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  INTRODUCTION 
 Differential equations are central to the sciences 

and act as the cornerstone of applied mathematics. 
They arise within biology in the construction of dy-
namic mechanistic models. There is a mathematically 
standard way of representing such models called the 
rate:state formalism. The system under investigation 
is defined at time t by q state variables: X1, X2, ..., 
Xq. These variables represent properties or attributes 
of the system, such as visceral protein mass, quantity 
of substrate, and so on. The model then comprises q
first-order differential equations that describe how the 
state variables change with time:

d
d

  ...,      
X
t

f X X X S i qi
i q= =( , , ; ); , , ..., ,1 2 1 2   [1] 

 where S denotes a set of parameters, and the func-
tion fi gives the rate of change of the state variable 
Xi. The function fi comprises terms that represent the 
rates of processes (with dimensions of state variable per 
unit time), and these rates can be calculated from the 
values of the state variables alone, with of course the 
values of any parameters and constants. In this type of 
mathematical modeling, the differential equations are 
constructed by direct application of scientific law based 
on the cartesian doctrine of causal determinism (e.g., 
the law of mass conservation, the first law of thermo-
dynamics) or by application of a continuity equation 
derived from more fundamental scientific laws.

 If the system under investigation is in steady state, 
solution to Eq. [1] is obtained by setting the differential 
terms to zero and manipulating algebraically to give an 
expression for each of the components and processes of 
interest. Isotope data, for example, are often resolved 
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  ABSTRACT   This contribution focuses on applying 
mathematical models based on systems of ordinary 
first-order differential equations to synthesize and in-
terpret data from egg production experiments. Models 
based on linear systems of differential equations are 
contrasted with those based on nonlinear systems. Re-
gression equations arising from analytical solutions to 
linear compartmental schemes are considered as can-
didate functions for describing egg production curves, 
together with aspects of parameter estimation. Extant 
candidate functions are reviewed, a role for growth 
functions such as the Gompertz equation suggested, 
and a function based on a simple new model outlined. 
Structurally, the new model comprises a single pool 
with an inflow and an outflow. compartmental simula-
tion models based on nonlinear systems of differential 

equations, and thus requiring numerical solution, are 
next discussed, and aspects of parameter estimation 
considered. This type of model is illustrated in relation 
to development and evaluation of a dynamic model of 
calcium and phosphorus flows in layers. The model con-
sists of 8 state variables representing calcium and phos-
phorus pools in the crop, stomachs, plasma, and bone. 
The flow equations are described by Michaelis-Menten 
or mass action forms. Experiments that measure ca 
and P uptake in layers fed different calcium concentra-
tions during shell-forming days are used to evaluate the 
model. In addition to providing a useful management 
tool, such a simulation model also provides a means to 
evaluate feeding strategies aimed at reducing excretion 
of potential pollutants in poultry manure to the envi-
ronment. 
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in this way, and indeed, many of the time-independent 
formulae presented in the animal and poultry science 
literature are derived likewise. However, to generate the 
dynamic behavior of any model, the rate:state equa-
tions must be integrated. For the simple cases, analyti-
cal solutions are usually obtained. Such cases are very 
often linear. A first-order differential equation is said to 
be linear if it is linear in the dependent variable X and 
the derivative, i.e.,

	
d
d
X
t
u t X v t− =( ) ( ),	

where u and v are continuous functions of time. When 
this condition is not satisfied, the differential equation is 
said to be nonlinear. Linear systems are widely applied 
in digestion studies to interpret time-course data from 
marker and in vitro experiments, where the functional 
form of the solution is fitted to the data using a curve-
fitting procedure. This enables biological measures such 
as mean retention time and extent of digestion in the 
gastrointestinal tract to be calculated from the esti-
mated parameters. In this paper, regression equations 
arising from analytical solutions to linear compartmen-
tal schemes are considered as candidate functions for 
describing egg production curves, along with more tra-
ditional empirical equations.

For the more complex cases, only numerical solu-
tions to the rate:state equations can be obtained. This 
can be conveniently achieved by using one of the many 
software packages available for tackling such problems. 
These typically employ methods such as Euler and 
Runge-Kutta for performing the numerical integration 
(Thornley and France, 2007). Such models are used 
to simulate complex digestive and metabolic systems. 
They are often used as tactical research tools to evalu-
ate current understanding for adequacy and, when cur-
rent understanding is inadequate, help identify critical 
experiments. This type of model is illustrated in rela-
tion to development and evaluation of a dynamic model 
of calcium and phosphorus flows in layers.

