ||ρTA
2 ||1. (C.6)

Here, ρTA
2 is the partial transpose of the reduced density matrix with respect to one

of the qubits and || · ||1 denotes the trace norm.

A second operational entanglement measure is the entanglement of formation,

which is a measure for the entanglement needed to create a given entangled state.It

is defined as

EF (ρ) = ε(C(ρ)) (C.7)

with

ε(x) = –h+(x) log2 h+(x) – h–(x) log2 h–(x) (C.8)

where

h±(x) = –1
2

(
1 ±

√
1 – x2

)
. (C.9)
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The concurrence C(ρ) of a mixed state of two qubits is defined as

C(ρ) = max (0,λ1 – λ2 – λ3 – λ4) , (C.10)

where λi are the eigenvalues of

R =
√√

ρρ̃
√
ρ (C.11)

and

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). (C.12)

C.5 Density matrix evolution numerics compari-

son, Figs. C.11 - C.15

In the main text we observe the entropy accumulation of an x-polarized subsystem

in an MBL environment. The von Neumann entropy represents contributions from

entanglement within the 9 qubit system, as well as from open system effects. In

Figs. C.11-C.15 we provide supporting information to assist the reader in estimating

the role of open systems effects in our experiment. We find that a good estimate

of the contribution to the von Neumann entropy coming from coupling to the open

system is provided by the entropy of the J = 0 curve. In the J = 0 case we do not

expect interaction with the environmental qubits and attribute observed entropy in

that case to extrinsic dephasing and relaxation processes.
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C.5.5 Long time numerics for superposition initial state.
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A B C

Figure C.11: Entropy Comparison with Numerics (a) Raw experimental observa-
tions from the two qubit density matrix measurements. The J = 0 data acts as a control experiment.
We attribute entropy accumulation in the control experiment to open system effects (b) Experimen-
tal data after subtracting the baseline entropy measured in the control experiment from each of the
data series. (c) Result of exact diagonalization numerics. (d) Raw experimental observation of
σz , quantifying population. For the J = 0 baseline case we attribute the non-zero σz to state ini-
tialization error, and relaxation processes T1. (e) Experimental data corrected by subtracting the
value of σz in the J = 0 control experiment from each of the data series. (c) Prediciton from exact
diagonalization numerics. (g) Entanglement of formation as observed in the experiment. This is an
affirmative observation of quantum correlation between sites A and B which cannot be attributed to
open system effects, in contrast to the von Neumann entropy. The EOF observed in the experiment
is slightly damped due to open system effects. 147



A B C

Figure C.12: entropy comparison with numerics (a) logarithmic negativity as
observed in the experiment. the black J = 0 curve is our control experiment, and departure of the
logarithmic negativity from 1 is attributed to state initialization error and open systems effects. (b)
experimental data corrected for the loss of correlation observed in the J = 0 case. The correction
was performed by adding (1 - logarithmic negativity(J = 0) ) to each data series. (c) prediction
from exact diagonalization numerics.
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A B C

Figure C.13: Data from Fig. C.11 plotted on semi-log axes to emphasize scaling.
The disagreement at short times is attributed to the transient respose of the control
pulses.
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A B C

Figure C.14: Data from Fig. C.12 plotted on semi-log axes to emphasize scaling.
The disagreement at short times is attributed to the transient respose of the control
pulses.
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A B C

Figure C.15: Entropy comparison with numerics. Numerics to longer times
than are accessible in the experiment illustrating the predicted logarithmic growth of
entanglement for our system.
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C.6 Sensitivity to nonlinearity U , Figs. C.16-C.18

The Hamiltonian parameter U varies weakly as a function of the qubit frequencies

and inter-qubit coupling. U cannot be controlled independently in our system. Here

we provide numerical evidence that the dynamics that we report in the MBL regime

are not sensitive to this parameter.
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A B C = -160 MHz
= -180 MHz

= -140 MHz

Figure C.16: Disorder averaged von Neumann entropy vs. U for selected
couplings and disorder magnitudes. The von Neumann entropy observed in the
experiment is predicted to be insensitive to the precise value of U .

153



A B C = -160 MHz
= -180 MHz

= -140 MHz

Figure C.17: Disorder averaged entanglement of formation vs. U for se-
lected couplings and disorder magnitudes. The entanglement of formation
observed in the experiment is predicted to be insensitive to the precise value of U .
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A B C = -160 MHz
= -180 MHz

= -140 MHz

Figure C.18:
〈
σz〉 vs. U for selected couplings and disorder magnitudes.

