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Abstract: Western diet (WD) intake, aging, and inactivation of farnesoid X receptor (FXR) are
risk factors for metabolic and chronic inflammation-related health issues ranging from metabolic
dysfunction-associated steatotic liver disease (MASLD) to dementia. The progression of MASLD
can be escalated when those risks are combined. Inactivation of FXR, the receptor for bile acid
(BA), is cancer prone in both humans and mice. The current study used multi-omics including
hepatic transcripts, liver, serum, and urine metabolites, hepatic BAs, as well as gut microbiota from
mouse models to classify those risks using machine learning. A linear support vector machine with
K-fold cross-validation was used for classification and feature selection. We have identified that
increased urine sucrose alone achieved 91% accuracy in predicting WD intake. Hepatic lithocholic
acid and serum pyruvate had 100% and 95% accuracy, respectively, to classify age. Urine metabolites
(decreased creatinine and taurine as well as increased succinate) or increased gut bacteria (Dorea,
Dehalobacterium, and Oscillospira) could predict FXR deactivation with greater than 90% accuracy.
Human disease relevance is partly revealed using the metabolite–disease interaction network. Tran-
scriptomics data were also compared with the human liver disease datasets. WD-reduced hepatic
Cyp39a1 (cytochrome P450 family 39 subfamily a member 1) and increased Gramd1b (GRAM domain
containing 1B) were also changed in human liver cancer and metabolic liver disease, respectively.
Together, our data contribute to the identification of noninvasive biomarkers within the gut–liver axis
to predict metabolic status.

Keywords: diet; aging; bile acid; FXR; gut–liver axis; cognitive dysfunction; chronic inflammation;
machine learning

1. Introduction

The incidence of metabolic diseases is rising due to obesity. Early diagnosis is needed
especially when patients are asymptomatic. Western diet (WD) intake, aging, and far-
nesoid x receptor (FXR) deactivation are risks for metabolic disease development [1–8].
Additionally, all those factors contribute to systemic inflammation thereby affecting neu-
roplasticity [9]. FXR is one of the most characterized receptors for bile acids (BAs), which
play pivotal roles in regulating lipid and carbohydrate metabolism [10]. Lack of FXR in-
duces hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and liver
tumors spontaneously as mice age [5,7]. Additionally, by deactivating the transcriptional
activity of FXR, both aging and WD intake induce the development of metabolic disorders
and chronic inflammation [5,10,11]. Furthermore, when these risk factors are combined, the
development of MASH and liver carcinogenesis is facilitated [6,7,12]. Similarly, patients
with MASH, cirrhosis, or hepatocellular carcinoma (HCC) have reduced expression of
FXR [13]. Moreover, aging and dysregulated FXR signaling are also implicated in cognitive
function signifying the importance of those factors [14].
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Emerging evidence revealed the significance of dysbiosis in contributing to chronic
systemic inflammation and the development of metabolic disease via the gut–liver brain
axis. Because BAs are generated by the metabolism of hepatic cholesterol using hepatic and
bacterial enzymes, dysbiosis is always accompanied by dysregulated BA synthesis [6,7,12].
Additionally, via the diet–gut–brain axis, dysbiosis and dysregulated BA synthesis also
have a negative impact on neuroplasticity [15–19]. Furthermore, the importance of the
gut–liver–brain axis has been revealed in the development of hepatic encephalopathy [19].
Thus, it is important to discover microbes and metabolites within the gut–liver axis as
biomarkers to predict metabolic burden influenced by diet, aging, and FXR functionality.

Computational modeling of multi-omics data can improve the depth and accuracy
of omics analysis [20]. Omics data and machine learning approaches have been used for
biomarker identification in metabolic liver disease development [21]. In this study, we
used mouse datasets including hepatic transcriptomics and metabolomes from multiple
sources including the liver, serum, and urine, as well as hepatic BAs, and gut microbiota,
to identify predictors for risks of metabolic liver disease development. Our data showed
different metabolites from different specimens have a specific power to predict dietary
intake or age. Interestingly, the gut microbiota has the best-predicting power to classify
FXR functionality. Together, the uncovered molecular signatures within the gut–liver axis
might serve as biomarkers for metabolic status.

2. Materials and Methods
2.1. Mouse Models and Data Collection

Specific pathogen-free male wild-type (WT) and FXR KO mice [1] were fed on either
a healthy control diet (CD TD.140415; 5.2% fat, 12% sucrose, and 0.01% cholesterol, w/w,
Harlan Teklad, Madison, WI, USA) or a Western diet (WD, TD.140414; 21.2% fat, 34%
sucrose, and 0.2% cholesterol, w/w, Harlan Teklad, Madison, WI, USA) since weaning
and euthanized at the age of 5, 10, and 15 months. Mice were housed in 3–4 per cage in a
temperature (24 ◦C) and light-controlled (12 h light on and off cycle) facility. Multi-omics
data were derived from mice with characterized phenotypes [6,7,12,22,23]. The sample size
and experimental groups are summarized in Supplementary Table S1. Experiments were
performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals
under protocols (#21701) approved by the Institutional Animal Care and Use Committee of
the University of California, Davis.

