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Technological advancements have led to an exponential increase in omics data generation.

This data presents a unique big-data-to-knowledge challenge and in turn opportunity for analysis

and interpretation. The construct of the pan-genome and its subsets when paired with systems

biology tools, such as genome-scale models of microbial metabolism, offer a variety of means to

generate meaningful predictions from genome sequence alone. The pairing of these frameworks

allows for a scalable, data-driven, comparative approach to study the evolutionary trajectories of

bacterial species. This dissertation focuses on the development and deployment of pan-genome
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analytics tools towards the study of numerous high-threat level microbial pathogens.

Chapter 1 introduces key systems biology techniques and concepts used throughout this

dissertation in particular with regard to the importance of scale of datasets.

Chapter 2 focuses on the generation of a new updated reconstruction for Acinetobacter

baumannii and analysis of gene conservation and catabolic capabilities across the species.

Chapter 3 details comparative genome scale metabolic modeling on multidrug-resistant

strains of Klebsiella pneumoniae and evaluates the ability of metabolic capabilities to inform on

resistance profiles.

Chapter 4 describes the generation of a new reconstruction of Clostridioides difficile and

use of this resource to evaluate the microenvironmental pressures of laboratory isolates as well

as a detailed evaluation of the core-genome of the species.

Chapter 5 delineates the multi-strain reconstruction protocol used in many of the other

chapters and numerous other studies providing this workflow as a resource to the research com-

munity.

Chapter 6 conducts an in-depth update to the BiGG Models knowledge base both im-

proving the scope and diversity of content and integrating new functionalities commensurate with

the directions of the field.

Chapter 7 engages in comparative analysis of Clostridioides difficile strains and details the

development of a novel strain typing method that groups strains based on accessory genomes.

These strain typings are compared in detail to the leading strain-typing schemes within the

epidemiology of C. difficile infection and used to identify defining genetic features.

Chapter 8 provides a reflection on the state of pan-genomic applications and future di-

rections for systems biology.
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Chapter 1

Introduction

Studies of the pangenome have been empowered by an exponentially increasing amount

of strain-specific genome sequencing data. With this data deluge comes a need for new tools to

contextualize, analyze, and interpret such a vast amount of information. Network reconstruc-

tions, genome-scale metabolic models (GEMs), and the corresponding computational analysis

frameworks such as flux balance analysis (FBA) have been proven useful toward this end. Net-

work reconstructions can be used to interpret genomic variation not just from a single strain but

for an entire species. By applying these approaches at the pangenome scale, it becomes possible

to systematically evaluate phenotypic properties for an entire species thus enabling the study

of diverse phenotypes directly from a pangenome. Applying insights gained from analysis of

the genotype to phenotype diversity has far-ranging implications with applications ranging from

human health to metabolic engineering. The future of pangenomics will include linked pheno-

types analyses, thus supplementing traditional pangenomic analyses and helping to address the

big-data-to-knowledge grand challenge of analyzing thousands of genomic sequences.

Conceptualizing differences between strains in a species using the construct of a
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pangenome revolutionized the field of comparative genomics for bacteria [1, 2]. This frame-

work allowed scientists to overcome problems related to species with high genomic variability

and lack of a reference genome. Despite its utility, the pangenome alone cannot be used to

quantify the phenotypic effects of genome variability within a species. Over the past decade,

network reconstructions have become an indispensable tool in molecular systems biology because

of their ability to provide a mechanistic link between experimental studies and computational

analyses [3]. Thus, genome-scale network reconstructions provide an avenue for extending the

power of the pangenome towards evaluating the phenotypic capabilities of a species or the pan-

phenome. High-quality reconstructions can be expanded through bioinformatic techniques to

map information from a reference strain to additional strains of the target organism.

This chapter describes how reconstructions and genome-scale models have been applied

to study the pangenome by predicting all possible phenotypes for strains in a species. Using

these tools, large scale genomic data sets combined with experimental phenotypes can now be

integrated and queried to systematically probe the diversity of strains within a species. Genome-

scale metabolic network reconstructions have been used to delineate conserved and strain-specific

metabolic capabilities as well as relate differences in metabolic capabilities with lifestyle diversity

across a species. This knowledge can effectively be used to define the metabolic potential of a

bacterial species. In this chapter we introduce the following concepts that are fundamental to this

dissertation: (1) The foundation of reconstructions and flux balance analysis; (2) The extension

of these tools using a “multi-strain” approach to calculate metabolic phenotypic potential; and

(3) extension of the multi-strain approach beyond metabolism.
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1.1 Network Reconstructions and Flux Balance Analysis

The growing collections of sequences that have been used to study pangenomes are laden

with valuable information, however, strings of nucleotide bases alone do not make this information

easily accessible or immediately apparent. Thus, there is a critical need for tools that can be used

to interrogate this massive amount of data to generate new knowledge. Genome-scale network

reconstructions in concert with flux balance analysis (FBA) provide such a tool. This section

describes the process of reconstruction as well as mathematical approaches that can be used to

query and compute with reconstruction, in particular, FBA.

1.1.1 Network Reconstructions Structure Biological Knowledge

Genome-scale reconstructions are organism-specific knowledge-bases. They are built sys-

tematically using a quality controlled bottom-up workflow that incorporates genome annotation,

omics data sets, and legacy knowledge. The literature detailing construction and analysis of net-

work reconstructions is extensive [4–6]. In brief, these tools organize knowledge into a structured

format linking genes, gene products and cellular components. Reconstructions can be made for

several cellular processes including transcriptional regulation [7, 8], expression [9] and metabolism

[10]. The reconstruction approach is iterative and thus all reconstructions are continually im-

proving as new knowledge is generated. Thus, reconstructions serve as a valuable resource to

integrate and reconcile biochemical data allowing researchers to collaborate, test, and readily

share new hypotheses about functions in a target organism [11].

Reconstructions of cellular metabolism have been the most developed and extensively used

type thus far [3]. Metabolic network reconstructions are comprised of all known metabolic genes,

their encoded proteins and catalyzed reactions. All of this information is assembled from a range

3



of sources including organism specific databases, high-throughput data, and primary literature

[5]. This process can also be partially automated [12, 13]. Establishing a set of the biochemical

reactions that constitute a reaction network in a target organism culminates in a database of

chemical equations. Reactions are then organized into pathways, pathways into subsystems, and

ultimately into genome-scale networks; thus representing biological processes at multiple scales.

Network reconstructions represent an organized process for genome-scale assembly of disparate

information about a target organism. All this information is put into context with the annotated

genome to form a coherent whole. Today, there exist collections of genome-scale reconstructions

for a number of target organisms across the tree of life [11, 14]. For example, as of 2018 there are

178 available, curated reconstructions spanning the tree of life. While this coverage is impressive,

several other phyla remain devoid of any reconstruction initiative. To fully extend the study of

pan-phenomes to all sequenced organisms, new reconstruction efforts must be initiated [11].

1.1.2 Flux Balance Analysis Enables Computation of Phenotype from Geno-

type

Reconstructions alone are static, and unable to be used for predictions. A major value of

the metabolic reconstructions emerges when they are converted into a mathematical format, thus

becoming amenable to computational interrogation using a variety of computational methods [15,

16]. This conversion translates a reconstructed network into a chemically accurate mathematical

format that becomes the basis for a genome-scale model (GEM). This conversion requires the

mathematical representation of metabolic reactions. The core feature of this representation is

tabulation, in the form of a numerical matrix, of the stoichiometric coefficients of each reaction.

These stoichiometries impose systemic constraints on the flow of metabolites through the network
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represented as balances or inequalities for bounds [17]. Further constraints can be added to a

network such as thermodynamic reversibility constraints and limitations to nutrient uptake or

byproduct secretion. Computationally predicted network states that are consistent with all

imposed constraints are thus candidate physiological states of the target organisms under a given

defined condition.

Flux balance analysis (FBA) can be applied to these models for prediction of an organ-

ism’s phenotype. This mathematical approach for analyzing the flow of metabolites through a

metabolic network is the original constraints based method [15]. This approach relies on an as-

sumption of steady-state growth and mass balance. FBA uses the stated objective (for example,

biomass production, e.g. growth) to find the solution(s) using linear programming that optimize

the objective function [4]. The inner workings of a GEM are readily understood conceptually. In

a given, defined environment, GEMs can be used to compute network outputs based on defined

inputs. FBA can computationally trace a fully balanced path through the reactome from the

available nutrients to the prerequisite output metabolite. Using FBA, a GEM can compute the

balanced use of the reactome to produce all the prerequisite metabolites for growth simultane-

ously, and does so in the correct relative amounts while accounting for all the energetic, redox,

and chemical interactions that must balance to enable such biomass synthesis [4].

Using this technique, a variety of phenotypes such as the effect of gene knockouts, metabo-

lite secretion and growth capabilities on different substrates can be predicted rapidly and com-

pared to experimental results to verify their accuracy [18]. Some of the best models have accura-

cies greater than 90% in agreement with experimental data [19, 20]. In this way GEMs provide

a way to bridge the genotype to phenotype gap by providing a robust platform for analyzing the

integrated mechanisms of gene products to produce unique phenotypic states. The utility of a
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highly-curated GEM and the corresponding computational analyses is increased by the format’s

scalability. Through this methodology, phenotypes for the plethora of sequenced strains within

a species become readily calculatable. In the next section we will highlight how high-quality

reconstructions for a single strain can be extrapolated onto several strains of the same species to

study the phenotypic potential of the pangenome and to gain insight into strain-specific metabolic

capabilities.

1.2 The Multi-Strain Approach: Extending Genome-Scale Mod-

els to Robustly Explore the Pangenome Phenotypic Space

Once a high-quality reconstruction and genome-scale model exist, its contents (e.g. genes,

metabolites, and reactions) can be mapped onto other, closely related strains in a species. Fol-

lowing this multi-strain approach, tools from comparative genomics [21] can be integrated with

genome-scale modelling to identify genetic determinants underlying variability at the phenotypic

level. Such a task is crucial to understand the evolutionary trajectories of a bacterial species.

Recently, genome-scale metabolic models of different strains have been assembled to highlight the

intra-species diversity at the metabolic level. Strain-specific metabolic capabilities and auxotro-

phies can be predicted and used to study capabilities related to the lifestyle diversity of a bacterial

species. This approach is scalable to the pangenome level and in turn enables pan-phenome anal-

ysis, thus empowering species-wide comparative systems biology. This multi-strain approach has

been applied to several species in a variety of studies and we provide a brief overview of the key

insights here. Further the process is formalized and described in detail within Chapter 5.
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1.2.1 Genesis of the Multi-Strain Approach: Studying Escherichia coli

The first instance of the multi-strain approach as described here was executed by Monk

et al. where the authors leveraged a curated genome-scale model of E. coli K-12 MG1655 that

has been continually updated over 15 years to construct genome-scale models of 55 other fully

sequenced E. coli strains [22]. Using FBA on all 55 of these models the authors were able

to extensively investigate the predicted metabolic capabilities of all the strains. The authors

delineated strain-specific auxotrophies and substrate preferences amongst the set of strains. It is

important to note that these predictions and insights were gained from sequence alone. Further,

this study demonstrated the possibility of applying this approach to understand cases of patho-

adaptation to a given environment and evaluate a given strain’s infectious niche.

Further work scaled up the effort to include 1200 strains of E. coli and demonstrated a

large amount of variability within the species both in gene content and consequent variability

of gene products [19]. It also utilized the differences across the 1200 strains to construct a

robust classification tree for determination between extra-intestinal and intra-intestinal pathogens

using predicted metabolic phenotypes. This type of classification schema opens the door to

investigating how strain-specific traits impact the microbiome. An in-depth example of such

analyses came in a study by Fang et al into the metabolic capabilities of inflammatory bowel

disease (IBD) associated E. coli strains in the B2 clade [23]. The authors found these strains

have advantages in catabolizing sugars derived from mucus glycans. The interesting and novel

outcomes of these E. coli studies clearly demonstrated the value of the approach, and the natural

next step was to apply the methodology to other species.
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1.2.2 Expanding the Reach of Multi-Strain Approach Across the Phylogenetic

Tree

Numerous studies followed the first E. coli studies that focused on various organisms.

Fouts et al applied the multi-strain approach, broadened to examine various species of Lep-

tospira known to have ranging levels of pathogenicity [24]. They demonstrated that the ability

to synthesize vitamin B12 is limited to pathogenic species of Leptospira and may give them a

survival advantage in a human host where B12 is sequestered by the body. This valuable dis-

tinguishing metabolic capability was captured by being able to leverage the base reconstruction

across multiple species in the genus.

In 2016 Bosi et al applied the workflow to 64 strains of Staphylococcus aureus. Beyond

reconstructing metabolic capabilities they extended the approach to identify virulence factors

in the set of 64 strains [25]. By using a combination of predicted metabolic capabilities linked

to virulence factors, they were able to stratify the strains by host-type. This study added an

additional layer to the promise of the multi-strain approach by showing that metabolic capabilities

could be analyzed in concert with other components of the pangenome, namely virulence factors

(toxins, adhesins, etc.), and that this combination held predictive power about a strain’s host.

This study also included explicit calculation of the core and pangenome content of S. aureus, a

metric of genomic diversity amongst strains in a species.

The multi-strain approach has also been applied to other pathogens such as Acinetobacter

baumannii and Salmonella. The study on A. baumannii is detailed within Chapter 2. Seif et

al built strain-specific models for 450 Salmonella strains from various serovars to show that

metabolic capabilities can be used to distinguish these serovars [26]. This study indicates that

host-range may be limited by metabolic capabilities of different strains.
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1.2.3 Extending the Multi-Strain Approach to Investigate Additional Biolog-

ical Qualities

The multi-strain framework provides an inherently efficient means of interrogating the

properties of many strains and a few studies have utilized this organizational efficiency to gain

insight into properties outside of direct metabolic capabilities. For example, Choudhary et al

examined the agr type of 400 S. aureus strains to examine the structure of genes within the

genome [27]. The authors found that genomic virulence factor profiles are highly correlated

with agr type. They also identified that divergence in histidine kinase protein confers signal

specificity with clear differences in protein structural properties based on agr types. Another

example of additional properties is the investigation of reactive oxygen species (ROS) tolerance.

By leveraging the multi-strain approach in conjunction with 3D structures Mih et al was able

to simulate ROS production levels to demonstrate that antioxidant properties are exhibited in

the structural proteome (Mih et al. 2018). A third example was conducted by Kavvas et al,

who took a deeper level of resolution within the genome by looking at the unique alleles present

within Mycobacterium tuberculosis genomes [28]. Through machine learning techniques on the

pangenome they were able to associate certain alleles potentially responsible for antimicrobial

resistance. The results hint at metabolic rewiring at the allelic level required for adaptation to

antibiotic resistance.
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1.3 Moving Beyond Metabolism: Multi-Scale Approaches to

Species Diversity

This chapter details a computational approach (reconstruction and FBA) to systemat-

ically calculate metabolic phenotypes for multiple strains in a species. Beyond calculation of

metabolic phenotypes, new techniques, both experimental and computational, offer exciting new

avenues for research into the pangenome. These approaches can be applied at multiple different

scales. At the lowest level, single nucleotide variants (SNV) can be compared across strains using

sequence mapping toolkits like breseq and gatk [29, 30]. These techniques can be scaled up from

single base changes to full gene sequences to compare orthologous ORFs across genomes by com-

paring sequence-specific alleles across strains in a species or the alleleome. As described here, the

presence/absence of given enzyme-encoding metabolic genes can be used to build strain-specific

metabolic reconstructions that compute metabolic phenotypes. While most of the applications

described here are applied to pathogens with relevance to human health, it is important to note

that the pangenome can also be studied for use in metabolic engineering applications. For ex-

ample, the pangenome can be mined to search for enzymes of interest to industrial microbiology

[31].

In the future, processes beyond metabolism will also be reconstructed allowing for full

panphenome calculations. For example, reconstructions of expression mechanisms already exist

[9] and have been integrated with models of metabolism (ME models) [32].These models account

for the transcription and translation processes and molecular constituents required to express

enzymes catalyzing metabolic reactions in the metabolic network. In the future, multiple ME

models of strains in a species will further expand the scope of computation possible on contents
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of the pangenome.

Beyond metabolism and expression, regulatory networks are another aspect of the

pangenome that differ between strains and have been reconstructed for individual strains [7,

8]. Understanding how certain strains regulate the same set of genes (core-genome) as well as

diverse sets of genes will further expand our understanding of the structure and function of the

pangenome. A small scale study of seven E. coli strains and their RNA-seq expression profiles

in aerobic and anaerobic environments showed remarkably different expression levels even for

shared genes of the core-genome [33]. Studying differentially expressed genes and the transcrip-

tion factors known to regulate them may lead to discovery of alternative regulatory strategies

between strains in a species.

Just as sequences databases have grown tremendously in recent years, 3D crystal struc-

tures for the encoded genes have also grown dramatically [34]. The protein data bank [35] (PDB)

is a repository of protein structures and these structures can now be integrated with genome-

scale models (GEM-PRO) [36]. Building multi-strain models with associated protein structures

is another way to compare strains across a species. Using these tools, sequence diversity can

be examined at the 3D level to see how mutations line up in 3D space, a level of analysis not

possible at the sequence level. Furthermore, mutations in specific regions of the protein can be

tabulated and compared across strains [37].

Finally, a multi-strain approach should prove useful for studies of the microbiome. Multi-

ple genome-scale models for species found in the microbiome already exist [38]), and GEM studies

were proven effective in studying the impact of diet [39] and interactions between microbes [40].

Expanding the multi-strain approach to study diverse strains in these species may lead to deeper

level understanding of the gut-microbiome composition. Indeed, strain-level metagenomics is

11



coming [41] and expanding study of the pangenome to the microbiome will have fruitful applica-

tions in the near future.

We must also acknowledge some caveats and risks to the multi-strain approach. First,

all of these approaches require high-quality sequence data connected to high-quality, QC/QA

data generation. The success of reliable and maximally effective future pan-phenomics rests on

ensuring this quality. There must be a continued effort to ensure that sequencing projects are

of quality not only quantity. Additionally, an interesting question pertaining to the concept of

closed pangenomes is how will the law of diminishing returns be exhibited in these sequence

deposits. Will a point be reached where additional sequences provide no novel information?

Further, the vision of the pan-phenome and its implications to understanding how microbial

pathogens impact human health will rely on both the availability of metadata and the deposition

of strains. Metadata on these strains will only deepen the possible questions to be asked of both

pangenomes and panphenomes. A centralized repository of strains will also greatly expedite the

experimental verification needed for such large computational predictions. The future of the

panphenome is apparent and with it further explanations at the center of biological causality.

1.4 Perspective

Significant advancements in DNA sequencing technology have led to an exponential in-

crease in the number of sequenced strains. This creates a need for new ways to integrate and

analyze this ever-increasing amount of sequence information. This need will only intensify as

the number of sequenced strains within a species continues to grow exponentially. This chapter

demonstrates how the pangenome is evolving from a theoretical concept to a queryable construct.

In this chapter, we describe the foundational aspects of GEMs and FBA and their use to
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predict phenotypic states for multiple strains in a species. The multi-strain approach has proven

useful in extending this utility in a number of studies providing evolutionary insights as well as

practical applications. As the library of available sequences continues to grow, the possibility

of scaling these techniques to the level of the pangenome across the tree of life is becoming

a reality. The ability to systematically characterize an entire species’ phenotypic capabilities

will enhance the depth of pangenome analysis possible and pull valuable information inherent

to genome sequences to the forefront. The linkages and distinct features at the pangenome

scale for a species offer obvious value for future knowledge generation, especially pertaining

to human health and disease. Further, the future potential applications outlined here such as

inclusion of expression, regulation, and structures into these workflows will only further advance

the scope of genome-scale science. Genome sequences are laden with critical information and the

tools/workflows described in this dissertation provide a means for extracting this information

into actionable knowledge.

Each chapter in this dissertation details a systems biology approach towards analyzing a

pathogenic species or details the development of computational techniques and resources critical

to these approaches. Taken together, the results presented advance both the knowledge for each

pathogen of interest as well as the toolkit available for pangenome analytics.
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Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlić, A., Sastry, A., Danielsdottir,
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Chapter 2

iCN718, an Updated and Improved

Genome-Scale Metabolic Network

Reconstruction of Acinetobacter

baumannii AYE

2.1 Abstract

Acinetobacter baumannii has become an urgent clinical threat due to the recent emergence

of multi-drug resistant strains. There is thus a significant need to discover new therapeutic

targets in this organism. One means for doing so is through the use of high-quality genome-scale

reconstructions. Well-curated and accurate genome-scale models (GEMs) of A. baumannii would

be useful for improving treatment options. We present an updated and improved genome-scale
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reconstruction of A. baumannii AYE, named iCN718, that improves and standardizes previous

A. baumannii AYE reconstructions. iCN718 has 80% accuracy for predicting gene essentiality

data and additionally can predict large-scale phenotypic data with as much as 89% accuracy, a

new capability for an A. baumannii reconstruction. We further demonstrate that iCN718 can

be used to analyze conserved metabolic functions in the A. baumannii core genome and to build

strain-specific GEMs of 74 other A. baumannii strains from genome sequence alone. iCN718 will

serve as a resource to integrate and synthesize new experimental data being generated for this

urgent threat pathogen.

2.2 Introduction

Acinetobacter baumannii has recently emerged as a deadly nosocomial threat with rising

rates of both infection and antibiotic resistance. Reports using data from hospital-based surveil-

lance studies as well as from the Infectious Diseases Society of America have begun to refer to

a dangerous group of nosocomial pathogens, including A. baumannii, as “ESKAPE pathogens”

[1]. A. baumannii in particular is known for its highly persistent and opportunistic nature, most

often resulting in hospital-acquired pneumonia while also having the ability to infect various

other tissues [2]. Organisms of the genus Acinetobacter inhabit a wide variety of environments,

ranging from humans to water and soil [3]. These diverse environmental niches are reflected in

the genomic content of the organisms as well as their metabolic capabilities. Acinetobacter are

Gram-negative, aerobic, and non-motile. Pathogenic A. baumannii antibiotic resistance has risen

from a susceptible level in the 1960s to extended and pan-drug resistant today [4]. As such, the

need for new treatment targets and strategies is dire.

Genome-scale models (GEMs) of metabolism have been used to discover new drug targets
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[5] and pursue novel treatment options. Genome-scale metabolic reconstructions offer an estab-

lished framework for systems-level analyses of an organism’s metabolism [6]. GEMs provide a

formal way to link genotype to phenotype and mechanistically analyze the metabolic capabilities

of organisms. A previous reconstruction of the metabolic network of A. baumannii AYE was

undertaken and produced: AbyMBEL891 [5]. This reconstruction provided a valuable starting

point for the progress and use of GEMs to study the pathogenic nature of A. baumannii. However,

one issue that has limited the use of this and other reconstructions is the lack of standardization

in identifiers for metabolites and reactions [7]. Since the publication of AbyMBEL891 in 2010,

numerous studies have produced new data [8–10] that provide an opportunity to update this

A. baumannii reconstruction, allowing for more accurate representations of its physiology. One

such study was a high-quality reconstruction of A. baumannii ATCC 19606, iLP844, that served

as a valuable resource for model improvements [10]. Furthermore, given that Acinetobacter is

known to populate a diverse array of environments, particularly hospitals, it is likely that diverse

metabolic capabilities may be present throughout the different strains in this species.

We present iCN718, a new and updated GEM of A. baumannii AYE. This reconstruc-

tion utilizes AbyMBEL891 as a foundation. We validated our model by comparing phenotypic

predictions made by iCN718 to those made by AbyMBEL891. We extended our analysis to

additional datasets published after AbyMBEL891. We assessed iCN718 on its ability to predict

both gene essentiality and to recapitulate experimental growth capabilities. We then utilize this

reconstruction to create draft models of 74 other A. baumannii strains from their sequence data

alone. We leverage the reconstruction to produce draft models to gain insight into these other

strains and the species as a whole. Thus, iCN718 offers a framework for sequence-to-model com-

parisons. Our updated model of A. baumannii will provide new opportunities to advance the
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understanding of pathogenic microbes and their interactions with human hosts.

2.3 Results and Discussion

2.3.1 Workflow for Network Reconstruction

We began the metabolic network reconstruction process by updating AbyMBEL891. We

found that the AbyMBEL891 reconstruction could be updated and improved in three main ar-

eas: (1) standardization of reaction and metabolite identifiers to increase the tractability of the

network, (2) mass and charge balance metabolic reactions, and (3) transport processes. Before

updating and improving the reconstruction, we recognized that it was necessary to translate

AbyMBEL891 into a format that could be more readily analyzed. We obtained a draft recon-

struction of A. baumannii AYE using the ModelSeed database [11]. We then cross-referenced

draft reconstruction reactions against AbyMBEL891 and utilized additional databases to map

all reactions and metabolites to the standardized BiGG format [12]. Additionally, we added the

curated gene product rules (GPRs) from AbyMBEL891 into iCN718 to improve ease of simula-

tion [10]. The resulting model was then continually and iteratively improved through manual

curation of new organism knowledge in the literature published since the release of AbyMBEL891

(See section “Materials and Methods” and Figure 2.1).

iCN718 comprises 718 genes, 1016 reactions, and 890 metabolites compared to the 650

genes, 891 reactions, and 770 metabolites in AbyMBEL891. The majority of the difference in

reactions included arises from the inclusion of exchange reactions in iCN718 as well as revamping

the transport reactions. The reversibility of reactions within iCN718 was referenced against

the reversibility of corresponding reactions in a recently published model of A. baumannii ATCC
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19606, iLP844 [10]. In some cases, reaction reversibility was changed to reflect the state in iLP844.

Reversibility was corroborated with iLP844 for a set of about 50 reactions and edited accordingly.

iLP844 was also used to identify GPRs for transport reactions present in both models, leading to

the inclusion of 66 new genes in iCN718. Further, new reactions that were missing in the original

reconstruction were added in peptidoglycan biosynthesis, propanoate metabolism, and glycolate

catabolism. The end product of iCN718 is a reconstruction of A. baumannii AYE that rectifies

issues with AbyMBEL891 regarding identifiers, reversibility of reactions, transport/exchange

reactions, and mass/charge balancing. Well-curated identifiers were added for every reaction in

the network. Thus, iCN718 provides an improved knowledge-base for the study of A. baumannii.

Figure 2.1: Workflow of the reconstruction process. The starting reconstruction, AbyMBEL891,
was cross referenced against a draft model generated utilizing ModelSEED [11]. Next, the re-
construction was standardized using various databases mapped to standard BIGGs IDs. This
process was followed by manual curation based on current literature on the organism, aided by
the use of ESCHER to visualize pathways throughout the process. Finally, the model was evalu-
ated against experimental datasets and compared to iLP844 a model of Acinetobacter baumannii
ATCC 19606 to further improve the reconstruction. The model was iteratively evaluated against
gene essentiality and phenotypic datasets to improve the reconstruction accuracy.

After completing the reconstruction of iCN718, we calculated the metabolite connec-

tivity to evaluate the network structure for both iCN718 and AbyMBEL891 [13]. Metabolite

connectivity refers to the number of reactions in which a metabolite participates. Given that

metabolites are the nodes of the network connected by reactions, this metric reveals the con-

nectivity of a metabolic network. We compared the metabolite connectivities of iCN718 and
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AbyMBEL891 (Supplementary Figure A.1) and found that overall, the networks were compara-

ble, but these plots do not visualize dead-end metabolites (i.e., metabolites with a connectivity of

one). iCN718 has four dead-end metabolites whereas AbyMBEL891 has 145 dead-end metabo-

lites, demonstrating that iCN718 is more highly connected overall. The increase in connectivity is

a result of converting to BiGG standard identifiers which improves the regularity of the network.

2.3.2 Functional Evaluation of iCN718

Our first functional evaluation of iCN718 consisted of analyzing its accuracy in predicting

gene essentiality for three datasets (Figure 2.2). The most comprehensive essentiality dataset

available was used [9]. This complete TN-seq essentiality dataset was conducted with A. bauman-

nii AB5075 and is particularly valuable because it is of genome scale and every gene in iCN718

has an ortholog. iCN718 was able to achieve 80.22% accuracy (Figure 2.2). Unfortunately, given

the lack of GPRs in AbyMBEL891, we were unable to analyze its performance on this dataset.

We also evaluated iCN718’s performance on the two datasets originally used to validate AbyM-

BEL891. The first was an insertional mutagenesis dataset with A. baumannii ATCC 19606 by

Dorsey et al. [14] on a set of 14 mutants. We repeated the same knockouts in silico as done in

the original experiment and found that iCN718 was able to correctly predict 100% (14/14) of the

mutant cases as did AbyMBEL891. The obvious limitation of this dataset is that it is on such a

small scale. The second dataset used to validate AbyMBEL891, by de Berardinis et al. [15], was

a complete, genome-scale set of single-gene deletions in Acinetobacter baylyi ADP1. iCN718 fell

short in predictive ability on this dataset compared to AbyMBEL891 (Figure 2.2), with 68% and

72% accuracy, respectively.

The higher predictive accuracy on the Gallagher dataset compared to the de Beradinis
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Figure 2.2: Gene essentiality and growth predictions (A) iCN718 was used to predict gene
essentiality. The results were compared to the de Berardinis et al. [15] experimental dataset
with 68% accuracy. (B) iCN718 predicted gene essentiality results compared with the Gallagher
et al. [9] dataset exhibited 80% accuracy. It is worth noting that the Berardinis dataset was of
Acinetobacter baylyi ADP1 and therefore not every gene in iCN718 had an orthologous gene in the
essentiality dataset. Green represents correct predictions, red represents incorrect predictions.
The Gallagher dataset is from Acinetobacter baumannii strain AB5075 of which there is an
ortholog for every gene within iCN718. Model-predicted ability to catabolize various sole carbon
(C) and sole nitrogen (D) sources compared to the Farrugia et al. [8] Biolog Phenotypic Array
data for Acinetobacter baumannii AYE exhibited 89% and 84% accuracy, respectively. Blue
represents correct predictions, orange represents incorrect predictions. Only compounds readily
mapped to model metabolites were included from the Biolog data.
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dataset is encouraging because strain AB5075 is a clinical isolate like AYE whereas A. baylyi

ADP1 is a soil strain. The disparity in genomic content between A. baumannii AYE and A.

baylyi ADP1 is evident in the limited number of genes in iCN718 that have an ortholog. Despite

the limitations of the original two datasets, whether it be scale or lack of similarity, it was

important to test iCN718’s ability to recapitulate the capabilities of AbyMBEL891. Overall,

iCN718 performed the same as AbyMBEL891 on the datasets originally used for validation.

Further, there is more agreement of genes with a dataset on a strain that is closer to the target

of the reconstruction. It is reasonable to conclude from these gene-essentiality results that at a

minimum, iCN718 performs in line with AbyMBEL891 in regard to gene essentiality and more

likely is superior in predictive capability. An obvious avenue for further improvement of the

reconstruction would be to develop a gene essentiality dataset for strain AYE.

We further extended our assessment of iCN718 to large-scale phenotypic data. By uti-

lizing the Biolog Phenotype Microarray data published by Farrugia et al. [8], we were able to

iteratively improve iCN718 through manual curation for discrepancies. The model had encourag-

ing agreement at the end of this process for sole carbon and nitrogen sources readily tractable to

the model (116 total; Figure 2.2). Growth rates were calculated in Simmons’ Minimal Medium

and iteratively investigated for each carbon or nitrogen source in the microarray wet lab ex-

periment. The model result of growth or no growth determined by optimizing for the biomass

function was compared to the data from the microarray (Supplementary Tables A.1 A.2). For

the carbon sources tested on the microarray plate, 73 metabolites were analyzed and showed

that iCN718 has 89.1% agreement with the experimental data. Likewise, for nitrogen sources, 43

metabolites were screened with 83.7% agreement. Importantly, out of all the datasets used for

validation of the reconstruction, this microarray data was the only set executed with the strain
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of interest, A. baumannii AYE. Therefore, this dataset was particularly valuable for insight into

the capabilities of this specific strain.

We have demonstrated that iCN718 performs as well as AbyMBEL891 on datasets origi-

nally used to validate AbyMBEL891. We note that these datasets suffer from limitations in that

they are either not genome scale or are not of an ideally similar species to the strain of interest.

