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Leaves are complex and highly sophisticated 3D geometries 
that have been optimized over the course of evolutionary time 
to balance water distribution, photosynthesis, and structural in-
tegrity, among many other biological functions. However, imag-
ing technology has only recently enabled a clear view and, more 
importantly, the capacity to digitally represent leaf 3D anatomy 
(Théroux-Rancourt et al., 2017). Today, 3D imaging permits pre-
cise spatial measurement and biophysical modeling of leaf in-
ternal geometry that can deliver novel insights about basic leaf 
function, such as CO2 transport (Ho et al., 2016; Lehmeier et al., 
2017; Earles et al., 2018, 2019; Lundgren et al., 2019), H2O trans-
port (Scoffoni et al., 2017), and mechanical structure (Pierantoni 
et al., 2019). Embracing the 3D complexity of leaf geometry per-
mits us to understand when dimensionality reduction is tolerable 
and will ultimately guide more precise mechanistic scaling from 
tissue to crop and/or ecosystem.

Computationally, 3D imaging often produces large data sets (>20 
GB) with hundreds to thousands of digital cross sections that do not 
immediately yield biologically relevant information. Regardless of 
the imaging modality, 3D images must be subsequently processed 
to extract biologically relevant information, such as tissue type, 
chemical composition, and material type. In the case of X-ray mi-
crocomputed tomography (microCT) applied to plant leaves, this 
has led to the 3D description of the complex organization of the 
mesophyll cells and their surface area (Ho et al., 2016; Théroux-
Rancourt et al., 2017), and the description of novel anatomical traits 
related to the intercellular airspace (Lehmeier et al., 2017; Earles 
et al., 2018). Tissue segmentation can be done quickly using both 
proprietary and open source software via 3D thresholding based on 
pixel intensity values. However, in the case of leaf microCT scans, 
pixel intensity can primarily, and most often solely, distinguish 
between water-filled cells and air-filled void areas. As such, quick 
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PREMISE: X-ray microcomputed tomography (microCT) can be used to measure 3D leaf 
internal anatomy, providing a holistic view of tissue organization. Previously, the substantial 
time needed for segmenting multiple tissues limited this technique to small data sets, 
restricting its utility for phenotyping experiments and limiting our confidence in the 
inferences of these studies due to low replication numbers.

METHODS AND RESULTS: We present a Python codebase for random forest machine learning 
segmentation and 3D leaf anatomical trait quantification that dramatically reduces the time 
required to process single-leaf microCT scans into detailed segmentations. By training the 
model on each scan using six hand-segmented image slices out of >1500 in the full leaf scan, 
it achieves >90% accuracy in background and tissue segmentation.

CONCLUSIONS: Overall, this 3D segmentation and quantification pipeline can reduce one of 
the major barriers to using microCT imaging in high-throughput plant phenotyping.
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segmentations can generally only label cells and airspace, especially 
when using phase-contrast reconstruction (Théroux-Rancourt 
et al., 2017), resulting in the different tissues of a leaf (e.g., the epi-
dermis, the mesophyll cells, the bundle sheaths, and the veins) being 
grouped together. Using this method, there is not a clear distinction 
between the background and the intercellular airspace. This results 
in segmentations being limited to small leaf volumes consisting 
solely of mesophyll cells and airspace to estimate leaf porosity and 
cell surface area, traits that are commonly measured when related to 
photosynthetic efficiency (e.g., Ho et al., 2016). However, small leaf 
volumes do not necessarily represent the whole leaf trait average, 
and thus a larger volume including veins is needed to limit sam-
pling bias. To separate the leaf from the background and segment 
the different tissues within the leaf, current applications generally 
rely on the onerous process of hand segmentation, i.e., drawing with 
a mouse or a graphic tablet over single slices of a microCT scan to 
delimit and assign a unique value to each of the different tissues, 
either slice-by-slice or through the interpolation between different 
delimited regions throughout the scan (Théroux-Rancourt et al., 
2017; Harwood et al., 2020). As a result, studies incorporating 3D 
microCT data sets have been limited to smaller scanning endeav-
ors, and the low replicability of these studies limits the impact of 
conclusions therein. Hand segmentation, as described above, can 
take up to one day of work for a coarse-scale segmentation of tissues 
other than mesophyll cells and airspace (as in Théroux-Rancourt 
et al., 2017). Furthermore, highlighting natural variations in size 
and curvature of the various tissues can substantially increase hand 
segmentation time (see, for example, Harwood et al. [2020] on a 
similar issue using serial block-face scanning electron microscopy). 
Hence, segmentation is currently a major bottleneck in the use of 
this technology.