The onsite population observed in the experiment is predicted to be insensitive to the
precise value of U .
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C.7 Extended data for 1D qubit array, Fig. C.19

C.7.1 Distillable entanglement in MBL and diffusive regimes

In a 1D system we investigate the formation and preservation of entanglement be-

tween two qubits A and B that are embedded in a many-body localized environment

as illustrated in Fig. S19 (a) and contrast this behavior with a system in the diffu-

sive regime. The entanglement of formation quantifies the amount of entanglement

directly between qubits A and B that would be required to produce the observed two-

qubit mixed state density matrix.In panel (b), we initialize the sub-system into an

unentangled product state of single qubit superpositions and observe the development

of entanglement between our sub-system qubits. At high disorder, associated with

the localized phase, entanglement grows continuously between the spatially separated

sites. At low disorder, corresponding with the ergodic phase, we observe brief inter-

vals of significant entanglement as the excitations delocalize across the full 9 qubit

system. However, this behavior is quickly damped as the excitations are absorbed by

environmental qubits, as the full 9-qubit system thermalizes.

Systems in the MBL and diffusive regimes also differ in their ability to retain

correlation between their constituent parts. This is illustrated in Fig. C.19 (B) where

we prepare a distant Bell state between the first and the third qubit and study the

entanglement dynamics. While dephasing between LIOMs will ultimately destroy the
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entanglement, it will only due so on exponentially long times due to the localization.

Crucially, the subsystem is in a mixed state, because it is coupling to the other 7 qubits

of our device. We therefore characterize the entanglement of the 2-body mixed density

matrix ρ2q (t) using an operational entanglement measure. In particular, we focus

on the distillable entanglement, i.e., the entanglement which can be extracted from

the mixed density matrix, that is upper bounded by logarithmic negativity entropy

and lower bounded by the coherent information entropy. These bounds are shown in

panel (c). For weak disorder (red), the prepared quantum information is immediately

lost because the quantum dynamics entangles the subsystem with its environment

and a featureless high temperature state is attained locally. This behavior can also

be understood in terms of the monogamy of entanglement.125 Although the two qubit

subsystem is initially prepared in a maximally entangled state the degree of quantum

correlation between subsystem sites decreases as the subsystem exchanges information

with the environment and entangles with it. This monogamic principle also explains

the damping of the peak in the low disorder data of panel (b). However, for strong

disorder (blue) the distillable entanglement is sizable over long times, and hence the

density matrix can be used as quantum resource. This is exemplified in panel (d)

which shows the tomographic reconstruction of the two qubit density matrix for a

single disorder instance as it evolves in time. These results show that a many-body

localized system can efficiently retain quantum information over long time scales.
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A B C

Figure C.19: Entanglement of formation and distillable entanglement in
MBL and diffusive regimes (a) Schematic diagram emphasizing our focus on the entan-
glement between qubits A and B which are embedded in an environment. (b) To observe the
development of entanglement between sites A and B the sub-system is initialized in a product of
single qubit superposition states and the entanglement of formation of the two qubit density matrix
is extracted. (c) We demonstrate the capability of the MBL phase to preserve entanglement ini-
tializing the sub-system into a maximally entangled Bell pair and observing the decay of quantum
correlations. We extract the logarithmic negativity and coherent information from measurements of
the two-qubit sub-system density matrix. These provide, respectively, upper and lower bounds on
the distillable entanglement within the sub-system. (d) Representative density matrices from single
disorder instances contained in (c) at high and low disorder.158



C.8 Extended data for 2D qubit arrays, Fig. C.20

C.8.1 Onsite population for 2D qubit arrays

Figure C.20: Extended data for onsite population of 2D arrays. (a-d) Onsite
population for nph = 1, 2, 3, 4 on a 3x3 array of qubits. (e-h) Onsite population for
nph = 1, 2, 3, 4 on a 4x4 array of qubits.

In Fig. C.20, we show extended data for the onsite population for 2D geometries,

for nph = 1, 2, 3, 4. The initial location of the excitations was randomized between
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runs but the observation site was always one of the initially excited qubits. Similar to

the 1D geometries, with sufficient disorder the onsite population takes a non-thermal

stationary value and is consistent with many-body localization. In the 2D geometries

the onsite population consistent with thermalization at higher disorders when there

are more photons in the system (greater nph), as in the 1D case.
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