To expand the validation of iCN718 and address these limitations, we analyzed a genome-scale

set of gene essentiality data of another A. baumannii clinical strain and found a reasonably

high level of agreement. Further we analyzed iCN718’s agreement with phenotypic microarray

experiments conducted with strain AYE. iCN718’s ability to capture this growth behavior is a

major improvement over AbyMBEL891, which fails to simulate on the minimal media conditions

corresponding to these experiments. Overall, we showed that iCN718 maintains comparable

performance on the original datasets used for validation, has a higher agreement with gene es-

sentiality data for a more closely related strain, and is able to correctly predict phenotypic growth

experiments (Figure 2.3). We used the model to perform synthetic lethals analysis to generate

new predictions. Briefly this resulted in 49 synthetic lethal gene pairs that include 62 unique

genes. These genes correspond to reactions involved in fatty acid metabolism, purine metabolism,

glycine/serine/threonine metabolism, phenylalanine/tyrosine/tryptophan biosynthesis, TCA cy-

cle, lysine degradation, glycerophospholipid metabolism, glycolysis, pyrimidine metabolism,

nicotinate/nicotinamide metabolism, riboflavin metabolism, pentose phosphate pathway, cys-

teine metabolism, and methionine metabolism. Synthetic lethal gene pairs are reported in Sup-

plementary Table A.4.
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Figure 2.3: Summary of AbyMBEL891 and iCN718 Performance. Overall performance of
iCN718 compared to a previous Acinetobacter baumannii AYE reconstruction (AbyMBEL891).
Both models perform similarly on the datasets originally used to validate AbyMBEL891; however,
the ability to simulate sole carbon and nitrogen sources in minimal media is exclusive to iCN718.
AbyMBEL891 could not be simulated with the Gallagher dataset and was incapable of growth
in the conditions of the Farrugia dataset.

2.3.3 Pan-Genome Analysis of A. baumannii using iCN718

A GEM can be used to investigate the capabilities of organisms across multiple strains.

We applied these principles using iCN718 to explore the different genotypes and phenotypes

within the A. baumannii species. There are 75 full complete sequences of A. baumannii available

on the PATRIC database [16]; these range from a wide variety of isolation countries and are

largely isolates from a clinical/human setting (See Supplementary Table A.5). We collected the

annotated open reading frames (ORFs) from each of these genomes and used CD-HIT [17] to

assign their coding sequences into clusters of at least 80% similarity. Clusters that were found

in at least 74 of the 75 strains were determined to be core genes, while those found in only some
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of the strains were designated as accessory genes. In total, 24% (2448/10200) of the genes were

found across all strains (core genome) while 76% (7752/10200) were part of the accessory genome

(Figure 2.4). We further classified the core genome by clusters of orthologous groups (COGs)

and found that while a large group (21%) had unknown functions, the remaining 79% of the

core genome had a widely varied classification spanning 19 other COG categories. Overall the

core genome had 33% COGs pertaining to metabolic functions. Particularly interesting was that

8.9% of the core genome was composed of functions in amino acid transport and metabolism

(category E), suggesting that this area of metabolism might be particularly conserved over these

strains of A. baumannii. We also classified the pan genome and note that roughly half could not

be COG classified and almost half of that classified portion was classified as having unknown

function (Supplementary Figure A.2). This suggests that more robust study and classification of

these strains is necessary.

After analyzing the full set of annotated ORFs across the 75 strains, we were particularly

interested in applying the iCN718 reconstruction to construct draft strain-specific models of

them. To accomplish building these draft models, we determined presence or absence of the 718

genes in the reconstruction of AYE and deleted genes accordingly for the other 74 strains. After

this process, we had a measure of the “metabolic pan-genome” as it relates to the genes contained

within iCN718. Utilizing the same thresholds, we found that 86% of the genes in iCN718 were

considered to be core to all 74 additional strains. Therefore, much of the metabolism represented

in iCN718 is maintained in these strains. Three genes were unique to strain AYE within the

iCN718 reconstruction: p3ABAYE0029, p2ABYAYE0004, and ABAYE3614. Noting that most

of the iCN718 reconstruction was determined to be part of the core metabolic function for all

75 of these strains, we decided to investigate each strain-specific model’s metabolic capabilities.
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Figure 2.4: Pan and Core Genome of Acinetobacter baumannii. The total number of gene
clusters in 75 Acinetobacter baumannii strains (pan-genome) compared to those that are shared
among all strains (core-genome). In total, 76% of the clusters are classified as accessory and 24%
as core. The core genome was functionally classified into COG categories. COG categories are as
follows: Cellular processes and signaling: D is cell cycle control, cell division, and chromosome
partitioning; M is cell wall/membrane/envelope biogenesis; N is cell motility; O is posttrans-
lational modification, protein turnover, and chaperones; T is signal transduction mechanisms;
U is intracellular trafficking, secretion, and vesicular transport; V is defense mechanisms; W
is extracellular structures; Y is nuclear structure; and Z is cytoskeleton. Information storage
and processing: A is RNA processing and modification; B is chromatin structure and dynamics;
J is translation, ribosomal structure, and biogenesis; K is transcription; and L is replication,
recombination, and repair. Metabolism: C is energy production and conversion; E is amino
acid transport and metabolism; F is nucleotide transport and metabolism; G is carbohydrate
transport and metabolism; H is coenzyme transport and metabolism; I is lipid transport and
metabolism; P is inorganic ion transport and metabolism; and Q is secondary metabolite biosyn-
thesis, transport, and catabolism.

We were additionally interested in analyzing which genes from iCN718 were lost most often

(Figure 2.5). The full clustermap of deletions is available in Supplementary Figure A.3. Genes

involved in fatty acid metabolism were by far the most highly represented subsystem exceeding

the number of genes in the next highest-represented subsystems, butanoate metabolism and folate

biosynthesis, by 47 genes.

Originally, only three of the 74 strain-specific models could simulate growth and the
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predominantly determining factor of this was the inability to produce lipopolysaccharide (LPS).

This result is unsurprising given that LPS is known to vary from strain to strain [18]. The

strains that could still synthesize LPS were A1, AB0057, and AB307-0294, suggesting that these

strains may have similar LPS compositions to strain AYE. After recognizing LPS as the main

limitation to growth for the majority of the strains, we removed LPS from the biomass function

for the remaining strains to investigate other properties. With LPS removed, all but four strains

could grow. The four strains unable to grow were, as expected, the four strains with the most

deletions from the original AYE model. Interestingly, the one strain that was not isolated from

a human, SDF, was instead isolated from lice and required 71 more deletions than the next

highest dissimilar strain. This suggests that Acinetobacter are indeed highly adaptable to varying

environments in their metabolic capabilities and that an expanded pan-genome analysis with a

higher number of varied strain environments would yield interesting insights.

We then looked at every strain’s ability to grow in the same minimal media conditions with

sole carbon and nitrogen sources on which iCN718 was originally tested. All of the strains that

could grow without LPS in the biomass function maintained the carbon and nitrogen catabolic

capabilities exhibited by AYE in iCN718. This analysis is limited in that we are dealing with

draft strain specific models, which are all derived from the content common to iCN718. To

account for additional capabilities of each strain requires more data and deeper study of these

strains. However, this approach demonstrates that with one high-quality reconstruction, insight

can be gleaned into a large number of strains from their sequences alone.
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Figure 2.5: Analysis of least conserved genes (A) Clustermap of the genes most deleted from
each strain-specific model and (B) the corresponding subsystems of the reactions these genes
code for.

2.4 Conclusion

Acinetobacter baumannii is an urgent clinical threat for which treatment is becoming

increasingly difficult. High-quality GEMs of strains of A. baumannii can be an important tool to

accelerate the advancement of new treatments. We updated and improved a previous reconstruc-

tion, AbyMBEL891, to produce a new reconstruction, iCN718. We tested iCN718 on multiple

gene essentiality datasets as well as phenotypic microarray data. We demonstrated the utility

of iCN718 and GEMs to gain further insight into related strains through their sequences alone.

iCN718 is in a standardized and curated format that lends itself to further use by the community

studying Acinetobacter, as well as in future multi-strain reconstructions of diverse A. baumannii

strains. We demonstrated that iCN718 represents a significant improvement on AbyMBEL891

and a critical step in the progress toward a truly comprehensive knowledge-base for A. bauman-

nii. As the knowledge of this organism continues to grow, iCN718 will provide a platform for the

integration of further knowledge and data as well as a tool for future investigations.
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2.5 Materials and Methods

2.5.1 Reconstructing iCN718

We first obtained a draft metabolic reconstruction of A. baumannii AYE utilizing the

ModelSeed [11]. AbyMBEL891 was then referenced against this draft reconstruction to com-

pare for the content of each reconstruction. Additional databases (ExPASy, KEGG, MetaNetX,

BiGG) were used to refine the reconstruction and obtain a reconstruction utilizing standard-

ized BiGG identifiers [12, 19–21]. The result was a draft reconstruction in BiGG format built

upon AbyMBEL891, the draft reconstruction via ModelSeed, and information from the afore-

mentioned databases. To obtain the most accurate final model, this draft reconstruction was

then extensively manually curated. This process involved investigating the current literature

and rectifying inconsistencies present in the reconstruction. We determined and subsequently

filled gaps identified through topological gap analysis and flux-based functional tests. The path-

way visualization tool, ESCHER, was instrumental in this gap analysis [22]. We also utilized

the GrowMatch algorithm to obtain potential reactions to fill identified gaps [23]. Additionally,

the recently published model of A. baumannii ATCC 19606, iLP844, was used as an additional

resource for cases of conflicting information amongst the aforementioned sources [10]. iLP844

was particularly used to check reaction reversibility. The model content was further improved

by comparing it to numerous experimental datasets. In particular, iLP844 was used to confirm

reaction reversibility. The model content was further improved by comparing it to numerous ex-

perimental datasets and making iterative improvements to increase agreement with experimental

data. The manual curation was an iterative process and as such was continuously repeated to

yield the highest quality reconstruction possible.
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2.5.2 Constraint-Based Modeling

The network reconstruction was converted to a mathematical representation formed from

the stoichiometric coefficients of the biochemical reactions. This stoichiometric matrix, S, en-

capsulates in its columns each mass- and charge-balanced reaction of the network, while each

row represents a specific metabolite. The model is assumed to be at homeostatic state (S*V=0).

Thermodynamic constraints for network fluxes are incorporated in the form of bounds that incor-

porate directionality of reactions. The reconstructed model was analyzed with CoBRApy-0.6.1

(COnstraints-Based Reconstruction and Analysis for Python; [24]) and GLPK 4.32 solver. Flux

balance analysis (FBA) is a well-established optimization technique and was used in this study.

For a primer on FBA, refer to Orth et al. [25].

2.5.3 Gene Essentiality

Gene essentiality predictions were determined by simulating single gene deletions of each

applicable gene in the model depending on the dataset in question. Growth of the single gene

deletion mutants was predicted using FBA and if, following a gene deletion, there was no growth,

this gene was determined to be essential. For all gene-essentiality datasets, the corresponding

set of orthologous genes, since no available single gene deletion datasets exist for A. baumannii

AYE, was obtained via NCBI Bidirectional BLAST (Sayers et al., 2012).

2.5.4 Metabolite Connectivity

The stoichiometric matrices of iCN718 and AbyMBEL891 were used to calculate the

metabolite connectivities of every species in each network. The metabolite connectivity is a

sum of the number of each reaction a metabolite participates in. Metabolite connectivities were
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then ranked from greatest to least connected to form a discrete distribution (Supplementary

Figure A.1).

2.5.5 Pan-Genome Analysis

The pan-genome of all 75 completely sequenced strains was constructed by clustering

protein sequences based on their sequence homology using the CD-hit package (v4.6). CD-hit

clusters protein sequences based on their sequence identity [26]. CD-hit clustering was performed

with 0.8 threshold for sequence identity and a word length of 5. A cluster formed by CD-hit is

hereon referred to as a gene family. The pan-genome was subdivided into core and accessory

genomes. We defined the core genome as gene families that were found in at least 74/75 strains.

The subdivided pan-genome was subsequently utilized to identify genes that were part of the

core or accessory genome.
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Chapter 3

Comparative Genome-Scale

Metabolic Modeling of

Metallo-Beta-Lactamase-Producing

Multidrug-Resistant Klebsiella

pneumoniae Clinical Isolates.

3.1 Abstract

The emergence and spread of metallo-beta-lactamase–producing multidrug-resistant

Klebsiella pneumoniae is a serious public health threat, which is further complicated by the

increased prevalence of colistin resistance. The link between antimicrobial resistance acquired by
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strains of Klebsiella and their unique metabolic capabilities has not been determined. Here, we

reconstruct genome-scale metabolic models for 22 K. pneumoniae strains with various resistance

profiles to different antibiotics, including two strains exhibiting colistin resistance isolated from

Cairo, Egypt. We use the models to predict growth capabilities on 265 different sole carbon,

nitrogen, sulfur, and phosphorus sources for all 22 strains. Alternate nitrogen source utilization

of glutamate, arginine, histidine and ethanolamine among others provided discriminatory power

for identifying resistance to amikacin, tetracycline and gentamicin. Thus, genome-scale model

based predictions of growth capabilities on alternative substrates may lead to construction of

classification trees that are indicative of antibiotic resistance in Klebsiella isolates.

3.2 Introduction

The emergence of metallo-beta-lactamase–producing pathogens is a serious challenge to

the treatment of clinical infections and a potential public health threat [1]. These pathogens

have been identified in the popular news media as “superbugs” because they exhibit multidrug-

resistance and can cause infections resistant to all beta-lactams, including last-line options such

as carbapenems, as well as most other antibiotics except colistin and sometimes tigecycline [2].

Among multidrug-resistant (MDR) pathogens, six bacterial species have been described as the

most threatening, the ESKAPE pathogens [3], which includes Klebsiella pneumoniae.

K. pneumoniae is a facultative anaerobic gram-negative bacterium that causes a wide

range of clinical diseases including pneumonia, upper respiratory tract infections, wound infec-

tions, urinary tract infections and septicemia [4]. Nosocomial infections caused by metallo-β-

lactamase–producing K. pneumoniae are associated with high rates of morbidity and mortality

[5]. This calls for rapid identification of bacteria carrying bla NDM-1 and implementation of
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strict infection control measures.

New Delhi metallo-β-lactamase (NDM-1)– producing K. pneumoniae have swiftly spread

worldwide since an initial report in 2008 [6]. Here, we examined the genomes of four K. pneumo-

niae strains isolated from clinics in Cairo, Egypt. We reconstruct genome-scale models for 2 MDR

Klebsiella pneumoniae strains (Strains SF and SK), which produce two metallo-β-lactamases (bla

NDM-1 and bla VIM-1) and are also colistin resistant. We sequenced these two genomes with

two other genomes from strains representing different levels of resistance: one MDR but non-

colistin-resistant strain (HM) and a fourth strain (SP) that is not as highly resistant. We then

create strain specific genome scale models for each of these four strains as well as an additional

18 publicly available strains to analyze differences in catabolic capabilities in these strains and

investigate if these differences can be used to classify resistance phenotypes.

3.3 Results and Discussion

3.3.1 Comparative Genomics of 22 Klebsiella pneumoniae Isolates With De-

fined AMR Phenotypes

We used the PATRIC database [7] to identify complete, single-contig genome sequences

that also had experimental evidence of antimicrobial resistance. There were 18 genomes that

met this criteria. We supplemented this set with four recently sequenced K. pneumoniae strains

isolated from patients in Cairo, Egypt collected between 2012 and 2015 [8] (Attia et al. 2019).

Three of these isolates are pan-resistant (SF, SK and HM) with two additionally resistant to

colistin (SF and SK). A fourth strain, “SP”, is multi-drug resistant but sensitive to 10 tested

antibiotics. This led to a total set of 22 genomes for comparison (Methods). We assigned
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sequence types (ST) to each of the strains using PubMLST [9, 10]. The three colistin resistant

strains were found to be part of ST101, known to be a dominant ST for carbapenem resistant

K. pneumoniae [11]. Next we performed comparative genomics on the full set of 22 strains. We

calculated core and pan-genomes for these 22 strains using PanX [12]. The pan-genome consists

of all genes found in any of the strains while the core genome consists of genes shared by all

strains. The pan-genome for these 22 strains was composed of 10,796 predicted ORFs. Of these,

3,965 are shared amongst all of the strains, forming a core-genome (Figure 3.1). The difference

between core and pan-genomes is called the accessory genome and consists of genes that make

the individual strains unique. In this case there are 4,026 accessory genes and 2,805 unique genes

(those found in only 1 strain). We compared the presence of different accessory genes across

the strains. Hierarchical clustering of the accessory gene contents demonstrated stratification by

sequence type (Supplementary Figure B.1). The three pan-resistant strains from ST101 (SF, SK

and HM) clustered together based on accessory gene content. Next we used the CARD database

[13]genome for AMR encoding processes to form a “resistome” of the strains. In total there

were 122 predicted AMR encoding genes or mutations across all 22 strains, with 12 shared by all

strains, 72 variably present across the strains and 35 unique to single strains (Figure 3.1). We

found that hierarchical clustering of AMR determinants also grouped strains by sequence type

(Figure 3.1). Next we performed an in-depth analysis of the ST101 strains.

3.3.2 Focused Genomic-Analysis of Four Klebsiella pneumoniae Isolates

From Cairo, Egypt

Genomic analyses were performed to determine the genetic similarity of the four K.

pneumoniae isolates from Cairo, with the model K. pneumoniae strain MGH78578 included as
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Figure 3.1: Comparative genomics analysis of 22 K. pneumoniae strains. (A) The calculated
pan-genome of the 22 KP strains consisted of 10,999 gene families, 3,965 of which were core, 4,026
were accessory and 2,805 unique. The full clustermap of the accessory genome is available as
Supplementary Figure B.1. (B) A pan “resistome” was constructed by mapping the genomes to
the CARD database. A total of 12 AMR determinants were shared by all strains, 72 were strain
specific and 35 were unique to individual strains. (C) Hierarchical clustering of the contents of the
pan-resistome shows that KP strains group into sequence types (ST) based solely on resistance
encoding mechanisms. The gyrB variants were recorded as resistant genes based on 100% identity
to resistant-conferring mutants in CARD.

a reference (Genbank ID: CP000647.1). A core-genome phylogenetic tree was constructed using

PanX [12] and demonstrated that the three pan-resistant strains were most similar to each other

(Figure 3.2). We included the model-strain, K. pneumoniae MGH78578 as a reference and this

strain was most dissimilar compared to the other resistant strains. Next, we constructed core

and pan-genomes for these five strains. The pan-genome consists of all genes found in any of the

five strains while the core genome consists of genes shared by all five strains. The pan genome

was composed of 6,879 predicted ORFs across all five strains with 4,336 shared amongst all

of the strains, forming a core-genome and 2,549 accessory genes. We compared the presence of
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different accessory genes across the strains. Hierarchical clustering of the accessory gene contents

agreed with the whole-genome phylogeny to show that the three pan-resistant strains (SF, SK

and HM) are most similar while SP and MGH are more dissimilar in terms of shared accessory

genes (Figure 3.2).

We hypothesized that genetic background and gene portfolio of individual strains may

have a role in acquisition and spread of antibiotic resistance. Thus, we identified the shared and

strain-specific genes amongst these five strains. In total, 4336 genes were shared amongst all five

K. pneumoniae strains with 536 genes unique to strain SP, 340 genes unique to MGH and 1330

genes unique to the three pan-resistant strains (Figure 3.2). In total the three pan-resistant strains

shared 5,411 genes with each other while another 541 were uniquely present across these three

strains (Figure 3.2). More than one-third of the uniquely present genes (35%) were predicted

to have metabolic functions, potentially indicating that nutrient niche and unique metabolic

capabilities may influence acquisition of antimicrobial resistance determinants. Genome-scale

models of metabolism have demonstrated utility at systematically categorizing the metabolic

capabilities of strains in a species [14–16]. To further investigate this hypothesis we set out to

construct genome-scale models of the five strains as well as other publically-available strains with

antimicrobial profiling data.

3.3.3 Diverse Catabolic Capabilities of Multiple Klebsiella pneumoniae

Strains

We used the experimentally validated genome-scale metabolic reconstruction, iYL1228

[17], as a platform to investigate the metabolic differences amongst our group of isolates.

iYL12228 is a reconstruction for K. pneumoniae MGH78578 and provided a valuable resource to
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Figure 3.2: Genomic analyses of five K. pneumoniae isolates including four isolated in Cairo,
Egypt (SP, SK, SF, HM) (A) Core-genome phylogenetic tree demonstrates that three of the K.
pneumoniae isolates (SK, SF, HM) are most similar to each other, with SP and the model strain
MGH78578 more distantly related. (B) Hierarchical clustering of the accessory genome of the
five strains demonstrates that the three closely related KP strains also share the most genes. (C)
The core genome of all five strains is composed of 4,366 genes shared by all five strains. (D) The
three strains, SD, SK, and HM possess an additional 1,330 unique genes not shared by SP or
MGH78579.
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link the genetic information of other strains to defined metabolic reactions (Methods). We first

built draft models of all strains using sequence similarity. Following that we added additional

metabolic content identified through the use of DETECT v2 [18], an enzyme annotation tool.

This process allowed us to include additional metabolic processes unique to each of the strains.

Of these strains, initially 10 of the draft models could not solve for biomass. We used GrowMatch

[19] to gapfill these networks and found that the removal of the reactions TDPDRE encoded for

by gene KPN 02494 or KPN 02488 and TDPDRR encoded for by gene KPN 02495 or KPN 02489

was the cause. These reactions are directly involved in the production of DTDP-L-rhamnose,

a metabolite directly required for biomass production in iYL12228. We hypothesized that ei-

ther keeping these reactions in the network or removing DTDP-L-rhamnose from the biomass

function would restore growth of these models. Given that the homologous genes from strain

MGH78578 were not present in the other strains, we opted to remove DTDP-L-rhamnose from

the biomass function for the models of these strains. This assumption is valid given that DTDP-

L-rhamnose is involved in the biosynthesis of peptidoglycan and it is likely that these strains

have variant peptidoglycan composition [20, 21]. Additionally, through the gapfilling process we

identified that one strain, KP9721, was predicted to be auxotrophic for proline and as such in the

following analyses this model was supplemented with proline in the in silico media. Using our

22 total models derived from iYL12228 we sought to analyze the various catabolic capabilities

present across the strains. It is worth noting that these catabolic capabilities are predictive and

could be used in conjunction with future study of actual phenotypes. The quality of the models

could be improved in the future by validating with experimental data such as gene essentiality

or phenotypic arrays such as Biolog should that data become available.

To interrogate each of the strain’s catabolic capabilities we simulated for biomass produc-
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tion in minimal media conditions (in silico M9 media) and alternated carbon, nitrogen, sulfur,

and phosphorus sources to simulate each strain’s ability to grow on a variety of compounds (Fig-

ure 3.3). The simulations for carbon, nitrogen, and sulfur provided some interesting differences

strain to strain whereas capabilities for various phosphorus sources were largely conserved across

the entire group (Supplementary Figures B.2 and B.3). For carbon sources one apparent dif-

ference is that the KP9721 and KP12783 models lack the ability to use maltose and any of its

derivatives (maltotriose, maltotetrose, maltohexaose, maltopentaose) whereas all the other mod-

els can utilize these sugars. These models also are the only two unable to catabolize glutamate as

a carbon source. Further, KP12783 uniquely cannot utilize ascorbate or lyxose. Another model

with unique loss of capabilities relative to the others was KP5649 being unable to grow on fucose,

rhamnose, and glucarate and the only two strains unable to use glucosamine or mannose were

KP12781 and KP12773. The following compounds are unable to be used by various small groups

of strains: ribose, mannitol, glyceraldehyde, glutamine, D-Alanyl-D-alanine, and galacturonate.

Conversely, the following compounds can be used by only various smaller groupings of the strains:

glycine, prolinylglycine, and 2-Dehydro-3-deoxy-D-gluconate.

The model-predicted growth capabilities on nitrogen sources were slightly less varied than

for carbon. Given the predicted auxotrophy for proline in KP9721, we omit its inability to use

the majority of other nitrogen sources in the following summary. Both models for KP5649 and

KP12779 fail to utilize a large number of nitrogen sources (Figure 3.3). Models of KP9723,

12777, KP9722, KP12778, and KP12772 all could not make use of prolinylglycine, D-Alanyl-

D-alanine, or cys-glycine. KP9723 was additionally the only strain unable to use arginine or

agmatine. Glucosamine could not be used by KP12781 or KP12773. Histine could not be used

by KP127777. Finally, ethanolamine could not be used by KP6974 or KP12771. Ability to utilize
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Figure 3.3: The 22 in silico models predicted relative carbon and nitrogen source utilization.
By simulating in minimal media and swapping only the carbon or nitrogen source the predicted
catabolic capabilities were calculated. The resulting in silico predicted biomass objective flux
for each strain on the various sources is reported and hierarchically clustered here. Interestingly,
in both the case of carbon and nitrogen source utilization the four isolates from Egypt (SP, SF,
SK, HM) all cluster together.

alternate nitrogen sources is interesting in light of the fact that elevated blood urea nitrogen levels

are a biomarker of K. pneumoniae pathology and associated with a poor prognosis [22, 23]. Also,

Klebsiella is the only genus in the family enterobacteriaceae able to fix nitrogen in the atmosphere

and convert it to ammonia and amino acids using an energy intensive nitrogenase [24, 25], further

highlighting the importance of this element in Klebsiella lifestyle and niche.

Lastly, there were far fewer sulfur sources available to test than carbon or nitrogen but this

analysis still provided some interesting differences amongst the strains. Chiefly, only the models

of strains isolated from Egypt (SP, HM, SF, and SK) could utilize ethanesulfonate, isethionic

acid, or sulfoacetate as sulfur sources. Interestingly, only SP was predicted to be capable of using
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methionine as a sulfur source whereas models for SP, KP12777, KP9723, KP12778, KP12772,

KP9724, KP12781, KP12783, KP12796 and KP12771 could all use Methyl-L-methionine. Lastly

KP9722, KP12777, KP9723, KP12778, KP12772 were all predicted to be unable to utilize glu-

tathione and cys-glycine.

3.3.4 Substrate Usage to Classify Antimicrobial Resistance Phenotypes

After using the draft models to generate predicted catabolic capabilities for all 22 strains

we sought to see if these catabolic capabilities were correlated with the antimicrobial resistance

phenotypes of the strains. As previously noted, strains SF and SK are both MDR as well as

colistin resistant, HM is MDR but not colistin resistant, and SP is susceptible to a number

of drugs. The 18 strains we included from PATRIC were selected partly on the availability of

experimental AMR profiling. We used this data from PATRIC and the results of both disk

diffusion and agar dilution methods on our four clinical isolates (Table 3.1, Supplementary

Tables B.1 and B.2) to construct the resistance profiles for which drug data existed for all

the strains (Supplementary Figure B.4). Unfortunately, the strains from PATRIC do not have

conclusive profiling of colistin resistance. It was immediately apparent that 7 of the strains

were resistant to all 16 drugs. Additionally, 7 of the drugs were resisted by all 22 strains. Of the

remaining drugs tetracycline, amikacin, and gentamicin had the most strains either susceptible or

intermediately resistant. As such these drugs were considered for further analysis. Interestingly,

all three of these drugs target protein synthesis and both amikacin and gentamicin are both

aminoglycosides [13]. Yet, the group of strains had varied resistance phenotypes to these same

class drugs.
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Table 3.1: Antimicrobial resistance profile of the isolated K. pneumoniae strains determined by
disk diffusion.

Antibiotic SF SK HM SP

Amikacin R R R R
Amoxicillin/ clavulanic acid R R R R

Ampiciliin R R R R
Aztreonam R R R R

Cefaclor R R R R
Cefepime R R R S

Cefotaxime R R R R
Cefoxitin R R R S

Ceftazidme R R R R
Ceftriaxone R R R R

Cefuroxime sodium R R R R
Chloramphenicol R R R R

Colistin R R S S
Ertapenem R R R S
Gentamicin R R R S
Imipenem R R R R

Lomefloxacin R R R S
Meropenem R R R S
Netlimicin R R R R

Nitrofurantoin R R R S
Piperacillin R R R S

Piperacillin/Tazobactam R R R R
Trimethoprim/Sulfamethoxazole R R R R

Tetracycline R R R S

To determine whether model-predicted metabolic capabilities could be linked to antibiotic

resistance, we constructed classification trees using scikit-learn [26] for tetracycline, amikacin, and

gentamicin resistance based on the relative in silico predicted biomass yields on various carbon

or nitrogen sources (Supplementary Figures B.5 - B.9). We limited our analyses to carbon and

nitrogen sources because the number of model-predictions for these compounds greatly exceeds

those for sulfur sources. Based on simulated growth phenotypes, we sought to determine whether

model-predicted growth capabilities could stratify strains that were resistant, intermediate, or

susceptible to a given drug. Interestingly, the trees based on nitrogen sources were able to classify
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the strains at lower tree depths than other nutrient sources (Figure 3.4). In particular the trees

for tetracycline and amikacin both possessed the same right branching architecture based on

variant usage of arginine and histidine as nitrogen sources. In both cases 6 strains that are then

classified by their usage of these two amino acids are KP9724, KP12778, KP9723, KP12781, and

KP12777 and in the case of tetracycline also SP and KP127771.

Given this shared grouping of strains across the different drug phenotype profiles we

looked back to the draft models to see which genes that were lost could be attributed to this group-

ing. Interestingly, genes with homology to KPN 00956 and KPN 00282 were both deleted from

all of these strains and either no other strains or only 3 other strains in the case of KPN 00282.

Both of these genes participate in the gene product rules for over 200 transport reactions in the

reconstruction, but these reactions have other genes maintained within the gene product rule as

well. Lastly, it is interesting to note that the complete inability to use arginine by the model

for strain KP9723 as well as the complete inability to use histidine by the model for KP12777

in both classification schema are critical for separating the AMR phenotypes. One limitation of

this methodology is the small sample size [27] as well as the use of relative biomass yield for the

growth phenotypes. This leads to some of the classification trees being overly deep or making

branches at very small differences in biomass flux. Further extensive studies of Klebsiella pneu-

moniae with increased diversity of strains in capabilities as well as drug resistance could provide

future valuable delineating features. Nevertheless these initial results are promising and demon-

strate that it could be possible to construct a robust classification schema of AMR capabilities

based on model predicted growth capabilities in the future.
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Figure 3.4: Classification tree built based upon nitrogen source utilization classifying the
amikacin resistance phenotypes. Interestingly, the ability to utilize glutamate initially discrimi-
nates the majority of the resistant strains. The right branching tree architecture utilizes arginine
and histidine utilization to quickly discriminate the proper groupings of intermediate, suscepti-
ble, and resistant strains. These trees are an effort to examine the ability of differential predicted
catabolic capabilities to discriminate varying resistance phenotypes of the strains. For trees gen-
erated using carbon source utilization as well as for the resistance phenotypes for tetracycline
and gentamicin see Supplementary Figures B.5 - B.9

3.4 Conclusion

K. pneumoniae continues to be a serious threat and increasing antimicrobial resistance

is exacerbating this problem [28]. We used genome scale metabolic models to demonstrate
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that there exist differences in predicted catabolic capabilities amongst a group of MDR strains.

Through this systems biology approach we also demonstrated the possibility of constructing a

classification schema for antimicrobial resistance based on these capabilities. The robustness of

this strategy could be improved by increasing the number of strains with the pertinent resis-

tance phenotype data included. GEMs could be used in the future to delineate which metabolic

capabilities are potential drivers of infection niches for K. pneumoniae.