FUNCTIONS FOR DESCRIBING EGG 
PRODUCTION CURVES

Egg production in laying birds is a reproductive ac-
tivity that represents a high level of nutrient turnover. 
A hen’s egg production when summarized generally in-
creases to a peak and subsequently decreases gradually. 
A mathematical summary of the curve is useful to egg 
producers and poultry breeders, allowing, for example, 
prediction of yield from records of part of the produc-
tion cycle. Such a mathematical summary will also help 
define economically important characteristics including 
persistency of lay (rate of decline in egg production 
from the peak). An illustrative curve, summarized on a 
monthly basis for brevity, is shown in Figure 1. In this 

section, we focus on attempts to describe this curve 
mathematically using a single equation whose param-
eters can be estimated statistically by fitting it to egg 
production data using nonlinear regression analysis, 
while emphasizing single equations that can be derived 
from linear compartmental schemes.

McMillan Equation
This model offers a simple compartmental descrip-

tion of egg production in the fruit fly, Drosophila mela-
nogaster (McMillan et al., 1970a,b). The scheme, shown 
in Figure 2, considers egg production as a 2-stage, se-
quential process, consisting of a primordial stage and 
a developing stage. All flows between pools and out of 
the system obey mass action kinetics. The differential 
equations (one for each pool, see figure legend) are

	
d
d
X
t

k k X1
01 21 1= − +( ) ,	 [2]

	
d
d
X
t

k Y X k k X2
21 21 1 02 32 2= − +( ) ,	 [3]

	
d
d
X
t

k Y X3
32 32 2= ,	 [4]

where t (d) is time since the start of egg laying, and the 
Y [g product (g of substrate)−1] are yield coefficients.

We are interested primarily in dX3/dt, the rate of egg 
deposition, and therefore seek an analytical expression 
for X2. Integrating Eq. [2] and [3] sequentially,

	 X X t
1 1 0= −( ) ;e α 	

	 X
k Y X

X
k Y X t

2
21 21 1

2
21 21 10

0
0

=
−

+










 − −



 − −( )

( )
( ) ( )

α β α β
α βe









−e βt ;	

Figure 1. An illustrative egg production curve for a laying hen. 
Data pertain to a typical hen from a noncommercial flock (n = 28 at 
onset of lay).
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where

	 α β= + = +k k k k01 21 02 32; . 	

Because the physiology of egg production in insects is 
similar, in broad terms, to that in poultry, this leads to 
the extended McMillan egg production equation (Mc-
Millan, 1981; Thornley and France, 2007):

	 y a b c t c t= −( )− −1 1 2e e ,	 [5]

where y (g∙d−1) is the rate of egg production, t (d) is 
time since onset of laying, and a (g∙d−1), b (dimension-
less), c1, c2 (both d−1) are parameters (>0). In the Mc-
Millan (1981) model, the initial value of X2 is assumed 
to be zero [i.e., X2(0) = 0]. However, a nonzero initial 
condition is perhaps more reflective of actual biology in 
poultry because, for example, the ovarian follicles will 
contain synthesized yolk proteins at commencement of 
lay. This extended equation (Eq. [5]) does not restrict 
rate at time of first egg to be zero.

Formulae for useful summary statistics on a hen’s egg 
production performance based on the extended McMil-
lan equation are as follows (see Thornley and France, 
2007, for derivations). Time to peak production, tm (d 
since start of lay), and peak production, ym (g∙d−1), 
are given by

	 t c
b c c
cm =
+( )















−
1
1 1 2

2
ln ;	

	 y a bm
c t c tm m= −( )− −1 1 2e e .	

Total egg yield, Y (g), is

	 Y a
c

b

c c

c t
c c t

f
f

=
−

−
−







+















−
− +( )

1 12
1 2

2 1 2

e e
,	

where tf (d) is length of laying period. The relative rate 
of decline, r(t), at the point midway between peak (t = 
tm) and end (t = tf) of laying period, which is a measure 
of persistency, is given by

	 r
t t c

b c t t
cm f

m f

( )
exp

.
+

=
+( )



 −

−
−2 2 1

1
1

1
2

/
	

Dijkstra Equation
The scheme assumed is shown in Figure 3. The mod-

el, originally developed to describe the mammary cell 
population of a lactating dairy cow, comprises a single 
pool, one inflow and one outflow (Dijkstra et al., 1997). 
For current application, we tentatively define the pool 
as the hen’s secretory machinery, X (mg), represented 
by DNA accumulation. The flows are secretory ma-
chinery proliferation and machinery death (both mg 
of DNA∙d−1). Time, t (d), is measured as days since 
onset of lay. The kinetic assumptions underlying the 
model are that, due to hormonal influences, the specific 
rate of secretory machinery proliferation, μ (d−1), is 
greatest at the onset of lay and declines exponentially 
with time thereafter, but the specific rate of machinery 
death, λ (d−1), is constant throughout the laying pe-
riod. The rate:state equation is therefore

	
d
d
X
t

X X= −µ λ ,	 [6]

Figure 2. Scheme for the McMillan model, comprising 3 pools 
(boxes) and 4 flows (arrows). The state variables X1 to X3 (all in g) 
represent primordial cells, developing eggs, and deposited eggs, respec-
tively. A positive fractional rate constant k (d−1) is associated with 
each flow.