2.2. Analysis of Liver, Serum, and Urine Metabolites

Hepatic metabolites were measured by gas chromatography–time-of-flight mass spec-
trometry (GC-TOF-MS) using a sample size of 6 per group by the West Coast Metabolomics
Center at the University of California, Davis. Serum and urine metabolites were quantified
by NMR, and their concentrations were normalized by log transformation to reduce batch
effects [24].

2.3. RNA Sequencing and Data Processing

Hepatic bulk RNA was used for library preparation followed by sequencing, which
was conducted by Novogene Co., Ltd. (Sacramento, CA, USA). Raw FASTQ data were
mapped to GRCm39 (GENCODE release M27) and quantified using Salmon (version
1.4.0) [23]. DESeq2 (version 1.18) with the lfcShrink function in R 4.03 was used to identify
differentially expressed genes (DEGs) [25]. Genes with false discovery rate (FDR) corrected
p-value < 0.05 and absolute fold change ≥2 were considered as DEGs.

2.4. Microbiota Data Analysis

Bacterial DNA from cecal content was extracted for 16S rRNA sequencing [6]. The
16S rRNA gene (V4 region) was amplified and sequenced using Illumina MiSeq. Sequence
reads were analyzed by QIIME [6,7].
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2.5. Bile Acid Quantification

Hepatic BAs were quantified using a ProminenceTM UFLC system (Shimadzu, Kyoto,
Japan) coupled to an API 4000 QTRAPTM mass spectrometer (AB Sciex) operated in a
negative ionization mode [6].

2.6. Human Datasets

RNA sequencing data of 371 human HCCs and 50 normal livers were obtained from
The Cancer Genome Atlas (TCGA) database. Transcriptomic data from steatotic liver
disease (SLD) and MASH, with or without fibrosis, cohorts were from the Gene Expression
Omnibus (GEO) database (GSE 135251).

2.7. Transcriptomic Feature Selection

Because the number of detected hepatic transcripts was much bigger than the sample
size, feature selection was conducted to reduce noise in the dataset and speed up the
training process [26]. Features were selected based on differences between groups with
statistical significance (p < 0.05) and fold change greater or equal to 2. To study dietary
effects, 42 transcripts that commonly changed their expression levels in all 3 age groups (5,
10, and 15 months) were selected. Irrespective of diets, 256 transcripts differentially found
between 5- and 15-month-old mice were selected. In addition, 105 transcripts differentially
expressed in the livers of FXR KO and WT mice, irrespective of dietary and age differences,
were included.

2.8. Machine Learning Models

Specific binary classification targets were established, leveraging data obtained from
mouse models. These targets comprised diet, age, and FXR functionality.

Subsequently, classification models tailored to each target were constructed using
marker panels selected in Section 2.7. To assess their efficacy, these models were subjected
to the rigorous evaluation framework of K-fold cross-validation. Support vector machine
(SVM) is one of the most robust classical machine learning algorithms, which constructs a
set of hyperplanes in a high dimensional space to separate classes with the largest margin
between the boundary of each class [27,28]. In comparison with other methods, such
as principal component analysis (PCA) and canonical correlation analysis (CCA), SVM
allows us to extract and evaluate feature importance, enabling a better understanding of the
contribution of each feature to the classification decision. Linear SVM is an SVM approach
that has garnered wide adoption in healthcare applications for its superior performance
in diverse contexts [27–31]. Linear SVM provides better interpretability by revealing the
relationship between features and final prediction [32]. Initial analysis indicated that
linear SVM exhibited higher prediction accuracy compared with non-linear alternatives
and others such as logistic regression, linear regression, random forest, and decision tree.
Furthermore, linear SVM showcased particular suitability for analyzing datasets with
limited sample sizes [26]. Consequently, linear SVM was deemed the most appropriate
choice for constructing risk prediction models for this study.

To accurately gauge the predictive performance of the linear SVM classification model,
K-fold cross-validation was employed. Sixteen-fold cross-validation was used for tran-
scriptomic data, and twenty-fold cross-validation was used for other omics data. K-fold
cross-validation serves as a resampling technique widely employed to assess the efficacy of
machine learning models. By employing this technique, biases and variances inherent in the
evaluation metric are mitigated, providing a more reliable estimate of model performance.
The process involved randomly shuffling the data and splitting it into K groups. Each
algorithm was trained on K-1 groups while utilizing the remaining group as the test set.
This process was iterated K times, ensuring that each group served as the test set at least
once. Ultimately, the mean classification accuracy and standard deviation were computed
across all cross-validation runs, offering a comprehensive assessment of the algorithm’s
performance on the dataset.
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Upon completing the machine learning algorithm selection and validation process,
the focus shifted towards unearthing insights into the effect of each marker. This involved
a meticulous examination of the coefficients associated with each marker within the linear
SVM classifier. By calculating the associated coefficient, which corresponds to the orthogo-
nal vector coordinate of the hyperplane, the effect of each marker on the final prediction of
the model was discerned [32,33]. These coefficients were subsequently ranked, providing
insights into the relative effect of each marker for the classification task (the higher the
more important).