3.5 Materials and Methods

3.5.1 Construction of Draft Strain-Specific Models

The sequences of the 22 selected strains were all downloaded from PATRIC and re-

annotated using PROKKA v.1.2 [29], They were then compared based on annotated ORF amino

acid sequence similarity using NCBI bidirectional BLAST. A 0.9 threshold was used for assigning

orthologs. Genes with a score below 90 were deleted from the strain-specific model. In this

manner derivative draft strain-specific models of all 22 strains were generated with the designated

orthologous genes removed from the base model iYL12228. All 22 strain-specific models are

available as json files. Gene names within the model are as per the locus tags in the original

base model in the 18 strains acquired from the PATRIC database. The models for SP, SF, SK,

HM had additional content curated through the use of the DETECT v2 algorithm and gene

names are as per each strain’s locus tags. Further the change of DTDP-rhamnose in the biomass

equation is as described in the main text amongst the strains and this is the only change in

biomass equation amongst the strains.
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3.5.2 In silico Growth Simulations

For the in silico growth simulations, the following minimal media similar to M9 minimal

media was used: glucose, calcium, chloride, carbon dioxide, cobalt, copper, iron, hydrogen,

magnesium, manganese, molybdate, sodium, oxygen, ammonia, phosphate, zinc, tungstate, and

sulfate. The in silico media used with corresponding exchange reactions and lower bounds is

available as Supplementary Table 3. From this minimal media the following metabolites glucose,

ammonia, phosphate, and sulfate were removed to evaluate other sources of carbon, nitrogen,

phosphorus, and sulfur respectively. This analysis involves removing each of these compounds

from the media (setting lower bound to zero) and testing other compounds using flux balance

analysis to determine if these compounds can support growth. In the case of strain KP9721,

which was predicted to be auxotrophic for proline, the media was supplemented with proline.

Growth versus no growth determinations in all conditions were determined through flux balance

analysis on each described nutrient condition, optimizing for the biomass function. Biomass

objective flux of greater than zero designated a metabolites capable of growth supporting. For

further information and tutorials on these methods see the COBRApy documentation (https:

//cobrapy.readthedocs.io/en/latest/).

3.5.3 Construction of Classification Trees

Before building the trees we filtered the carbon and nitrogen sources to exclude the com-

pounds that were overly similar in in silico biomass yield across all 22 strains based on standard

deviation of the biomass objective flux across the 22 strains for a given source. Classification

trees were calculated using relative biomass objective flux found through flux balance analysis for

each strain on the tested nutrient sources. These catabolic capabilities were used to classify the
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strains into their resistance phenotypes: resistant, intermediate, or susceptible (Supplementary

Figure B.4) for a given single drug. The decision tree classifier from sklearn was used to generate

the trees with no binarization.

3.5.4 Nucleotide Sequence Accession Numbers

The four isolates that were sequenced and their annotations are deposited in NCBI as

RXLW00000000, RXLX00000000, RXLY00000000 and RXLV00000000 as well as in the PATRIC

database (http://www.patricbrc.org) under the following genome IDs: 573.18994, 573. 19098,

573. 18993, 573. 18996 for SF, HM, SK, SP, respectively. Additionally, the 18 previously publicly

available stains were downloaded from PATRIC and used in this study have the accession num-

bers: 573.12771, 573.12772, 573.12773, 573.12777, 573.12778, 573.12779, 573.12781, 573.12782,

573.12783, 573.12796, 573.5649, 573.6973, 573.6974 ,573.7362, 573.9721, 573.9722,573.9723,

573.9724.

3.5.5 Resistance Profiling of 4 Clinical Isolates From Cairo, Egypt

Antimicrobial resistance profiles (Table 3.1) were determined by the Kirby Bauer disk

diffusion method [30], and their minimum inhibitory concentrations (MICs) were determined by

the agar dilution method to confirm their resistance profile.

3.5.6 Identification of AMR encoding genes

The CARD RGI tool [13] version 3.2.0 with database version 1.1.8 was used to identify

genetic determinants of antimicrobial resistance. All identified determinants are available as

Supplementary Figure B.10.
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3.5.7 MIC Screens

Determination of MIC was performed according to CLSI guidelines described in [31] and

[32]sing sterile U shaped 96 well microtiter plates. Each antibiotic was prepared by diluting

the powder in water for injection (WFI) as the solvent and the diluent. All antibiotics were

purchased from Sigma except Ertapenem, purchased as an Invanz vial from Merck Co. USA. The

powder of the drug equivalent to 26.1 mg in case of ertapenem, 3.26 mg in case of meropenem

and colistin and 105.2 mg in case of ceftazidime and cefotaxime was dissolved in 20 ml WFI

forming a stock solution (solution A) of concentration 1280 µg/ml for ertapenem ,160 µg/ml

meropenem and colistin and 5120 µg/ml for ceftazidime and cefotaxime respectively. Solution

(B) of concentrations 128, 16 and 512 µg/ml was prepared by diluting 1ml of each solution (A)

with 9 ml WFI. Preparation of the 2 fold dilutions A series of 2-fold dilutions was prepared as

recommended by (Amsterdam, 2005) by using solution (B) from each stock solution. Inoculum

was prepared by selecting several discrete colonies, usually three to five, subcultured in the

inoculum growth broth, to avoid single colony variance. The inoculum was cultured in Mueller

Hinton broth (MHB), the same broth medium used for the test, incubated at 37°C for 2-6 hours

until turbidity is equal or exceed the turbidity of 0.5 McFarland, then the optical density of

the bacterial suspension was adjusted using spectrophotometer at a wavelength of 625 nm to

the O.D of 0.08-0.13 which approximates a 0.5 McFarland standard. The adjusted culture was

then diluted 1:100 times with Muller-Hinton broth (MHB), to bring the inoculum density to the

range of 105 to 106 CFU/ml. A set of the 11 prepared antibiotic dilutions for each antibiotic

were allowed to warm at room temperature prior to use. The wells of the 96 well microtiter

plate were filled with 50 µl from each dilution. The column number 12 was filled with 100 µl

MHB for the growth control for each isolate. Each well in the same row was filled with 50 µl
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of the tested inoculum. For each experiment, an additional row was left for negative control by

adding 100 µl of MHB to the different antibiotic dilutions. The plates were covered with lid.

Incubation of the microtiter plate at 37°C for 16-20 hours. Microdilution trays were prepared

each day they were used and Unused thawed dilutions were discarded and never refrozen. The

plates were read visually on a dark background. The endpoint MIC was the lowest concentration

of drug at which the tested microorganism did not show a visible growth. The MIC values of each

tested antibiotic against the selected Klebsiella pneumoniae isolates are listed in Supplementary

Tables B.1 and B.2. The other reported antibiotics were measured using disc diffusion and thus

do not have a reported MIC. Instead we only report resistance and susceptibility based on the

manufacturers instructions.
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Chapter 4

Systems biology analysis of the

Clostridioides difficile core-genome

contextualizes microenvironmental

evolutionary pressures leading to

genotypic and phenotypic divergence

4.1 Abstract

Hospital acquired Clostridioides (Clostridium) difficile infection is exacerbated by the

continued evolution of C. difficile strains, a phenomenon studied by multiple laboratories using

stock cultures specific to each laboratory. Intralaboratory evolution of strains contributes to
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interlaboratory variation in experimental results adding to the challenges of scientific rigor and

reproducibility. To explore how microevolution of C. difficile within laboratories influences the

metabolic capacity of an organism, three different laboratory stock isolates of the C. difficile 630

reference strain were whole genome sequenced and profiled in over 180 nutrient environments

using phenotypic microarrays. The results identified differences in growth dynamics for 32 car-

bon sources including trehalose, fructose and mannose. An updated genome-scale model for C.

difficile 630 was constructed and used to contextualize the 28 unique mutations observed be-

tween the stock cultures. The integration of phenotypic screens with model predictions identified

pathways enabling catabolism of ethanolamine, salicin, arbutin, and N-acetyl-galactosamine that

differentiated individual C. difficile 630 laboratory isolates. The reconstruction was used as a

framework to analyze the core-genome of 415 publicly available C. difficile genomes and identify

areas of metabolism prone to evolution within the species. Genes encoding enzymes and trans-

porters involved in starch metabolism and iron acquisition were more variable while C. difficile

distinct metabolic functions like Stickland fermentation were more consistent. A substitution in

the trehalose PTS system was identified with potential implications in strain virulence. Thus,

pairing genome-scale models with large-scale physiological and genomic data enables a mecha-

nistic framework for studying the evolution of pathogens within microenvironments and will lead

to predictive modeling to combat pathogen emergence.

4.2 Introduction

Clostridioides (Clostridium) difficile continues to be a leading cause of hospital-borne in-

fection, adversely affecting patient health as well as causing significant healthcare costs [1]. The

continued evolution of C. difficile strains to both antibiotic resistance and survival in the host
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greatly increases the challenges of treatment [2]. C. difficile infection (CDI) occurs following the

disruption of the host microbiota after treatment with antibiotics and instances of subsequent

recurrent infections are common, often presenting with more severe symptoms [3]. In the absence

of the natural microbiota, opportunistic, toxigenic strains of C. difficile flourish and produce en-

terotoxins resulting in the observed patient symptoms. These symptoms are wide-ranging and

vary from completely asymptomatic to antibiotic-associated diarrhea to pseudomembranous coli-

tis and even death. Frighteningly, the rate of success for commonly used antibiotics metronidazole

and vancomycin is steadily falling [4].

Studying this deadly pathogen in the laboratory requires well characterized stock strains.

Unfortunately, the evolution of stock cultures used in laboratory experiments has recently

emerged as a major concern. This evolution can lead to the accumulation of genetic changes

that have relevant physiological outcomes and may alter experimental results making it difficult

to replicate results between labs. Recent studies identified seven mutations in commonly used

stock strains of E. coli K-12 MG1655 with implications for physiological experiments including

loss of function of glpR and crl [5]. C. difficile is no exception to this phenomenon. Previous

studies have demonstrated that accumulated mutations in stock strains can have physiological

implications and even altered virulence in a hamster infection model [6]. Thus, with an explosion

of research on C. difficile it is important to delineate mutations in stock strains and explain their

physiological consequences.

To investigate the hypothesis that strains passaged in different laboratories would ex-

hibit divergent phenotypes, we generated large scale metabolic profiles of carbon utilization for

three isolates of a reference strain commonly used in C. difficile research: CD630 isolates from

two different laboratories as well as one close relative sensitive to the antibiotic erythromycin
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(CD630Δerm). Furthermore, whole genome sequencing of the strains allowed a comparison

of both the genetic and phenotypic divergence amongst the three laboratory stock cultures.

Genome-scale models (GEMs) of metabolism serve as a unifying platform to advance coordi-

nation of research and therapeutic advancements [7, 8]. To contextualize the divergence in

phenotype and genotype between our stock strains we built and used a new genome-scale model

of C. difficile 630.

GEMs offer a systems-level analysis of an organism’s metabolic capabilities and estab-

lish a formal relationship between genotype and phenotype [9]. Two previous reconstructions

iMLTC806cdf [10] and icdf834 [11] have been published for C. difficile strain 630. Here we

present iCN900 that builds on iMLTC806cdf and icdf834, and reflects the most comprehensive

knowledge base for C. difficile 630 to date. The model was used as a scaffold to interrogate the

issue of stock culture evolution. We analyzed the core-genome of 415 strains to identify allelic

sequence variants between genes determined to be present in each of the strains. Analyzing these

genes within the metabolic network context provided by iCN900 illuminates which C. difficile

metabolic pathways may be under evolutionary selective pressures. Additionally, these data

emphasize how laboratory-specific microenvironmental pressures on stock cultures contribute to

divergent interlaboratory results that may hinder translational science limiting the development

of new treatment options.
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4.3 Results

4.3.1 High-throughput screens highlight phenotypic differences between three

CD630 lab strains

To evaluate the phenotypic divergence of closely related strains, we selected three different

laboratory strains of C. difficile 630 including the close relative knockout 630Δerm strain [6].

We refer to the three strains as Savidge 630, Britton 630, and Britton 630Δerm coinciding

with their laboratory of origin, noting that the Britton 630 strain is not parental to Britton

630Δerm (Methods). Phenotypic growth profiles of all three strains were generated in biological

triplicate across 190 different carbon sources using Biolog Phenotype Microarrays [12]. Using

the growth data generated from each C. difficile strain, we evaluated the phenotypic divergence

of these closely related strains. Overall, each of the three laboratory C. difficile strains showed

concordant phenotypes on 158 of the 190 compounds tested (Figure 4.1B). Thirty-two (16.8%)

compounds displayed varied growth phenotypes across this set of 3 lab-adapted CD630 strains

including several notable differences that are interrogated using the genome-scale model discussed

below (Figure 4.1A).

To robustly evaluate the genetic content of each of our three investigated laboratory 630

strains, we completed whole genome sequencing and comparative genomics analyses to identify

genetic differences relative to the reference 630 sequence (AM180355.1). We used breseq [13]

to identify single-nucleotide variants (SNVs) and gene deletions with respect to the reference

sequence (Figure 4.1C, 4.1D). Complete lists of predicted variants and deletions are available in

Tables 4.1 and 4.2, respectively. Seven variants previously noted as likely mistakes in the original

C. difficile 630 AM180355.1 reference assembly [6] were identified in all three strains. An addi-
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Figure 4.1: Experimental phenotyping of three different laboratory stock cultures of C. difficile
630. The Savidge 630, Britton 630, and Britton 630Δerm are represented by red, green, and
blue respectively. A) Heat map of the maximal OD620 of C. difficile strains in Biolog phenotype
microarray plates for which the fold change among the strains had the greatest standard deviation
between the strains. Selected carbon substrates supporting differential fold change are shown.
(n=3 biological replicates per strain). B) Venn diagram of 190 carbon substrates tested. All
three strains shared 158 growth phenotypes, while 21 phenotypes were shared between Savidge
630 and Britton 630, 9 between Britton 630 and Britton 630Δerm, and 2 phenotypes between
Britton 630Δerm and Savidge 630. C) Venn diagram detailing the identified gene deletions of
each strain versus the reference sequence. D) Venn diagram detailing mutations of each strain
versus the reference sequence.

tional synonymous SNV (E304E (GAG→GAA)) within the aminotransferase gene CD630 25320

was identified as common in all three strains. The Savidge 630, Britton 630, and Britton 630Δerm
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each had 8, 3, and 15 unique SNVs relative to the reference (Table 4.1).

Table 4.1: Comparison of SNVs detected across three C. difficile 630 laboratory stock strains.

Gene Mutation Annotation Savidge

630

Britton

630

630

Δerm

CD630 05730-thrS C → T intergenic (+173/-843) Yes Yes Yes
CD630 05770-05780 A → T intergenic (-126/+35) Yes Yes Yes
CD630 24550-024560 G → T intergenic(-543/-193) Yes Yes Yes
rplC G → T G114G (GGG → GGT) Yes Yes Yes
CD630 11900 T → C F133L (TTT → CTT) Yes Yes Yes
CD630 17670 C → G P33A (CCC → GCC) Yes Yes Yes
CD630 25320 C → T E304E (GAG → GAA) Yes Yes Yes
CD630 13880 (T) 6→7 coding (40/45 nt) Yes Yes Yes
CD630 31561 +A coding (309/339 nt) Yes — Yes
CD630 34170-34180 A → G intergenic (-3769/+1786) Yes Yes —
CD630 34170-34180 + C intergenic(-3628/+1927) Yes — —
CD630 19000-19010 A → T intergenic (-160/-294) Yes — —
CD630 02050 G → T G165C (GGT → TGT) Yes — —
CD630 26850 Δ21 bp coding (339-359/1770 nt) Yes — —
CD630 32450 C → T E261K (GAA → AAA) Yes — —
CD630 26270 C → A G68C (GGT → TGT) Yes — —
CD630 30890 T → G E258D (GAA → GAC) Yes — —
CD630 26670 C → T V228I (GTT → ATT) Yes — —
CD630 26670 A → C *524E (TAA → GAA) — — Yes
CD630 26670 (T) 8→7 coding (1558/1572 nt) — — Yes
CD630 20270 G → A G373E (GGG → GAG) — — Yes
CD630 06430 T → C I199I (ATT → ATC) — — Yes
CD630 07610 G → T D136Y (GAC → TAC) — — Yes
CD630 12480 G → T G59V (GGC → GTC) — — Yes
CD630 14040 A → G E536G (GAA → GGA) — — Yes
CD630 12740 C → T Q386* (CAA → TAA) — — Yes
CD630 22630 G → T S127* (TCA → TAA) — — Yes
CD630 22670 (A) 5→6 coding (280/321 nt) — — Yes
CD630 29430 T → C N210D (AAT → GAT) — — Yes
CD630 33790 C → A E63D (GAG → GAT) — — Yes
CD630 33980 C → A G9C (GGT → TGT) — — Yes
CD630 30360-30370 G → T intergenic (-1521/+386) — — Yes
treR Δ6 bp coding (192-197/723 nt) — — Yes
CD630 12060 A → T K120N (AAA → AAT) — Yes —
CD630 27920 T → A P669P (CCA → CCT) — Yes —
CD630 31840-31850 Δ9 bp intergenic (-393/+222) — Yes —
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Two gene deletions were identified common to all three genomes and a third deletion

was present only in 630 Savidge and Britton 630Δerm. Savidge 630 and Britton 630 each con-

tained a single independent deletion relative to the reference in conserved hypothetical proteins

CD630 01960 and CD630 12100 respectively. In contrast, Britton 630Δerm contained five unique

deletions not present in Savidge or Britton 630 (See Table 4.2). Three of the deletions unique

to Britton 630Δerm are two groups of 44 and 46 genes annotated as putative phage genes and

the expected 8 gene loss for the erythromycin-sensitive derivative. In order to contextualize the

remaining genetic differences distinguishing these three strains from each other and their impact

on the observed phenotypic divergence we updated and deployed a genome-scale model of C.

difficile 630 metabolism.

Table 4.2: Comparison of deletions detected across three C. difficile 630 laboratory stock strains.

Gene Description Savidge

630

Britton

630

630

Δerm

CD630 10250 ABC-type transport, spermidine Yes Yes Yes
CD630 34170-34180 ABC-type transport, sugar-family Yes Yes Yes
CD630 02880 PTS system, mannose/fructose Yes — Yes
CD630 01960 conserved hypothetical protein Yes — —
CD630 12100 conserved hypothetical protein — Yes —
CD630 02440-02450 CDP-glycerophosphotransferase — — Yes
CD630 31350 Fructose-1-6-biphosphate adolase — — Yes
CD630 09390-09770 46 genes: putative phage protein — — Yes
CD630 28900-29521 44 genes: putative phage protein — — Yes
CD630 20060-ermB1 8 genes — — Yes

4.3.2 Genome-scale network reconstructions contextualize genetic divergence

by serving as a scaffold for structural systems biology analysis

Genome-scale models offer a powerful tool to contextualize and explain the effect of

genetic changes in pathogenic organisms that impact human health. Therefore, we evaluated
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and updated a genome-scale network reconstruction of C. difficile 630. The new C. difficile

GEM, iCN900, contains an additional 66 genes, 46 reactions, and 70 metabolites compared to

previous models of this strain. New content was incorporated into the reconstruction using both

bioinformatic tools and manual curation. We implemented several tools to add new content to

the reconstructions including the enzyme detection tool DETECT v2 [14], searching for homologs

in closely related reconstructions, [15], and manual curation of pathways based on false negative

model predictions against experimental data (Methods). This allowed for the inclusion of new

transport reactions as well as significant refinement of the accuracy of the gene product rules for

existing transporters. GEM additions included reactions for tRNA synthetase, carbon and sulfur

metabolism, and cell envelope biosynthesis.

In addition to adding new content to the genome-scale network reconstruction for C.

difficile 630, another major area of improvement was the removal of erroneous energy generating

cycles (EGCs). EGCs allow for free energy generation during flux balance analysis (FBA) simu-

lations and have been shown to be a prevalent problem in many non-curated GEM predictions.

We implemented an existing algorithm [16, 17] to identify and confirm the existence of EGCs

in the previous model (icdf834). We manually investigated icdf834 and found erroneous EGCs

for ten energy carrying metabolites. We edited the reversibility of 29 reactions to remedy these

cycles making the network completely devoid of EGCs and therefore better suited to make accu-

rate flux predictions utilizing FBA [18]. Finally, we updated the model nomenclature to align it

with the BiGG standard, making its contents directly comparable with over 100 reconstructions

of diverse organisms present in the BiGG database [19, 20]. This improved model, iCN900, is

available in the BiGG database.

Recent studies have supplemented GEMs with protein structures to form GEM-PROs
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resulting in expanded applications for both genome- and protein-scale models [21, 22]. This

approach has enabled further contextualization of SNVs within the metabolic network. Protein

structures have never been incorporated with a GEM of C. difficile, therefore we evaluated

the current state of structural data available for C. difficile by mapping protein structures to

the Protein Data Bank (PDB). Overall 1,221 genes within the 630 reference genome map to a

structure within the PDB. A subset of 524 of these genes are contained within iCN900. However,

only 2.5% (29/1,145) of mapped structures with less than 75 percent identity (PID) are sourced

from C. difficile. Conversely, 85.5% (65/76) of mapped structures with greater than 75 PID are

C. difficile specific (Supplementary Figure C.1). This steep drop off in the number of C. difficile

mapped structures demonstrates the overall structural knowledge gap for C. difficile. Only 20

of the genes within iCN900 map to a structure that is greater than 75 PID and sourced from

C. difficile. These represent the best characterized, metabolically related C. difficile specific

structures [23–26].

4.3.3 Experimental validation of iCN900 demonstrates high model accuracy

We evaluated iCN900 by performing simulations on four in silico media types as delineated

by Larocque et al [10, 11]: 1) Minimal, 2) Basal Defined Medium (BDM), 3) Complete Amino

Acid-Defined medium (CADM) and 4) Complex media. We confirmed biomass production by

iCN900 under each in silico media type and further showed that flux through the objective

function increased commensurate with the complexity of media type (Figure 4.2A). We also

confirmed that known essential amino acids required by C. difficile growth (cysteine, leucine,

isoleucine, proline, tryptophan, and valine) [27, 28] are also required for biomass production.

To assess gene-essentiality prediction by iCN900, we performed in silico single gene dele-
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Figure 4.2: Properties and validation metrics of iCN900 A) Model predictions for biomass
flux on four different in silico media types: Complex media, CADM, BDM and minimal media.
Importantly, the biomass objective flux reflects the increasing amount of nutrients in each media
condition. The overall gene, reaction, and metabolite content of iCN900 is summarized within the
inset box. B) Comparison of model predictions of essential genes on complex media compared to
experimental gene-knockout results from Dembek et al. C) C. difficile optical density at 620 nm
was measured over time in Biolog Phenotype Microarray plates. Representative growth curves
for the Savidge 630 strain on 5 indicated carbon sources (of the 190 tested) and the negative
control are shown. Experimental growth of C. difficile was compared to iCN900 metabolic
flux predictions, to determine the accuracy of predictions as summarized in the inset box. D)
Putative metabolic pathways for C. difficile utilization of salicin and arbutin were incorporated
into iCN900 through targeted gap-filling enabled by comparison to experimental growth data.

tions and compared these predictions to an available experimental dataset of essential genes for

C. difficile in strain R20291 [29]. C. difficile R20291 is evolutionarily distinct from strain 630
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and the iCN900 model achieved an overall accuracy of 90% for these gene-essentiality predictions

(Figure 4.2B). The true negative gene predictions are predominantly associated with reactions

encoding lipid metabolism indicating that in complex media this portion of the metabolic net-

work is particularly sensitive to single gene knockouts both in silico and in vitro. Examining

the 10 false negative predictions revealed genes involved in pyrimidine metabolism indicating

that perhaps R20291 has alternative encoding mechanisms for reactions in this pathway. Fu-

ture improvements to CD630 reconstructions would benefit from experimentally validated gene

essentiality datasets specific to this strain.

Finally, we validated the ability of the iCN900 model to predict growth capabilities on 190

diverse carbon sources by comparing model predictions to the phenotypic microarray growth data

generated for the three independent laboratory strains of C. difficile 630 (Figure 4.2C). In silico

growth predictions of the iCN900 model were generated using previously defined minimal media

conditions (Methods) and alternating the carbon source to coordinate with that being tested in

the experimental microarray [10, 27]. Of the 190 carbon sources tested, 114 were represented in

the model and overall model predictions agreed with experimental growth capabilities for 75.4%

of cases.

4.3.4 Targeted gap-filling of incorrect model predictions uncovers new

catabolic pathways in C. difficile metabolism

Comparison of phenotypic screens to model predictions can be used to iteratively improve

genome-scale model reconstructions by informing the inclusion of metabolic pathways missing

in the network content. Using the phenotypic microarray growth data generated from each C.

difficile strain, we evaluated the phenotypic divergence of closely related strains against our
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curated iCN900 genome-scale model. Our data confirmed previously published studies [30–

32] and verified growth of two of the three C. difficile 630 strains on salicin, arbutin, and N-

acetyl-galactosamine (GalNAc) (Figure 4.1A). However, initially the iCN900 model predicted

the inability of CD630 to grow on these compounds. Both salicin and arbutin are β-glucosides

and are produced in various plant species thus it is plausible that these compounds could be

available within the human gut dependent on diet [33, 34]. We identified homologous genes in

the pathways for catabolism of these two compounds in Bacillus subtilis, a close relative of C.

difficile. Our identified candidate pathways have a similar pathway architecture: a transporter

(encoded for by ptsG-A and ptsI ), a glucohydrolase (encoded for by celF and bglA7 ), and

efflux of 2-hydroxymethyl-phenol or hydroquinone respectively, both products of the respective

glucohydrolase. Homologs in the C. difficile 630 genome were identified and incorporated into

iCN900 using gene product rules based on homology with B. subtilis (Figure 4.2D) and the

experimental evidence that these compounds support growth.

Like salicin and arbutin, our experimental growth assays verified N-acetyl-galactosamine

was sufficient to support growth of two of the three C. difficile 630 strains tested, but this phe-

notype was absent from our initial rendition of the iCN900 model. N-acetyl-galactosamine is of

particular interest because as a host-derived glycan it is proposed to be an important carbon and

nitrogen source for C. difficile in the gastrointestinal tract [30]. We hypothesized that N-acetyl-

galactosamine utilization would be facilitated by a phosphotransferase system (PTS) similar to

those seen in other enteric bacteria and investigated other GEMs for N-acetyl-galactosamine

catabolic pathways. We identified an isomerase encoded by agaI in E. coli [35] that converts

N-acetyl-galactosamine-6-phosphate to tagatose-6-phosphate. Our experimental dataset indi-

cates all three C. difficile 630 strains grew significantly (P=.006, Paired T-Test) in the presence
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of tagatose (6.59 fold-change relative to negative control) but did not grow on galactose (0.89

fold-change), thus supporting the possibility of this interconversion. In agreement with the ex-

perimental results, iCN900 predicts C. difficile growth on tagatose (true positive), and no growth

on galactose (true negative). This inference along with the strength of the experimental evidence

led to the inclusion of the PTS and isomerase within iCN900. Further experimental work to

identify any additional genes that encode this machinery would increase understanding of N-

acetyl-galactosamine utilization by C. difficile, which may have important implications in the

context of infection.

Surprisingly, iCN900 predicted an inability to be grown in ethanolamine, which is in con-

trast to our experimental evidence and the literature that many gut bacteria, including Clostridia,

are capable of ethanolamine catabolism as a sole carbon or nitrogen source [36]. Furthermore,

phosphatidylethanolamine is a prevalent membrane phospholipid, which is catabolized into glyc-

erol and ethanolamine, suggesting that ethanolamine is an abundant nutrient in the gastroin-

testinal tract. iCN900 contains the genes of the eutG operon and the corresponding enzymes

for usage of ethanolamine [37]. Previous studies have shown that C. difficile 630 strains can

utilize ethanolamine in vitro, however the media conditions in these studies included glucose

along with ethanolamine [37]. We postulated that if phosphatidylethanolamine is a primary

source of ethanolamine within the gut, then glycerol would be concurrently available to C. dif-

ficile. Interestingly, glycerol scored as a false positive in our initial prediction. Further analysis

revealed that when both glycerol and ethanolamine were components of the in silico minimal me-

dia the biomass objective flux increased to .034 from .014 on glycerol alone or 0 on ethanolamine

alone. This apparent synergistic usage predicted by iCN900 of these two metabolites is interest-

ing given their likely co-availability in the host. Glycerol as a sole carbon source has a limited
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uptake flux value of 4.56 and valine and leucine were identified as non-carbon limiting nutrients.

When both ethanolamine and glycerol are available both have an uptake flux of 10, indicating

an energetically favorable complement of catabolic pathways. Ethanolamine utilization produces

acetyl-CoA which is a key metabolite in many downstream metabolic pathways. We hypothesize

that the ability to use ethanolamine as a source to produce the necessary acyl-carrier proteins

frees glycerol to be used for other growth requirements. While no modifications were made to the

network to change the determination of glycerol as a false positive prediction and ethanolamine

as a false negative prediction, it is worth noting this potential feature of C. difficile physiology

and a future validation of this prediction would be valuable.

4.3.5 iCN900 links observed mutations to unique phenotypes

With an updated reconstruction completed, we used this resource to evaluate the mu-

tations and deletions observed between the three reference strains (Table 4.1 and 4.2). Of the

deleted genes, two are implicated in the metabolism of fructose and mannose that are of partic-

ular interest. First, Savidge 630 and Britton 630Δerm each contain a deletion of CD630 02880,

which is part of the GPRs for both fructose and mannose PTS reactions. Secondly, a unique dele-

tion in Britton 630Δerm of CD630 31350, a gene involved in the fructose bisphosphate aldolase

reactions. Growth results reveal the maximum fold change in optical density during fructose

utilization is 24.3% lower (P=0.24, Paired T-Test) in Britton 630Δerm versus Savidge 630, and

34.8% lower (P=0.008) versus Britton 630. During mannose utilization, growth reduction is

35.1% (P=0.1) and 40% (P=0.03) respectively. While there is no significant decrease in growth

on both sugars between Britton 630Δerm and the Savidge strain, the decreases between Britton

630Δerm and Britton 630 are both statistically significant. Given the co-occurrence of deletions
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in the transport systems for these sugars and fructose bisphosphate aldolase reactions, we hy-

pothesize that the deletions together result in the observed growth reduction for the Britton

630Δerm strain with perhaps the more consequential deletion being CD630 31350.

Mutations within coding sequences and particularly those in genes annotated with

metabolic functions were prioritized. The Savidge 630 strain possesses a substitution in the

aspartate kinase gene (G68C (GGT→TGT)). However, there were no physiological changes in

the growth experiments on aspartic acid, which is likely explained by the presence of aspartic

acid in the basal medium. Savidge 630 also contained a unique nonsynonymous substitution

(E258D (GAA→GAC)) in CD630 30890, which is part of the gene product rule for the trehalose

phosphotransferase reaction. Analysis of the growth screen data indicated that the maximal op-

tical density of the Savidge 630 strain during trehalose utilization was over 30% greater (P=.04)

than either the Britton 630 or the Britton 630Δerm strains. Mapping of this substitution to

the predicted protein structure reveals that it occurs within a hydrophilic region of the pro-

tein (Figure 4.3A), suggesting that the substitution may confer an advantage to the import or

phosphorylation of trehalose entering the cell. To test this hypothesis, growth curves in minimal

medium supplemented with 10 mM, 25 mM, and 100 mM trehalose were compared (Figure 4.3B),

revealing that at the lower concentration of trehalose the Savidge 630 strain grew significantly

better than the other two strains (P ≤ 0.0001). However, in higher concentrations of trehalose,

the growth of the Britton CD630Δerm isolate (25 mM) and the Britton 630 isolate (100 mM)

matched that of Savidge 630. The significant increase in growth at 10mM supplementation of

trehalose indicates that the substitution may increase affinity of the PTS for trehalose transport,

improve efficiency of transport, or increase expression and/or stability of the transporter however

the role of the this E258D substitution in trehalose uptake still needs to be explored. Analysis

75



of the growth curves by Gaussian Process modeling [38] allowed us to quantify growth rate, area

under the curve, and carrying capacity of the isolates in each condition (Figure 4.3C).