Figure 3. Scheme for the Dijkstra model, comprising a single pool 
(box) and 2 flows (arrows). The state variable X (mg of DNA) rep-
resents a laying hen’s secretory machinery. A nonnegative variable 
fractional rate, μ, declining exponentially with time after onset of lay, 
is associated with proliferation, and a positive fractional rate constant, 
λ, is associated with death (both d−1).
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with

	 µ µ= −
0e
kt ,	

where μ0 is the value of μ at onset of lay (t = 0) and 
k (d−1) is a decay parameter. Substituting for μ in Eq. 
[6], then integrating, yields:

	 X X k tkt= −( )−





− −
0 0

1 1exp µ λe 	 [7]

where X0 (mg of DNA) is the hen’s secretory machinery 
at onset of lay. Let Ω [g of egg (mg of DNA)−1∙d−1], a 
constant, be defined as mean egg production per unit 
of secretory machinery per day; then, daily egg mass 
production by the hen, y (g of egg∙d−1), is given by

	 y X= Ω .	 [8]

Substituting for X in Eq. [8] using Eq. [7] yields

	 y X k tkt= −( )−





− −Ω 0 0
1 1exp .µ λe 	 [9]

Equation [9] provides a single equation for fitting to egg 
production data. The parameters of the equation, viz. 
Ω, X0, μ0, k, and λ (all >0), support direct physiologi-
cal interpretation (albeit tentative) in terms of secre-
tory machinery growth and death processes. Note that 
Ω and X0 cannot both be defined uniquely when curve 
fitting because their product has to be treated as a 
single parameter y0.

Formulae for useful summary statistics on a hen’s egg 
production performance based on the Dijkstra equation 
are as follows (see Thornley and France, 2007, for deri-
vations). Time to peak production, tm (d since start of 
lay), and peak production, ym (g of egg∙d−1), are given 
by

	 t km = ( )−1
0ln ,µ λ/ 	

	 y y km
k= ( ) −( )





−
0 0

1
0λ µ µ λλ/ / exp .	

Total egg yield, Y (g), is

	 Y y k t tkt
tf

= −( )−





− −∫0 0
1

0

1exp ,µ λe d 	

where tf (d) is length of laying period. This integral is 
nonanalytical, but many software packages are avail-
able with procedures that yield numerical solutions eas-
ily. The relative rate of decline at time th (d), midway 
between peak production and end of laying period, r(th) 
(d−1), is

	 r t k t th m f( ) = − +( )



 −µ λ0 2exp ./ 	

Other Egg Production Equations
Table 1 lists some other time-dependent functions 

used in the literature to describe the egg production 
curve of a laying hen. Compartmental interpretations 
of these functions have not been offered by the publish-
ing authors.

A typical egg production curve rises to a peak before 
falling away (Figure 1), which is the same trajectory 
mapped by the slope of a sigmoidal growth function. 
Therefore, growth functions (see Thornley and France, 
2007), written in their differential form and expressed 
as a function of time, have potential application as egg 
production equations (Table 2).

Parameter Estimation
Fitting of these egg production equations to data are 

by nonlinear regression: an iterative process generally 
based on ordinary least squares, aimed at minimizing 
the sum of squared deviations of the observed values 
for the dependent variable from those predicted by the 
model (Draper and Smith, 1998). There are several nu-
merical optimization algorithms available for nonlinear 
regression [e.g., generalized least squares (Dennis et 
al., 1981)], though the most widely used for computing 
nonlinear least squares estimates is the Levenberg-Mar-
quardt algorithm (Marquardt, 1963). In contrast with 

Table 1. Some time-dependent egg production equations1 

Name Equation Reference

Wood equation y t atb ct( ) = −e Gavora et al. (1982)

Yang equation y t
a bt

c t d
( )  

( )
 =

+

−

− −

e

e1 Yang et al. (1989)

Adams equation y t
a

t
d t g( )     ( )=

+1 bc
− −  Adams and Bell (1980)

Grossman equation

y t a

b

t

t

t

t c

( )

( )

=
−

+

−
−

+

−

−

−

− −





















1

1

1

1

e

e

e

e

Grossman and Koops (2001)

1y(t) (g∙d−1) is rate of production at time t, and t (d) is time since the first egg. Parameters a, b, c, d, and g are 
positive, and equations are listed in order of simplicity.
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linear regression, it is not possible to solve nonlinear 
equations exactly, so that approximate analytical solu-
tions are obtained by these iterative procedures, result-
ing in the best solution according to the convergence 
criterion specified.

There are alternatives to ordinary least squares es-
timation, such as weighted least squares or maximum 
likelihood. The latter is based on maximizing the log-
likelihood function using algorithms such as Nelder-
Mead (Lagarias et al., 1998) or quasi-Newton (Byrd 
et al., 1995). If all assumptions for standard regression 
are met, then the least squares estimation method will 
yield results identical to the maximum likelihood meth-
od. Maximum likelihood is to be used for nonlinear 
mixed models containing both fixed and random effects 
(St-Pierre, 2001). The weighted least squares method is 
required when error variances are not equal across the 
range of an x-variable.