Machine learning presents an opportunity to substantially accel-
erate the image segmentation process for plant biological applica-
tions. Conventional computer vision techniques rely on a human to 
engineer and select visual features, such as shape, pixel intensity, and 
texture, that ultimately guide the underlying segmentation process. 
On the other hand, machine learning–based image processing al-
lows the machine to directly select or engineer visual features (e.g., 
Çiçek et al., 2016; Berg et al., 2019). Machine learning–based image 
processing techniques fall along a continuum of unsupervised to 
supervised learning, which defines the degree to which the machine 
uses ground-truth data for guiding its optimization function. Given 
the large number of images generated during an X-ray microCT 
scan, machine learning–based image processing could lead to major 
efficiency gains in terms of human effort, enabling higher sample 
throughput and more complete data utilization as outlined above. 
In this study, we present a random forest machine learning frame-
work for image segmentation of single X-ray microCT plant leaf 
scans and test its performance on a grapevine leaf scan. We finally 
demonstrate how the rich 3D output can be used to extract biologi-
cally meaningful metrics from these segmented images.

METHODS AND RESULTS

Random forest segmentation and leaf traits analysis pipeline

The following pipeline was built for our projects using X-ray syn-
chrotron-based microCT imaging and uses the freely available 
and open source software ImageJ (Schneider et al., 2012). We 

implemented this framework using the Python programming 
language for machine learning segmentation and for image anal-
ysis (an in-depth user manual is available at https://github.com/
plant​-micro​ct-tools/​leaf-trait​s-microct; see Data Availability). 
Synchrotron-based imaging allows reconstruction of the scans 
using the gridrec reconstruction, which reflects X-ray absorption 
and provides a sharp but low-contrast image highlighting the in-
terface between cells (Dowd et al., 1999), and the phase-contrast 
reconstruction, providing images with increased contrast between 
material of different absorptance (Paganin et al., 2002). Both re-
constructions were at the base of our previous method (Théroux-
Rancourt et al., 2017). In its current state, the program requires the 
gridrec and phase-contrast reconstructions in 8-bit depth (Fig. 1). 
To prepare for model training and automated segmentation, one 
needs to prepare hand-labeled slices. Briefly, using ImageJ, we first 
binarize (i.e., convert to black and white) the two reconstructions 
by applying a threshold, where grayscale values below are consid-
ered air and values above are considered cells (Fig. 1). Those two 
binary stacks are combined together as in Théroux-Rancourt et al. 
(2017). Hand labeling is then done directly in ImageJ by drawing 
around each tissue, repeating the labeling over the desired number 
of slices while taking care to cover a range of anatomical variations 
such as the density and orientation of veins, which is the most im-
portant cause of variation between slices (Théroux-Rancourt et al., 
2017). In the current case, the background, both epidermises, and 
the bundle sheaths and vein pairs (1–3 per slice, each tissue labeled 
separately) were labeled by a single individual, and consistency was 
validated by G.T.R. (Fig. 1; see also Appendix S1 for the number of 
pixels per class). For a detailed methodology on preparing hand-la-
beled slices, please refer to the public repository of this program on 
GitHub (see Data Availability).