Figure 4.3: Characterization of phenotypic growth differences of lab adapted isolates on tre-
halose A) Predicted protein structure of C. difficile PTS (CD630 30890) based upon the crystal
structure of the MalT transporter. The EIIC domain is shown as a dimer, with the E285D
substitution of the 630-Savage isolate highlighted in red on the cytoplasmic interface. The model
shading indicates amino acid hydrophobicity (gray residues are hydrophobic and blue residues
are hydrophilic according to the Kyte-Dolittle scale). B) Growth curves of C. difficile isolates,
Savidge 630 (red), Britton 630 (green) and Britton 630Δerm (blue) in defined minimal medium
supplemented with trehalose. The gray line indicates the maximal optical density of the negative
control wells. Optical density at 620 nm measured at 10 minute intervals, The plotted bar is
the mean of 3 biological replicates assayed in duplicate wells and the error bars represent the
standard deviation of the mean. C) Growth curves from the conditions in (B) were analyzed by
Gaussian process curve fitting to calculate the total carrying capacity, doubling time, and total
area under the curve (error bars represent the standard deviation of the mean ** = P≤0.001,
*** = P≤0.0001).
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Both the Savidge 630 strain and the Britton 630Δerm strain had unique mutations within

the CD630 26670 gene, which codes for part of the PTS reaction for α-glucose. In the Savidge 630

strain the single nucleotide polymorphism results in a substitution of isoleucine for valine (V228I

(GTT→ATT)), however the mutation in the Britton 630Δerm strain switches the stop codon

to glutamic acid (*524E (TAA→GAA)). The loss of this stop codon in the Britton 630Δerm

strain results in extension of the CD630 26670 coding region directly into the downstream gene

with the next stop codon at position 691. The lack of a stop codon would likely produce an

aberrant transcript subject to degradation by cellular regulatory mechanisms [39]. Analysis of

the growth data supports the hypothesis these substitutions impair the import of α-glucose as

growth via maximum optical density of the Savidge 630 strain is reduced by 21.7% and the

Britton 630Δerm strain is reduced by 30.4% compared to Britton 630 strain (P=.05), which is

devoid of any mutations in these genes. Overall, the mutational analysis provides insight into

unintentional evolution occurring in laboratory strains and highlights the need for resequencing

strains used commonly across many labs to more accurately reflect the heterogeneity among

reference sequences. This is particularly important for the accuracy of corresponding genome

scale models and downstream constraints-based analyses.

4.3.6 iCN900 applied to analyze sequence variation within the C. difficile

core-genome

We used the iCN900 model to link mutations amongst the three strains to the differences

observed within the phenotypic growth profiles. iCN900 is specific to C. difficile 630, one of the

most well characterized strains and often used as a reference strain in studies. However, we have

shown that there is genetic divergence within even 630 stock cultures from different laborato-
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ries. As demonstrated above, single nucleotide variations can manifest themselves as deviations

in metabolic profiles pointing to the importance of even small amounts of genetic divergence

between C. difficile isolates. Therefore it is worth considering the sequence variation amongst

shared genes within several strains of the species. To this end we used bi-directional BLAST

to identify the genes within C. difficile 630 present at greater than 80 PID in 415 high-quality,

publicly available genomes (Figure 4.4A). From these genes, those that were present in more

than 99% (411/415) of the strains were determined to comprise the core-genome of C. difficile.

A total of 2,756 of 3,828 C. difficile 630 genes comprise the core-genome. iCN900 was then

utilized to investigate the metabolic core-genome which consisted of 765 core metabolic genes. A

genome-scale model based on the function of these 765 genes was created to investigate core C.

difficile metabolic capabilities; iCN765. This representation of the core metabolic functions of

the C. difficile species represents a potentially valuable starting point for reconstruction of other

strains. The core model was used to investigate metabolic phenotypes common to all strains of C.

difficile. Simulations with in-silico minimal media predict that the core metabolic network can-

not produce biomass. However, media supplementations were identified that enable synthesis of

certain biomass constituents. Protein synthesis required supplementation with histidine, lysine,

arginine, and threonine. Supplementation with uridine or uracil enabled DNA and RNA synthesis

and nicotinate supplementation enabled associated cofactor production. Following these media

supplementations the core network still lacks the ability to produce the lipid and peptidoglycan

biomass components. Performing gene essentiality analysis on the full C. difficile 630 model

using this supplemented in-silico media condition predicts that there are 4 non-core genes which

are essential for the production of lipids and peptidoglycan. Upon further examination, 3 of

these genes are present within 96% (398/415) of the strains, thereby designated as non-core and
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perhaps the strains without these genes have either acquired alternative encoding mechanisms

or vary in lipid/peptidoglycan composition. It is worth noting that the strains without these 3

genes represent the strains of type MLST11 and MLST254 within the group of 415. The final

non-core gene essential to production of peptidoglycan is only present within 13% (54/415) of

strains and is involved in the production of teichoic acid for cell wall synthesis.

Figure 4.4: Core-genome of C. difficile reveals metabolic subsystems with greater sequence
variation A) By comparing the genomes of 415 publicly available C. difficile genomes the core-
genome was calculated and includes 765 metabolic genes. B) Analyzing the sequence variation
among the 765 core metabolic genes demonstrates that the average difference in amino acid
sequence range from 0 to just over 20 for these shared genes. C) The genome scale reconstruction
enables stratification of the genes by metabolic subsystem and comparison of average amino
acid differences of each gene within a subsystem. This reveals that nitrite and starch/sucrose
metabolism have the highest degree of sequence variation whereas Stickland reactions and leucine
fermentation are the most conserved.
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Beyond investigating conserved metabolic functions, examining the conserved sequences

amongst the 415 strains provides other novel insights (Figure 4.4B). In the core metabolic gene

products, we evaluated the average amino acid difference and found them to range from zero

(completely conserved amino acid sequence across all strains) to just over 20 average amino

acid differences between strains. For example, we identified strain FDAARGOS 268 (PATRIC

ID:1496.2022) with the same trehalose phosphotransferase (CD630 30890) E258D mutation de-

scribed in Savidge 630 above as well as strain QCD-32g58 (PATRIC ID: 367459.5) with an E258K

substitution in the same protein. Strain QCD-32g58 was isolated in 2017 from a patient in Que-

bec, Canada with severe C. difficile infection and is noted to be a representative of a predominant

Quebec strain. Furthermore, the greatest average amino acid differences (>20 average amino acid

differences) occurred in two gene products, CD630 01370 and CD630 35270, that are implicated

in transport reactions for cellobiose and iron, respectively. Each individual gene can also be in-

terrogated for the frequency of each allele sequence within the group of 415 strains (Figure 4.5A)

and these sequences can be compared for their similarity to one another (Figure 4.5B). For the

genes that are part of the GEM-PRO the mutations per allele can be mapped to the representa-

tive structure providing a three dimensional view of the effect of the change (Figure 4.5C). We

performed this analysis for the thiD gene encoding phosphomethylpyrimidine kinase and gained

insight into the areas of the protein structure where the sequence variants manifested.

The GEM-PRO also allows for a systems level analysis of the variation within these

core-gene products by stratifying the average amino acid differences per reaction to metabolic

subsystems (Figure 4.4C). This network context illuminates the metabolic subsystems that may

be under evolutionary selective pressures due to higher degrees of sequence variation. The re-

actions for nitrite metabolism, starch and sucrose metabolism, and folate biosynthesis have the
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greatest variation indicating these are potential evolutionary hot spots. Conversely, leucine fer-

mentation and Stickland reactions are the most conserved in terms of sequence suggesting that

these enzymes and related functions are defining traits within the species.

To increase the analysis of metabolic network areas that may be under selective pressure

within C. difficile, we considered the classification of enzyme specificity. Generally, it is under-

stood that specificity is an evolutionarily beneficial trait towards increased catalytic efficiency.

We used iCN900 to classify the genes and reactions within as either generalist or specialist. As

previously reported [40] we define a specialist gene as one that participates in only one reaction

and generalists as those involved in multiple reactions. We applied this criteria to all metabolic

enzymes within and showed that there are 410 specialist genes encoding proteins catalyzing 287

specialist reactions and 231 generalist genes encoding proteins catalyzing 484 reactions. This

distribution is similar to that previously found for E. coli [40]. Of the specialist genes, 76 encode

subunits of a complex and 148 are isozymes. Similar to our analysis of the sequence variation

of the core-genome, we used the reconstruction to evaluate the distribution of specialist and

generalist reactions per metabolic subsystem. Analyzing each subsystem we found that certain

subsystems were enriched in specialist enzymes and others in generalist enzymes. Starch and

sucrose metabolism, folate biosynthesis, vitamin B12 and protoheme metabolism, and histidine

metabolism are all enriched in specialist reactions (hypergeometric P<0.05). Valine, leucine

and isoleucine metabolism, glycerolipid metabolism, one carbon pool by folate, and fatty acid

biosynthesis are all enriched in generalist reactions (hypergeometric P<0.05). Consistent with

the calculation of sequence variation amongst subsystems the specialist enriched subsystems had

an average of 1.61 amino acid differences and the generalist enriched subsystems had an average

of .69 average amino acid differences (Supplementary Figure C.2). These network based analyses
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enabled by the reconstruction provide insights into the pressure surrounding the core metabolism

of C. difficile as a species and point to vulnerable processes worth investigating as potential drug

targets.

Figure 4.5: Allele diversity for thiD as an example of sequence diversity. A) The 415 sequences
for the thiD gene have 11 variant sequences (alleles) variably present within the population.
Notably the reference sequence allele is present within 79.7% of the population whereas the next
most frequent allele is present in 5.3% of the population. B) The degree of similarity between
each sequence is readily accessible. For example the thiD 6 and thiD 7 sequences are similar to
one another sharing a K60N mutation. C) Through the use of the GEM-PRO each mutation by
variant can be visualized within the 3D space of crystal structures where applicable.

4.4 Discussion

Genome scale metabolic network reconstructions provide a valuable format to unify dis-

parate knowledge about an organism, and contribute a tool that may be used to investigate an

organism’s properties. We developed the most comprehensive knowledge base for C. difficile
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strain 630 to date and utilized the model to (i) investigate catabolic capabilities in conjunction

with experimental data; (ii) serve as a framework for investigation into genetic drift amongst

different laboratory C. difficile 630 strains and a derivative strain; (iii) analyze the sequence

variation amongst the genes within the core-genome of C. difficile. The GEM performs with as

much as 90% accuracy in predicting gene essentiality and 75% accuracy in predicting catabolic

capabilities. The metabolic network represented within iCN900 is devoid of EGCs and the stan-

dardization of reaction and metabolite identifiers opens up the possibility of inclusion in studies

of multiple organisms that share this namespace. Phenotypic profiling and model driven discov-

ery identified new pathways potentially relevant to C. difficile survival due to their presence in

the diet (arbutin and salicin) or as components of the human gut (N-acetyl-galactosamine). By

coupling the generation of the new reconstruction, iCN900, with extensive phenotypic profiling

and further genome analytics we have increased the body of knowledge about this pathogen.

The process of crafting iCN900 evoked questions of genetic drift amongst isolates of the

same strain of bacteria. The variability in both genotype and phenotype of isolates that are

either deemed strain 630 or are closely related points to the need to resequence strains used in

experiments and to recognize that reference sequences represent only a single time-point in the

lifetime of a strain. This point was borne out in our comparison of the trehalose transporter be-

tween laboratory strains. Hypervirulent strains of C. difficile are known to metabolize trehalose,

a process recently attributed to hypervirulent strain evolution coinciding with the widespread

adoption of trehalose in our diet [41] Microevolution of strains within laboratories could impart

divergent conclusions between laboratories undergoing similar experimental processes to evalu-

ate pathogen evolution and virulence, which may serve to hinder translational science and limit

new treatment options. This phenomena has been observed in other model organisms including
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E. coli [5] and yeast [42]. In E. coli, glpR mutations have been observed leading to constitutive

expression of genes involved in glycerol catabolism likely due to repeated passage on glycerol con-

taining media. Similar unexpected glpR alleles have been found in several other E. coli strains

[43]. Thus a similar process of unintentional domestication of laboratory C. difficile strains based

on adaptation to laboratory media may be underway. Given the importance of metabolism in

infection kinetics and virulence, diligence in tracking genetic drift within strains will collectively

improve scientific rigor and reproducibility with the potential to strengthen bodies of scientific

evidence between laboratories.

Motivated by the demonstrated divergence in metabolic profile from small amounts of

genetic diversity, the core-genome of C. difficile was constructed based on 415 publicly available

genome sequences and sequence variation was analyzed. he reconstruction was used to identify

metabolic traits common to the species and amino acid differences and enzyme specificity were

used to evaluate which pieces of the metabolic network may be under selection pressures and those

that are more conserved. Interestingly, and in agreement with the growing literature [41, 44, 45]

concerning sugar metabolism of pathogenic C. difficile strains this analysis revealed that even

conserved starch and sucrose metabolism genes are some of the most varied in terms of sequence.

This demonstrates that C. difficile strains are actively evolving more efficient machinery to best

adapt to their nutrient niche (be it in a lab or in the colon) and that unique catabolic capabilities

could arise in response to availability of certain nutrients.

The generation of this high quality reconstruction enables future studies extrapolating this

model across multiple strains to investigate species diversity. While we focused on core metabolic

capabilities in this study, the exploration of accessory metabolic gene sets are underway and could

give insight into the metabolic capacity specific to hypervirulent strain families of C. difficile. The
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ability to identify evolutionary hotspots and specialized enzymatic reactions within hypervirulent

strains may help direct drug development targeting previously unappreciated metabolic processes

critical to pathogen survival. Furthermore, the ability to simulate coordinated changes in dietary

supplements and predicted evolutionary hotspots could give insight into pathogen emergence.

4.5 Materials and Methods

4.5.1 Reconstruction

We began the reconstruction of iCN900 by using previous efforts iMLTC806cdf [10] and

icdf834 [11] for C. difficile strain 630. This starting point was refined and translated to a recon-

struction within the standardized BiGG namespace. This reconstruction was then extensively

manually curated. Additionally, evaluation metrics as delineated in a protocol for generating

reconstructions were executed [9]. Model content was iteratively improved by comparison to

existing and generated experimental data. iCN900 reflects the final version of this iterative

workflow.

4.5.2 Constraint-based Modeling

Constraints-based analyses were conducted using the COBRApy toolbox. For the in silico

growth simulation of sole carbon source utilization the minimal media [27] was used and glucose

was removed in an iterative fashion and other carbon source exchange reactions were opened to

evaluate if growth was possible. Growth versus no growth was determined through flux balance

analysis in each condition, optimizing for the biomass function. Within these simulations we

consider biomass objective flux of greater than zero designated carbon sources that supported

growth.
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4.5.3 Protein Structure Integration

The GEM-PRO [21, 22] pipeline was used to annotate iCN900 with available protein

structure information. The list of genes within iCN900 was mapped to sequences within Uniprot

and consequently the Uniprot ID enables automatic mapping to the Protein Data Bank (PDB).

The representative sequences are then BLASTed to the PDB and the best ranking structure

available was identified for each model gene was identified and the quality of those rankings are

presented.

4.5.4 Core-genome

A total of 1,246 whole-genome sequences of C. difficile were downloaded from the PATRIC

database [46] on August 25, 2019. To filter for high-quality genomes a cutoff of assemblies

composed of 100 or fewer contigs was applied. Furthermore, an MLST analysis of the genomes

was performed using MLST [47, 48]. All genomes that could not be assigned to an MLST type

or species were also filtered out. This led to a final set of 415 genome sequences for downstream

analysis.

4.5.5 Designation of specialist and generalist enzymes

We classified 697 metabolic enzymes within iCN900 as either specialists or generalists.

The selection criteria was a simplified approach as presented within [40] as the supplementary

information to refine the approach is not as well defined for C. difficile as for E. coli. The 697

genes to be classified were selected from the reconstruction on the basis that they are not involved

in any transport reactions. Following the definition of the group each was classified according

to the following rule; specialist if the gene is present within the GPR of only one reaction and
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generalist for those involved in more than one reaction. In turn it was possible to classify the

encoded reactions in a corresponding manner as either specialist or generalist. The reaction

classifications were then analyzed according to their metabolic subsystems and each subsystem

was tested for enrichment of either class through the hypergeometric test.

4.5.6 Whole Genome Sequencing

Cryofrozen isolates of each C. difficile strain were incubated on Brain Heart Infusion

(BHI) agar under anaerobic conditions for 24-48 h. Genomic DNA was extracted using the Mas-

terPure Complete DNA RNA Purification kit (Lucigen, MC85200) and libraries of fragmented

genomic DNA were prepared using NEXTflex Rapid DNA-Seq Kit (Bioo Scientific, NOVA-5149-

02). Paired-end reads (2 x 150 bp reads) were generated on the MiSeq platform (Illumina, San

Diego, CA, USA) using the Illumina MiSeq Reagent Kit v2 (MS-102-2002) and PhiX Control Kit

v3 (FC-110-3001). Breseq v0.31 [13] was run with default parameters on each set of paired-end

reads with the C. difficle 630 genome (AM180355.1) as a reference. We note that the individual

CD630 strains utilized within this study have each been subcultured within their respective labs

over time. The Britton 630 strain was received from a colleague at Tufts University on July 23,

2008 and the Savidge 630 strain was received from a colleague at the University of Houston in

August 2014. Further we note that the Britton 630 strain is not the parent strain to Britton

630Δerm.

4.5.7 Phenotypic Profiling by Biolog

Strains were cultured in BHI medium (Difco) supplemented with 0.5% (w/v) yeast extract

(Fischer Scientific) overnight ( 16 hours) in an anaerobic chamber (5% hydrogen, 90% nitrogen,

87



5% carbon dioxide). 1 ml of overnight culture was diluted into 10 ml of defined minimal media

with previously described composition (Theriot et al, 2017) and 100 µl was added to each well

of Biolog Phenotypic Microarray plates (PM1 and PM2). Growth assays were performed under

anaerobic conditions with optical density at 620 nm read every 10 minutes over a period of 16

hours, in triplicate for each C. difficile 630 strain. Statistical analysis was performed by Two-

way ANOVA, (with Tukey’s correction for multiple comparisons where appropriate) in GraphPad

Prism Software (v. 7.04).
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Chapter 5

A workflow for generating

multi-strain genome-scale metabolic

models of prokaryotes

5.1 Abstract

Genome-scale models (GEMs) of bacterial strains’ metabolism have been formulated and

used over the past 20 years. Recently, with the number of genome sequences exponentially

increasing, multi-strain GEMs have proved valuable to define the properties of a species. Here,

through four major stages, we extend the original Protocol used to generate a GEM for a single

strain to enable multi-strain GEMs: (i) obtain or generate a high-quality model of a reference

strain; (ii) compare the genome sequence between a reference strain and target strains to generate

a homology matrix; (iii) generate draft strain-specific models from the homology matrix; and (iv)
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manually curate draft models. These multi-strain GEMs can be used to study pan-metabolic

capabilities and strain-specific differences across a species, thus providing insights into its range

of lifestyles. Unlike the original Protocol, this procedure is scalable and can be partly automated

with the Supplementary Jupyter notebook Tutorial (See https://www.nature.com/articles/

s41596-019-0254-3). This Protocol Extension joins the ranks of other comparable methods for

generating models such as CarveMe and KBase. This extension of the original Protocol takes

on the order of weeks to multiple months to complete depending on the availability of a suitable

reference model.This protocol is an extension to: Nat. Protoc. doi: https://doi.org/10.1038/

nprot.2009.203

5.2 Introduction

In recent years, the exponential increase in the number of genome sequences has enabled

us to investigate the variability across strains within the same species. As more genome sequences

become available, significant differences in genomic content and functions across strains have been

identified [1]. Therefore, researchers started to explore strain-specific variations using approaches

such as pan-genome analyses [2]. These analyses showed that some species have a vast diversity

of genes among its strains, resulting in remarkably different divergent phenotypes across strains

[3]. However, despite the utility of pan-genome analysis based on gene lists, it does not provide

mechanistic insight into phenotypic potential based on genetic and genomic variability within a

species.

Over the past decade, genome-scale models (GEMs) of metabolism have proven to be

valuable in understanding mechanistic links between genotype and phenotype [4]. GEMs are

mathematical models of metabolic network reconstructions [5]. They allow computation of the
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systems-level metabolic functions from genome sequences and extend the power of pan-genome

analyses towards sequence-based evaluation of the phenotypic variation of a species. So far, the

majority of studies based on metabolic network reconstructions, and GEMs derived from them,

have been focused on a single strain of a species. This includes a large number of studies based

on our previously published metabolic network reconstruction Protocol [6].

A strain-specific GEM can be expanded into models for multiple strains of the same

species. Rapid mapping of the gene content in a GEM from a reference strain onto multiple

strains’ genome sequences of interest is now possible. This process allows one to utilize highly

curated knowledge bases assembled over many decades, upon which a metabolic reconstruction

is based, to quickly study a freshly sequenced isolate. Using this process, recent studies have

successfully identified strain-specific metabolic differences and their association with lifestyle of

the strains for multiple species [7–12]. These studies lead to an understanding of strain diversity,

for species with both large and small pangenomes. Using GEMs to characterize pan-genomes is

thus likely to be a widely used method as thousands of strain sequences will become available

for species across the microbial phylogenetic tree.

It is worth noting that other methods for the generation of GEMs from existing recon-

structions are available, namely CarveMe [13] and functions within KBase[14]. CarveMe relies

on the use of a universal model that is then filtered to a specific model by solving a mixed integer

linear program. KBase executes a proteome comparison and utilizes that information to infer

reactions to keep within a new model. The reliance on the universal model within CarveMe

may limit the achievable specificity particularly in regard to biomass equations. CarveMe also

possesses the unique functionality to produce ensemble models and microbial community models.

KBase benefits from ease-of-use and potential integration with other KBase functions, however
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the implementation is restricted to the KBase interface and limited in customizability.

In this Protocol, we extend our original metabolic reconstruction Protocol [6] to instruct

users on building multi-strain GEMs from an existing reference model. We will provide guidance

for the reconstruction and application of strain-specific models and show how a reference strain

is mapped to other strains within the same species. Furthermore, we provide a detailed tutorial

(Supplementary Tutorial) along with the step-by-step instructions to guide readers through the

Protocol and its efficient implementation. The application of the workflow is rapid, and it can

be partly automated.

5.3 Applications

A highly curated reference reconstruction represents a highly organized and structured

assembly of organism information. This accumulated knowledge can be efficiently extended to

generate strain-specific models by combining comparative genomics and genome-scale metabolic

modeling (Figure 5.1). By analyzing multiple strains, it becomes possible to investigate the range

of evolutionary outcomes for a species. GEMs allow for the prediction of growth capabilities and

auxotrophies across a bacterial species. These predictions have provided insight into the lifestyle

and diversity of the members of a species. For example, metabolic capabilities predicted using

multi-strain GEMs have been used to build classification schema capable of organizing strains

into nutrient niche [7], serovars [9], and pathogenicity [12]. Multi-strain GEMs provide a platform

with which to begin to combat limitations identified with reconstruction efforts [15] regarding

completeness and the coverage of the reactome.

Another inherent strength of multi-strain reconstruction is scalability. The number of

strains considered may be increased with ease. Scalability, in turn, enables new applications. On
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Figure 5.1: Applications of multi-strain GEMs. The workflow of genome comparison to generate
a homology matrix of PIDs, which is in turn used to generate strain-specific models of the
target strains. The values in the homology matrix are percentages. The number of strains
considered in this manner enables various types of analyses including: (i) comparison of strain
nutrient utilization and identification of strain-specific auxotrophies, (ii) interrogation of genome
architecture and classification of strains by niche or by pathotype, (iii) investigation of allele
frequencies among strains and mapping to protein structural information, and (iv) linking to
epidemiology and tracking of strains or infections.

the order of hundreds of strains, it becomes possible to use multi-strain GEMs to investigate allele

frequencies of genes within a network context [16]. The reconstructed networks provide insight

into potential evolutionary hotspots that become linked to calculated phenotypes through the use

of GEMs [16]. Additionally, the higher number of strains considered allows for applications with

a wider perspective. For example, studying the global epidemiology of infection and the tracking

of strains by their indicated abilities and classifications become possible. It is worth noting

that the number of strains considered may also potentially influence the complexity and time
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for downstream analysis. Preliminary results become rapidly available through this approach,

however if additional strains are candidates for extensive curation this increases the time required

for future analysis.

5.4 Advantages and Limitations

Multi-strain GEMs provide us with a comprehensive and high-resolution knowledge base

of metabolic diversity across strains of a species of interest. The models enable accurate and

rapid computational prediction of auxotrophies and nutrient utilization capability across strains

from only genome sequences without the need for experiments. The results then allow us to

calculate correlations between strain-specific metabolic variations and attributes of the strain’s

lifestyle (such as host specificity) or health outcomes such as strain-specific implications in in-

flammatory bowel disease [7, 8, 12, 17]. The reconstruction of multi-strain GEMs is much faster

than reconstructing a reference model from scratch, yet still highly informative.

However, the user should also keep in mind the limitations before starting the multi-

strain GEM reconstruction. First, it can be time-consuming to build multi-strain GEMs for

species lacking a reference model, as approximately six months to a year is needed to build a

GEM de novo. Second, this Protocol Extension works best with well-annotated species, since a

lack of information may result in an incomplete model and inaccurate predictions. Nevertheless,

strain-specific GEMs will also enable the discovery of knowledge gaps for less well-studied species.

Third, multi-strain GEMs will be most valuable for species with significant differences in genomic

content across strains. If strains within the species have limited genetic variability, the strain-

specific GEM will be very similar and provide limited new information. Such similarity can

be quickly evaluated by examining the openness of the pan-genome for the strains of interest.
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Finally, basic coding skills are required for this Protocol Extension. Previous experience with

bioinformatics analysis, coding languages (especially python), and usage of GEMs will accelerate

the process significantly.

5.5 Experimental Design

This Protocol Extension consists of four major stages to utilize the output of a high-

quality genome-scale metabolic reconstruction [6] to create multiple strain-specific models derived

from the reference organism (Figure 5.2). These stages are described further in the following

sections. These stages are also summarized within a pseudocode format. Following the steps

delineated here will result in draft strain-specific models based on genetic similarity to the original

strain that can be used as a starting point to feed directly into Stage 2 of the original Protocol

[6] for further refinement and evaluation, or for immediate comparative investigation. The time-

consuming nature of the base reconstruction approach of the original Protocol [6] results in

limited scalability; this approach of generating models for multiple strains through homology

relationships represents a means of more rapidly extrapolating the knowledge contained within

the highly-curated reconstruction. One caveat to consider when applying this approach is the

metabolic diversity inherent to the species of interest. If the species is not particularly genetically

diverse, then the resulting models will likewise be highly similar.

Along with the step-by-step procedures in this Protocol Extension, we also provide a

tutorial (Supplementary Tutorial) to generate strain-specific models for five E. coli strains from

a reference model. The Supplementary Tutorial includes 3 jupyter notebooks that are focused

on stages 2 and 3 (the genome sequence comparison and generation of homology matrix stage,

and the creation of strain-specific draft models) to guide the steps that could be automated in
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this Protocol Extension.

Figure 5.2: Overall workflow for multi-strain GEM generation
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5.6 Overview of the Procedure

5.6.1 Stage 1: Steps 1-4, obtain a high-quality starting reference reconstruc-

tion

To generate strain-specific reconstructions, a high-quality single-strain base reconstruc-

tion generated through the use of the original Protocol [6] is a necessary starting point. Published

reconstruction efforts usually include this output as a supplementary data file in either SBML

or JSON file formats. Additionally, a number of reconstruction repositories exist, such as BiGG,

BioModels, and MetaNetX [18–20]. If a reconstruction for a reference strain in the species of

interest is not available, then the original Protocol can be executed to produce one [6]. The

resulting output can then be used as the starting point to generate multi-strain models. It is

possible that for certain organisms there could be multiple available models that have been in-

dependently reconstructed. This represents a potential opportunity to broaden the reference

knowledgebase. In this case the user can either reconcile the base reconstructions for a single

strain into a single reconstruction of highest confidence through careful manual curation of the

content or run this Protocol Extension using each base reconstruction in turn and compare the

resulting draft models of interest. After obtaining (or generating) a reference reconstruction,

it is necessary to evaluate its quality to determine its suitability for use as a reference recon-

struction. To evaluate the reference reconstruction, refer to Stage 4 of the original Protocol [6].

Recently, a testing suite called Memote has become available that evaluates a number of quality

control/quality assurance features of a GEM in a drag and drop fashion [21]. Once a curated,

quality reference reconstruction is either obtained or generated, it can be used in the following

steps to generate strain-specific GEMs.
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Box 1: A commentary on genome annotation and assembly

Genome annotation and assembly are both well documented and established techniques

within the bioinformatics field[22] If the research effort is using publicly available genomes, most

will likely be annotated. However, when utilizing newly sequenced genomes or those lacking

annotation, it is necessary to perform annotation. While a plethora of tools exist for execut-

ing genome annotation [23, 24], it is important to use a consistent tool to prevent potential

errors/bias. One potentially useful annotation software package is Prokka [25]. If one is in-

terested in following this Protocol Extension to generate models of newly sequenced strains it

will also be necessary to perform genome assembly. This raises the question of the sequence

quality required to generate multi-strain models. One means of assessing quality is through cov-

erage. While the specific requirement may vary from species to species, we analyzed how varying

coverage impacts the resulting assembly metrics of N50 and number of contigs (Supplementary

Figure D.2). For the purposes of using an assembled genome, it is important to have sufficient

coverage that demonstrates saturation in these metrics. In the case of the E. coli strain discussed

in the supplementary figure D.2 we see this to be at around 70X coverage.

5.6.2 Stage 2: Steps 5–13, genome sequence comparison and generation of

homology matrix

Stage 2 is to identify and acquire the sequenced genomes of different strains from the

species of interest. Publicly available genome data is available in sources such as NCBI or

PATRIC [26, 27]. How many and which strains to include depends on the given research question

posed. Criteria for genome selection could possibly include particular isolation location, existence

of associated metadata, and phenotype or pathotype information. One should keep in mind the
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phylogenetic distance between reference strain and target strains as this will directly impact the

utility of mapping the content of the original reconstruction. As a means of quality assurance,

it is important to keep track of the identifiers of the publicly available genomes used. Within

Notebook 1 (Supplementary Tutorial) we begin by acquiring a small set of E. coli genomes from

NCBI. In the described workflow and corresponding tutorials, we assume that the user is starting

with annotated GenBank files for the strains of interest (see Box 1).

After identifying and obtaining the genomes for the target strains of interest, the next

step is to identify the orthologous genes between each strain and the reference strain. This step

is detailed within Notebook 1 (Supplementary Tutorial). While a plethora of techniques exist to

perform this function, we recommend utilizing NCBI protein BLAST to identify bidirectional best

hits as it is widely adopted by the community, scriptable, and reliable. This method is utilized

within the provided scripts (Supplementary Tutorial). Following the identification of homologous

genes in each of the target strains, the results can be unified into a single Pandas dataframe of the

percentage identity values (PID). This dataframe is then filtered down to contain all the genes

within the reference reconstruction. The output of these steps is the homology matrix consisting

of N x M PIDs, where there are N rows of the genes within the reference reconstruction and

M columns of the target strains (Figure 5.2). The penultimate step is to apply a threshold

to binarize this matrix into a presence/absence matrix detailing which genes are absent within

the target strain. We suggest utilizing a cutoff of 80% percentage sequence identity covering

at least 25% of the query gene length or above to consider the gene present within the target

strain. However, this threshold is an adjustable parameter and the effect of genes retained in

draft strain-specific models is dependent on how genetically similar the target strains are to the

reference strain (Supplementary Figure D.1).
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A supplementary final step is to execute a nucleotide BLAST. Many reference genomes

have undergone extensive manual curation within the annotation, so there may be discrepancies

with automatically annotated target strains. By executing a BLAST on raw nucleotide sequences

there is a secondary comparison made to catch potentially unannotated open reading frames

within a given target strain. In addition, for each open reading frame (ORF) identified to

pass the nucleotide sequence similarity threshold but missing from the annotations, a quality

check for premature stop codons within the sequence is performed as these ORFs likely result

in a nonfunctional protein. This process is also detailed within Notebook 1 (Supplementary

Tutorial). The nucleotide BLAST provides an added catch to avoid excluding genes from strain-

specific models due to lack of annotation. The final binarized homology matrix can then be used

in concert with COBRA methods [28–31] to create and save strain-specific models of the target

strains.

5.6.3 Stage 3: Steps 14–23, creation of strain-specific draft models

The genome comparison executed in Stage 2 provides information on which genes within

the base reconstruction are lacking a homologous gene within each target strain genome. By

utilizing the “remove genes” function from the “cobra.manipulation.delete” module of COBRApy,

the appropriate genes can be removed from a model. Notebook 2 (Supplementary Tutorial)

demonstrates how to properly implement this technique. For every target strain of interest, a

copy of the base reconstruction is created and appropriate genes, as per the homology matrix,

are deleted from each model, creating a draft strain-specific model. This process is repeated for

each strain of interest. Additionally, the genes retained in each strain-specific model are updated

at this stage to reflect the locus tags in the target strain’s annotation. This process is executed
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using the “rename genes” function from the “cobra.manipulation.modify” module according to

another generated matrix of all the gene names, mapping the gene identifiers constructed within

Stage 2. Depending on the annotation platform it may be worthwhile to add additional locus tag

information to stratify multiple namespaces. For example, if the genomes used were re-annotated

with Prokka it could be useful to add NCBI locus tags to the gene objects within the model.