Furthermore, the model’s performance was assessed by systematically testing differ-
ent combinations of markers, encompassing a range from the highest-ranked marker to
including all markers. This comprehensive evaluation approach aimed to elucidate the
collective impact of various marker combinations and their relationship with the model’s
prediction accuracy.

Finally, the findings were presented by identifying the least number of top-ranked
features necessary to achieve a prediction accuracy of 90% or higher for the classification
targets, namely diet, age, or FXR expression status. The culmination of this effort was
a comprehensive assessment of various feature combinations, visually presented using
line charts. To facilitate the reproducibility of the research, all the Python scripts used in
this study were available at https://anonymous.4open.science/r/Molecular_Markers_for_
Metabolic_Disease-F7FE accessed on 19 June 2023.

2.9. Pathway and Network Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for metabolites
and transcripts was performed using MetaboAnalyst 5.0. The metabolite–disease interac-
tion network in MetaboAnalyst 5.0 was used to explore disease-related metabolites based
on Human Metabolome Database.

2.10. Association Analysis

Spearman’s correlation was used to assess the relationship between the predictors of
each risk factor in this study. A significant correlation was defined when adjusted * p < 0.05
and ** p < 0.01 using Hochberg.

2.11. Statistics

The altered metabolites and bacteria between groups were considered by p < 0.05
using unpaired t-tests. DEGs were generated using DESeq2. Bar graphs were generated
by GraphPad Prism Version 8.0 (San Diego, CA, USA). p values: * p < 0.05; ** p < 0.01;
*** p < 0.001.

3. Results
3.1. Predictors of Differential Diet Intakes

WD consumption induces MASLD and increases body weight during the experimen-
tal time frames (5, 10, and 15 months) [22]. The smallest feature numbers, which could
generate the highest prediction accuracy are summarized in Table 1. Nine hepatic tran-
scripts (Cyp39a1, Pde5a, Csad, Gramd1b, Slc39a4, Hamp2, Loxl4, Rec8, and Adam11) classified
differential dietary intake with 100% accuracy (Figure 1A). Specifically, downregulated
Cyp39a1 together with upregulated Pde5a, Csad, and Gramd1b had 96.9% accuracy to predict
WD intake (Figure 1A).

The findings were compared with human TCGA (HCC) and GEO (SLD, MASH)
databases (GSE 135251). In consistency, the expression of Cyp39a1, which is involved in
cholesterol clearance through BA synthesis, was downregulated in human HCC compared
with normal livers (p < 0.001) (Figure 1C). Additionally, Gramd1b, a cholesterol transporter,
was consistently elevated in SLD and MASH patients compared with healthy controls
(p < 0.01) (Figure 1D).

https://anonymous.4open.science/r/Molecular_Markers_for_Metabolic_Disease-F7FE
https://anonymous.4open.science/r/Molecular_Markers_for_Metabolic_Disease-F7FE
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Table 1. Predictive capabilities of multi-omics in Western diet intake, aging, and FXR inactivation 1.

Risk Prediction
Western Diet Intake Aging Bile Acid Receptor Inactivation

Features Accuracy Features Accuracy Features Accuracy

Hepatic Transcripts 9 (4) 100% (96.9%) 14 (2) 100% (90.6%) 2 100%
Metabolites

Bile acids (liver) 2 66.6% 1 100% 10 71.3%
Liver 5 (2) 100% (93.8%) 20 (12) 100% (91.7%) 10 (1) 100% (95.8%)

Serum 10 91.9% 3 (1) 100% (95.0%) 15 (12) 94.5% (91.3%)
Urine 5 (1) 100% (91.0%) 7 (3) 100% (90.0%) 9 (3) 100% (95.4%)

Microbiota
Phylum level 8 61.9% 4 70.0% 6 90.2%

Class level 9 62.6% 9 82.8% 3 96.9%
Order level 26 62.5% 13 82.8% 3 96.9%
Family level 10 76.8% 7 80.4% 8 (3) 98.8% (91.2%)
Genus level 6 68.8% 7 82.0% 7 (3) 96.2% (92.7%)