Nonlinear regression may result in an unsatisfac-
tory solution, usually when the convergence criterion 
is not met or one of the parameters (or its asymptotic 
SE) cannot be estimated. This can happen when there 
are too few data points available, one or more of the 
equation parameters is poorly defined, the model is too 
complicated or overparameterized, the model contains 
redundant parameters, or if the initial values provided 
for each parameter are flawed. A model that is not ap-
propriate to fit the data will also result in unsuccessful 
nonlinear fitting.

Goodness-of-fit is generally assessed using the coef-
ficient of determination (R2) or the mean square er-
ror, and significance of fit can be estimated using a 
F-test. With maximum likelihood methods, goodness-
of-fit is determined from information criteria (Akaike’s 
or Bayesian criterion), and the significance of the fit 
achieved can be appraised using a goodness-of-fit χ2 
statistic. Analysis of residuals is necessary to assess the 
suitability of a model, testing that errors are indepen-
dent and normally distributed.

The validity of the parameter estimates also needs 
to be evaluated. The precision of each estimate can 
be assessed using its SE, from which confidence inter-
vals can be derived. It is also important to check that 

best-fit estimates are scientifically plausible. In certain 
models, parameters are biologically constrained (e.g., 
specific parameters cannot be <0), but in some cases 
the iterative process leads to a solution violating such 
constraints. Clearly this should not be accepted as a 
realistic estimate.

Model comparisons are based on goodness-of-fit, but 
should also take into account model simplicity. A model 
with more parameters will always result in a lower re-
sidual error, but this should not be the only factor to 
be considered; the number of parameters should be also 
taken into account.

CALCIUM AND PHOSPHORUS  
FLOWS IN LAYERS

Surplus minerals in excreta present an environmental 
pollution problem to intensive livestock operations. In 
laying hens, excretion of phosphorus (P) in manure is 
of special concern. Requirement for dietary P is mainly 
due to the need to store calcium (Ca) and P in bone 
before egg shell formation. Mobilization of stored min-
erals occurs if quantities absorbed from the diet are 
insufficient for egg formation. Mobilization of P from 
bone is linked to that of Ca, and the reverse. If instan-
taneous Ca supply (Ca absorbed into blood plasma) 
does not match Ca required for egg synthesis, Ca will 
be mobilized from bone and consequently P mobiliza-
tion occurs, giving rise to P excretion in urine. Here, 
we give a summary account of a simulation model of 
Ca and P dynamics in the layer hen by Kebreab et al. 
(2009), developed to evaluate management strategies 
for reducing P excretion. The core of the model is a 
nonlinear system of 8 differential equations.

Model Overview
The scheme is shown in Figure 4. The model con-

sists of 8 state variables representing Ca and P pools 
in the crop (c), stomachs (proventriculus and gizzard) 
(s), plasma (p), and bone (b). Phosphorus is defined 
as absorbable P at the terminal ileum. Zero pools are 
assigned to Ca and P in the duodenum (d), assuming 

Table 2. Selected growth equations and their functional forms1 

Growth  
equation Functional form Derivative

Schumacher y t y
kt

t t

t
( ) exp=

+









0

0

0

′ =
+( )

y t ky
t

t t
( ) 0

2

0

2

Gompertz y t y k
D

Dt( ) exp ( )=










0 1− −e  ′ = −y t ky Dt( ) e

Logistic y t
y y

y y y e
f

f
kt( )

( )
=

+
0

0 0− −
 ′ = −











y t ky
y
yf

( ) 1

Richards y t
y

y y

y

y e
f

n
f
n n kt n( )

[ ]( ) /=
+ −

0

0 0
1−

′ =
−( )

y t
ky y y

ny

f
n n

f
n

( )

1y(t) (g) (>0) is cumulative egg production, y′(t) (g∙d−1) (>0) is daily yield, and t is day of production. All 
parameters are positive constants, except n ≥−1 in the case of Richards.
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that duodenal retention time for Ca and P is small. 
Pools sizes are expressed in milligrams and time in 
days. State variables (quantities) are denoted by Xi and 
concentration (Ci) is calculated as pool size divided by 
live weight (LW, W, kg). Differential equations (dXi/
dt) describe the rate of change of state variables (Xi) 
with time t (days). Rate of utilization of i in the j to k 
transaction is denoted by Ui,jk and rate of production of 
i in the j to k transaction by Pi,jk. The variable t′ (h) is 
used for diurnal time (time within the day, 0 ≤ t′ ≤ 24).