Additional information can be stored within the “notes” field of a gene object. The updated

draft models are then ready for further evaluation.

The next step is functional evaluation of the draft strain-specific models and this begins

by determining which of them are able to be optimized through linear programming for biomass

objective flux, i.e., in silico growth. At this point, a combination of automated gap-filling methods

and manual curation are used to determine which nutrients need to be supplemented to the in

silico media to achieve positive biomass yield. Gap-filling methods have been well documented

[32–35], and the results generated can be used to enable growth in strain-specific models found

to have auxotrophies.

This step is executed in an iterative fashion across all target strains and reflects a critical

step in any reconstruction effort. It is important to keep in mind the differences between the two

model types to be gap-filled: 1) models of true auxotrophs that require only a supplementation

of extracellular nutrient to enable biomass production and 2) models in which metabolic reaction

gap-filling is necessary and thus offers a potential for discovery of alternative pathways. Ideally,

gap-filling should always be supported by literature information and/or validated experimentally.

In this context, we refer to the gap-filling required to obtain a functional network that can

produce biomass. It is also worth noting that in some cases where there are known biomass

composition variants, instead of gap-filling the model to enable growth, the biomass reactions
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should be modified. Alternate biomass formulations may substantially affect model predictions

and have been shown to be variable across species and conditions [36].The base biomass reaction

may also be highly variable across strains in certain species. For example, O antigen structures

are highly variable across Gram-negative strains and the corresponding biosynthetic pathways

vary extensively, requiring a separate pan-species reconstruction effort.[9] Therefore, instead of

directly taking the biomass reaction from the base strain, we recommend that the users customize

biomass reaction for strains of interest by generating or collecting strain-specific experimental

data, when available. A recently developed workflow can also help users generate the biomass

reactions in a data-driven and unbiased fashion.

5.6.4 Stage 4: Steps 24–28, curation of strain-specific models

At this juncture, a group of functional models for the identified target strains has been

produced, and may be used in their current form to generate preliminary predictions and direct

future studies. Any known strain capabilities present an opportunity to perform a validation

step to inspect whether the strain-specific models can still accurately predict known phenotypes.

Additionally, all, or select models depending on interest and/or time constraints, can now be

extensively manually curated as per the original Protocol [6] to produce a high-quality recon-

struction. In this case, the models produced would be used as input to the original Protocol

[6] at Stage 2: Reconstruction Refinement. This would refine these models from derivative

draft strain-specific models to curated reconstructions of specific strains. This effort will involve

adding strain-specific metabolism not present in the original reconstruction. One useful technique

here would be to annotate the pangenome to potentially catch genes with divergent nucleotide

sequence but similar functional machinery which may have appeared due to horizontal gene
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transfer events. While additional manual curation of the generated strain-specific models would

yield more accurate predictions, it is worth noting that the group of draft models represents a

valuable resource.

Various analyses can be conducted such as determining differing growth capabilities across

nutrient environments. An example of this for carbon source utilization is demonstrated in Note-

book 3 (Supplementary Tutorial). In this analysis, growth in different nutrient conditions can

quickly be predicted. Starting from a minimal media condition, the current growth-supporting

nutrients for carbon, nitrogen, phosphorous, or sulfur can be removed, and an appropriate list

of nutrients looped through to determine whether alternative sources of carbon, nitrogen, phos-

phorus, and sulfur support growth. This process is repeated for each strain in the group of

strain-specific models. Experimental validation of the multi-strain predictions is ideal. The re-

sulting in silico predicted growth capabilities can then be used to examine which strains are

similar in terms of metabolic phenotype. This approach has proven fruitful in providing an ad-

ditional level of discrimination in numerous past studies and represents one of the immediate

benefits of extending a reconstruction to construct strain-specific models.

5.6.5 Stage 5: applications of multi-strain GEMs

Once a collection of functional models of the identified target strains has been generated,

they can be used in a variety of ways (see Applications). This fifth stage includes a range of

techniques to select from, determined by the research to be conducted. Given the breadth of the

potential applications, they are not addressed in this Protocol Extension.
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5.7 Materials

5.7.1 Annotated genome sequences of interest

Annotated sequences of interest can either be downloaded from public databases or gen-

erated by the user through sequencing. In this Protocol Extension, we start with annotated

GenBank files that contain the annotation and sequence sections that can be directly down-

loaded from NCBI. Several other guides document how to assemble and annotate genomes of

interest [37, 38].

5.7.2 Reference GEMs

Reference GEMs have already been reconstructed for many well studied organisms. The

available GEMs can mostly be found and downloaded from publications or public databases such

as BiGG Models [18]. Reference models can be in various formats such as SBML, MAT and

JSON. If the Reference model has not been built for the species of interest, please refer to the

original Protocol[6] for details of building a detailed, reference reconstruction.

5.7.3 Equipment and Software

Standard personal computer with the following software/packages properly in-

stalled:BLAST (v 2.9.0 tested), Python (v 3.5.2 tested). Python Packages: pandas (v0.23.0

tested), seaborn (v0.8.1 tested), biopython (1.71 tested), jupyter notebook (v5.2.3 tested). All

python packages can be installed directly with pip command. If the users are more comfortable

with anaconda, all packages are available in anaconda installation as well. CobraPy: the instal-

lation steps and tutorial can be found on https://cobrapy.readthedocs.io/en/latest/. To

ensure the performance of the scripts in the Supplementary Tutorial, use version 0.13.0
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5.8 Procedure

5.8.1 Stage 1: reconstruction of base model: Timing 6 months to 1 year

1. Obtain reference model. Download a reference model from BiGG Models

(http://bigg.ucsd.edu/), publications or other databases. The resulting draft strain-specific

models will reflect the namespace of the base reconstruction. CRITICAL STEP: Models

in the BiGG database [18] have been pre-checked for quality, so it is a recommended re-

source if your organism of interest is available. While BiGG is recommended, any consistent

reconstruction where the gene product rules are linked to a genome annotation, producing

a model that can be loaded to COBRApy will work within this Protocol Extension.

2. Build reference model if not available. If the reference model is not available, reconstruct

a model from scratch following the original reconstruction Protocol [6] or start from draft

models reconstructed in previous studies [39, 40] and follow the original Protocol[6].

3. Quality control. Regardless of the source, perform quality control analysis on the base

model by uploading the model to Memote (https://memote.io/) [21] for quality checking.

Once the report is available, check the following two important measures: 1. All metrics in

the consistency section 2. Uniform Metabolite Identifier Namespace. These metrics ensure

that the model is properly standardized. In addition, check if the model is functional

by performing growth simulations to ensure firstly that there is no growth when exchange

reactions are closed. Refer to the computational method developed by Fritzmeier et al. [41]

to identify and remove erroneous energy-generating cycles. And secondly that the growth

prediction is consistent with experimental observations including nutrient utilization and

metabolite secretion (if data available). CRITICAL STEP: The quality of the multi-
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strain models generated from this Protocol Extension will be highly dependent on the

reference model. So, it is especially important to start with a high-quality reconstruction

and experimentally validated model.

4. Obtain base strain genome annotation. Download the reference strain genome annota-

tion.Retrieve the GenBank file that contains the genome sequence and annotation, which

were originally used to reconstruct the reference GEM and extract the modeled coding DNA

sequences and corresponding unique locus tags. CRITICAL STEP: This is important

because the creation of draft multi-strain model is dependent on the sequence annotation

of the base strain.

5.8.2 Stage 2: sequence comparison and generation of homology matrix: Tim-

ing days to weeks

5. Download annotated genomes for different strains of interest in GenBank format. Genomes

of interest can be downloaded from various public databases such as National Cen-

ter for Biotechnology Information (NCBI) and Pathosystems Resource Integration Cen-

ter (PATRIC) [26]. Instructions to download annotated genome sequences from NCBI

can be found here: https://www.ncbi.nlm.nih.gov/guide/howto/dwn-genome/, and

instructions to download genome sequences from PATRIC can be found here: https:

//docs.patricbrc.org/user_guides/data/index.html#download-data. Or users can

follow the Supplementary Tutorial to download the GenBank files using jupyter notebooks.

!CAUTION: We recommend downloading GenBank files that contain both sequence and

annotation information. If annotation is not available for the target strains, see Box 1 for

our recommendations and tips on genome annotation. To ensure consistency, the annota-
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tion pipeline used for target strains should be the same as the pipeline used for reference

strain.

6. Quality control of the genome sequences. Calculate and check the coverage (if available),

N50 score and number of contigs of the genome sequences. To determine the threshold for

the above quality metrics, consider performing similar analysis shown in Supplementary

Figure D.1. Discard genome sequences that do not pass the quality test. CRITICAL

STEP: More reliable results can be obtained from genome sequences with coverage > 70x.

Adjust the threshold for quality metrics such as N50 score and number of contigs based on

your organism of interest, as they are highly dependent on the organism. If time permits,

use sensitivity analysis [42] to find the most appropriate threshold.

7. Generate Fasta files from GenBank files. Use the Genbank files to generate fasta files for

both protein and nucleotide sequences (see Notebook 1 in Supplementary Tutorial). Protein

fasta files are then used as input for the following BLAST operation in Step 9 to identify

homologous proteins across strains.

8. Identify candidate metabolic functions. The previous genome annotation (Step 4) should

provide E.C. numbers for genes involved in metabolic function. Extract genes with E.C.

numbers from annotations and the following steps are focused on these metabolic genes

only.

9. BLAST the genomes of interest against the reference strain. Perform bidirectional pro-

tein BLAST [43] to identify the sequence similarity of metabolic proteins in strains of

interest compared to the reference strain. Use BLASTp (output format 6) to record both

query/subject ID and percentage identity matches (PID). CRITICAL STEP: Bidirec-
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tional BLAST uses both the reference strain or the other strain as reference BLAST

database and selects the best bidirectional hits (BBH) based on BLAST result in both

directions to identify orthologs. Note that we recommend filtering mapping results based

on coverage of alignment length. (see Notebook1 in Supplementary Tutorial)

10. Filter the BLAST result for only proteins in the base model. Identify the list of proteins

included in the base model and keep only the BLAST results for these protein genes for

the following analysis.

11. Create a homology matrix summarizing the results for all strains of interest. Identify the

BBHs of all proteins between reference strain and strains of interest. Compile the PID

of all BBHs in the base model for all strains into a homology matrix, where the columns

represent the strains, and the rows represent the protein.

12. Create binarized homology matrix for genes in the model. Select a threshold for PID to

determine the presence/absence of proteins in all strains. The matrix is binary with 1

representing presence, and 0 representing absence. Similar to the homology matrix, it

should have M strains * N proteins. CRITICAL STEP: Adjust the threshold for PID

accordingly depending on your data and purpose (see Supplementary D.1 for how PID

threshold affects the number of genes retained in strain-specific models). The threshold of

80% used in the Supplementary Tutorial is quite stringent as some tools use the sequence

identity cutoff of 50% to identify gene orthologs [44].

13. Nucleotide BLAST to check unannotated open reading frames. To ensure that we do not

miss any genes in the target strains due to lack of annotation during BLASTp, we perform

nucleotide BLAST between the reference strain and nucleotide sequences of the target

112



strains (fna files containing contigs). In addition, we also look for premature stop codons in

genes of interest to exclude non-functional proteins. Record any inconsistencies observed

in gene absence/present results generated by BLASTp and BLASTn, as they are potential

candidates for manual curation.

5.8.3 Stage 3: creation of draft multi-strain models: Timing days to weeks

14. Identify missing reactions. Based on the presence/absence matrix from Step 12 and the

gene-protein-reaction (GPR) established in the reference strain reconstruction, identify the

genes missing in each strain and reactions encoded by the missing genes.

15. Remove missing genes/reactions. For each strain of interest, start with the reference strain.

Remove the identified missing gene/reaction for each strain from the starting base strain

using COBRApy function ”remove genes”. Save the modified model as the draft strain-

specific model.!CAUTION: Multiple functions in COBRApy allow the user to delete re-

actions, but make sure to use function ”remove genes” with the the parameter “remove

reactions=True” to remove both the missing genes and reactions.

16. Update the GPR in the draft models. Using the query/subject ID obtained in step 9, match

the genes in the base model with genes in the strains of interest to update the gene names

in the strain-specific model. Optionally, to ensure that all possible encoding genes of a

metabolic reaction are included in strain-specific models, one can refer to the full BLAST

result from Step 9 and identify cases of additional pertinent homologs (potential paralogs)

that are not BBH but also pass the PID threshold, and update the GPR accordingly (e.g.,

“Gene A” to “Gene A or Gene B”).
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17. Check biomass reaction. Make sure that the metabolites are general to all strains of in-

terest. Remove the metabolites which are specific to the reference strain or its unique

microenvironment. If strain-specific experimental omics data-sets are available, coefficients

of metabolites in the biomass reaction could also be adjusted accordingly using the BOFdat

workflow [45].

18. Simulate growth. For each strain-specific model, simulate for growth under the same

medium condition as the base model using COBRApy function model.optimize(). A min-

imal medium condition is preferred if the recipe is available to identify potential auxotro-

phies. To modify the medium composition, change the constraint on the exchange reactions

(see original Protocol Step 37 for more details [6]). If the simulated growth rate is less than

0.001 and the objective status is “optimal”, skip Steps 19 to 23 and proceed to stage 4

directly. Otherwise continue with Step 19. ?Troubleshooting !CAUTION: Adjust the lower

bound of the exchange reactions to allow uptake of extracellular nutrients. Ensure the

exchange reactions of the metabolites missing from the medium are closed (lower bound

set to 0).

19. Identify strain-specific auxotrophies. Simulate biomass yield in a rich medium (set all

nutrient exchanges to -5 mmol/gDW/hr). If the yield obtained is less than 0.001 go to Step

22. Otherwise, find the minimal number of nutrient supplementations needed to support in

silico growth using the ”find nutrient supplementation” function. Review the literature for

reports of an experimentally validated auxotrophic phenotype for your strain. If possible,

acquire the strain and validate the auxotrophic phenotype experimentally.

20. Check and report the genetic basis for the auxotrophy. Retrieve the missing genes identified
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by “find nutrient supplementation” as the genetic basis for the nutrient requirement and

run BLASTn as a final quality check to ensure that no matches are found. If no matches

are found, supplement the in silico medium for that strain-specific model with one of the

sets of nutrients returned by “find nutrient supplementation”. If the genes are found, add

the reactions back into the strain-specific model, and adjust of the PID threshold used in

Step 12 if needed. If positive yield is achieved skip Steps 21-23 and proceed to stage 4.

21. Check biomass metabolite synthesis. For strain-specific models which cannot simulate

nonzero positive yield, simulate the production of each metabolite in the biomass reaction.

To do so, create demand reactions which consume metabolites included in the biomass re-

action. A demand reaction is a pseudo-reaction with a lower bound of 0 and upper bound

of 1000 which allows for a metabolite to leave the cell. Instead of the biomass reaction,

iteratively set one demand reaction as the objective to optimize for the production of each

biomass precursor. If the flux through the demand reaction is less than 0.0001, model

simulations suggest that this biomass precursor cannot be produced. ?Troubleshooting

22. Identify missing essential reaction using gap filling. Use the gapfill function in COBRApy

to identify the minimum number of reactions that need to be added to the strain-specific

model to enable the production of those biomass precursors which cannot be synthesized.

Use the original reference model as the reaction repository to draw reactions from in the

gap-filling step. Once the genetic basis for the simulated phenotype is identified, the curator

should decide whether to exclude the precursor from the biomass reaction or add the gap

filling reactions back. ?Troubleshooting

23. Identify genetic evidence for missing essential reactions. For the reactions identified in
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the previous step, look for evidence in the genome and identify why they were deleted in

the previous steps. Adjust sequence similarity threshold if needed and repeat the analysis

from Step 12. If no genetic evidence is found, proceed with stage 4 to identify potential

strain-specific alternative pathways.

5.8.4 Stage 4: curation of strain-specific models: Timing days to weeks

24. Identify strain-specific genes absent from reference model. Inspect the genes with E.C.

number from strains of interest that are not present in the reference strain. Cross referencing

models of related organisms may be helpful in this step.

25. Identify novel metabolic reactions. Identify metabolic reactions corresponding to the strain-

specific genes identified in Step 23 using public databases including Uniprot (https://www.

uniprot.org/), ModelSEED (http://modelseed.org/), KEGG (https://www.genome.

jp/kegg/) and BIOCYC (https://biocyc.org/). Add the metabolic reaction to the

model using COBRApy (see details in original Protocol [6] Steps 6-11). If the reaction is

already present in the model, update the GPR of the reaction to include the strain-specific

gene. !CAUTION: Make sure that the metabolite naming scheme for the novel reactions

is consistent with the model standard to enable flux simulation through the newly-added

reaction.

26. Repeat growth simulation. Ensure that draft models which were originally are able to

simulate growth can still do so. Check if the models which failed to grow before can

now simulate growth with newly-added reactions. If not, add back the missing essential

reaction to enable follow-up analysis as it may be due to unknown alternative pathways.

Ensure that the model does not have futile cycles after adding new reactions. CRITICAL
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STEP: Growth simulation results could have been altered after adding novel strain-specific

reactions. So even if the model was predicted to grow in stage 3, double-check here to ensure

growth.

27. Quality check the models. Following the instructions in the original Protocol, perform qual-

ity check on the models generated including their mass/charge balance, dead-end metabo-

lites/reactions and blocked reactions, etc.?Troubleshooting

28. Validate strain-specific models. Perform experiments or collect experimental data from the

literature on the metabolic capabilities of the strains of interest. Data useful for validation

include known secretion products, growth on different nutrient sources, auxotrophy and

knock-out phenotypes (see original Protocol Steps 81 and 82 for details of model validation

against experimental observations[6]). As with all GEMs, better experimental characteriza-

tion of the strains of interest will improve the in silico results. Thus, increasing the accuracy

of the biochemical composition of the biomass function for strains of interest is of value.

!CAUTION: In order to maximize the accuracy of model prediction, ensure the simulation

condition (constraint, strain, media) is consistent with the experimental condition.

5.9 Timing

The timing of the entire process is estimated under the assumption that the user has basic

coding experience and is working with prokaryotes. The timing also depends on multiple factors:

1) Availability of the base model: the timing will be significantly reduced if the user starts with

an available and high-quality base model. 2) Number of strains. While a good portion of the

workflow can be automated (see Supplementary Tutorial), manual curation is still necessary for
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each strain-specific model, resulting in longer time needed with increased number of strains.

3) Experience with coding/GEMs. If the user has worked with GEMs and is comfortable with

coding (especially python), the timing will be greatly reduced with the help of the Supplementary

Tutorial. 4) Computational resources. This factor will only come into play in the BLAST step if

the user is working with large genomes and many strains. Otherwise a personal computer should

be sufficient.

• Stage 1 (Steps 1-4) (base model reconstruction if model not available): 6 months - 1 year

depending on the size of the genome, annotation quality and availability of the metabolic

knowledge

• Stage 2 (Steps 5-13): days to weeks depending on the number of strains and availability of

computational resources

• Stage 3 (Steps 14-23): days to weeks depending on the number of strains

• Stage 4 (Steps 24-28): days to weeks depending on the number of strains

5.10 Anticipated Results

This Protocol will result in multi-strain genome-scale metabolic models that not only can

serve as a comprehensive knowledge base for the species of interest but will also allow computa-

tion of metabolic capabilities for different strains from just their genome sequences. Compared

to single-strain-based GEMs, multi-strain GEMs can also be queried for strain-specific metabolic

genes/reactions. Multi-strain GEMs will also allow various simulations including growth on dif-

ferent nutrient sources and gene knockouts to allow us to obtain a high-resolution understanding

of the metabolic phenotypes displayed by different strains.
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Chapter 6

BiGG Models 2020: multi-strain

genome-scale models and expansion

across the phylogenetic tree

6.1 Abstract

The BiGG Models knowledge base (http://bigg.ucsd.edu) is a centralized repository

for high-quality genome-scale metabolic models. For the past 12 years, the website has allowed

users to browse and search metabolic models. Within this update, we detail new content and

features in the repository, continuing the original effort to connect each model to genome annota-

tions and external databases as well as standardization of reactions and metabolites. We describe

the addition of 31 new models that expand the portion of the phylogenetic tree covered by BiGG

Models. We also describe new functionality for hosting multi-strain models, which have proven to
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be insightful in a variety of studies centered on comparisons of related strains. Finally, the mod-

els in the knowledge base have been benchmarked using Memote, a new community-developed

validator for genome-scale models to demonstrate the improving quality and transparency of

model content in BiGG Models.

6.2 Introduction

BiGG Models (http://bigg.ucsd.edu) was initially released in 2010 as a knowledge base

of Biochemically, Genetically and Genomically structured genome-scale metabolic network re-

constructions, and the first release was followed by a complete redesign in 2016 [1, 2]. Since

its initial release, the BiGG Models publications have been cited over 450 times (via Web of

Science) and the website maintains a user base of 2,000 monthly active users. BiGG Models

is built around a workflow for standardizing models that is meant to verify and, in some cases

improve, model quality. External studies have also indicated the high quality of models in BiGG.

In one instance, the robustness of growth predictions for models in BiGG was demonstrated and

used as a benchmark for a new collection of microbiome metabolic models [3]. Another study on

“erroneous energy generating cycles”—a common issue in metabolic models—found that models

in BiGG were less likely to have these undesirable cycles than models from other databases [4].

And a number of projects have used BiGG to automate reconstruction workflows and analyses

[5–7].

With the BiGG Models 2020 update, we have included an additional 31 genome-scale

metabolic models (GEMs) across four independent releases (versions 1.3–1.6), introduced the

ability to download sets of multi-strain models that have been generated from a given base

reconstruction page, and continuously improved features with suggestions and contributions from
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the open source community. New content has increased the utility of the knowledge base for the

community by expanding the number of organisms and metabolic processes represented. The

BiGG Models architecture has been designed to enable these advances and continually improve

the knowledge base.

6.3 Knowledge Base Content

BiGG Models continues to contain high-quality, manually-curated GEMs collected from

various publications. Quality control in BiGG Models begins with our requirement that all

models undergo rigorous peer review before entry. We begin our import workflow with the exact

model that was reported in a peer-reviewed publication, and the workflow is designed to improve

the quality of annotations and standardization in the model, without making any changes to the

reaction content, parameterization, or relationships (e.g. gene-reaction rules).

To load a model into BiGG, first each model is aligned the shared namespace of reactions

and metabolites across all models. When identifiers can be improved automatically (e.g. by

finding a universal reaction based on the reactants), the workflow does this automatically; in other

cases, non-matching identifiers are left as-is to ensure that model content does not change. Next,

genome annotations are loaded into the database for each model, providing explicit links between

metabolic reactions and genes. When adding content to the BiGG Models database, manual

efforts are made to ensure that each metabolite identifier follows the specified naming convention,

each reaction contains a unique identifier, and gene reaction rules are properly represented in

valid Boolean logic. When obvious errors are identified (typos, duplicate metabolites), these

are corrected manually, with feedback from the model authors. The coalescence of genome

annotation information, with external database links, and reaction, metabolite, gene information
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from peer-reviewed models drive the quality of the knowledge base.

To ensure that model content (the reaction connectivity, gene reaction rules, and pa-

rameters that affect model predictions) has not changed from the peer-reviewed version pre-

sented in the original publication, an internal testing suite runs 18 tests for each model, for

a total of more than 1900 tests. For example, tests ensure that reaction, metabolite, and

gene counts have have not changed, that all reactions that were mass balanced in the pub-

lished model are still balanced, and that genes have mapped to genome annotations correctly.

An additional 36 tests are included to spot-check bugs and edge cases that have appeared

during previous builds of BiGG Models. The full test suite is available in the source code

(https://github.com/SBRG/bigg_models/blob/master/bigg_models/tests).

In the 2016 release of BiGG Models, there were 77 GEMs; with this update, we detail

31 additional models, covering release versions 1.3–1.6 (http://bigg.ucsd.edu/updates)[8–13].

Genome annotations for each model (where possible) are downloaded from the National Center for

Biotechnology (NCBI) reference sequence database [14] and linked to the corresponding GEM.

Notable additions are the Recon3D, iCHOv1, and iML1515 [15–17] for the human metabolic

network, Chinese hamster ovary cell, and Escherichia coli K-12 MG1655 respectively. BiGG

Models continues to host gold-standard models within a shared knowledge base of biological

reactions and metabolites. We also demonstrate that the new GEMs valuably expand the portion

of the reactome encapsulated by the knowledge base. The number of reactions represented in the

database more than doubled from 11,459 in the 2016 version to 28,302. Likewise, the number of

metabolites has more than doubled from 4,040 to 9,088. In addition to expanding the number of

metabolic processes within the database, we sought to evaluate the diversity of reaction presence

among GEMs within the database. Reaction presence or absence of the shared namespace was
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identified for every representative GEM, and this matrix was subject to multiple correspondence

analysis (Figure 6.1). Notably, this analysis shows that new models within the update exist at the

edge of each cluster demonstrating that the new content is increasing the level of dissimilarity

amongst GEM reaction content. This separation among models conveys that the metabolic

space within BiGG Models is moving past representations of shared common pathways and

incorporating an increasing amount of organism-specific biochemical capabilities.

This update also includes multi-strain models, a recent development within the metabolic

modeling community. We define multi-strain models as those generated via the ability to extend

the content contained within a gold-standard reconstruction to related strains of interest. This

technique has proven insightful in a number of studies for comparative analysis of strains [18–

24]. Thus, we have included a means for the hosting of the draft strain-specific models generated

within these studies on BiGG Models. Each strain-specific model is available to download within

a zip folder from the page of the base reconstruction used to generate the strain-specific models.

The GEMs of iCN718, iYL1228, and STM v1 0 [18, 25, 26] each contains datasets of multi-strain

models linked from their reconstruction pages within BiGG Models. Identifiers in multi-strain

reconstructions are inherently BiGG Models compliant as they have been generated through

the use of a hosted model. These multi-strain models have demonstrated value in comparative

simulation to identify key differences amongst the strains of a species and they all represent

starting points towards manually curated reconstructions for each strain should the proper steps

be undertaken [27].
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Figure 6.1: Multiple correspondence analysis of the reaction presence or absence within each
model clusters models according to eukaryotic (yellow ellipse), prokaryotic (green ellipse and
inset), and photosynthetic eukaryotes (blue ellipse) within metabolic reaction space. Dimension
1 (x-axis) explained 14.5% of the variance; dimension 2 (y-axis) explained 14.2%. Further, a
number of the models newly introduced within this update (red circles) are found edges of the
MCA plot, indicating that within these two dimensions, they contribute to additional diversity
in reaction content compared to the previous release. For this analysis iML1515 was used as a
representative E. coli model and iIS312 as representative for Trypanosoma cruzi.

6.4 Validation of Models with Memote

BiGG Models now links to the model validation tool, Memote, which evaluates and scores

GEMs with a set of community-maintained tests [28]. Consistent with the efforts in BiGG Models

to maximize the value of metabolic models, evaluation with Memote provides a means to quantify

model quality. Quality, in this case, indicates that GEMs adhere to established standards such

as consistent identification of model components and biologically-feasible results under varied

growth conditions. This standardized approach to model validation ensures the quality of BiGG

Models content and provides a benchmark for continued improvement.
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Both the original 77 GEMs included in the 2016 release of BiGG and the 31 GEMs

included in this update were evaluated with Memote (Figure 6.2). Largely due to improved gene,

metabolite, and reaction annotations, the average Memote score of JSON formatted models

increased from 40% to 58%, while that of the SBML [29–31] formatted models advanced from

66% to 73%. While these scores represent significant improvements, ongoing database annotation

efforts will be necessary to maximize Memote scores for models in BiGG. Memote does not

currently support testing of MATLAB formatted models; however, BiGG generates MATLAB-

formatted models using the same data sources as the JSON formatted files, so equivalent model

content is present. These results highlight the value of BiGG Models as a knowledge base of

GEMs, and scoring its content with Memote reinforces its effort to provide access to GEMs with

thorough and consistent standards.

Figure 6.2: The latest update has resulted in improved Memote annotation scores for both
JSON and SBML model formats.
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6.5 Additional Features and Improvements

Regular improvements are made to BiGG Models that have made the knowledgebase

faster, easier to use, and better for analysis. Filters are now provided during search to filter

out multi-strain reconstructions in the search results (see the toggle titled “Exclude multistrain

models from search”). Gene and protein sequences are now included directly in the database and

available by API. A new advanced search feature allows users to identify all gene and protein

sequences for any universal BiGG reaction (see “Find sequences for BiGG Models reaction” on

the advanced search page).

A new “universal” model was added for download on the Data Access page; this model

provides all reactions and metabolites from BiGG in a single COBRA-compatible JSON file, so

users can rapidly add BiGG content to their own computational workflows using COBRA tools.

Namespace downloads on the Data Access page have also been extended to include old and

deprecated identifiers. External database links are regularly updated with the latest information

from MetaNetX [32]. Many manual improvements have been made to annotations, including

better gene mapping for yeast models. And SBML downloads have improved through regular

updates to the ModelPolisher project (https://github.com/draeger-lab/ModelPolisher).

Since the 2016 release of BiGG Models, the website has been deployed on a new server

to dramatically improve speed when searching and browsing. Finally, bugs and suggestions are

collected on GitHub (https://github.com/SBRG/bigg_models), and this has led to continuous

and transparent improvements to the site by the BiGG Models team.
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6.6 Conclusion

BiGG Models continues to be a widely used and well-maintained platform for integrating,

sharing and standardizing GEMs. The updated knowledge base integrates the metabolic knowl-

edge for 108 GEMs, as well as including the content for 515 draft strain-specific models across

three organisms, all available within the knowledge base. BiGG Models is free for academic use

and continues to extend the content within the knowledge base. Further, all source code contin-

ues to be available on GitHub to enable submission of potential bugs. The development of BiGG

Models continues to evolve with the needs of the research community, introducing multi-strain

models and validation through Memote testing. Future BiGG Models releases will continue to

be shaped by the feedback from users.

6.7 Data Availability and Requirements

BiGG Models is freely available online for academic and non-profit use at http://bigg.

ucsd.edu, under the BiGG License described at http://bigg.ucsd.edu/license. While the

content of BiGG is restricted to academic and non-profit use to protect intellectual property

claims, the source code is open source and available to all users under the MIT license at https:

//github.com/SBRG/bigg_models. Installation of an independent system requires Python 3.5

and PostgreSQL 9.4 or later.

We encourage community members to submit their model content to BiGG Models, and

the website includes a section that describes the minimum requirements for inclusion in BiGG

and the process for submitting a new model: http://bigg.ucsd.edu/about These requirements

reflect the quality standards set by BiGG Models: identifier standardization for reactions and
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metabolites, links to genome annotations and peer-reviewed publication as the primary means

of verifying model quality.
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Chapter 7

Systems biology approach to

functionally assess the Clostridioides

difficile pan-genome reveals genetic

diversity with discriminatory power

7.1 Abstract

Combatting Clostridioides difficile infections, a dominant cause of hospital associated in-

fections with incidence and resulting deaths increasing worldwide, is complicated by the frequent

emergence of new virulent strains. Here we employ whole genome sequencing, high throughput

phenotypic screenings and genome-scale models of metabolism to evaluate factors underlying C.

difficile strain emergence by analyzing the genetic and phenotypic diversity of 451 strains. Con-
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structing the C. difficile pan-genome based on this set revealed 9,924 distinct gene clusters of

which 2,899 (29%) are defined as core, 2,968 (30%) are defined as unique and the remaining 4,057

(41%) are defined as accessory. We develop a novel strain typing method, Sequence Typing by

Accessory Genome (STAG), that identifies 176 genetically distinct groups of strains and allows

for explicit interrogation of accessory gene content. Thirty-five strains representative of the over-

all set were experimentally profiled on 95 different nutrient sources revealing 26 distinct growth

profiles and unique nutrient preferences. Strain-specific genome scale models of metabolism were

constructed for each of the strains to mechanistically link the observed phenotypes to strain-

specific genetic differences exhibiting an ability to correctly predict growth in 76% of cases. The

typing and model predictions are used to identify and contextualize relevant genetic features and

phenotypes that may contribute to the emergence of new problematic strains.