1 Multi-omics data analyses were conducted in mice of different ages, diets, and genotypes. The least number of
features that has the best predictive performance is shown for each risk factor prediction.
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Figure 1. Predictors of differential diet intake based on multi-omics data. Machine learning model
generated line charts on the number of features and indicated accuracy using the K-fold cross-
validation method for (A) liver transcriptome and (B) metabolomes from the liver, serum, and urine
as well as hepatic bile acids. The number of features with predictive accuracy higher than 90%
and/or the number of least features that has the highest predicting accuracy is highlighted (red dot).
The differences in the relative abundance of predictors between CD and WD groups are shown in
heatmaps (blue and red indicate low and high levels, respectively). The order of features in the
heatmap is based on the feature’s importance (coefficient value) after feature selection. (C) Human
HCC patients (n = 371) have reduced Cyp39a1 transcript compared with normal livers (n = 50) from
the TCGA database. (D) A violin plot shows human NAFL/SLD (n = 51) and NASH/MASH (n = 155)
cohorts have higher Gramd1b mRNA levels than the controls (n = 10) from the GEO database (GSE
135251). Data are expressed as the mean ± SD. ** p < 0.01, *** p < 0.001.

In the livers, 5 metabolites (1,5-anhydroglucitol, linoleic acid, 2-aminobutyric acid,
squalene, and heptadecanoic acid) had 100% accuracy in predicting differential diet intake
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(Figure 1B). Decreased 1,5-anhydroglucitol and linoleic acid yielded 93.8% accuracy in
classifying diets. Hepatic α-MCA and β-MCA had 66.6% accuracy in distinguishing differ-
ential diets (Figure 1B). Moreover, increased aspartate, leucine, histidine, 2-oxoisocaproate,
N-methylhydantoin, and asparagine but decreased trimethylamine, 3-hydroxyisobutyrate,
urea, and methionine found in the serum yielded 91.9% accuracy to predict WD intake.
For urine metabolites, sucrose, trimethylamine, trimethylamine N-oxide, hippurate, and
pantothenate achieved 100% accuracy in predicting diet. Increased urine sucrose alone had
91% accuracy in predicting WD intake (Figure 1B).

Integrated pathway analysis uncovered that serum leucine, methionine, histidine,
asparagine, and aspartate were involved in the central carbon metabolism in cancer and
aminoacyl-tRNA biosynthesis (Supplementary Figure S1A). Serum aspartate and histidine
as well as urine pantothenate were involved in β-alanine metabolism (Supplementary
Figure S1A).

Network analysis showed that reduced hepatic 1,5-anhydroglucitol and linoleic acid
were related to Alzheimer’s disease (Supplementary Figure S1B). Increased urine sucrose
was related to lung cancer. Increased urine TMAO was associated with many diseases
including schizophrenia, propionic acidemia, maple syrup urine disease, lung cancer, and
dimethylglycine dehydrogenase deficiency (Supplementary Figure S1B).

Spearman’s correlation analysis revealed that urine sucrose was negatively associated
with hepatic 1,5-anhydroglucitol and linoleic acid. Interestingly, increased urine sucrose
was also negatively associated with the expression levels of Cyp39a1, but positively cor-
related with Pde5a, Gramd1b, and Csad. The decreased serum 3-hydroxyisobutyrate was
positively associated with hepatic linoleic acid but negatively correlated with the expres-
sion level of Gramd1b (Supplementary Figure S2). The key functions or the known roles of
those transcripts and metabolites are summarized in Supplementary Table S2 and Table S3,
respectively.

3.2. Age Classification

Under the influence of an unhealthy diet, aging further reduces metabolic efficiency.
Thus, there was a temporal effect of WD intake, and 15-month-old WD-fed mice had
the most severe MASLD [12]. The machine learning model revealed that downregulated
hepatic Zbtb16 and upregulated Rps27rt, Naip2, Cyp46a1, Mmd2, AA792892, A4gnt, Cdh19,
Pclo, Zfp677, Cyp3a11, Hsf2bp, Kcnj16, Mfsd2a, yielded 100% accuracy to differentiate 15- vs.
5-month-old mice livers (Figure 2A). Moreover, two transcripts (Zbtb16 and Rps27rt) had
90.6% accuracy to classify the age.

The disease relevance of those age-related hepatic transcripts was studied using
human datasets. In humans, hepatic CYP46A1, A4GNT, PCLO, HSF2BP, KCNJ16, and
MFSD2A were also found to be elevated in MASH patients compared with healthy controls
(Figure 2A, right panel).

Among the studied molecular signatures including transcripts and metabolites from
different sources, hepatic BAs generated the best-predicting value to differentiate ages
as reduced lithocholic acid (LCA) alone achieved 100% accuracy (Figure 2B). In addition,
twelve liver metabolites (e.g., glyceric acid, melibiose, glutaric acid, etc.), or one serum
metabolite (pyruvate), or three urine metabolites (methylamine, N.N-dimethylglycine, and
betaine) each had ≥90% accuracy in classification of chronological age (Figure 2).