The random forest classification model can then be trained us-
ing the hand-labeled slices. We built our own framework on top 
of Python 3 and existing open source libraries such as numpy 
(Oliphant, 2006), scikit-image (van der Walt et al., 2014), and scikit-
learn (Pedregosa et al., 2011). The image processing and random 
forest classification is summarized in Fig. 1. First, using the gridrec 
and phase-contrast reconstructions, the program creates a binary 
image (as previously defined) using the threshold values for both 
stacks as input variables. This binary image is then used to create a 
local thickness map, which identifies through distance transforma-
tion and for each pixel the diameter of the largest sphere contained 
in that area, i.e., representing an estimate of the axis length or diam-
eter of that structure or cell. This map provides additional informa-
tion needed to predict class based on the object’s 3D size. Feature 
layer arrays are then built by applying a Gaussian blur or a variance 
filter, both of different diameters, to the gridrec and phase-contrast 
slices. The same filters are also applied to a map of the distance from 
the top and bottom edge of the image to its center, and to gridrec 
and phase-contrast slices that have been Sobel filtered to empha-
size edges. These feature layer arrays are then used, along with the 
local thickness map, to train the random forest classification model 
by predicting pixel values on the desired number of hand-labeled 
training slices, which are randomly selected within the full hand-la-
beled stack. The framework will always fit a new random forest, and 
by default will use 50 estimators, but this can be adjusted by the 
user. Further parameters used to train the random forest model 
include whether to use out-of-box samples to estimate accuracy 
and whether to reuse the solution of the previous call to fit and add 
more estimators to the ensemble.

https://github.com/plant-microct-tools/leaf-traits-microct
https://github.com/plant-microct-tools/leaf-traits-microct
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After training the model and testing its accuracy on the hand-la-
beled slices, it is able to automatically predict the remaining slices 
(generally >1500) of the microCT scan in just a few hours; this rep-
resents a massive improvement over conventional methods, which 
require hundreds of hours of manual work (Théroux-Rancourt 
et al., 2017). In this article, we present results for one single scan. If 
users intend to segment multiple scans, the procedure above (i.e., 
hand labeling and model training) would have to be done for each 
scan, as the framework currently provides suitable and accurate seg-
mentations for plant anatomy analysis when trained on each scan.

The full stack prediction can then be passed on to the leaf traits 
analysis pipeline. A first step is to identify all tissues and apply 
post-prediction correction to remove some false predictions that 
would bias biological trait analysis. In the case of laminar leaves, this 
includes identifying the two largest epidermis structures of simi-
lar volumes, as the abaxial and adaxial epidermis should each form 
a single volume within the stack. Thus, smaller volumes labeled as 
epidermis (e.g., identified within the mesophyll cells) are not con-
sidered to be actual epidermis and are removed during this correc-
tion. For veins and bundle sheaths, as they are also usually highly 
connected to each other, small volumes do not represent actual tis-
sues and therefore very small and unique volumes (i.e., generally 

below 27 px3) are removed. Hence, the stack used for trait analysis 
was corrected to include only biologically relevant volumes.

From this corrected stack, biological metrics were computed. 
Here, we measured the thickness at each point along the leaf sur-
face for the whole leaf, the abaxial and adaxial epidermis, and the 
whole mesophyll (leaf without the epidermis); standard deviation 
was determined for all metrics. We also measured the volume of all 
segmented tissues using a voxel count, as well as the surface area 
of the mesophyll cells connected to the airspace using a marching 
cube algorithm. Further analysis of the airspace can be made to 
compute tortuosity and path lengthening using a Python version of 
Earles et al. (2018) methods, which are not included in the current 
methods analysis.

Testing the segmentation program

To test the performance of the segmentation program, we used 
the microCT scan of a ‘Cabernet Sauvignon’ grapevine (Vitis vi-
nifera L.) leaf acquired at the TOMCAT tomographic beamline 
of the Swiss Light Source at the Paul Scherrer Institute in Villigen, 
Switzerland. Samples were prepared for microCT scanning as in 
Théroux-Rancourt et al. (2017), the sample was mounted between 

FIGURE 1.  Schematic of the segmentation and analysis pipeline. Reconstructed microCT scans are manually thresholded to find the best value to 
segment the airspace of the leaf (as in Théroux-Rancourt et al., 2017). Using this binary stack, a local thickness stack is created, which identifies for each 
pixel the diameter of the largest sphere contained in that area (lighter pixel values mean larger diameters). These input stacks are used to generate 
the feature layers arrays needed, along with the hand-labeled slices, for the random forest classification model training. With the trained model, the 
complete stack of images is predicted, and from this predicted stack the image is post-processed to remove false classifications, and leaf traits are 
analyzed. Note that all images are from the same position within the stack (i.e., same slice) except for the segmented image—using images from the 
same slice used for hand labeling provides identical segmentation.
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pieces of polyimide tape and fixed upright in a styrofoam holder, 
and 1801 projections of 100 ms were acquired at 21 keV over 180° 
total rotation using a 40× objective, for a final pixel size of 0.1625 
µm. The scans were reconstructed with the gridrec and paganin al-
gorithms using the reconstruction pipeline at the TOMCAT beam-
line. Twenty-four slices spread evenly across the full 1920-slice 
stack were hand labeled for epidermis, background, veins and bun-
dle sheaths, mesophyll cells, and intercellular airspace as described 
above. To facilitate the testing, the x and y dimensions were halved, 
yielding a pixel size of 0.325 µm in those dimensions, but keeping 
the original dimensions of 0.1625 µm in the depth (z) dimension, 
hence reducing the file size by four, from approximately 6 GB down 
to 1.5 GB, a size easily handled by the program.