Model Components

Ca and P in the Crop. There is one input to each of 
the 2 crop pools, from the feed:

	 PCac,CafCac = If CCaf ;	  [10]

	 PPc,PfPc = If CPf ,	  [11]

where If is feed intake (g of DM∙d−1) and CCaf and CPf 
are the concentration [mg (g∙DM)−1] of Ca and P, re-
spectively, in the feed. A layer is assumed to lay an egg 
on successive days at L = 1, 2, …, and 7 h after light 
is switched on; alternatively, on rest days, the layer will 
not produce an egg. The driving variable If was set to 
101% of averaged intake when L = 1, 2, …, or 6 h but 
only 90% of averaged intake on the rest day and the 
day before rest day (when L = 7 h). The photoperiod 
is set at 16 h∙d−1, light is switched on at t′ = 0 h, and 
feed intake is assumed continuous during the photope-

riod [see Kebreab et al. (2009) for further explanation]. 
One output of Ca and one of P from the crop are repre-
sented (i.e., to the stomachs). Fractional outflow rates 
are applied for Ca (kCacCas, d−1) and P (kPcPs, d−1):

	 UCac,CacCas = kCacCas XCac; 	 [12]

	 UPc,PcPs = kPcPs XPc.	  [13]

Rates of change of pool size in the crop are

	 dXCac/dt = PCac,CafCac – UCac,CacCas; 	 [14]

	 dXPc/dt = PPc,PfPc – UPc,PcPs. 	 [15]

Ca and P in the Stomachs. There is one input to 
each stomach pool, from the crop:

	 PCas,CacCas = UCac,CacCas; 	 [16]

	 PPs,PcPs = UPc,PcPs. 	 [17]

Outflows are to the duodenum:

	 UCas,CasCad = kCasCad XCas; 	 [18]

	 UPs,PsPd = kPsPd XPs, 	 [19]

where kCasCad (d−1) and kPsPd (d−1) are fractional rates 
of outflow of Ca and P, respectively, to the duodenum. 
Rates of change of pool size in the stomachs are

Figure 4. The Ca-P model. Boxes enclosed by solid lines depict state variables, boxes enclosed by broken lines denote zero pools, and arrows 
depict flows. Subscripts C, S, D, P, and B indicate crop, stomachs, duodenum, plasma, and bone, respectively.
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	 dXCas/dt = PCas,CacCas – UCas,CasCad; 	 [20]

	 dXPs/dt = PPs,PcPs – UPs,PsPd. 	 [21]

Ca and P in the Duodenum. The Ca and P in the 
duodenum are represented as zero pools, where input 
equals output without quantification of pool size, based 
on the small residence time of duodenal digesta. In-
flow to the duodenum (mg∙d−1) equals outflow from 
the stomachs

	 PCad,CasCad = UCas,CasCad; 	 [22]

	 PPd,PsPd = UPs,PsPd. 	 [23]

Absorption into blood plasma (mg∙d−1) is represented 
as

	 UCad,CadCap = kCadCap PCad,CasCad; 	 [24]

	 UPd,PdPp = kPdPp PPd,PsPd, 	 [25]

where kCadCap and kPdPp are fractional absorption of 
Ca and P, respectively, from the duodenum. Parameter 
kCadCap is taken as 0.7 during egg shell formation, when 
Ca requirements are high, and 0.4 when there is no egg 
shell formation. Nonabsorbed Ca is excreted in feces. 
As P is defined in model as absorbable P at the termi-
nal ileum, kPdPp is set at 1.

Ca and P in the Plasma. There are 2 inputs each to 
the Ca and P plasma pools, absorption from the duode-
num (PCap,CadCap and PPp,PdPp) and mobilization from 
bone (PCap,CabCap and PPp,PbPp) (all mg∙d−1):

	 PCap,CadCap = UCad,CadCap; 	 [26]

	 PPp,PdPp = UPd,PdPp; 	 [27]

	 PCap,CabCap = UCab,CabCap; 	 [28]

	 PPp,PbPp = UPb,PbPp. 	 [29]

Three outputs each from the plasma Ca and P pools 
are represented, i.e., utilization for egg synthesis, depo-
sition in bone, and excretion in urine. The Ca and P 
for egg synthesis (UCap,CapCae and UPp,PpPe, mg∙d−1) 
are the sum of utilization for yolk, white, and shell 
formation:

UCap,CapCae = UCap,CapCayolk + UCap,CapCawhite  

	 + UCap,CapCashell; 	 [30]

UPp,PpPe = UPp,PpPyolk + UPp,PpPwhite  

	 + UPp,PpPshell. 	 [31]

The shell is assumed to be formed in the 20 h before 
oviposition and follows a logistic pattern (Figure 5):

	 y = a/[1 + e–b(x−c)] – d, 	 [32]

where y (g∙g−1) is fraction of shell formed, x (h) is time 
from start of shell formation, and a, b, c, d are param-
eters. Differentiating gives the fractional rate of egg 
formation:

	 dy/dx = abe–b(x−c)/[1 + e–b(x−c)]2. 	 [33]