Integrated pathway analysis was performed for age predictors including transcripts
and metabolites (Supplementary Figure S3A). The top regulated pathways are ABC trans-
porters (hepatic aspartic acid, valine, xylitol, uridine, and urine betaine), as well as glycine,
serine, and threonine metabolism (hepatic glyceric acid and aspartic acid, urine betaine,
and serum pyruvate) (Supplementary Figure S3A).

The disease relevance is elucidated by the metabolite–disease interaction network. In
humans, most of the uncovered age-related metabolites were implicated in schizophrenia,
Alzheimer’s disease, and lung cancer (Supplementary Figure S3B).



Nutrients 2023, 15, 3406 7 of 16

Correlation analysis showed that hepatic LCA was positively associated with serum
concentrations of acetone and 1,3-dihydroxyacetone, but negatively correlated with serum
pyruvate (Supplementary Figure S4). Instead of using liver samples, our data revealed
that serum metabolites (pyruvate, acetone, and 1,3-dihydroxyacetone) are significant in
classifying chronological age.

Nutrients 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

serine, and threonine metabolism (hepatic glyceric acid and aspartic acid, urine betaine, 
and serum pyruvate) (Supplementary Figure S3A).  

The disease relevance is elucidated by the metabolite–disease interaction network. In 
humans, most of the uncovered age-related metabolites were implicated in schizophrenia, 
Alzheimer’s disease, and lung cancer (Supplementary Figure S3B).  

Correlation analysis showed that hepatic LCA was positively associated with serum 
concentrations of acetone and 1,3-dihydroxyacetone, but negatively correlated with serum 
pyruvate (Supplementary Figure S4). Instead of using liver samples, our data revealed 
that serum metabolites (pyruvate, acetone, and 1,3-dihydroxyacetone) are significant in 
classifying chronological age. 

 
Figure 2. Age classification. The representative line charts show the number of features with the 
corresponding accuracy in classifying age using (A) liver transcriptomes, and (B) metabolomes from 
the liver, serum, urine as well as hepatic bile acids. (A) Heatmaps show the level of 14 transcripts 
with 100% accuracy in the prediction of age and overlapped transcripts in human NAFL/SLD and 
NASH/MASH cohorts (highlighted in purple). (B) Heatmaps show the differences in the relative 
abundance of metabolites from liver, serum, and urine as well as hepatic bile acids in 5- and 15-
month-old mice (blue and red indicate low and high levels, respectively). The number of features 
with predictive accuracy > 90% or the number of least features that has the highest accuracy are 
marked (red dots). The order of features in the heatmap is based on the importance of the feature 
after feature selection. 

3.3. Predictors for FXR Inactivation 
FXR whole-body KO mice develop SLD, MASH, and liver tumors spontaneously 

with age [5,34]. WD intake facilitates the progression of liver disease development [6,7]. 
Thus, the inactivation of FXR leads to carcinogenesis within the experimental time frame 
(i.e., 15 months) [12]. Among the studied groups, 15-month-old WD-fed FXR KO male 
mice had the most severe hepatic phenotypes, as many of them not only had steatohepa-
titis but also liver tumors [12].  

Zbtb16
Rps27rt
Naip2
Cyp46a1
Mmd2
AA792892
A4gnt
Cdh19
Pclo
Zfp677
Cyp3a11
Hsf2bp
Kcnj16
Mfsd2a

Cyp46a1
A4gnt
Pclo
Hsf2bp
Kcnj16
Mfsd2a

Ac
cu

ra
cy

Cont NAFLNASH

5M 15M

Min

Max

(A)

100

90

80

70

60

Ac
cu

ra
cy

0        20       40      60       80
The number of features

LCA
5M  15MLiver bile acid

1 (100%)

96

94

92

90

98

100

2        4        6       8       10
The number of features

Ac
cu

ra
cy

20 (100%)
12 (91.7%)

Liver metabolome 5M  15M

5M  15M

Ac
cu

ra
cy 96

94
92
90
88
86

0     5    10   15   20   25   30   35

98
100

The number of features

Serum metabolome
3 (100%)

1 (95.0%)

Pyruvate
1.3-Dihydroxyacetone
Acetone

(B)

Succinate semialdehyde
Xylitol
Valine
Glyceric acid
Aspartic acid
Melibiose
Ethanolamine
Glutaric acid
Ascorbic acid
2-aminobutyric acid
2-monoolein
3-(1-pyrazolyl)-l-alanine
Glycolic acid
Beta-glutamic acid
1,5-anhydroglucitol
Uridine
Squalene
Serine
Palmitoleic acid
Lactic acid

The number of features

Liver transcriptome
100

90

80

70

50
0         50       100      150      200

14 (100%)
2 (90.6%)