7.2 Introduction

Clostridioides difficile remains the most common healthcare-associated infection with an

ever-evolving and complex epidemiology. C. difficile is recognized as an urgent threat by the

Centers for Disease Control and Prevention (CDC) and has been conservatively estimated at

over 220,000 cases in hospitalized patients and nearly 13,000 deaths within the United States

annually [1]. The disruption of natural colonic microbiota following antibiotic use is the leading

risk factor for C. difficile infection (CDI) and recurrent infections occur in 35% of patients [2–4].

Two toxins, TcdA and TcdB, are the primary virulence factors for symptomatic infection [5].

However, virulence is also attributed by other factors including the cytolethal distending toxin

(CDT), sporulation, flagella, and adhesins [6–12]. Overall, the plasticity of the C. difficile genome

has contributed to divergent lineages distinguished by evolutionarily advantageous genetic traits
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that result in increased antimicrobial resistance, virulence, and metabolic capabilities for survival

within the gut [13, 14]. The bevy of accessory gene content present across strains in this species

has complicated attempts to contextualize strain relationships amongst this complex population.

Molecular typing techniques that evaluate strain relatedness have been used to evaluate

C. difficile epidemiology and track transmission of virulent lineages. The C. difficile genome has

sufficient intraspecies diversity within the intergenic spacer regions of rRNA genes for the suc-

cessful use and adoption of PCR ribotyping, the primary molecular typing method for C. difficile

[15–18]. As a result, the most prevalent and hypervirulent C. difficile strains globally have been

dubbed ribotype 027 (RT027) and ribotype 078 (RT078) [12, 19, 20]. Additionally, multilocus se-

quence typing (MLST) is widely used in population studies as a means of distinguishing strains

through the allelic profile of designated housekeeping genes [21–23]. In addition to these two

techniques there are several other typing methods including multilocus variable-number tandem

repeat analysis, pulsed-field gel electrophoresis, restriction endonuclease analysis, toxinotyping,

and surface-layer protein A-encoding gene typing. Each of these methods has unique levels of

discriminatory power as well as unique limitations [24]. While these typing schemes have proven

useful in understanding CDI epidemiology, the most widely adopted schemes (PCR ribotyping

and MSLT) lack the resolution to distinguish more closely related strains. Further to obtain

mechanistic insight into outbreaks, whole genome sequencing (WGS) methods need to be em-

ployed.

Advancements in sequencing technologies have resulted in an explosion in the availability

of quality whole-genome sequencing data [25] promising new and comprehensive approaches to

strain typing [26–28]. In this age of high-throughput sequencing, comparative genomics analysis

has been largely stratified into two approaches: single nucleotide variants (SNVs) and gene-by-
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gene comparisons. In the later case for C. difficile, core-genome MLST (cgMLST) and whole-

genome MLST (wgMLST) extensions of classical MLST have been developed [29, 30]. While

these techniques have increased the resolution of typing approaches, key connections between

the genomic diversity driving strain types and resulting diversity of phenotypes have remained

elusive. A deeper understanding of the functional diversity across this species is needed and must

be rooted to the enormous genetic diversity observed.

In recent years, systems biology tools have been challenged with extracting knowledge

from the enormous amount of omics data available. In particular the substantial variability in

genomic content and function across strains of a species can be analyzed efficiently through a

combination of comparative genomics and various modeling frameworks [31–33]. Strain-specific

genetic variation can be usefully organized through a pan-genomic perspective that delineates

and organizes a species’ gene portfolio [34, 35]. Additionally, genome-scale models (GEMs) of

metabolism have served as tools to mechanistically link genotype to phenotype particularly in

terms of growth capabilities. Computation of catabolic capabilities based on genome sequences

has provided additional insight into metabolic variability and association to lifestyle niche [36,

37]. To increase understanding of the diversity exhibited by C. difficile, we have executed a

holistic systems biology analysis encompassing both a functional genomics assessment of the pan-

genome and an in depth analysis of experimental growth phenotypes aided by construction and

use of GEMs. Moreover, we developed a novel strain typing method based on the accessory gene

content, Sequence Typing by Accessory Genome (STAG), that allows for explicit investigation

into the gene clusters driving the separation of strain groups. This new method expands the

toolkit for analysis of WGS strain typing across a broad array of disciplines.
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7.3 Results

7.3.1 High-throughput phenotypic screening of C. difficile clinical isolates

reveals unique dynamic growth profiles

To evaluate the metabolic capabilities of C. difficile, we profiled 35 clinical strains isolated

from hospitalized adult patients [38] using Biolog Phenotype Microarrays and evaluated their

ability to catabolize 95 unique carbon sources (Methods). Analysis of the time-course data

demonstrated various growth modalities (Figure 7.1A). Gaussian process regression models were

employed to robustly explore these dynamics (Methods). Inferring growth curves and their time

derivatives from our data enables the calculation of traditional growth model parameters such as

carrying capacity (K), maximum growth rate, doubling time, and area under the curve (AUC)

through a non-parametric approach [39]. Gaussian process (GP) regression is advantageous

because it has been shown to outperform parametric approaches when considering non-traditional

growth-curve shapes such as diauxic shifts and long lag phases [40, 41]. Examination of the

primary growth model parameters demonstrated that the carrying capacity and area under the

curve are the best indicators of binary microbial growth. The K value represents the maximum

population size and the AUC value is a measurement of net growth over time irrespective of curve

shape, therefore these metrics are particularly suited for high throughput screens of divergent

strains. Following sensitivity analysis (Methods), we normalized values to the negative control

and determined that AUC value greater than 1.25 and a K value greater than .3 define a high

confidence growth call (Figure 7.1B). This combined threshold increased confidence of growth

analysis by minimizing impact of data noise and growth dynamics as compared to simple fold

change or maximum optical density thresholds [42].
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Overall, unanimous growth determinations (either growth supporting or non-growth sup-

porting) could be made for 67 compounds, 4 (glucose, fructose, mannitol, n-acetyl-d-glucosamine)

of which were universally growth-supporting across the 35 strains while the remaining 63 were

unanimous non-growth supporting. The remaining 28 carbon sources assayed support growth in

a range of one to 34 strains. Therefore, these 28 carbon sources could be used to construct an

overall metabolic profile encompassing the growth capabilities on each of these substrates (Sup-

plementary Figure E.1). For example, CDS031 was the only strain found to grow on galactose,

while growth on sucrose was limited to strains CDS071 and CDS031. Niche growth capabilities

are identified by examining the outliers in parameter values from the overall set (Figure 7.1C).

In particular, the degree of growth support can be investigated through the calculated AUC and

carrying capacity. Ranking calculated AUC and carrying capacity reveals which substrates are

the strongest strain-specific growth supporters. Outside of the four universal growth supporting

nutrients, the next top five substrates vary across the strains and include: mannose, sorbitol,

trehalose, sucrose, maltose, glycerol, n-acetyl-d-mannosamine, serine and threonine (Supplemen-

tary Figure E.2). This data indicates that while serine supports growth of multiple strains, only

CDS078 grows robustly on serine as one of its best substrates.
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Figure 7.1: Growth dynamics of C. difficile isolates and parameters calculated through gaus-
sian process regression. A) Growth curves for one isolate, CDS009, on 6 of 95 carbon substrates
demonstrating variable growth dynamics and shape of growth curves. B) Each of the 35 isolates
growth on trehalose plotted in AUC and K with thresholds of 1.25 and .3 shown as red dashed
lines, strains are colored by corresponding genome scale model prediction of growth with exper-
imental data. C) Of the 28 discriminatory carbon sources, the top 15 in terms of coefficient of
variation of AUC and K between strains are pictured.
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7.3.2 GEM-predicted capabilities capture discriminatory metabolic profiles

Motivated by the diverse catabolic capabilities identified through our metabolic profiling

and subsequent GP regression modeling, we sought to identify the genetic bases for these dif-

ferent capabilities. Genome-scale models (GEMs), in particular multi-strain modeling, provide

a powerful tool to contextualize genetic differences and generate metabolic predictions [36, 37,

43–45]. Therefore, we generated strain-specific GEMs for each one of our 35 isolates based on

iCN900, a gold-standard reconstruction of C. difficile strain 630 [46, 47]. To facilitate generat-

ing GEMs of our 35 strains, we completed whole genome sequencing of each isolate and then

executed a standard protocol to build draft strain-specific models based on the reference recon-

struction iCN900 [48]. Our preliminary comparative genomics analyses using the reference 630

sequence (AM180355.1) are summarized through principal component analysis of shared genes

across the entire genomes of our 35 strains (Figure 7.2A). This analysis demonstrates that the

clinical isolates exhibit variations in conserved genes relative to the reference sequence and that

this variation is not consistent across ribotypes.

We evaluated the conserved subsystems of metabolism across the models and found that

transport functions, metabolism of particular amino acids, fatty acid metabolism, and starch and

sucrose metabolism were most divergent against the reference amongst the strains (Figure 7.2B).

Specifically the reactions of phosphotransferase system and ABC system transporters (86%),

starch and sucrose metabolism (57%), fatty acid biosynthesis (21%), and lysine and arginine

pathways (20.8%) have a high proportion of reactions whose encoding genes contain at least one

non conserved gene (Supplementary Figure E.3). A major power of GEMs is their ability to

predict phenotypes based on the structure of the metabolic network using flux balance analysis

(FBA) [49, 50]. Thus, we used our strain-specific GEMs to generate model predictions for growth
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on all 95 carbon sources contained within the phenotypic microarray growth data. In silico growth

predictions were generated using previously defined minimal media conditions and alternating

the carbon source (Methods). Each strain-specific model was subsequently individually gap-filled

and specific false-negative model predictions offered opportunities for further curation (Methods).

This led to the addition of reactions to specific strains that enabled in silico biomass production

for growth on the following sole carbon sources: pyruvate, n-acetyl-D-mannosamine, D-fructose-

6-phosphate, D-glucose-6-phosphate, D-serine, and maltotriose bringing these compounds into

agreement with experimental profiles.

Critically, we compared the resulting confusion matrix between our experimental dataset

and GEM model predictions (Figure 7.2C). Using the GP parameters as opposed to fold change

to determine experimental binary growth/no growth calls elevates the cohort of curated strain-

specific GEMs in overall accuracy by 10% and the Matthews Correlation Coefficient (MCC) of

the predictions by 0.31, resulting in an overall accuracy of 76% and 0.41 MCC. This improve-

ment demonstrates that by enacting a more stringent analysis of high-throughput experimental

screening data, the accuracy of growth versus no growth calls can be improved. Importantly,

these additional analyses minimized the impact of incidental spikes and fluctuations in optical

density, which leads to faulty growth calls. Stringent growth calling of experimental data can

also lead to a high degree of false-positive GEM predictions (765 for our dataset, Figure 7.2C),

which usually occur because FBA simulation will find any theoretical solution possible dependent

on network content and does not consider transcriptional regulation or enzyme efficiency [51].

This predictive failure mode in our set of models suggests that in addition to metabolic network

diversity other biological processes play a role in the diverse capabilities of these strains. Thus

we expanded our analysis from curated reactomes to a full pan-genome level analysis.
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Figure 7.2: Whole genome similarity to reference strain 630, deviation in portion of gene
portfolio contained within iCN900, and overall accuracy of 35 strain-specific models A) Principal
component analysis of the matrix of whole genome homology of each isolate against C. difficile
630. Epidemic ribotypes are highlighted and represented in each cluster suggesting that their
relationship to the reference strain is diverse across these lineages. B) Initial gene content removed
from the set of 35 models based on lack of homologous genes from iCN900 and corresponding
reaction metabolic subsystems. C) Final agreement of curated strain-specific isolate models and
experimental profiling data resulting in 76% accurate set of 35 models.
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7.3.3 Characterization of the C. difficile pan-genome demonstrates differ-

ences in conservation based on functional classification

To comprehensively analyze the diversity of strain-specific gene portfolios on a species

level, we collected 416 high-quality, publicly available genomes. Along with our clinical isolate

dataset this expanded our overall scope to 451 strains, which were all re-annotated to avoid

potential biases from differential gene calling (Methods). We generated a phylogenomic tree for

this dataset and examined how our clinical isolate genomes relate to the public dataset (Figure

7.3A). Our isolates cover 14 out of the 33 major tree branches and thus span 42% of the C.

difficile phylogeny analyzed here.

To evaluate conserved and unique genes across the strains we constructed a pan-genome

using the 451 genome sequences described above (Methods). The pan-genome is built through

efficient all-by-all sequence homology comparisons (via CD-HIT) that establish gene clusters

ranging from unique to ubiquitous genes. Our analysis identified a total of 9,924 gene clusters

in the C. difficile pan-genome, where 2,899 are shared by 99% or more (446/451) of the strains

and comprise the core-genome (Figure 7.3B). Likewise we identified 2,968 gene clusters present

in only 1% or less (4/451) of the strains defining the unique-genome. The remaining 4,057

gene clusters represent the accessory-genome that is variably present within the population, but

not present at either the core or unique extremes and therefore provide a genetic bank rich in

discriminatory power.

The gene clusters were functionally annotated using EggNOG [52] and the results parsed

into the broad category COGs: Metabolism, Cellular Processes and Signaling, and Information

Storage and Processing (Figure 7.3C). Any COG assignment falling under “Poorly Character-

ized” were lumped into the genes with no annotation information to form the “Uncharacterized”
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group (Figure 7.3D). Splitting the pan-genome into its functional constituents showed that genes

with a Metabolic classification compose less accessory content and the genes encoding metabolic

functions create the most closed pan-genome curve. This is in agreement with the high degree of

false positive predictions made by our 35 strain-specific models as GEMs are predictors of what is

feasible based on presence of encoding genes, but lack regulatory context for expression of those

genes. Further, 68.3% of the overall pan-genome is classified as Uncharacterized and these gene

clusters have the greatest accessory to core ratio and most open pan-genome curve, demonstrat-

ing the significant knowledge gaps still present for the species. To shed light on uncharacterized

genes that may impact the measured metabolic phenotypes we calculated the biserial correlation

between measured phenotypes and presence/absence of gene clusters. In total, 374 unique gene

clusters were found to be positively correlated with one or more phenotypes at a p-value<0.001.
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Figure 7.3: Phylogenomics and Pan and Core Genome curves for the 451 strain set. A) Phy-
logenomic tree constructed using 451 strains and clinical isolates labeled therein. Each dashed
line represents one strain. B) Considering the totality of gene clusters, the core-genome is defined
by the universally present 2,899 gene clusters and the remaining 7,025 gene clusters (accessory
and unique) make up the rest of the pan-genome. C) For gene clusters where functional an-
notation can be assigned through COG categories, we analyzed the accessory/core breakdown
of each major functionally defined group and the behavior of the pan-genome curves. D) The
uncharacterized or annotated as “function unknown” clusters make up 68.37% of all gene clusters
and these clusters exhibit the most open behavior in the pan-genome curve. This is indicative
of the vast amount of C. difficile genes whose function remain unknown and present numerous
candidates for discovery.
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7.3.4 Functional assessment of accessory genome provides discriminatory

power

We first evaluated the concordance between a SNP based phylogenetic tree and one

created from a hierarchical clustering of the accessory genome represented in a binary format

(Supplementary Figure E.4). We found that the trees had a correlation of 0.55 and entanglement

of 0.12 indicating that accessory genome content is not completely concordant with SNP-based

phylogeny. To evaluate the effect of this phenomena on MLST-defined sequence types we mea-

sured the association between accessory genome clusters and defined ST types using Cramer’s V

statistic. In total 9% of accessory gene families were highly associated with more than 1 ST (361

found in at least 2 ST types with V>0.4).

Based on this result we sought to develop an alternative strain typing scheme based

on the accessory genome. The C. difficile community commonly uses approaches such as SNP

trees, PCR-ribotyping and MLST types to distinguish strains. MLST and ribotyping have been

shown to be similar in discriminatory capabilities, but do not have a direct one-to-one mapping

classification of strains [21]. A pan-genome based strain typing scheme should resolve groups of

strains within a species as well as provide the ability to interrogate the biological relevance of

genetic drivers separating different groups. As strain-specific differences have been shown to be

critical factors for differentiating phenotypes such as nutrient niches [43, 53], virulence [54–57],

and antimicrobial resistance [58, 59], the ability to distinguish isolates from each other in a way

that immediately assigns functional relevance will enhance global epidemiology. To this end, we

introduce sequence typing by accessory genome (STAG), an algorithm that capitalizes on the

untapped opportunity to classify strain groupings based on the diversity of the accessory gene

portfolio.
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The STAG algorithm utilizes accessory gene clusters to represent each genome as a binary

profile that is defined by gene presence/absence within each accessory gene cluster (Supplemen-

tary Figure E.5). STAG then uses the Jaccard similarity index, defined as the size of intersection

between two binary sets divided by the size of their union, to evaluate how similar each strain

vector is to another [60]. Following the calculation of Jaccard similarity, STAG establishes a sym-

metric matrix composed of pairwise strain similarity, which is used to sort strains into groupings

(Methods). Next, STAG incorporates the simple metric of compression factor to prioritize strain

groupings, which we define as the number of strains divided by the number of groups. Briefly,

STAG sorts strains into pan-genome types (PGTs) by iteratively passing over the similarity

matrix checking for exclusive groupings based on a given threshold of similarity. At each pass

the matrix is sorted according to a range of thresholds and the threshold that maximizes the

compression factor of exclusive groups is selected for that pass. STAG removes the strains of

exclusive groups as PGTs and the threshold identified is set as the new threshold range for the

next pass (Supplementary Figure E.6). For example in our data set, a similarity threshold of 0.85

resulted in one exclusive group (21 strains) among the 451 strains and we deemed this PGT1.

The next iterative sort identified a similarity threshold of 0.86 resulting in one exclusive group

(6 strains).

The STAG algorithm categorized our dataset of 451 C. difficile strains containing 4,057

accessory gene clusters into 176 PGTs that comprise strain groupings ranging from one to 23

strains. We assigned MLST types to each genome using PubMLST [61] (Figure 7.4A) resulting in

a total of 57 STs. Ribotype information was only available for a total of 108 strains in our dataset,

limiting our direct PGT-MLST-RT comparisons to 108 genomes (Supplementary Figure E.7).

Given the similar level of discriminatory power between MLST and RT and the paucity of RT
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data for the public dataset, we used MLST as a baseline to compare strain grouping as a function

of the number of strains evaluated (Figure 7.4D). As the number of strains considered continues

to increase the resolution capabilities of MLST and STAG begin to diverge (Figure 7.4B). There

is an intrinsic tradeoff for any strain-typing scheme in terms of resolution and compression; each

scheme seeks to group strains as efficiently as possible (compression), but these groups must

maintain meaning and distinguish strains at scale (resolution). The MLST and RT systems

will result in a larger number of strains classified into fewer groups whereas the PGT maintains

flexibility to establish new groups as more genetic content is considered with each additional

strain used to construct the pan-genome.
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Figure 7.4: Dataset described via Ribotyping, MLST, and STAG and relative effect of dataset
scale. A) Table describing the 3 levels within our dataset. Our beginning set of clinical isolates
have all been ribotyped and an additional 73 public strains also had ribotyping data. MLST
sequence types and STAG pan-genome types are able to be assigned for all strains. B) The
compression factor as a function of the number of strains typed demonstrates that as more
strains are considered strain-typing schemes like MLST do not maintain their resolution whereas
the STAG scheme is comparatively invariant to the scale of strains considered. C) The importance
of considering scale in terms of the growing amount of genomic data available and expanding
bibliome for C. difficile, both of which are best visualized on a log-linear scale. These plots
demonstrate that methods considering scale will only be of increasing importance. D) For each
strain the two types assigned through either STAG or MLST are represented through this network
where the links are each of the 451 strains studied connected to nodes of strain types for each
scheme. This analysis highlights the relative number of strains of each type within the dataset
as well as the certain MLST types where there is sufficient accessory gene diversity among the
strains that STAG establishes numerous different PGTs.
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7.3.5 STAG types exhibit an enhanced ability to explain unique metabolic

profiles

We cross-referenced our STAG PGT schemes against the Biolog Phenotype Microarray

profiles from the 35 isolates in our experimental dataset to determine if STAG types provided

increased resolution of distinct metabolic profiles across strains. For these 35 isolates, 28 com-

pounds exhibited differential binary growth capabilities providing a distinct binary growth vector

defining the metabolic profile for each strain (Supplementary Figure E.1). The distribution of

binary growth capabilities across the 35 strains resulted in 26 unique metabolic profiles, where

the profile shared by the greatest number of strains (three) was defined by growth supporting

carbon utilization on 3 of the 28 discriminatory compounds by the strains CDH718, CDS009, and

CDS079. In turn the three strain typing schemes classified the 35 strains into 11 distinct PCR

ribotypes, 12 MLST sequence types, and 22 STAG PGTs. To study the relationship between

these categorical variables (metabolic profiles and strain types) we employed an asymmetric

(non-linear) measure of association by calculating the uncertainty coefficient based on condi-

tional entropy (Methods). The uncertainty coefficient indicates what fraction of information can

be predicted from one variable when given the other variable. In this case we are strictly inter-

ested in evaluating how well strain type informs experimental metabolic profile, where a value of

0 would be no association and 1 would be an exact prediction. MLST and RT had uncertainty

coefficients of 0.57 and 0.53 respectively, whereas PGT resulted in an uncertainty coefficient of

0.80.

While the PGTs are more informative of metabolic profiles, we note that this increase

is likely a function of the difference in number of labels to describe the strains by each typing

scheme. When using PGTs the 35 strains are described by 22 labels whereas the RT and MLST
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describe the strains as 11 and 12 labels respectively. In an effort to evaluate the scalability of this

metric we utilized our 35 strain-specific GEMs to generate draft GEMs for all 415 public strains

within our dataset and generated in silico growth predictions as an approximation for metabolic

profiles. Our approximation for growth capabilities of the 451 strains resulted in the definition

of 19 in silico metabolic profiles for which the uncertainty coefficient of the strain typing schemes

for MLST and PGT was calculated. Here the MLST and PGT calculated uncertainty coefficients

of 0.85 and 0.92 respectively as a result in the shift of relative number of categorical variables

at the larger sample size. Overall, this demonstrates that the PGT scheme is less variable as a

function of dataset size as it performs more similarly when considering 35 versus 451 strains and

in both cases informs a similarly sized set of categorical variables.

In addition to providing metrics that evaluate a typing schemes’ ability to inform on

overall metabolic profiles, examining specific metabolic capabilities illustrates the ability to in-

terrogate functional diversity through STAG PGTs. The niche capability of RT078/ST11 strains

to grow using trehalose as a carbon source has recently been associated with virulence implications

in C. difficile infection[54]. The molecular basis for trehalose utilization in RT078/ST11 strains

has been attributed to a four-gene insertion, which includes lower homology second copies of the

canonical phosphotrehalase (TreA2) and repressor (TreR2) as well as genes encoding a potential

trehalose specific PTS component (PtsT) and putative glycan debranching enzyme (TreX). We

examined the accessory gene clusters used to establish STAG PGTs and identified a total of 12

gene clusters corresponding to this trehalose utilization operon: single gene clusters for treX and

treR2, and 5 related but distinct gene clusters for both treA2 and ptsT (Supplementary Figure

E.8A ). The single treX cluster along with cluster treA2 4 and cluster ptsT 2 are present within

16.1% (73/451) of the 451 strains which includes all of the RT078/ST11 strains (21) studied. The
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single treR2 cluster along with clusters ptsT 4, ptsT 5, treA2 2, and treA2 5 are nearly ubiq-

uitous to the overall population representing (450/451, 444/451, 445/451, 444/451, 391/451).

Interestingly, sequences treA2 3, ptsT 3, and treA2 1 are uniquely found in strain 1496.1669. Fi-

nally, the remaining ptsT -related gene cluster (ptsT 1 ) is specific to 8 strains classified by STAG

as PGT2, wherein the strains here represent a mix of MLST ST5, ST22, and ST221 and critically

this sequence is closest in similarity to the ptsT 2 cluster including the RT078 strains (Supple-

mentary Figure E.8B). STAG PGTs are based on iterative sequence comparisons as illustrated

here, and the resulting PGTs reflect these relationships allowing for explicit identification of a

large number of implicated genetic loci that otherwise would remain undetected.

7.3.6 Pan-genome types allow investigation of defining accessory gene content

In addition to providing a means of strain-typing that is less subject to a loss of resolu-

tion at increasing scale, the PGTs can be interrogated to study functions within the population

that drive separation into calculated groups. The 176 distinct PGTs identified among the 451

genomes were compared for gene cluster presence/absence (Methods) and defining gene products

were examined. These gene clusters are the drivers for inclusion within each PGT. The anno-

tation information density for each defining group of clusters (presence or absence thereof) was

calculated (using the number of genes within a gene cluster with annotation information divided

by the total number of genes in the gene cluster and averaged for all clusters identified for a PGT)

and used to prioritize gene clusters for deeper study (Table 7.1 and 7.2). Given the widespread

literature on specific ribotype lineages known for being epidemic, we focused on the PGTs that

contain the following clinically relevant ribotypes: RT078, RT027, RT017, RT106, and RT002.

Six clinical isolates from our original dataset are empirically classified as RT078 (CDH074,

156



Table 7.1: Pan-Genome Typings Containing at least one strain known to be of a hypervirulent
ribotype and size of the PGT, number of gene clusters identified.

PGT Epidemic RTs in PGT PGT Size (Strains) Presence GCs Absence GCs

PGT1 RT078 21 124 110
PGT8 RT027 23 40 27
PGT12 RT017 13 62 11
PGT45 RT106 23 6 2
PGT95 RT002 1 10 0
PGT96 RT002 1 20 2
PGT98 RT002 3 12 0
PGT99 RT002 1 7 0
PGT101 RT002 3 9 0
PGT104 RT002 2 2 0
PGT156 RT002 1 12 0

Table 7.2: Pan-Genome Typings Containing at least one strain known to be of a hypervirulent
ribotype and degree of available annotation information (Annotation Information Density).

PGT Presence Cluster COG Absence Cluster COG Presence Genes Absence Genes

PGT1 0.298 0.564 0.556 0.854
PGT8 0.3 0.296 0.55 0.667
PGT12 0.435 0.545 0.726 0.909
PGT45 0.167 0 0.167 0
PGT95 0.2 0 0.3 0
PGT96 0.3 0 0.1 1
PGT98 0.083 0 0.167 0
PGT99 0.143 0 0 0
PGT101 0.111 0 0.222 0
PGT104 0 0 0 0
PGT156 0.167 0 0.083 0

CDH180, CDH333, CDS009, CDS010, CDS031). These same genomes were classified within

PGT1 by the STAG method described here. PGT1 contains a total of 21 strains from the 451

genomes used to define the C. difficile PGT scheme, and all strains within PGT1 are also classi-

fied by pubMLST as ST11. Given the nature of the sorting algorithm used to construct PGTs,

the order in which PGTs arise is an indication of the degree of uniqueness of the group and this is

reflected in the fact that PGT1 is defined by the average presence of 121 gene clusters and absence

of 110 gene clusters in contrast to the population of strains evaluated here. The PGT1 strains
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represent the most genetically distinct group out of the 176 PGTs we have defined, a distinction

that aligns with previous studies characterizing the zoonotic prevalence of RT078/ST11 [62–64].

STAG PGT classification has identified specific gene clusters that may inform the emergence and

virulence of RT078 strains outside of trehalose utilization discussed above. Specifically, PGT1

contains a cluster annotated as an adaptive-response sensory kinase, sasA. In other clinically

relevant organisms, sasA is responsible for binding to the innate immune receptor glycoprotein

DMBT1 promoting bacterial adhesion to tissue within the oral cavity [65, 66]. DMBT1 is also

found in other tissues like the lung and small intestine. The presence of sasA positive C. diffi-

cile strains could provide PGT1 strains an adhesion and colonization advantage over other C.

difficile strains. A second PGT1-specific gene cluster of interest is the sensor histidine kinase

prrB. Previous studies indicate that prrB is involved in regulating anaerobic metabolism [67,

68]. Furthermore, PGT1 includes three additional gene clusters involved in the acquisition and

homeostasis of zinc; textitznuA, znuB, and yeiR. Characterization of the znuA/znuB system in

Acinetobacter baumannii has demonstrated roles in resistance to calprotectin-mediated chelation

of zinc, which has been suggested to be a strategy to circumvent nutritional immunity [69, 70].

While these genes are present throughout the A. baumannii species, these gene clusters are only

identified exclusively to PGT1 C. difficile strains. The importance of zinc acquisition is further

supported by the presence of PGT1 exclusive yeiR, which has also been implicated in metal

homeostasis in E. coli [71]. Finally, the presence of a tellurium resistance protein TerC is identi-

fied as one of the gene clusters driving PGT1 separation. Tellurium resistance genes have been

shown to have low levels of divergence and these resistance genes are thought to be widespread

among pathogenic bacteria [72, 73].

The most prevalent C. difficile ribotype among hospital-associated CDI in the United
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States is RT027[74, 75]. Strains within RT027 are considered hypervirulent and have persisted as

the dominant clone in hospital-associated infections since their emergence in the early 2000s. Our

dataset includes 2 clinical isolates (CDH352, CDS041) from RT027 that are classified by MLST as

ST1 and by our new pan-genome typing method as PGT8. PGT8 also contains an additional 21

publicly available genomes also classified as ST1. PGT8 is defined by 40 present and 27 absent

accessory gene clusters, and several of the annotated clusters have potential implications to

contribute to the hypervirulent nature of these strains. Like PGT1, PGT8 includes an additional

distinct gene cluster annotated as an adaptive-response sensory kinase (sasA). With a clustering

identity threshold of 80%, we have identified 7 of the 4,057 accessory gene clusters with this

annotated function. Each cluster contains genes from a small number of strains ranging from

1.1% (5/451) to 6.2% (28/451) with certain clusters such as those identified in regard to PGT8

and PGT1 being exclusive to certain PGTs. The presence of these gene clusters, particularly in

groupings which include strains known to be highly problematic, points towards the potential

importance of this feature within the evolutionary trajectory of the species. PGT8 contains a

gene cluster annotated as yxdL which has been shown to be an ABC transporter participating

in a genomic structure of adjacent two-component systems and related ABC transporter, a

feature associated with B. subtilis and Clostridia genomes [76, 77]. While the full function

of yxdL remains unknown, evidence suggesting that it functions as an antibiotic efflux pump is

supported by homology to salX, which confers salivaricin resistance in Streptococcus salivarius

[76]. Another gene cluster implicated within PGT8 is annotated as bceB, a bacitracin export

permease protein. Furthermore the bce system is paralogous to the yxd system and a component

of bacitracin resistance [78]. From a metabolic standpoint PGT8 also contains a gene cluster

indicated as potA, a spermidine/putrescine transport system that has been studied in E. coli
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[79]. Interestingly, spermidine biosynthesis pathway genes and transporter components, including

potA, have been shown to be up-regulated during temperature and alkali stress in C. difficile [80].

PGT8 clusters also include the presence of thymidylate synthase and phosphomethylpyrimidine

synthase suggesting isozymes within the species for these functions. Finally, it is worth noting

that PGT8 contains IS3 and IS1595 family transposases indicating potentially consistent mobile

elements among the strains.

RT017 is a unique virulent lineage because it is toxinA negative/toxinB positive [81, 82].

PGT12 in total contains 13 strains, three of which are known to be RT017 (M68, 1141436.4,

1151438.4). All strains within PGT12 are typed by MLST as either MLST37 or MLST86 in

agreement with previous studies of this lineage[83]. PGT12 is defined by 62 present and 11

absent gene clusters that contain a high degree of annotation information predominated by gene

transcriptional regulator annotations. Of note is a cluster annotated as N-acetylmuramoyl-L-

alanine amidase which is associated with bacteriophage endolysin activity [84, 85]. We also

analyzed within PGT12, which gene clusters distinguish the MLST37 from MLST86 strains and

were able to identify 75 clusters that contrasted each other within the PGT12, which the majority

of remain poorly annotated, but does include peptidoglycan acetyltransferase and membrane

protein specific to strains of MLST37 and a proline transporter specific to MLST86.