As oviposition occurs at x = 20 (i.e., when t′ = L) in-
stantaneous fractional rate of egg formation, kE (d−1), 
is expressed in the model as

	 kE = 0, L < t′ < L + 5, 	 [34]

	  = abe–b(x−c)/[1 + e–b(x−c)]2, otherwise. 	 [35]

There are 2 exceptions to this calculation of kE. First, 
when L = 7 h, it is assumed that there is no ovulation 
on that day and, consequently, the next day will be a 
rest day; hence, kE is 0 d−1 when t′ ≥ 7 h. Second, on a 
rest day, there is no oviposition, but the layer is prepar-
ing for an egg at L = 1 h on the next day. Hence, on 
a rest day, kE is 0 d−1 if t′ < 5 h. The above equation 
for kE applies at all other times. Albumen formation is 
taken to occur at the same time and rate as shell forma-
tion. Yolk formation is a continuous process. Utilization 
is calculated as a requirement per unit of egg compo-
nent formed multiplied by the fraction of that compo-
nent in the egg and by egg weight and multiplied by 
the laying percentage in a 100-d period. For example, 
Ca need of the layer for yolk formation is calculated: 
egg weight × egg yolk × Ca in yolk × laying %/24 
h, as yolk synthesis is continuous. For example, total 
amount of Ca needed for formation of an egg white is: 
egg weight × egg white × Ca in white, and Ca need 
per hour for white formation (a discontinuous process) 
is this total amount multiplied by kE.

Deposition of Ca and of P in bone are represented as 
saturable processes:

UCap,CapCab:Ca = VCapCab W/(1 + MCapCab/CCap);  
		  [36]

Figure 5. Time course of egg shell formation (after Van Krieken, 
1996). Color version available in the online PDF.
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UPp,PpPb:P = VCap,Cab W/[fCa:P (1 + MPpPb/CPp)];  
		  [37]

	 UCap,CapCab:P = UPp,PpPb:P fCa:P; 	 [38]

	 UPp,PpPb:Ca = UCap,CapCab:Ca/fCa:P, 	 [39]

where UCap,CapCab:Ca and UCap,CapCab:P are utilization 
of plasma Ca for bone synthesis based on availability of 
plasma Ca and plasma P, respectively, and UPp,PpPb:P 
and UPp,PpPb:Ca are utilization of plasma P for bone 
synthesis based on availability of plasma P and plas-
ma Ca, respectively (all in mg∙d−1). The VCapCab [mg 
(kg of LW)−1∙d−1] is maximal rate of Ca deposition 
in bone, MCapCab and MPpPb [mg (kg of LW)−1] are 
affinity constants, CCap and CPp [mg (kg of LW)−1] 
concentrations of Ca and P in plasma, and fCa:P ratio 
of Ca to P in bone, assumed fixed. Actual deposition 
of Ca (UCap,CapCab, mg∙d−1) and P (UPp,PpPb, mg∙d−1) 
are therefore the minima:

UCap,CapCab = MIN(UCap,CapCab:Ca, UCap,CapCab:P);  
		  [40]

	 UPp,PpPb = MIN(UPp,PpPb:P, UPp,PpPb:Ca). 	 [41]

Utilization of Ca and of P for maintenance (mg∙d−1) 
are

	 UCap,CapCam = RCapCam W; 	 [42]

	 UPp,PpPm = RPpPm W, 	 [43]

where RCapCam and RPpPm [both mg (kg of LW)−1∙d−1] 
are Ca and P maintenance requirements per unit LW.

The Ca and P excreted in urine are the sum of (i) 
basal requirement for Ca and P (maintenance require-
ment), plus (ii) amount of Ca or P in plasma that 
cannot be used for bone synthesis because the other 
mineral (P and Ca, respectively) is lacking, plus (iii) 
amount of Ca or P released from bone because P or Ca 
is required for egg synthesis, respectively:

UCap,CapCau = UCap,CapCam  

+ MAX(0, UCap,CapCab:Ca – UCap,CapCab:P)

	 + MAX(0, UCab,CabCap:P – UCab,CabCap:Ca); 	 [44]

UPp,PpPu = UPp,PpPm  

+ MAX(0, UPp,PpPb:P – UPp,PpPb:Ca)

	 + MAX(0, UPb,PbPp:Ca – UPb,PbPp:P),	  [45]

where UCab,CabCap:P and UCab,CabCap:Ca are mobiliza-
tion of bone Ca based on P and Ca needs, respectively, 
and UPb,PbPp:Ca and UPb,PbPp:P are mobilization of 
bone P based on Ca and P needs, respectively (all in 

mg∙d−1). In these equations, it is assumed that any 
mineral not used for bone synthesis because availability 
of the other mineral is not enough to support that syn-
thesis, is excreted in urine. Equally, any mineral that 
has been mobilized because of necessary mobilization of 
the other mineral is excreted in urine.