60

50

7 (100%)

3 (90%)

Ac
cu

ra
cy

0    5    10  15   20   25  30   35  40
The number of features

100
95
90
85
80
75
70
65

Urine metabolome

Figure 2. Age classification. The representative line charts show the number of features with the
corresponding accuracy in classifying age using (A) liver transcriptomes, and (B) metabolomes from
the liver, serum, urine as well as hepatic bile acids. (A) Heatmaps show the level of 14 transcripts
with 100% accuracy in the prediction of age and overlapped transcripts in human NAFL/SLD and
NASH/MASH cohorts (highlighted in purple). (B) Heatmaps show the differences in the relative
abundance of metabolites from liver, serum, and urine as well as hepatic bile acids in 5- and 15-
month-old mice (blue and red indicate low and high levels, respectively). The number of features
with predictive accuracy > 90% or the number of least features that has the highest accuracy are
marked (red dots). The order of features in the heatmap is based on the importance of the feature
after feature selection.

3.3. Predictors for FXR Inactivation

FXR whole-body KO mice develop SLD, MASH, and liver tumors spontaneously with
age [5,34]. WD intake facilitates the progression of liver disease development [6,7]. Thus,
the inactivation of FXR leads to carcinogenesis within the experimental time frame (i.e.,
15 months) [12]. Among the studied groups, 15-month-old WD-fed FXR KO male mice had
the most severe hepatic phenotypes, as many of them not only had steatohepatitis but also
liver tumors [12].

For FXR inactivation, 100% accuracy could be achieved based on the expression pattern
of two transcripts (upregulated Acmsd and downregulated Tdg) or ten hepatic metabolites
shown in the heatmap (Figure 3A,B). Among ten hepatic metabolites, decreased melibiose
had 95.8% accuracy to predict FXR inactivation. However, ten hepatic BAs only gave 71.3%
accuracy to predict FXR status. Moreover, twelve serum metabolites (succinate, malate,
alanine, glutamine, acetone, phenylalanine, methionine, sn-Glycero-3-phosphocholine,
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urea, glycolate, tyrosine, valine, 2-hydroxyisobutyrate, glucose, and 3-hydroxyisobutyrate)
predicted FXR expression status with 91.3% accuracy (Figure 3B). Further, urine creatinine,
taurine, and succinate had 95.4% accuracy in predicting FXR status (Figure 3B). Notably,
cecal microbiota at phylum, class, order, family, and genus levels could differentiate FXR KO
and WT with > 90% accuracy. Especially, increased Dorea, Dehalobacterium, and Oscillospira
at the genus level yielded 92.7% accuracy to differentiate FXR KO vs. WT (Figure 3C).
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Figure 3. Predictors for FXR expression. Representative line charts show the number of features
with indicated accuracy in the prediction of FXR expression status using (A) liver transcriptomes,
(B) metabolomes from the liver, serum, and urine as well as hepatic bile acids, and (C) cecal microbiota
at different levels. The number of features with predictive accuracy > 90% and/or the number of
least features that has the highest accuracy is highlighted (red dot). The differences in the relative
abundance of predictors between FXR KO and WT groups are shown in heatmaps (blue and red
indicate low and high levels, respectively). The order of features in the heatmap is based on the
importance of the feature after feature selection.

Pathway analysis for metabolites shown in Figure 3B revealed that serum glutamine,
succinate, malate, phenylalanine, methionine, valine, tyrosine, and alanine were involved
in the central carbon metabolism in cancer (Supplementary Figure S5A). The metabolite–
disease interaction network showed that urine creatinine, which was reduced due to
FXR inactivation was associated with neurological disorders (e.g., Canavan disease and
schizophrenia), urinary disorders (e.g., Bartter syndrome, type 2, antenatal and maple
syrup urine disease), and metabolic disorders (dimethylglycine dehydrogenase deficiency)
(Supplementary Figure S5B). In addition, succinate (succinic acid) was also related to
Canavan disease (Supplementary Figure S5B). Urine taurine was associated with maple
syrup urine disease (Supplementary Figure S5B).

Association analysis found that hepatic melibiose was negatively associated with cecal
Dorea, Dehalobacterium, and Oscillospira (Supplementary Figure S6B). Additionally, these
three bacteria were also negatively associated with hepatic Tdg but positively correlated
with hepatic Acmsd. It indicates that the increased relative abundance of cecal Dorea, De-
halobacterium, and Oscillospira can be a marker of FXR inactivity. The roles of FXR status pre-
dictors (transcripts and metabolites) are summarized in Supplementary Tables S2 and S3.
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4. Discussion

Our data revealed that the performance of multi-omics in each risk prediction model is
different based on the predictive accuracy and the number of features (Table 1). Re-
markably, urine metabolite (sucrose), serum metabolites (pyruvate, acetone, and 1,3-
dihydroxyacetone), and gut bacteria (Dorea, Dehalobacterium, and Oscillospira) can classify
(>90% accuracy) dietary patterns, ages, and FXR functional status, respectively. The molec-
ular features that act as metabolic liver disease risk predictors are not only biomarkers for
risk factors in mouse models but also related to human diseases. Some features have been
reported to be involved in the pathogenesis of human diseases and they maybe also act as
treatment targets for human diseases. The information is summarized in Supplementary
Tables S2 and S3.