RT106 reflects the most prevalent community-acquired ribotype according to CDC

surveillance and the 2nd most healthcare acquired ribotype to date[86]. We had three known

RT106 strains within our dataset (CDH054, CDH220, CDS057) and all of these strains were

grouped into PGT45. There are 23 strains, all MLST42, within PGT45 that are defined by 6

present clusters and 2 absent clusters, and very limited annotation information overall. Inter-

estingly, PGT45 also contains CDH718 which is known to be RT014 and 5 of the public strains
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annotated as RT SW11. The lone gene cluster with annotation information is annotated as

“IS110 family transposase ISFnu3”. This uniquely present mobile genetic element within the

strains of a known problematic ribotype could reflect the acquisition of an adaptive trait.

The last clinically relevant ribotype of interest was RT002, another highly healthcare-

acquired ribotype for which there were 8 total strains in our dataset (CDS064, CDS065,

1151326.4, 1151354.4, 1151373.4, 1151375.4, 1151403.4, 1151418.4). These RT002 strains, while

only classified into ST8 by MLST, were classified into 6 PGTs: PGT96 (1/8), PGT98 (2/8),

PGT99 (1/8), PGT101 (1/8), PGT104 (1/8), and PGT156 (1/8). Although fraught with a

paucity of annotation information, we were able to identify notable functional characteristics

within this set of PGTs. PGT95 was defined by a cluster annotated as ydpB, which is a com-

ponent of the ypdA/ypdB histidine kinase/response regulator pair. Previous studies within E.

coli demonstrated that this system responds to extracellular pyruvate and is indicated in growth

phase-dependent regulation in response to the availability of carbon sources [87, 88]. PGT96

was partially defined by two absent clusters that encode penicillinase repressors known to play

a key role in the regulation of penicillinase synthesis within gram-positive bacteria.[89] The ab-

sence of the repressor in this strain could indicate the constitutive expression of the penicillinase

synthesis genes and increased antibiotic resistance. Lastly, within PGT156 the gene encoding

cell wall-binding protein cwp26 is uniquely present. C. difficile is known to produce a number

of surface proteins that comprise the S-layer and these proteins are suspected to have roles in

pathogenesis [90, 91] and the cwp26 contains a putative functional domain of PepSY, which is

predicted to have protease inhibition function.

If the pan-genome is separated into its constituent functional annotations (Figure 7.3CD)

the strains can be classified using STAG on specific functional subsections (Supplementary Text
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S1). Interestingly when RT002 strains are typed according to metabolically relevant gene clusters

all strains are grouped into one type of 36 strains. Cluster significance of this metabolically

relevant grouping shows that there are seven clusters absent within these strains that are present

within 77% of the overall population, and another 2 clusters absent that are present within 58% of

the population. Analyzing the functional annotations available for these clusters demonstrates

that 5 of these clusters correspond to various genes within the yxe operon, which has been

characterized in the related species Bacillus subtilis [92–94]. The implicated genes within the

operon have been shown to be primary transporters of the ATP binding cassette variety (ABC)

for polar amino acid uptake and in a more recent study as key pieces of a disposal route for

S-(2-succino)cysteine (2SC). 2SC is a product of fumarate-mediated succination of thiols [95],

a process implicated to increase in certain tumors, diabetes, and obesity. The presence of this

compound could be used as a biomarker indicating higher levels of cellular aerobic respiration

that may result in tumorigenesis, diabetes, and/or obesity[96–98]. The absence of this operon

within the metabolically clustered RT002 strains may lead to the inability of RT002 strains to

use 2SC as a sulfur source, resulting in greater concentrations of 2SC in the gut after invasion of

an RT002 strain. Of the remaining absent gene clusters three are annotated as C4-dicarboxylate

transport protein [99], phospho-beta-D-glucosidase bglH [100], and l-cystine transport permease

protein and one cluster with no valuable annotation information. The C4-dicarboxylate transport

protein encoding gene has been shown to be a participant of the sigma G regulon in sporulation

and its product detected in C. difficile spores.
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7.4 Discussion

In this study, we perform a functional analysis of the C. difficile pan-genome in an ef-

fort to increase understanding of strain-specific traits in terms of both genotype and phenotype.

Taking a systems biology approach enabled us to identify and contextualize important genetic

and phenotypic features within the vast diversity of this species. Motivated by the importance

of specific carbohydrate and bile acid metabolism in C. difficile pathogenesis [57, 101–103], we

metabolically profiled 35 clinical isolates and investigated their diverse capabilities. The wide ar-

ray of growth dynamics exhibited from our high-throughput screening necessitated sophisticated

data analysis, which was facilitated by the use of gaussian process regression models. These two

techniques demonstrated through variable growth modalities that catabolic capabilities were di-

verse at a strain-specific level including differences across strains of the same PCR ribotype and

MLST sequence type. Following the identification of unique carbon source utilization profiles,

strain-specific genome-scale models of metabolism were generated for each isolate to bridge the

genotype to observed phenotypic diversity and infer potential mechanistic insight. The in silico

simulations recapitulated the majority (76%) of growth phenotypes. However, there were a high

number of false positive error mode predictions, which indicated that the models of metabolism,

which are predictors of all theoretically possible growth capabilities based on enzymatic coding

gene content, were lacking the biological context concerning transcriptional regulation and/or

enzyme efficiency that restrict capabilities in vitro [104].

To robustly explore all the genetic diversity outside of the metabolic network, we con-

structed the pan-genome of C. difficile with the inclusion of an additional 416 public genomes.

Characterizing the pan-genome demonstrated different conservation levels across various func-

tional categories. We used the accessory genome profile to type our group of 451 strains through
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the novel development of the STAG algorithm. We were able to identify gene clusters that

strongly contributed to unique groupings of strains based on their contrasting presence and ab-

sence from the overall population. The functional pan-genomics approach brought to the surface

traits ranging from specific transporters, sensory responses, two component systems, to cell wall

proteins across the clusters driving separation of PGTs containing known epidemic lineages. An

especially valuable aspect of the approach is identification of a large and diverse number of new

genetic loci that differentiate strains. These loci present critical candidates for further character-

ization and improvement of annotation to increase understanding of pathogenesis at the species

level.

Overall, the results presented here suggest the importance of a genomics driven approach

to understand C. difficile diversity and identification of the evolutionary events leading to propa-

gation of epidemic lineages. Trait acquisition has been demonstrated across functional categories

and most pressing is the vast amount of genetic content that remains uncharacterized. The high

percentage (74.5%) of implicated present genes with poor to no annotation information within

the gene clusters driving separation of PGTs demonstrates that overall characterization of genes

lacking experimental evidence of function (the “y-ome”) [105] for C. difficile remains high. Un-

surprisingly, these clusters exhibit the highest degree of openness within the subdivisions of the

pan-genome and likely these clusters contain genes that are critical factors in the evolutionary

trajectory and history of C. difficile. Our exploration of total gene content has suggested that an

investigation into the transcriptional regulatory network of C. difficile would prove informative.

The processes involved and related to regulation appear to be critical in differentiating strains

and an accurate description of the transcriptome in presumed physiological conditions during

infection would provide a crucial systems-level explanation of cellular response. Use of machine
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learning methods on high-quality expression profiles has been shown to provide such a window

into understanding transcriptional regulation in E. coli and S. aureus [106, 107] and with proper

datasets could be applied to C. difficile.

The insights into the accessory genome and its specific components to groups of strains

presented here has added to the overall understanding of C. difficile and provided a means for

bringing the important factor of genetic diversity to the forefront. Our use of the accessory

genome through STAG demonstrates the ability to extract knowledge from big data through a

method less subject to resolution loss at scale when compared to traditional approaches such

as PCR ribotyping and MLST. The STAG method presented has advantages in maintaining

flexibility with the scale of strains studied, reliance on solely WGS data, ability to identify

functional differences across PGTs, and the illumination of new genetic loci with discriminatory

power. In any strain typing scheme there will be a tradeoff between compression and resolution of

the resulting groups in that each scheme strives to establish meaningful groups that capture the

relationship among strains. Given the continued growth of genome sequences available for most

bacterial species, methods that leverage this data to identify key genetic features in relation

to populations will be important to the future of global epidemiology. Future endeavors in

characterization in concert with data analytics will enhance the scientific knowledge of the C.

difficile species commensurate with the promise of omics big data.
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7.5 Methods

7.5.1 Phenotypic Profiling by Biolog

Strains were cultured in BHI medium (Difco) supplemented with 0.5% (w/v) yeast extract

(Fisher Scientific) overnight ( 16 hours) in an anaerobic chamber (5% hydrogen, 90% nitrogen, 5%

carbon dioxide). 1 ml of overnight culture was diluted into 10 ml of defined minimal media with

previously described composition [108] and 100 µl was added to each well of Biolog Phenotypic

Microarray plates (PM1 and PM2). Growth assays were performed under anaerobic conditions

with optical density at 620 nm read every 10 minutes following 5 seconds of shaking over a period

of 16 hours.

7.5.2 Gaussian Process Regression Models of Growth

Correlation between experimental replicates were evaluated and replicates passing this

quality check (Pearson R>0.7) were pooled for the following analysis. One of the advantages

to using gaussian process (GP) regression is the ability to pool biological replicates and makes

this approach particularly suited to high-throughput screens. GP to infer microbial growth

parameters was conducted using the AMiGA [109] program through the default settings presented

by AMiGA. For each strain the pooled quality replicates were log transformed and negative

control subtracted at each time point. A GP regression model was then fit for each pooled time

course and growth parameters inferred resulting in identification of the growth parameters for

each strain on each of the 95 carbon sources.
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7.5.3 Whole Genome Sequencing

Cryofrozen isolates of each C. difficile strain were incubated on Brain Heart Infusion

(BHI) agar under anaerobic conditions for 24-48 h. Genomic DNA was extracted using the Mas-

terPure Complete DNA RNA Purification kit (Lucigen, MC85200) and libraries of fragmented

genomic DNA were prepared using NEXTflex Rapid DNA-Seq Kit (Bioo Scientific, NOVA-5149-

02). Paired-end reads (2 x 150 bp reads) were generated on the MiSeq platform (Illumina, San

Diego, CA, USA) using the Illumina MiSeq Reagent Kit v2 (MS-102-2002) and PhiX Control

Kit v3 (FC-110-3001). WGS reads have been submitted to NCBI as BioProject PRJNA472399.

7.5.4 Sensitivity Analysis of Growth Dynamics Parameters

Potential thresholds for each growth parameter (AUC or K) were evaluated on the range

from minimum to maximum parameter value across all strains. Each parameter was evaluated

separately by binarizing experimental data using each potential threshold, while holding the

complementary parameter threshold constant. This led to identification of greater than 1.25

AUC and greater than .3 for K to jointly define growth calls of the experimental data.

7.5.5 Constraint-based modeling flux balance analysis

Constraints-based analyses were conducted using the COBRApy toolbox. For the in

silico growth simulation of sole carbon source utilization the minimal media [110] was used and

glucose was removed and all other carbon source exchange reactions were opened in an iterative

fashion to evaluate if growth was possible [31, 36, 44, 49, 51]. Growth versus no growth was

determined through flux balance analysis in each condition, optimizing for the biomass function.

Within these simulations we consider biomass objective flux of greater than zero designated
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carbon sources that supported growth.

7.5.6 Strain-Specific Model Creation

A standard strain-specific model generation protocol [48] was followed to generate draft

strain-specific models for the dataset of 35 isolates as well as 415 publicly available strains.

In the case of the 35 isolates the outputs of these 35 isolates were further curated based on

false negative predictions identified through comparison to our experimental dataset [111]. This

manual curation involved identification of reactions and genes through literature curation as well

as homology with other related species. Following the curation of the 35 strain-specific models,

the isolate closest in terms of phylogeny to each public strain was used as the base model for

generation of draft models for the public strains.

7.5.7 Pan-Genome Construction and Analyses

A total of 1,246 whole-genome sequences of C. difficile were downloaded from the PATRIC

database [112] on August 25, 2019. To filter for high-quality genomes a cutoff of assemblies

composed of 100 or fewer contigs was applied. Furthermore, an MLST analysis of the genomes

was performed using MLST [61]. All genomes that could not be assigned to an MLST type or

species were also filtered out. This led to a final set of 415 genome sequences for downstream

analysis. Sequence homology was used to cluster genes into gene families using CD-Hit [113].

Clustering was performed with 0.8 threshold and word length of 5. These gene families were then

used to designate core and pan genes by identifying the gene families found in less than 1% of the

total 451 strains. Biserial correlations between all gene clusters and measured phenotypes were

calculated using the pointbiserial function in the scipy stats package. The Cramer’s V statistic
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for categorical-to-categorical association was used to evaluate associations between pan-genome

clusters and ST types. This calculation was implemented in python and uses the correction from

Bergsma and Wicher [114].

7.5.8 Phylogenomic Analysis

Phylogenomic analysis was performed using GToTree [115] on the clinical isolate dataset

along with 415 public strains. Prokka FASTA files were used as inputs to GToTree analysis and

the resulting tree was visualized using the Interactive Tree of Life web-based tool [116, 117].

This tree was compared with a dendrogram constructed using a binary representation of the ac-

cessory genome (451x4,057 maxtrix where 1=gene cluster present, 0=gene cluster absent). The

dendrogram was constructed using jaccard distances and the complete clustering method. The

two trees were compared (including calculation of correlation and entanglement) using the den-

dextend package in R [118]. Clustering methods were compared to those of cgMLST (extracted

from enterobase[29]) and KMERs obtained using the SKA package [119].

7.5.9 Using Jaccard Similarity to Establish Strain Groups

Using the constructed pan-genome the accessory gene clusters (those that are not core nor

unique) were identified. These 4,057 gene clusters were used to define a vector of presence/absence

for each strain in terms of whether or not that strain had genes present within the gene cluster.

The Jaccard Similarity coefficient was calculated between each of these 451 binary vectors of

length 4,057 and used to establish a symmetric 451x451 matrix of the similarity coefficients. An

iterative sorting workflow was developed that parses through this matrix and establishes pan-

genome typings. A range of potential similarity thresholds is established and the set of strains

169



meeting the current Jaccard similarity matrix threshold for each single strain are identified. From

this information exclusive groups (i.e. at the threshold, every strain similar to the current strain

is also sufficiently similar to every other strain similar to a given strain) are identified on a per

threshold basis. Out of these exclusive groups the compression factor (Number of Strains in

Exclusive Groups/ Number of Exclusive Groups) is calculated and the threshold maximizing

this compression factor is selected for this iteration over the Jaccard Similarity matrix. The

exclusive groups are established as PGTs and corresponding strains are filtered from the Jaccard

Similarity Matrix for the next sorting pass. Additionally, the compression maximizing threshold

is the starting point of similarity threshold range. This process is repeated until the similarity

threshold has been incremented to only identify single strains into PGTs.

7.5.10 Identification of Gene Clusters Driving PGT Separation

For comparison of each PGT the binary presence/absence vectors of each strain within

the group were averaged to calculate the representative gene cluster portfolio for each PGT. The

PGT-specific mean and all strain population mean were compared to identify divergent clusters.

We consider a gene cluster present in less than 20% of the population to be predominantly absent

in the overall population and a gene cluster present in greater than 90% of the population to be

predominantly present in the overall population. The absolute value of the difference between

mean presence in population versus mean presence in a specific PGT was calculated for each

cluster and used to designate as either predominantly present or absent. In each case if the

absolute value of difference was greater than 0.95 the cluster was identified as being present or

absent the given PGT in contrast to the population. For example if a gene cluster was determined

to only be present within 15% of the overall strains, but was present in 100% of the strains of
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a given PGT, this cluster would be identified as a driving cluster in terms of gene presence for

that PGT. For each cluster identified in this way the functional annotations at both the gene

cluster level (in terms of COG) and gene annotation level (in terms of function) were evaluated.

The information density (ratio of clusters with annotation information to total clusters) was

calculated for each PGTs defining clusters in terms of both presence and absence. To ensure that

information was not simply more available for PGTs with a greater number of clusters identified

the size of PGT in terms of number of strains and number of clusters driving separation of the

PGT was evaluated (Number of Presence Clusters R=.145 , Number of Absent Clusters R=.372).

Additionally, correlation between PGT size and information density was evaluated (Number of

Presence Clusters R=.249 , Number of Absent Clusters R=.089).
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15. Sadeghifard, N., Gürtler, V., Beer, M. & Seviour, R. J. The mosaic nature of intergenic
16S-23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium
difficile strains. en. Appl. Environ. Microbiol. 72, 7311–7323 (Nov. 2006).
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Jelsbak, L. A Major Mycobacterium tuberculosis outbreak caused by one specific genotype
in a low-incidence country: Exploring gene profile virulence explanations. en. Sci. Rep. 8,
11869 (Aug. 2018).

176



57. Lewis, B. B., Carter, R. A., Ling, L., Leiner, I., Taur, Y., Kamboj, M., Dubberke, E. R.,
Xavier, J. & Pamer, E. G. Pathogenicity Locus, Core Genome, and Accessory Gene Con-
tributions to Clostridium difficile Virulence. en. MBio 8 (Aug. 2017).

58. Kavvas, E. S., Catoiu, E., Mih, N., Yurkovich, J. T., Seif, Y., Dillon, N., Heckmann,
D., Anand, A., Yang, L., Nizet, V., Monk, J. M. & Palsson, B. O. Machine learning and
structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures
of antibiotic resistance. en. Nat. Commun. 9, 4306 (Oct. 2018).

59. Davis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., Overbeek, R.,
Santerre, J., Shukla, M., Wattam, A. R., Will, R., Xia, F. & Stevens, R. Antimicrobial
Resistance Prediction in PATRIC and RAST. en. Sci. Rep. 6, 27930 (June 2016).

60. Real, R. & Vargas, J. M. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst.
Biol. 45, 380–385 (1996).

61. Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics:
BIGSdb software, the PubMLST.org website and their applications. en. Wellcome Open
Res 3, 124 (Sept. 2018).

62. Knetsch, C. W., Kumar, N., Forster, S. C., Connor, T. R., Browne, H. P., Harmanus, C.,
Sanders, I. M., Harris, S. R., Turner, L., Morris, T., Perry, M., Miyajima, F., Roberts, P.,
Pirmohamed, M., Songer, J. G., Weese, J. S., Indra, A., Corver, J., Rupnik, M., Wren,
B. W., Riley, T. V., Kuijper, E. J. & Lawley, T. D. Zoonotic Transfer of Clostridium
difficile Harboring Antimicrobial Resistance between Farm Animals and Humans. en. J.
Clin. Microbiol. 56 (Mar. 2018).

63. Martın-Burriel, I., Andrés-Lasheras, S., Harders, F., Mainar-Jaime, R. C., Ranera, B.,
Zaragoza, P., Falceto, V., Bolea, Y., Kuijper, E., Bolea, R., Bossers, A. & Chirino-Trejo,
M. Molecular analysis of three Clostridium difficile strain genomes isolated from pig farm-
related samples. en. Anaerobe 48, 224–231 (Dec. 2017).

64. Bakker, D., Corver, J., Harmanus, C., Goorhuis, A., Keessen, E. C., Fawley, W. N., Wilcox,
M. H. & Kuijper, E. J. Relatedness of human and animal Clostridium difficile PCR ribotype
078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis
and tetracycline resistance. J. Clin. Microbiol. 48, 3744–3749 (2010).

65. Kukita, K., Kawada-Matsuo, M., Oho, T., Nagatomo, M., Oogai, Y., Hashimoto, M., Suda,
Y., Tanaka, T. & Komatsuzawa, H. Staphylococcus aureus SasA is responsible for binding
to the salivary agglutinin gp340, derived from human saliva. en. Infect. Immun. 81, 1870–
1879 (June 2013).

66. Polley, S., Louzada, S., Forni, D., Sironi, M., Balaskas, T., Hains, D. S., Yang, F. &
Hollox, E. J. Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1)
and population subsistence strategy. en. Proc. Natl. Acad. Sci. U. S. A. 112, 5105–5110
(Apr. 2015).

177



67. Haydel, S. E., Malhotra, V., Cornelison, G. L. & Clark-Curtiss, J. E. The prrAB two-
component system is essential for Mycobacterium tuberculosis viability and is induced
under nitrogen-limiting conditions. en. J. Bacteriol. 194, 354–361 (Jan. 2012).

68. Eraso, J. M. & Kaplan, S. Complex regulatory activities associated with the histidine
kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. en. J.
Bacteriol. 178, 7037–7046 (Dec. 1996).

69. Hesse, L. E., Lonergan, Z. R., Beavers, W. N. & Skaar, E. P. The Acinetobacter baumannii
Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. en. Infect. Immun. 87
(Dec. 2019).

70. Hood, M. I., Mortensen, B. L., Moore, J. L., Zhang, Y., Kehl-Fie, T. E., Sugitani, N.,
Chazin, W. J., Caprioli, R. M. & Skaar, E. P. Identification of an Acinetobacter bau-
mannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc
sequestration. en. PLoS Pathog. 8, e1003068 (Dec. 2012).
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Chapter 8

Conclusions

High throughput generation of omics datasets at unprecedented rates has resulted in an

exponential increase in data availability, presenting unique big-data-to-knowledge challenges. The

exponential growth of genome sequencing projects means that in one year the additional data gen-

erated will match the entirety of data that currently exists. Through the development of scalable

and interpretable data modeling approaches it will be possible to convert these challenges into

opportunities for greater understanding of biological systems complexity than previously possible.

These data-driven outcomes will have far-reaching implications across fields from healthcare to

biosustainability. Broadly, in this dissertation we study the genotype-phenotype that lies at the

core of biology through developing and applying pan-genome analytics tools and models to study

the diversity of microbial pathogens. In the introduction, we detailed the pangenome concept

and the fruitfulness of a comparative systems biology approach enabled by dataset scale. We

also illustrated the importance of genome scale reconstruction and in turn genome scale models

of metabolism that allows for explorations of the phenotypic potential of a species when paired

with a pangenome perspective.
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The second chapter of this dissertation, “iCN718, an Updated and Improved Genome-

Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE” describes an updated

and standardized metabolic reconstruction for A. baumannii AYE. iCN718 predicts gene essen-

tiality with 80% accuracy and as much as 89% accuracy in recapitulating high-throughput growth

screens. We also analyzed the conservation of metabolic functions in the species by constructing

the core-genome.

The third chapter of this dissertation, “Comparative Genome-Scale Metabolic Modeling

of Metallo-Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae Clinical Iso-

lates” describes the use of genome scale metabolic models to generate in silico growth capabilities

of strains with various antimicrobial resistance profiles. Within this study we demonstrated that

the pan-resistome for K. Pneumoniae clusters according to established sequence types based only

on resistance encoding mechanisms. We also used the in silico growth capabilities to construct

classification schema for resistance profiles and found alternate nitrogen source utilization to be

the best discriminator for a number of antibiotics.

The fourth chapter of this dissertation, “Systems biology analysis of the Clostridioides

difficile core-genome contextualizes microenvironmental evolutionary pressures leading to geno-

typic and phenotypic divergence” details high-throughput screening of three laboratory stock

isolates and potential effects of intralaboratory evolution of stains. We generated and updated

and improved genome scale reconstruction for C. difficile 630 and used this to contextualize

the mutations observed across stock cultures with regard to metabolic capacity. Motivated by

the divergence identified, we analyzed the alleleome of the species with 415 available strains to

identify the areas of the metabolic network prone to evolution via sequence diversity.

The fifth chapter of this dissertation, “A workflow for generating multi-strain genome-
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scale metabolic models of prokaryotes” details in step-by-step fashion the computational proce-

dure to generate multi-strain models. This protocol was a critical technique utilized in the studies

of the three preceding chapters and by delineating each step we have made creating multi-strain

GEMs accessible to the research community. This modeling tool has the capability to scale with

increasing genome sequences and offers a way to study pan-metabolic capabilities across a species

and provide insight into its range of lifestyle.

The sixth chapter of this dissertation, “BiGG Models 2020: multi-strain genome-scale

models and expansion across the phylogenetic tree” describes an update to the BiGG Models

repository. Within the update 31 new models were added that have a demonstrated increase in

the portion of the phylogenetic tree covered by the hosted models. Functionality to host multi-

strain models was introduced as well as benchmarking all model content with newly available

curated test metrics.

The seventh chapter of this dissertation, “Systems biology approach to functionally as-

sess the Clostridioides difficile pan-genome reveals genetic diversity with discriminatory power”

details a comprehensive assessment of the C. difficile pan-genome including the sequencing and

carbon-source utilization profiling of 35 clinical isolates. We describe the development of a novel

WGS-based strain type method based on the accessory genome profiles of the strains. Through

this method we identified and discussed numerous cases of gene clusters that drive the separation

of endemic ribotype lineages adding to the overall understanding of C. difficile. This technique

can be applied in future studies and demonstrates the ability of data-driven methods to capture

the key aspects of evolutionary trajectories within bacterial species.

Modern biotechnology has reached an inflection point where biological science is increas-

ingly conducted at scale. Technological improvements have enabled the study of systems through
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multi-omics data generation that offers comprehensive views of biology. In this dissertation we

have demonstrated that pan-genome analytics offers a data-driven approach towards investigat-

ing strain properties including lifestyle, virulence, and antibiotic resistance and converting data

to knowledge.
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Appendix A

iCN718, an Updated and Improved

Genome-Scale Metabolic Network

Reconstruction of Acinetobacter

baumannii AYE
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A.1 Supplementary Figures

Figure A.1: for (A) iCN718 and (B) AbyMBEL891. The dashed orange line serves as a reference
and points above the line indicate strong connectivity.
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Figure A.2: of the 75 strains. Note that this only represents those genes that could be COG
classified which is only half of the entire set designated in the pan-genome.
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Figure A.3: Full clustermap of presence or absence for all genes in strain specific models of each
of the 75 strains
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A.2 Supplementary Tables

Table A.1: Comparison between carbon source Biolog Phenotypic Array data and in silico

outcomes.

Compound Common Name BiGG ID Biolog Growth Model Growth Agreement

Succinate succ e 1 1 TP
L-Aspartate asp L e 1 1 TP
D-Alanine ala D e 1 1 TP
D-Xylose xyl D e 1 1 TP
L-Lactate lac L e 1 1 TP
L-Malate mal L e 1 1 TP
Acetate ac e 1 1 TP

D-Glucose glc D e 1 1 TP
L-Asparagine asn L e 1 1 TP

2-Oxobutanoate 2obut e 1 1 TP
Citrate cit e 1 1 TP

Fumarate fum e 1 1 TP
Propionate ppa e 1 1 TP
Isocitrate icit e 1 1 TP

L-Threonine thr L e 1 1 TP
L-Alanine ala L e 1 1 TP
D-Malate mal D e 1 1 TP
L-Malate mal L e 1 1 TP
Pyruvate pyr e 1 1 TP
D-Serine ser D e 0 1 FP

D-Fructose fru e 0 1 FP
Glycolate glyclt e 0 1 FP
L-Serine ser L e 0 1 FP

L-Arabinose arab L e 1 0 FN
L-Glutamate glu L e 1 0 FN

2-Oxoglutarate akg e 1 0 FN
L-Glutamine gln L e 1 0 FN

N-Acetyl-D-glucosamine acgam e 0 0 TN
D-Glucarate glcr e 0 0 TN
D-Galactose gal e 0 0 TN

L-Proline pro L e 0 0 TN
Trehalose tre e 0 0 TN

D-Mannose man e 0 0 TN
Galactitol galt e 0 0 TN
D-Sorbitol sbt D e 0 0 TN

Continued on next page
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Table A.1: Comparison between carbon source Biolog Phenotypic Array data and in silico

outcomes, continued

Compound Common Name BiGG ID Biolog Growth Model Growth Agreement

Glycerol glyc e 0 0 TN
L-Fucose fuc L e 0 0 TN

D-Gluconate glcn e 0 0 TN
Glycerol 3-phosphate glyc3p e 0 0 TN

Formate for e 0 0 TN
D-Mannitol mnl e 0 0 TN

D-Glucose 6-phosphate g6p e 0 0 TN
D-Ribose rib D e 0 0 TN

L-Rhamnose rmn e 0 0 TN
Maltose C12H22O11 malt e 0 0 TN

Melibiose C12H22O11 melib e 0 0 TN
Thymidine C10H14N2O5 thymd e 0 0 TN

D-Aspartate asp D e 0 0 TN
D-Glucosamine gam e 0 0 TN
13-Propanediol 13ppd e 0 0 TN

Sucrose C12H22O11 sucr e 0 0 TN
Uridine uri e 0 0 TN

L-tartrate tartr L e 0 0 TN
D-Glucose 1-phosphate g1p e 0 0 TN
D-Fructose 6-phosphate f6p e 0 0 TN
Beta-Methylglucoside mbdg e 0 0 TN

Ribitol rbt e 0 0 TN
Maltotriose malttr e 0 0 TN

Deoxyadenosine dad 2 e 0 0 TN
Adenosine adn e 0 0 TN

Myo-Inositol inost e 0 0 TN
D-Galactarate galct D e 0 0 TN

Glyoxylate glx e 0 0 TN
Inosine ins e 0 0 TN

Gly glu L gly glu L e 0 0 TN
Acetoacetate acac e 0 0 TN

N-Acetyl-D-mannosamine acmana e 0 0 TN
4 Hydroxyphenylacetic acid 4hoxpac e 0 0 TN
3 Hydroxyphenylacetic acid 3hoxpac e 0 0 TN

Tyramine tym e 0 0 TN
D-Allose all D e 0 0 TN
L-Lyxose lyx L e 0 0 TN

Continued on next page
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Table A.1: Comparison between carbon source Biolog Phenotypic Array data and in silico

outcomes, continued

Compound Common Name BiGG ID Biolog Growth Model Growth Agreement

D-Galacturonate galur e 0 0 TN
Phenethylamine peamn e 0 0 TN

Table A.2: Comparison between nitrogen source Biolog Phenotypic Array data and in silico

outcomes.

Compound Common Name BiGG ID Biolog Growth Model Growth Agreement

Ammonium nh4 e 1 1 TP
Nitrite no2 e 1 1 TP
Nitrate no3 e 1 1 TP
Urea urea e 1 1 TP

L-Alanine ala L e 1 1 TP
L-Arginine arg L e 1 1 TP

L-Asparagine asn L e 1 1 TP
L-Aspartate asp L e 1 1 TP
L-Glutamate glu L e 1 1 TP
L-Glutamine gln L e 1 1 TP

Glycine pro L e 1 1 TP
L-Proline ser L e 1 1 TP
L-Serine ala D e 1 1 TP

L-Threonine glu D e 1 1 TP
D-Alanine orn e 1 1 TP

D-Glutamate etha e 0 1 FP
D-Serine gly e 0 1 FP
Ornithine ser D e 0 1 FP

Ethanolamine thr L e 0 1 FP
L-Cysteine cys L e 0 0 TN
L-Isoleucine ile L e 0 0 TN
L-Leucine leu L e 0 0 TN
L-Lysine lys L e 0 0 TN

L-Methionine met L e 0 0 TN
L-Phenylalanine phe L e 0 0 TN
L-Tryptophan trp L e 0 0 TN

L-Valine val L e 0 0 TN
D-Aspartate asp D e 0 0 TN

Continued on next page
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Table A.2: Comparison between nitrogen source Biolog Phenotypic Array data and in silico

outcomes, continued

Compound Common Name BiGG ID Biolog Growth Model Growth Agreement

Putrescine ptrc e 0 0 TN
Tyramine tym e 0 0 TN

D-Glucosamine gam e 0 0 TN
N-Acetyl-D-mannosamine acmana e 0 0 TN

Adenosine adn e 0 0 TN
Cytidine cytd e 0 0 TN
Cytosine csn e 0 0 TN

Guanosine gsn e 0 0 TN
Thymidine C10H14N2O5 thymd e 0 0 TN

Uracil ura e 0 0 TN
Uridine uri e 0 0 TN
Inosine ins e 0 0 TN

Xanthine xan e 1 0 FN
L-Tyrosine tyr L e 1 0 FN
L-Histidine his L e 1 0 FN

Table A.3: Simmons minimal media composition in silico.

Reaction Name Compound Lower Bound Upper Bound

EX h2o e h2o -10 1000
EX o2 e o2 -10 1000
EX so4 e so4 -10 1000
EX nh4 e nh4 -10 1000
EX mg2 e mg2 -10 1000
EX na1 e na1 -10 1000
EX cl e cl -10 1000
EX pi e pi -10 1000
EX h e h -10 1000

EX cit e cit -10 1000
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Table A.4: Synthetic lethal gene pairs.