Rates of change of pool size in the plasma are

dXCap/dt = PCap,CadCap + PCap,CabCap – UCap,CapCae  

	 – UCap,CapCab – UCap,CapCau; 	 [46]

dXPp/dt = PPp,PdPp + PPp,PbPp – UPp,PpPe  

	 – UPp,PpPb – UPp,PpPu. 	 [47]

Ca and P in the Bone. Inputs to the Ca and P pools 
in bone are from plasma:

	 PCab,CapCab = UCap,CapCab; 	 [48]

	 PPb,PpPb = UPp,PpPb. 	 [49]

Outputs from bone are to plasma:

UCab,CabCap = MAX(UCab,CabCap:P, UCab,CabCap:Ca);  
		  [50]

	 UPb,PbPp = MAX(UPb,PbPp:Ca, UPb,PbPp:P), 	 [51]

where UCab,CabCap:P and UCab,CabCap:Ca (mg∙d−1) are 
rates of Ca utilization for bone synthesis based on 
availability of P or of Ca in plasma, respectively. Simi-
larly, UPb,PbPp:Ca and UPb,PbPp:P (mg∙d−1) are rates of 
P utilization. Mobilization of Ca and P from bone is 
assumed to be inhibited by plasma availability of these 
minerals:

UCab,CabCap:Ca = VCabCap W/(1 + CCap/JCabCap);  
		  [52]

UPb,PbPp:P = VCabCap W/[fCa:P (1 + CPp/JPbPp)];  
		  [53]

	 UCab,CabCap:P = UPb,PbPp:P fCa:P; 	 [54]

	 UPb,PbPp:Ca = UCab,CabCap:Ca/fCa:P, 	 [55]

where VCabCap [mg (kg of LW)−1∙d−1] is maximal rate 
of bone Ca mobilization and JCabCap and JPbPp [mg (kg 
of LW)−1] are inhibition constants. Rates of change of 
pool size in bone are

	 dXCab/dt = PCab,CapCab – UCab,CabCap; 	 [56]

	 dXPb/dt = PPb,PpPb – UPb,PbPp. 	 [57]

The model is completely defined by Eq. [10] through 
Eq. [57]. At its core is a system of first-order nonlinear 
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differential equations; therefore, it has to be solved nu-
merically over time subject to appropriate initial condi-
tions and parameter estimates.

Parameter Determination
Mechanistic simulation models, such as this, attempt 

to describe a complex system in terms of identifiable 
biological processes. Within these models, the param-
eters have biological and chemical significance: rate 
constants, initial concentrations, and so on. These pa-
rameters can, in principle, be determined independent 
of the particular experimental system being modeled. 
Such independently determined parameters should en-
hance the predictive power of a model, as model formu-
lation is not tied to a specific experimental set-up. In 
the Ca-P model, for example, fractional outflow rates 
for various forms of Ca and P are based on data sum-
marized by van der Klis et al. (1990). The higher Ca 
fractional absorption from the duodenum during egg 
shell formation, when Ca requirements are high, com-
pared with the fractional rate when no egg shell is be-
ing formed, is adopted from Hurwitz and Bar (1965). 
The shell is formed over 20 h following a pattern de-
scribed by Etches (1987). The ratio of Ca to P in bone 
is based on stoichiometric principles because most Ca 
and P is stored in bone as hydroxyapatite crystals, 
Ca10(PO4)6(OH)2, and mobilization of Ca and P from 
bone is inhibited by plasma availability of these miner-
als (Boorman and Gunaratne, 2001). Maximum rates of 
bone mobilization were set at such a rate as to sustain 
maximal rates of Ca utilization for egg synthesis when 
other Ca sources are not available. Despite the funda-
mental nature of the parameters of a mechanism-based 
simulation model, parameter values are often adjusted 
to improve the goodness-of-fit of model predictions to 
experimental data. This is achieved by applying the 
model as a large regression equation. Optimization rou-
tines available in simulation software for parameter es-
timation are frequently based on maximizing a log-like-
lihood function using algorithms such as Nelder-Mead 
or quasi-Newton. Other routines are based on nonlin-
ear least squares approaches using algorithms such as 
Levenberg-Marquadt or generalized least squares. How-
ever, there are well-documented dangers to such a pro-
cedure (e.g., Hopkins and Leipold, 1996). For example, 
with complex simulation models characterized by a 
large number of parameters, it is likely that values oth-
er than the incorrect ones will be adjusted to improve 
the fit, and parameter values optimized for a particular 
set of experimental conditions might give worse model 
predictions than the unadjusted parameters when the 
attempt is made to model a different set of experimen-
tal conditions.

Model Application
A summary of model application follows; full details 

are found in Kebreab et al. (2009). The model was pro-

grammed in the dynamic simulation language SMART 
(Wageningen University, Computer Science Group, 
Wageningen, the Netherlands). Euler’s method of in-
tegration with a step size of ~1 min was used. The 
programmed model was evaluated against independent 
data from an experiment with Single Comb White Leg-
horn hens fed diets that differed in Ca concentration 
(25, 35, and 45 mg/g).