To understand the impact of training a model using different 
numbers of manually segmented slices, we iteratively trained the 
model using one through 12 slices. We repeated this process 30 
times for each number of training slices using randomly selected 
training slices for each iteration. To cross-validate between hand-la-
beled ground truth and model predictions, each trained model was 
used to predict a test set consisting of all slices that were hand la-
beled but that had not been used to train the model (e.g., if six slices 
were used for training, the remaining 18 slices were predicted using 
the model). Confusion matrices were then created for each predic-
tion test. Note that no post-prediction corrections were applied and, 
as such, the results that follow present the raw predictions.

From each confusion matrix, we evaluated precision and recall for 
each biological class (Fig. 2). In the context of automated information 
retrieval for microCT image segmentation, recall may be interpreted 
as the sensitivity of the trained model to a given pixel class (i.e., the 
portion of correctly identified pixels in a given class) relative to all pix-
els belonging to this class. On the other hand, precision represents the 
positive predictive value of the model within a given pixel class (i.e., 
the number of pixels correctly identified as belonging to a given class) 
divided by this value, plus the number of pixels falsely identified. It can 
be logically deduced why some people refer to recall as quantity of posi-
tive identification, and precision as the quality of positive identification.

In the mesophyll cell class, recall was generally >90% even when 
training on fewer than three manually segmented slices; this means 
that >90% of all mesophyll cell pixels were correctly identified as 
cells, suggesting the trained random forest model is highly sensi-
tive to cells. The same can be said for the airspace and background 
classes, which plateaued at about 95% recall using more than one 
training slice. The trained models do not appear to be as sensitive 
to pixels of the epidermis class. Indeed, we observed a minimum 
of four training slices required to drive epidermis class recall above 
90%. With vein and bundle sheath considered together as one class, 
at least four training slices were required to reach a maximum recall 
value of ~80%; the remaining 20% were false negatives (i.e., identi-
fied as other classes). Interestingly, when separating bundle sheath 
and vein into distinct classes, the bundle sheath class also reached a 
maximum recall value of ~75% using more than four training slices. 
Isolating the vein class from the bundle sheath class greatly im-
pacted the trained model’s sensitivity to vein detection. Recall was 
not observed above 55%, and generally stayed under 40% unless the 
model was trained on more than eight manually segmented slices.

To achieve precision >90% in the airspace, background, and epi-
dermis tissue classes, a minimum of two training slices should be 
used. Interestingly, training on more than two slices did not seem to 
translate to a substantial improvement in precision for these classes. 
However, observed precision for the mesophyll cell tissue class did 

not plateau until training on more than three slices. While the max-
imum precision for mesophyll cells was stably >90%, the lower pre-
cision values consistently observed when training on one or two 
slices (i.e., as low as 60%) suggest the software is not as reliable for 
this tissue class. It is therefore important to train on more than three 
slices if mesophyll cell traits are of interest. In the vein class, the soft-
ware was observed to positively identify pixels at a rate of about 80% 
when trained on more than two slices. In other words, even though 
the software is not very sensitive to the vein class, it is quite reliable 
when it does make a positive identification in the vein class.