4.1. Diet Predictors Relate to Metabolic Liver Disease Development

Among the diet predictors, the downregulation of Cyp39a1 (24-hydroxycholesterol
7-alpha-hydroxylase) by WD has been proposed as a novel biomarker for poor overall
survival of HCC patients [35]. In contrast, Gramd1b (GRAM domain containing 1B), a
cholesterol transporter, was upregulated in WD-fed mouse livers suggesting cholesterol
overload. Consistent with our findings, the expression of hepatic Gramd1b is also increased
by a high-cholesterol diet, and silencing hepatic Gramd1b in mice suppresses MASH
progression [36].

Among the metabolites, reduced hepatic 1,5-anhydroglucitol (an anhydro sugar
of D-glucitol) and linoleic acid could predict WD intake with 93.8% accuracy. The 1,5-
anhydroglucitol, derived mainly from nearly all foods, is lower in fibrosis stage F3 than in
the F0–2 stage in MASLD patients [37]. The concentration of linoleic acid is also decreased
in human HCC tissues compared with normal controls [38]. Linoleic acid is the most
abundantω-6 polyunsaturated fatty acid in human diets, human plasma, and membrane
lipids [39].

To develop noninvasive biomarkers of metabolic liver disease risks, we detected urine
metabolites and identified that an increase in urine sucrose could be used to predict WD
intake. This is not surprising, as the used WD in our animal experiments contains 37%
sucrose. It has been shown that there is a significant correlation between the average
urinary sucrose excretion and dietary sucrose intake because of sucrose permeability [40].

4.2. Features That Classify Ages and Metabolic Liver Diseases

Aging is an inevitable risk factor for most chronic diseases, as it decreases regenerative
ability and metabolic processes [41]. Zbtb16 (zinc finger and BTB domain-containing
protein 16), a transcription factor and energy metabolism regulator, is downregulated in
aged mice. The Zbtb16-encoded protein is important in adipogenesis and the control of
hepatic gluconeogenesis [42]. In humans, decreased Zbtb16 variants are associated with
elevated total and low-density lipoprotein cholesterol in a sex-dependent manner [43].

Age also affects the profile of BAs, which have pivotal roles in metabolism, immunity,
and anti-tumorigenesis. Notably, decreased hepatic LCA could predict older age with
100% accuracy. Consistently, LCA has been identified as an anti-aging compound that
extends the lifespan of yeast [44]. LCA acts as an agonist of the G-protein-coupled BA
receptor named Takeda G protein-coupled receptor 5 (TGR5) in increasing free fatty acid
availability through lipolysis and induces mitochondrial fission [45]. As the expression of
FXR and TGR5 declines with age, dual agonists for FXR and TGR5 have been shown to
delay age-related kidney deterioration in mouse models [46]. In humans, isoforms of LCA
(iso-, 3-oxo-, allo-, 3-oxoallo-, and isoallolithocholic acid)-producing bacteria were enriched
in centenarians [47]. In rats, dietary conjugated LCA, a mixture of positional and geometric
isomers of linoleic acid, alleviates MASLD [48]. Taken together, LCA may be a target for
aging-related MASLD treatment.

Our data revealed that serum pyruvate as well as acetone (a ketone body) and 1,3-
dihydroxyacetone (DHA) correlated with hepatic LCA. The potential of reduced serum
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pyruvate together with increased serum acetone and DHA being a metabolically active
young liver, warrants further validation in humans. Serum pyruvate is derived from
alanine and α-ketoglutarate converted by the alanine aminotransferase (ALT) and elevated
ALT is a diagnostic marker for liver injury. The concentration of serum pyruvate was also
elevated by high-fat diet intake [49]. 1,3-Dihydroxyacetone is a 3-carbon reducing sugar
produced from glycerol. Acetone is the simplest ketone body and is synthesized from fatty
acid oxidation in the livers. Thus, reduced serum acetone likely indicates reduced fatty acid
oxidation. Moreover, elevated breath acetone is a biomarker of type 2 diabetes mellitus in
the breath analysis [50]. Whether reduced serum acetone can be a biomarker for reduced
fatty acid oxidation associated with aging liver also warrants further investigation.