A 24-h cycle was simulated by setting oviposition at 
t′ = 01:00 h (the colon denoting diurnal time) and ad-
justing Eq. [34] to kE = 0, 1 < t′ < 5 (i.e., the model 
was run to simulate one particular day and one par-
ticular laying time). Quasi-steady state was achieved 
after 72 h of simulation. Diurnal changes in Ca and P 
for a layer laying an egg when L = 1 h are presented 
in Figure 6.

Feed intake commences as soon as light is turned 
on (at 00:00 h) and, as a result, Ca and P absorption 

Figure 6. Simulated diurnal dynamics of Ca (top) and P (bottom) 
in a layer producing an egg 1 h after light is switched on. Color version 
available in the online PDF.
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increase. Light is turned off after 16 h and feed intake 
stops. The Ca and P absorption therefore decline, be-
cause the amounts of Ca and P present in crop and 
stomach decrease quickly and no new Ca or P enters 
the crop. The Ca requirements are small from the mo-
ment of egg laying (01:00 h) until 05:00 h, when for-
mation of a new egg shell begins. The P requirements 
are more stable during the day, as the majority of P is 
required for egg yolk synthesis, which is assumed to be 
a continuous process. The P requirements in the first 
hour are higher than P absorption, and as a conse-
quence P and Ca mobilization from bone takes place. 
Over this hour, all mobilized P is used for maintenance 
and egg production, and P excretion in urine is simply 
related to maintenance.

When shell formation commences, Ca requirements 
rise and fall in a pattern related to that of shell forma-
tion. The Ca absorption is enough to satisfy require-
ments until 18:00 h and P absorption is enough to 
satisfy requirements until 20:00 h. The surplus of P 
absorbed, however, cannot always be used for bone syn-
thesis because Ca may be lacking to support this syn-
thesis. This is the situation from approximately 11:00 
to 18:00 h. Hence, some of the absorbed P is not used 
during these hours and is excreted in the urine. The Ca 
has to be mobilized from 18:00 h until the end of the 
day to support requirements, and P is also mobilized 
as a result. A large portion of this mobilized P is not 
required for maintenance or egg synthesis and therefore 
is excreted in urine. There are 2 reasons why P is not 
used and is excreted in the urine. From 11:00 to 18:00 
h, P uptake in feed relative to Ca availability is too 
high to support high bone synthesis rates. From 18:00 
to 24:00 h, P that is not used originates largely from 
bone mobilization as a result of Ca requirements.

Total net P deposition in bone is 67.8 mg∙d−1, which 
would indicate dietary absorbable P can be reduced by 
22% [= 67.8/(110 × 2.8 × 1.01)]. Layers, however, will 
produce eggs at different hours during the day. Evalu-
ation of feeding strategies requires simulations at all 
possible hours of oviposition and assumptions about 
the frequency distribution within a flock of layers of 
those hours. Other management options to decrease P 
excretion evaluated using this model include feeding 
coarse Ca having a smaller fractional passage rate from 
the stomachs to the duodenum, and changes in lighting 
scheme that result in changes in feed intake pattern 
during the day. Further details of model application can 
be found in Kebreab et al. (2009).

CONCLUDING REMARKS
Systems of differential equations are ubiquitous 

throughout much of biology. They arise through ap-
plication of the rate:state formalism to construct dy-
namic mechanistic models. If the problem under study 
is in steady state, solution to the system of differential 
equations is found by setting the differential terms to 
zero and manipulating algebraically to give an expres-

sion for each of the components and processes that are 
of interest. Data from experiments using isotopes ad-
ministered by constant infusion are usually resolved in 
this manner. Indeed, many of the time-independent for-
mulae presented in the biological literature are derived 
likewise.

To generate the dynamic behavior of any model, 
the differential equations must be integrated. For lin-
ear systems, analytical solutions are usually obtained. 
Such models are widely applied in digestion studies to 
interpret time-course data from marker and in vitro 
experiments, where the functional form of the solution 
is fitted to the data using nonlinear regression. This en-
ables biological measures such as mean retention time 
and extent of digestion in the gastrointestinal tract to 
be calculated from the estimated parameters. In this 
paper, we illustrated this approach with reference to 
the egg production curve described by layers.

For nonlinear systems, only numerical solutions to 
the differential equations can generally be obtained. 
This can be achieved by using one of several simulation 
software packages available for tackling such problems. 
Such models are used to simulate more complex diges-
tive and metabolic systems. They are normally used 
as tactical research tools to identify knowledge gaps, 
to tease things apart before going off to the labora-
tory, or to make qualitative predictions. For making 
predictions, a mechanistic simulation model is likely to 
be more suitable for extrapolation than an empirical 
model, because its biological content is generally richer. 
In this paper, we illustrated the approach by simulating 
Ca and P flows in layers to evaluate feeding strategies 
aimed at reducing excretion of potential pollutants to 
the environment in poultry manure.
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