To evaluate how the number of training slices affected the mea-
surement of biological traits, we used a subset of the 30 models per 
number of training slices to carry out predictions over the full stack 
instead of over the 24 hand-labeled slices. We made five predictions 
over full stacks per number of training slices used, except for models 
trained with one slice, for which we carried out seven supplemen-
tary predictions to account for the expected variability in results. 
These full stack predictions were then passed through the leaf traits 
analysis program to extract relevant leaf anatomical traits (Fig. 3). 
Anatomical measures were the least constant between predictions 
when using one training slice. The most variable were the epider-
mis thickness estimates, with values ranging from near 0 µm for the 
abaxial epidermis to almost 30 µm in the adaxial epidermis, mean-
ing that false segmentations of epidermis occurred between both 
epidermises such that they were connected and could not be auto-
matically distinguished from one another as happened from three 
training slices onward. This false segmentation of the epidermis led 
to a highly variable whole mesophyll thickness (i.e., the leaf with-
out the epidermis), which became less variable (<5%) when using at 
least three training slices. However, the overall leaf thickness was the 
least variable, with less than ~1.5-µm variation (~1% total thickness) 
when using three or more training slices, a variation we consider 
equal or even lower than manual measures. This technique benefits 
greatly from measuring over each point, or voxel column, of the leaf 
area, allowing for the integration of millions of thickness measures, 
thus buffering local errors due to false segmentation. Volumetric an-
atomical traits became constant in variation and values at a mini-
mum of five training slices for the bundle sheath, mesophyll cells, 
and airspace. As with precision and recall, vein volume substantially 
varied until about seven training slices, where values and variation 
plateaued. The volume of the leaf, the whole mesophyll, and epider-
mises each exhibited results similar to those for their thickness.

How many slices should be hand labeled?

In the test presented above, the greater the number of total pixels 
represented by any class, the fewer training slices required to reach 
maximum sensitivity (i.e., recall). For example, the air, cells, and 
background classes are the most common pixel types and clearly 
show >90% sensitivity (recall) training on as few as two manually 
segmented slices (Fig. 2); with four manually segmented slices, 
different segmentations generated similar biological traits (Fig. 3). 
Veins and bundle sheaths are difficult to segment as they gener-
ally present very low contrast between each other and are difficult 
to distinguish both computationally and visually. In the usage we 
have made of the program (current study; Théroux-Rancourt et al., 
2020a), we are generally interested in defining where the vascula-
ture (veins and bundle sheath together) is rather than in extracting 
traits related to those tissues, and as such six slices seem appropriate 
to obtain a reliable prediction of the volume of those two tissues 
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(Figs. 2, 3). It is more problematic when a class is represented by a 
smaller number of pixels, as the number of training slices required 
to reach maximum sensitivity in this class increases (Fig. 2). This 
is an inherent class imbalance issue that cannot be solved because 
of the anatomy of the leaves; the number of training slices needed 
should allow to reach the desired precision and recall for the class or 
tissue with the lowest number of pixels per slice. For example, thin-
ner tissues like the epidermis require a minimum of five training 

slices to reach constant precision, recall, and biological traits. As 
the imaged thickness or smaller axis of a tissue is dependent on the 
magnification used, care should be taken when planning a scanning 
endeavor to have sufficient magnification to acquire enough pixels 
per tissue or class of interest to facilitate subsequent segmentation. 
Using the testing procedure presented here on scans from previous 
scanning endeavors could help guide future microCT setups to ac-
quire and extract high-quality biological data.

FIGURE 2.  Recall (left) and precision (right) as a function of the number of training slices used to predict tissue classes in a microCT leaf scan (pixel 
size: 0.325 µm; 762,999 pixels per slice to predict). Circles represent raw values of individual predictions, solid lines represent the median value of 30 
predictions per amount of training slices, and thick gray lines represent the region between the 25th and 75th quantiles.
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CONCLUSIONS

We present here an image segmentation framework using open 
source software that automatically segments image stacks of 

microCT scans consisting of thousands of single images and that 
requires only a few hand-labeled single slices for each scan. This 
tool has allowed us to considerably speed up the segmentation of 
leaf scans while providing an increased level of detail: a well-trained 

FIGURE 3.  Variation in the measured tissue thicknesses and volumes based on the number of training slices used. False classification of inner leaf 
pixels as epidermis occurs more with one or two training slices, which resulted in the two epidermises being connected together, hence making the 
individual thickness estimates wrong. Standard deviations of the thickness estimates are presented in Appendix S2.