4.3. FXR Inactivation Predictors and Metabolic Liver Diseases

Hepatic transcripts Acmsd (aminocarboxymuconate semialdehyde decarboxylase)
and Tdg (G/T mismatch-specific thymine DNA glycosylase) could differentiate FXR KO
from WT. Upregulated Acmsd and downregulated Tdg in the livers were signatures of
FXR inactivation. ACMSD controls cellular NAD+ levels in the liver [51]. Inhibition of
Acmsd attenuates hepatic steatosis and reduces liver injury in diet-induced MASLD mouse
models [52]. TDG (thymine DNA glycosylase) is an enzyme that plays a key role in
active DNA demethylation. It is essential for maintaining glucose and BA homeostasis, as
depletion of Tdg causes dysregulation of FXR signaling and leads to HCC development in
mice [53].

It is interesting to note that the increased abundance of Dorea, Dehalobacterium, and
Oscillospira in cecal content has greater than 90% accuracy in FXR KO prediction. In
humans, the abundance of Dorea is also increased in MASLD patients compared with
healthy controls [54]. Dehalobacterium is known to have a negative association with the
body mass index [55]. Oscillospira is increased in high-fat diet-fed mice compared with
normal controls [56].

Urine metabolites also predicted FXR functional status. As a signature of FXR KO,
urine creatinine and taurine were decreased while succinate was increased. Urine crea-
tinine reflects muscle mass, and low urine creatinine is associated with cardiovascular
disease risk [57]. Taurine is beneficial in alleviating fatty liver disease by promoting energy
expenditure and preventing oxidative damage and inflammation [58]. Succinate is an
inflammation-induced immunoregulatory metabolite in the macrophages [59], and it is also
elevated in inflammation [60]. Thus, the metabolic features that predict FXR inactivation
are involved in metabolism and immune responses.

The main strength of the study is using comprehensive multi-omics data generated
within the gut–liver axis to predict diet, age, and FXR functionality. Such approaches would
be challenging to perform in humans due to variations. However, the uncovered predictors
need to be validated in humans to demonstrate disease relevance. In addition, the data
were generated using a specific number of a certain strain of mice, which is standard for
basic research. Whether the findings apply to all animal species requires validation.

5. Conclusions

Collectively, the study has identified features from different sources that have different
predicting power to differentiate risks for metabolic disease development. Urine or gut
microbiota biomarkers can be valuable for noninvasive diagnosis of metabolic function
status. As WD intake, aging, and FXR inactivation are also implicated in other diseases
including dermatitis and dementia [8–10], the uncovered risk predictors have multiple
disease implications and can be potential biomarkers for early diagnosis of diseases related
to diet, age, and FXR expression status. In addition, the uncovered beneficial metabolites
linked with intact metabolic status might be used as food supplements.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15153406/s1, Figure S1: Functional analysis of diet predictors.
(A) Integrated pathway analysis showing pathways for WD-predictors (transcripts and metabolites).
The corresponding features for the important pathways are indicated. (B) The network shows that
metabolomic predictors of WD intake are associated with human diseases; Figure S2: Spearman’s
correlation for WD-predictors from the liver, serum, and urine. Spearman’s correlation, * p < 0.05,
** p < 0.01; Figure S3: Functional analysis of age-predictors. (A) Integrated pathway analysis for
age-predictors (metabolites). (B) Features that can classify ages in association with human diseases;
Figure S4: Interaction between features that can be used for chronological age prediction. Spearman’s
correlation, * p < 0.05, ** p < 0.01; Figure S5: Functional analysis of FXR expression predictors. (A) The
pathways for metabolites serve as FXR expression predictors. (B) The network shows the interaction
between metabolites and diseases for FXR expression predictors; Figure S6: Interactions of FXR
expression predictors. Spearman’s correlation between cecal microbiota at the genus level, hepatic
transcripts, and metabolites from the liver, serum, and urine. * p < 0.05, ** p < 0.01; Table S1: The
sample information of multi-omics data used for training and validation; Table S2: Summary table of
transcriptomic predictors of diet, age, and FXR functionality; Table S3: Summary table of metabolomic
predictors of diet, age, and FXR functionality [35,43,48,51,53,61–114].
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subfamily a member; Cyp46a1, cytochrome P450 family 46 subfamily a member 1; Csad, cysteine
sulfinic acid decarboxylase; DEGs, differentially expressed genes; FXR, farnesoid X receptor; GEO,
Gene Expression Omnibus; Gramd1b, GRAM domain containing 1B; Hamp2, hepcidin antimicro-
bial peptide 2; HCC, hepatocellular carcinoma; Hsf2bp, heat shock transcription factor 2 binding
protein; Kcnj16, potassium inwardly rectifying channel subfamily J member 16; Loxl4, lysyl oxidase
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43. Bendlová, B.; Vaňková, M.; Hill, M.; Vacínová, G.; Lukášová, P.; VejraŽková, D.; Šedová, L.; Šeda, O.; Včelák, J. ZBTB16 gene
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