FIGURE 4.  Random forest segmentation examples (A) for a grapevine leaf (Vitis vinifera), a grass (Calamagrostis arundinacea), and a pine needle (Pinus 
pungens), and common segmentation issues (B). Gridrec reconstructions on the same slices are shown on the left to compare with the predicted tis-
sues based on random forest models trained on hand-labeled slices. One of the main segmentation issues is the local volume problem, caused by 2D 
rather than 3D segmentation, which results in, for example, veins that are labeled on one slice and not on the other (shown by black areas in between 
gray-labeled veins). Another issue is having the epidermis connected throughout the leaf at a small number of model training slices, here highlighted 
in red, where a volume might appear in 2D to be disconnected but is shown in 3D to be connected. 



Applications in Plant Sciences 2020 8(7): e11380� Théroux-Rancourt et al.—Leaf microCT and machine learning  •  7 of 9

http://www.wileyonlinelibrary.com/journal/AppsPlantSci� © 2020 Théroux-Rancourt et al.



Applications in Plant Sciences 2020 8(7): e11380� Théroux-Rancourt et al.—Leaf microCT and machine learning  •  8 of 9

http://www.wileyonlinelibrary.com/journal/AppsPlantSci� © 2020 Théroux-Rancourt et al.

user can take less than one hour to prepare the model training slices 
needed to segment a whole 3D scan and extract relevant biologi-
cal information. As a comparison, the coarse hand segmentation 
done in Théroux-Rancourt et al. (2017) took about one full day of 
work for a pixel volume about a quarter of the size presented here. 
Furthermore, this segmentation and analysis pipeline has been suc-
cessfully used on a variety of species and leaf forms (e.g., decidu-
ous and evergreen laminar leaves, C3 grass leaves, conifer needles; 
Théroux-Rancourt et al., 2020a), and is not limited to the tissues 
extracted above (e.g., resin canals in Fig. 4). Although it was not our 
objective to provide a universal tool to segment with a single model 
multiple leaf types, species, and scanning sessions, we consider this 
framework to have the ability and potential to be adapted and used 
on other plant material (e.g., different types of seeds, fruits, stems, 
and roots) to produce high-quality segmentations.

However, this framework currently has limitations. For example, 
certain tissues are not evenly segmented, do not present the expected 
biological pattern, or present local volume errors, such as veins and 
bundle sheath constricting and expanding where they should be even 
from slice to slice. Using a slice-by-slice, 2D model training and seg-
mentation approach can enhance this, and other machine learning 
methods may perform better on this front (e.g., Çiçek et al., 2016). 
However, we provide a simple tool that can be run on a regular work-
station, without the requirement of special infrastructure such as a 
GPU cluster, for example. This tradeoff was acceptable for the majority 
of our work. Furthermore, models are currently generated for single 
scans and have yielded poor results when applied to other scans, even 
those of the same scanning sessions and the same species (i.e., simi-
lar settings and material). Again, this was an acceptable tradeoff as it 
significantly sped up the processing of microCT scans as mentioned 
above. Finally, other machine learning tools such as ilastik (Berg et al., 
2019) and Trainable Weka Segmentation (Arganda-Carreras et al., 
2017) might require more upfront annotations to reach similar or 
better segmentations than the current pipeline; however, these tools 
may learn more broadly and therefore be able to apply one model to 
multiple scans and thus better exploit the potential of machine learn-
ing. The current pipeline is an acceptable compromise that can be 
used for specific tasks to provide accurate predictions with minimal 
annotation. However, when we used sparse annotations, ilastik and 
Trainable Weka Segmentation gave poor results on our images, most 
probably because of the limited or absence of gray value contrast be-
tween biologically relevant tissues, which further motivated the use 
of the current pipeline. Future milestones would be to implement 3D 
learning to better account for continuous and regular tissues, to make 
the trained model usable for similar scans (e.g., same sessions, species, 
and material), and to test the performance of other classifiers such as 
support vector machine, k-nearest neighbors, and naive Bayes.

To conclude, this segmentation framework allowed us to gen-
erate a considerable amount of segmented leaves over a wide array 
of species (see Théroux-Rancourt et al., 2020a). It has the potential 
to empower researchers to broaden sampling, to ask new questions 
about the 3D structure of leaves, and to derive new and meaningful 
metrics for biological structures.
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