Gene 1 Gene 2

ABAYE3800 ABAYE2928
ABAYE0899 ABAYE1650
ABAYE0899 ABAYE1510
ABAYE2088 ABAYE3443
ABAYE0781 ABAYE0783
ABAYE0781 ABAYE0784
ABAYE0783 ABAYE0780
ABAYE0784 ABAYE0780
ABAYE1650 ABAYE1510
ABAYE2116 ABAYE2823
ABAYE2116 ABAYE2824
ABAYE1562 ABAYE3804
ABAYE2053 ABAYE2783
ABAYE2809 ABAYE0262
ABAYE2227 ABAYE2993
ABAYE1223 ABAYE0817
ABAYE2981 ABAYE1789
ABAYE1280 ABAYE3887
ABAYE1366 ABAYE3887
ABAYE0912 ABAYE3887
ABAYE0889 ABAYE3887
ABAYE0056 ABAYE3887
ABAYE1039 ABAYE3887
ABAYE1367 ABAYE3887
ABAYE1367 ABAYE0645
ABAYE2592 ABAYE3887
ABAYE2592 ABAYE0062
ABAYE0166 ABAYE3887
ABAYE0166 ABAYE0645
ABAYE3740 ABAYE1456
ABAYE3661 ABAYE2940
ABAYE0935 ABAYE2838
ABAYE2596 ABAYE3293
ABAYE2596 ABAYE0264
ABAYE3348 ABAYE3293
ABAYE3348 ABAYE0264
ABAYE2822 ABAYE3293
ABAYE2822 ABAYE0264
ABAYE3696 ABAYE0645

Continued on next page

195



Table A.4: Synthetic lethal gene pairs, continued

Gene 1 Gene 2

ABAYE1658 ABAYE1989
ABAYE1682 ABAYE1658
ABAYE1539 ABAYE1682
ABAYE0379 ABAYE0096
ABAYE0096 ABAYE2987
ABAYE0916 ABAYE2666
ABAYE0812 ABAYE3887
ABAYE0812 ABAYE0645
ABAYE2630 ABAYE3678
ABAYE0062 ABAYE1039

Table A.5: Genome IDs and strain names used for pan-genome analysis.

Genome ID Strain Name

470.1311 Acinetobacter baumannii strain CR17
470.771 Acinetobacter baumannii AbH12O-A2

1400867.3 Acinetobacter baumannii ZW85-1
1401639.4 Acinetobacter baumannii NCGM 237
1413216.3 Acinetobacter baumannii AB07
1100841.3 Acinetobacter baumannii TYTH-1
400667.7 Acinetobacter baumannii ATCC 17978
980514.3 Acinetobacter baumannii TCDC-AB0715
696749.3 Acinetobacter baumannii 1656-2
470.774 Acinetobacter baumannii IOMTU 433
470.1822 Acinetobacter baumannii strain YU-R612
470.2928 Acinetobacter baumannii strain CMC-CR-MDR-Ab4
470.2929 Acinetobacter baumannii strain CMC-MDR-Ab59
470.3044 Acinetobacter baumannii strain AB042
470.2423 Acinetobacter baumannii strain 3027STDY5784958
470.1738 Acinetobacter baumannii
470.775 Acinetobacter baumannii A1
557600.4 Acinetobacter baumannii AB307-0294
1455315.5 Acinetobacter baumannii LAC-4
470.2917 Acinetobacter baumannii strain LAC4
509170.6 Acinetobacter baumannii SDF
509173.8 Acinetobacter baumannii AYE
470.3774 Acinetobacter baumannii strain A85

Continued on next page
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Table A.5: Genome IDs and strain names used for pan-genome analysis, continued

Genome ID Strain Name
480119.5 Acinetobacter baumannii AB0057
405416.6 Acinetobacter baumannii ACICU
497978.4 Acinetobacter baumannii MDR-ZJ06
470.2913 Acinetobacter baumannii strain XDR-BJ83
1096995.4 Acinetobacter baumannii BJAB07104
1096996.4 Acinetobacter baumannii BJAB0715
1096997.4 Acinetobacter baumannii BJAB0868
470.1345 Acinetobacter baumannii strain AB5075-UW
470.1405 Acinetobacter baumannii strain D36
470.2122 Acinetobacter baumannii strain 3207
470.2911 Acinetobacter baumannii strain AF-673
470.1864 Acinetobacter baumannii strain XH860
470.1865 Acinetobacter baumannii strain XH859
470.2912 Acinetobacter baumannii strain AF-401
470.2026 Acinetobacter baumannii strain Ab421 GEIH-2010
470.1295 Acinetobacter baumannii strain AB30
470.1294 Acinetobacter baumannii strain AB31
470.1866 Acinetobacter baumannii strain XH857
470.1867 Acinetobacter baumannii strain XH856
470.1869 Acinetobacter baumannii strain XH858
470.1288 Acinetobacter baumannii strain AC29
470.773 Acinetobacter baumannii 6200
470.1576 Acinetobacter baumannii strain Ab04-mff
470.1763 Acinetobacter baumannii strain KBN10P02143
470.2931 Acinetobacter baumannii strain 11510
470.1737 Acinetobacter baumannii
470.3354 Acinetobacter baumannii strain WKA02
470.3353 Acinetobacter baumannii strain HWBA8
470.3351 Acinetobacter baumannii strain USA2
470.3352 Acinetobacter baumannii strain SSA6
470.3347 Acinetobacter baumannii strain JBA13
470.3348 Acinetobacter baumannii strain CBA7
470.3358 Acinetobacter baumannii strain SSMA17
470.3357 Acinetobacter baumannii strain SSA12
470.3355 Acinetobacter baumannii strain USA15
470.3356 Acinetobacter baumannii strain SAA14
470.1574 Acinetobacter baumannii strain B8300
470.1579 Acinetobacter baumannii strain B8342
470.1375 Acinetobacter baumannii strain XH386
470.1575 Acinetobacter baumannii strain ATCC 17978-mff

Continued on next page
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Table A.5: Genome IDs and strain names used for pan-genome analysis, continued

Genome ID Strain Name
470.1765 Acinetobacter baumannii
470.2908 Acinetobacter baumannii strain HRAB-85
470.3349 Acinetobacter baumannii strain 15A34
470.3106 Acinetobacter baumannii strain AB34299
470.2668 Acinetobacter baumannii strain KAB01
470.2669 Acinetobacter baumannii strain KAB02
470.2671 Acinetobacter baumannii strain KAB04
470.2672 Acinetobacter baumannii strain KAB05
470.2673 Acinetobacter baumannii strain KAB06
470.2674 Acinetobacter baumannii strain KAB07
470.2675 Acinetobacter baumannii strain KAB08
470.3362 Acinetobacter baumannii strain ab736
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Appendix B

Comparative Genome-Scale

Metabolic Modeling of

Metallo-Beta-Lactamase-Producing

Multidrug-Resistant Klebsiella

pneumoniae Clinical Isolates.
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B.1 Supplementary Figures

Figure B.1: Hierarchical clustering of the accessory genomes of 22 K. pneumoniae strains
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Figure B.2: Sulfur Catabolic Capabilities
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Figure B.3: Phosphorus Catabolic Capabilities
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Figure B.4: Antimicrobial Resistance Profiles
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Figure B.5: Classification tree built for 22 strains on carbon source utilization for amikacin
phenotypes
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Figure B.6: Classification tree built for 22 strains on carbon source utilization for gentamicin
phenotypes
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Figure B.7: Classification tree built for 22 strains on carbon source utilization for tetracycline
phenotypes
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Figure B.8: Classification tree built for 22 strains on nitrogen source utilization for gentamicin
phenotypes
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Figure B.9: Classification tree built for 22 strains on nitrogen source utilization for tetracycline
phenotypes
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Figure B.10: Resistance Determinants for All Strains
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B.2 Supplementary Tables

Table B.1: The MIC (µg/ml) of the antibiotics against the selected four isolates.

Isolate Ceftazidime Cefotaxime Meropenem Ertapenem Colistin

HH >256 >256 >8 >64 1
SF >256 >256 >8 >64 4
SK 32 >256 4 >64 4
SP >256 >256 >8 >64 2

Table B.2: The susceptibility of the isolates to these antibiotics was determined according to
MIC interpretation chart, where MIC Interpretative Standard (µg/ml)

Antimicrobial agent S I R

Cefotaxime ≤ 1 2 ≥ 4
Ceftazidime ≤ 4 8 ≥ 16

Colistin ≤ 1 2 ≥ 4
Ertapenem ≤ 0.25 0.5 ≥ 1
Meropenem ≤ 1 2 ≥ 4

Table B.3: In Silico Media Composition

Compound Exchange Reaction Lower Bound

Glucose EX glc D e -10
Calcium EX ca2 e -10
Chloride EX cl e -10

Carbon Dioxide EX co2 e -10
Cobalt EX cobalt2 e -10
Copper EX cu2 e -10

Iron EX fe2 e -10
Hydrogen EX h e -10

Magnesium EX mg2 e -10
Manganese EX mn2 e -10
Molybdate EX mobd e -10

Sodium EX na1 e -10
Ammonia EX nh4 e -10
Oxygen EX o2 e -10

Phosphate EX pi e -10
Sulfate EX so4 e -10

Tungstate EX tungs e -10
Zinc EX zn2 e -10
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C.1 Supplementary Text

C.1.1 Model Reconstruction Process

We began the network reconstruction by evaluating both the existing GEMs for C. difficile

630: iMLTC806cdf and icdf834. The first reconstruction produced by Laroque et. al in 2014

included 806 genes, 1,013 reactions, and 703 metabolites and represented the first effort at a

manually curated network reconstruction for C. difficile. In addition to the first curated network

this work included validation of the model on four types of in silico media, identification of

essential amino acids, and evaluation in comparison to an automatically generated network. In

2017 Kashaf et al. produced icdf834 a second GEM that improved upon iMLTC806cdf. icdf834

includes 834 genes, 1227 reactions, and 807 metabolites and the major expansion of content is

reflected in the inclusion of fatty acid, glycerolipid, and glycerophospholipid pathways. Overall,

iMLTC806cdf and icdf834 provided a valuable starting point and iCN900 represents the next step

in this lineage providing increases in both network quality and content. To expedite the process of

improving and adding to the network we first translated the previous efforts to standardized BiGG

format for reaction and metabolite identifiers. By putting the model into a standardized notation

the tractability of the network has been greatly improved and now the iCN900 is a part of a large

repository of GEMs in BiGG notation that includes a diverse phylogeny of organisms. The slight

drop in reaction number from icdf834 to iCN900 is a result of changing the duplicate secretion and

exchange reaction set up in icdf834 to a more conventional set of single exchange reactions. We

standardized the previous networks to BiGG 19,20 reaction and metabolite identifiers to increase

the usability of the reconstruction. We also subjected the previous curated network to rigorous

validation and removed the presence of many erroneous energy generating cycles. Building upon
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the now robust version of the metabolic network derived from the foundation of iMLTC806cdf

and icdf834 we added a significant amount of new content to the reconstruction. As a means of

further quality assurance of iCN900 we ran the reconstruction through the MEMOTE test suite

for consistency. iCN900 scores 100% on the metrics of charge balance, metabolite connectivity,

and checks for unbounded flux in default medium. iCN900 scores 87.1% for mass balance and

17% for stoichiometric consistency. We hypothesized that the lack of mass information for some

components of the lipid metabolism results in this issue. These reactions have not been fully

characterized and the ambiguous stoichiometry likely results in this one particularly low score.

To test this we created a version of the model excluding these such reactions and saw the expected

increase in the score for stoichiometric consistency. Thus this is less an issue of the reconstruction

and represents a current knowledge gap on the composition of these metabolites and reaction

stoichiometries.

iCN900 contains an additional 66 genes, 46 reactions, and 70 metabolites versus the

content present in icdf834. These additions were made through a variety of techniques including

use of the annotation tool DETECT v2, BLAST with the most closely related reconstructions,

and curation of pathways based on false negative model predictions against experimental data.

DETECT v2 is an enzyme annotation tool that assigns potential enzyme commission number

to protein sequence. We ran DETECT v2 on the reference genome for C. difficile 630 and

extensively looked through the results cross-referencing with the genome annotation to find a

number of new genes with predicted metabolic function that could be added to the model. This

proved to be a valuable method for identifying candidate new reactions and corresponding gene

product rules (GPRs), but necessitated rigorous examination of the automatic results to ensure

accuracy. The second means for adding content to the reconstruction was by utilizing BLAST to
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identify homologous genes with Bacillus subtilis and Clostridium ljungdahlii. These organisms

were chosen on the basis that they are the most closely related organisms for which there exists

a high-quality GEM. Utilizing the homologous genes and GPRs from these reconstructions we

were able to fill gaps in the previous C. difficile network. Encouragingly, many of the genes

that were eventually added were identified independently in both the DETECT v2 and BLAST

homology based workflows. Lastly, there were a number of compounds from experiments with

Biolog Phenotypic Microarrays that the model originally incorrectly predicted unable to sustain

growth. These false negative predictions provide opportunity for further network curation since

the experimental data suggests the organism has the necessary machinery to grow on these

compounds. Thus iCN900 includes reaction content that reconciles three key false negative model

predictions for salicin, arbutin, and N-acetyl-galactosamine into agreement with the experimental

data. The reactions included for each are SALCpts and S6PG, ARBTpts and AB6PGH, and

ACGALpts and ACGAL6PI, which are all gene annotated with the exception of ACGAL6PI.

C.1.2 Model Validation

Essential gene predictions were performed as had been done previously with iMLTC806cdf

and icdf834. Critically, in the evaluation of icdf834, Kashaf et al. utilize the experimental dataset

of essential genes for C. difficile R20291 that had been generated in the intervening time between

iMLTC806cdf and icdf834. The switch from comparison to Bacillus subtilis essential gene data

was conducted originally for iMLTC806cdf was a significant improvement.

iCN900 had 90% accuracy prediction of essential genes compared to the Dembek dataset.

While Kashaf et al. report an accuracy for icdf834 of 92.3% they calculate their accuracy only

on the predicted model essential genes and not the full confusion matrix of homologous genes.
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We reran gene essentiality predictions with icdf834 and found the overall accuracy in comparison

to the R20291 experimental data to also be 90%, but for a smaller number of homologous genes

since iCN900 reflects an increase in gene content. Overall the predictions made with iCN900 are

based on 868 homologous genes to R20291 and evaluation of the full confusion matrix results in

a Matthews correlation coefficient of .504.

Of the 190 compounds screened in the assay 114 of them directly map to metabolites

within the BiGG database. Each of the profiled strains was compared to the in silico predicted

growth capabilities and resulted in the following accuracies on tractable metabolites: 74.56%,

72.8%, and 67.5%. If the assumption is made that the model would predict no growth on the

compounds that do not map to BiGG and are therefore not included within the model, then

the accuracies increase to 81%, 80%, and 78%. Overall, iCN900 demonstrates a high prediction

accuracy to the phenotypic data.

C.1.3 Further False Negative and False Positive Predictions

Leucine and methionine were also classified originally as false negatives, but we hypoth-

esize that this is an artifact of recapitulating the proprietary Biolog media as defined in silico

media. As both these metabolites are already within the minimal media, we looked at the rela-

tive biomass yield if the amount of either of these compounds was increased. From this analysis

we found that increasing the leucine available resulted in increased biomass yield whereas in-

creased methionine did not. As such leucine may be considered a true positive by the model

and methionine remains a false negative. Additionally D-arabitol is likely a false negative that

is more accurately considered a true negative prediction as the fold change in OD from the Bi-

olog experiment is right at the threshold in our analyses for what we consider growth. This is
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supported by the fact that the growth values for L-arabitol definitively show no growth. There

are two remaining false negative model predictions that could not be rectified to true positives

that merit further analysis: succinate and ethanolamine.

Previous studies suggest that C. difficile 630 can utilize succinate as a carbon source

through the usage of succinate to butyrate pathway. While iCN900 includes the aforemen-

tioned pathway and corresponding supplemental pathways such as sorbitol fermentation pathway,

thought to provide complimentary electron flow, the model predicts no growth when succinate

is the sole carbon source in minimal media. It is worth noting that the addition of a succinate

dehydrogenase using ubiquinone as a cofactor would enable growth on succinate, however there

is no compelling genetic basis for this reaction and therefore it was not added.

C.2 Supplementary Figures
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Figure C.1: Histogram detailing the amount of genes mapped to the PDB within the full
reference genome and within iCN900 model genes
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Figure C.2: A) Pie chart detailing the percentage of genes and reactions designated as either
specialists or generalists. B) Each subsystem was checked for significant enrichment via hyper-
geometric test and the subsystems with enrichments are shown along with the corresponding
average amino acid sequence variation.
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Appendix D

A workflow for generating

multi-strain genome-scale metabolic

models of prokaryotes
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D.1 Supplementary Figures

Figure D.1: The numberof genes retained in each strain-specific model is dependent on the
threshold utilized for binarization of the homology matrix. The effect of the threshold will
also be dependent on how closely related the target strains are to the reference strain. For
example, within the strains in the Supplementary Tutorial notebooks we see that CU651637.1
and CP002167.1 are more dissimilar to reference model iML1515 as the drop off in retained genes
occurs in a steeper fashion. We suggest using a threshold of 80% when comparing strains of the
same species to ensure a sufficient similarity metric to include a gene in the draft models.
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Figure D.2: to investigate the effect of coverage on overall assembly statistics of N50 and
Number of Contigs, we randomly sampled reads of the BOP27 strain, which has been sequenced
to extremely high coverage (400X), enabling this analysis. Analyzing the resulting assemblies
at coverages ranging from 10X to 100X, we see from comparing the metrics that at 70X the
assembly quality mostly saturates and as such we recommend included genomes have at least
this much coverage
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D.2 Supplementary Tutorial

The following section of this appendix contains the jupyter notebooks converted into

pdf format found and referenced within Chapter 5: ”A workflow for generating multi-strain

genome-scale metabolic models of prokaryotes”. This tutorial is best followed as interactive

jupyter notebooks as intended with the original publication, however this static representation

is included for reference.
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1 Notebook 1: Homology matrix generation from genome sequences

In this tutorial, we will be working on generationg multi-strain genome-scale models for 5 E.coli
strains. The reference model we used here is the iML1515 model published in Nature Biotech-
nology (PMID: 29020004), and the reference strain is E. coli K12 MG1655. We will be generating
strain-specific models for 5 other E.coli strains: ATCC 8739, LF82, UM146, UMN026 and IAI39.

This is the the first notebook in the tutorial to create homology matrix from genome se-
quences.There are four major steps in this notebook 1. Download the genome annotation (Gen-
Bank files) from NCBI, and generate fasta files (protein &nucleotide) from them 2. Perform
BLASTp to find homologous proteins in strains of interest 3. Use best bidirectional hits to cre-
ate gene presence/absence matrix 4. Supplementary for best practice: use BLASTn to check if we
have missed any unannotated open reading frames and retain these genes in orthology matrix as
well as guide future manual curation

[1]: #import packages needed
import pandas as pd
from glob import glob
from Bio import Entrez, SeqIO

[2]: # Load the information on the five strains we will be working with in this␣
↪→tutorial

StrainsOfInterest=pd.read_excel('Strain Information.xlsx')
StrainsOfInterest

[2]: Strain NCBI ID Pathotype
0 Escherichia coli ATCC 8739 CP000946.1 Commensal
1 Escherichia coli LF82 CU651637.1 InPec: AIEC
2 Escherichia coli UM146 CP002167.1 InPec: AIEC
3 Escherichia coli UMN026 CU928163.2 ExPec: UPEC
4 Escherichia coli IAI39 CU928164.2 ExPec: UPEC

[3]: #The Reference Genome is as Described in the Base Reconstruction; in these␣
↪→tutorials iML1515

referenceStrainID='NC_000913.3'
targetStrainIDs=list(StrainsOfInterest['NCBI ID'])

1.1 1. Download genome annotations (GenBank files) to generate fasta files

1.1.1 Dowload genomes from NCBI

Download the genome annotations (GenBank files) from NCBI for strains of interest.

[4]: # define a function to download the annotated genebank files from NCBI
def dl_genome(id, folder='genomes'): # be sure get CORRECT ID

files=glob('%s/*.gb'%folder)
out_file = '%s/%s.gb'%(folder, id)
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if out_file in files:
print (out_file, 'already downloaded')
return

else:
print ('downloading %s from NCBI'%id)

from Bio import Entrez
Entrez.email = "" #Insert email here for NCBI
handle = Entrez.efetch(db="nucleotide", id=id, rettype="gb", retmode="text")
fout = open(out_file,'w')
fout.write(handle.read())
fout.close()

[5]: # execute the above function, and download the GenBank files for 5 E. coli␣
↪→strains

for strain in targetStrainIDs:
dl_genome(strain, folder='genomes')

downloading CP000946.1 from NCBI
downloading CU651637.1 from NCBI
downloading CP002167.1 from NCBI
downloading CU928163.2 from NCBI
downloading CU928164.2 from NCBI

1.1.2 Examine the Downloaded Strains

[6]: # define a function to gather information of the downloaded strains from the␣
↪→GenBank files

def get_strain_info(folder='genomes'):
files = glob('%s/*.gb'%folder)
strain_info = []

for file in files:
handle = open(file)
record = SeqIO.read(handle, "genbank")

for f in record.features:
if f.type=='source':

info = {}
info['file'] = file
info['id'] = file.split('\\')[-1].split('.')[0]
for q in f.qualifiers.keys():

info[q] = '|'.join(f.qualifiers[q])
strain_info.append(info)

return pd.DataFrame(strain_info)
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[7]: # information on the downloaded strain
get_strain_info(folder='genomes')

[7]: db_xref file id \
0 ATCC:8739|taxon:481805 genomes/CP000946.1.gb genomes/CP000946
1 taxon:585056 genomes/CU928163.2.gb genomes/CU928163
2 taxon:869729 genomes/CP002167.1.gb genomes/CP002167
3 taxon:511145 genomes/NC_000913.3.gb genomes/NC_000913
4 taxon:591946 genomes/CU651637.1.gb genomes/CU651637
5 taxon:585057 genomes/CU928164.2.gb genomes/CU928164

mol_type organism strain \
0 genomic DNA Escherichia coli ATCC 8739 ATCC 8739
1 genomic DNA Escherichia coli UMN026 UMN026
2 genomic DNA Escherichia coli UM146 UM146
3 genomic DNA Escherichia coli str. K-12 substr. MG1655 K-12
4 genomic DNA Escherichia coli LF82 LF82
5 genomic DNA Escherichia coli IAI39 IAI39

sub_strain
0 NaN
1 NaN
2 NaN
3 MG1655
4 NaN
5 NaN

1.1.3 Generate FASTA files for both Protein and Nucleotide Pipelines

From the GenBank file, we can extract sequence and annoation information to generate fasta files
for the protein and nucleotide analyses. The resulting fasta files will then be used in step 2 as
input for BLAST

[8]: # define a function to parse the Genbank file to generate fasta files for both␣
↪→protein and nucleotide sequences

def parse_genome(id, type='prot', in_folder='genomes', out_folder='prots',␣
↪→overwrite=1):

in_file = '%s/%s.gb'%(in_folder, id)
out_file='%s/%s.fa'%(out_folder, id)
files =glob('%s/*.fa'%out_folder)

if out_file in files and overwrite==0:
print (out_file, 'already parsed')
return

else:
print ('parsing %s'%id)
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handle = open(in_file)

fout = open(out_file,'w')
x = 0

records = SeqIO.parse(handle, "genbank")
for record in records:

for f in record.features:
if f.type=='CDS':

seq=f.extract(record.seq)

if type=='nucl':
seq=str(seq)

else:
seq=str(seq.translate())

if 'locus_tag' in f.qualifiers.keys():
locus = f.qualifiers['locus_tag'][0]

elif 'gene' in f.qualifiers.keys():
locus = f.qualifiers['gene'][0]

else:
locus = 'gene_%i'%x
x+=1

fout.write('>%s\n%s\n'%(locus, seq))
fout.close()

[9]: # Generate fasta files for 5 strains of interest
for strain in targetStrainIDs:

parse_genome(strain, type='prot', in_folder='genomes', out_folder='prots')
parse_genome(strain, type='nucl', in_folder='genomes', out_folder='nucl')

parsing CP000946.1
parsing CP000946.1
parsing CU651637.1
parsing CU651637.1
parsing CP002167.1
parsing CP002167.1
parsing CU928163.2
parsing CU928163.2
parsing CU928164.2
parsing CU928164.2

[10]: #Also generate fasta files for the reference strain
parse_genome(referenceStrainID, type='nucl', in_folder='genomes',␣

↪→out_folder='nucl')
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parse_genome(referenceStrainID, type='prots', in_folder='genomes',␣
↪→out_folder='prots')

parsing NC_000913.3
parsing NC_000913.3

/home/cnorsig/.local/lib/python3.5/site-packages/Bio/Seq.py:2423:
BiopythonWarning: Partial codon, len(sequence) not a multiple of three.
Explicitly trim the sequence or add trailing N before translation. This may
become an error in future.

BiopythonWarning)

1.2 2. Perform BLAST to find homologous proteins in strains of interest

1.2.1 Make BLAST DB for each of the target strains for both Protein and Nucleotide Pipelines

In this tutorial, we will run both BLASTp for proteins and BLSATn for nucleotides. BLASTp will
be used as the main approach to identify homologous proteins in reference strain and other strains
of interest, while BLASTn will be used as a supplementary method to check for any unannotated
genes

[12]: # Define a function to make blast database for either protein of nucleotide
def make_blast_db(id,folder='prots',db_type='prot'):

import os

out_file ='%s/%s.fa.pin'%(folder, id)
files =glob('%s/*.fa.pin'%folder)

if out_file in files:
print (id, 'already has a blast db')
return

if db_type=='nucl':
ext='fna'

else:
ext='fa'

cmd_line='makeblastdb -in %s/%s.%s -dbtype %s' %(folder, id, ext, db_type)

print ('making blast db with following command line...')
print (cmd_line)
os.system(cmd_line)

[13]: # make protein sequence databases
# Because we are performing bi-directional blast, we make databases from both␣

↪→reference strain and strains of interest
for strain in targetStrainIDs:

make_blast_db(strain,folder='prots',db_type='prot')
make_blast_db(referenceStrainID,folder='prots',db_type='prot')
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1.2.2 Define functions to run protein BLAST and get sequence lengths

• BLASTp will be the main approach used here to identify homologous proteins between
strains

• Aside from sequence similarity, we also want to ensure the coverage of sequence mapping is
sufficient. Therefore, we need to identiy the sequence length for each protein and compare
it with the alignment length.

[15]: # define a function to run BLASTp
def run_blastp(seq,db,in_folder='prots', out_folder='bbh',␣

↪→out=None,outfmt=6,evalue=0.001,threads=1):
import os
if out==None:

out='%s/%s_vs_%s.txt'%(out_folder, seq, db)
print(out)

files =glob('%s/*.txt'%out_folder)
if out in files:

print (seq, 'already blasted')
return

print ('blasting %s vs %s'%(seq, db))

db = '%s/%s.fa'%(in_folder, db)
seq = '%s/%s.fa'%(in_folder, seq)
cmd_line='blastp -db %s -query %s -out %s -evalue %s -outfmt %s -num_threads␣

↪→%i' \
%(db, seq, out, evalue, outfmt, threads)

print ('running blastp with following command line...')
print (cmd_line)
os.system(cmd_line)
return out

[16]: # define a function to get sequence length

def get_gene_lens(query, in_folder='prots'):

file = '%s/%s.fa'%(in_folder, query)
handle = open(file)
records = SeqIO.parse(handle, "fasta")
out = []

for record in records:
out.append({'gene':record.name, 'gene_length':len(record.seq)})

out = pd.DataFrame(out)
return out
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1.3 3. Use Bi-Directional BLASTp Best Hits to create gene presence/absence matrix

1.3.1 Obtain Bi-Directional BLASTp Best Hits

From the above BLASTp results, we can obtain Bi-Directional BLASTp Best Hits to identify ho-
mologous proteins. Note beside gene similarity score, the coverage of alignment is also used to
filter mapping results.

[17]: # define a function to get Bi-Directional BLASTp Best Hits
def get_bbh(query, subject, in_folder='bbh'):

#Utilize the defined protein BLAST function
run_blastp(query, subject)
run_blastp(subject, query)

query_lengths = get_gene_lens(query, in_folder='prots')
subject_lengths = get_gene_lens(subject, in_folder='prots')

#Define the output file of this BLAST
out_file = '%s/%s_vs_%s_parsed.csv'%(in_folder,query, subject)
files=glob('%s/*_parsed.csv'%in_folder)

#Combine the results of the protein BLAST into a dataframe
print ('parsing BBHs for', query, subject)
cols = ['gene', 'subject', 'PID', 'alnLength', 'mismatchCount',␣

↪→'gapOpenCount', 'queryStart', 'queryEnd', 'subjectStart', 'subjectEnd',␣
↪→'eVal', 'bitScore']

bbh=pd.read_csv('%s/%s_vs_%s.txt'%(in_folder,query, subject), sep='\t',␣
↪→names=cols)

bbh = pd.merge(bbh, query_lengths)
bbh['COV'] = bbh['alnLength']/bbh['gene_length']

bbh2=pd.read_csv('%s/%s_vs_%s.txt'%(in_folder,subject, query), sep='\t',␣
↪→names=cols)

bbh2 = pd.merge(bbh2, subject_lengths)
bbh2['COV'] = bbh2['alnLength']/bbh2['gene_length']
out = pd.DataFrame()

# Filter the genes based on coverage
bbh = bbh[bbh.COV>=0.25]
bbh2 = bbh2[bbh2.COV>=0.25]

#Delineate the best hits from the BLAST
for g in bbh.gene.unique():

res = bbh[bbh.gene==g]
if len(res)==0:

continue
best_hit = res.loc[res.PID.idxmax()]
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best_gene = best_hit.subject
res2 = bbh2[bbh2.gene==best_gene]
if len(res2)==0:

continue
best_hit2 = res2.loc[res2.PID.idxmax()]
best_gene2 = best_hit2.subject
if g==best_gene2:

best_hit['BBH'] = '<=>'
else:

best_hit['BBH'] = '->'
out=pd.concat([out, pd.DataFrame(best_hit).transpose()])

#Save the final file to a designated CSV file
out.to_csv(out_file)

[18]: # Execute the BLAST for each target strain against the reference strain, save␣
↪→results to 'bbh' i.e. "bidirectional best

# hits" folder to create
# homology matrix

for strain in targetStrainIDs:
get_bbh(referenceStrainID,strain, in_folder='bbh')

1.3.2 Parse the BLAST Results into one Homology Matrix of the Reconstruction Genes

For the homology matrix, we only focus on genes that are present in the reference model

[19]: #Load all the BLAST files between the reference strain and target strains

blast_files=glob('%s/*_parsed.csv'%'bbh')

for blast in blast_files:
bbh=pd.read_csv(blast)
print (blast,bbh.shape)

bbh/NC_000913.3_vs_CP002167.1_parsed.csv (3974, 16)
bbh/NC_000913.3_vs_CU651637.1_parsed.csv (3922, 16)
bbh/NC_000913.3_vs_CU928163.2_parsed.csv (4071, 16)
bbh/NC_000913.3_vs_CP000946.1_parsed.csv (4056, 16)
bbh/NC_000913.3_vs_CU928164.2_parsed.csv (3991, 16)

[20]: #Load the base reconstruction to designate the list of genes within the model
import cobra
model = cobra.io.load_json_model('iML1515.json')
listGeneIDs=[]
for gene in model.genes:

listGeneIDs.append(gene.id)
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[21]: #Create 2 matrices of N, rows where N is the number of model genes and M columns␣
↪→where M is the number of target strains

#One matrix will be populated with the PID results from the blasts and another␣
↪→with the mapping of gene locus tags

ortho_matrix=pd.DataFrame(index=listGeneIDs,columns=targetStrainIDs)
geneIDs_matrix=pd.DataFrame(index=listGeneIDs,columns=targetStrainIDs)

[22]: #Parse through each blast file and acquire pertinent information for each matrix␣
↪→for each of the base reconstruction genes

for blast in blast_files:
bbh=pd.read_csv(blast)
listIDs=[]
listPID=[]
for r,row in ortho_matrix.iterrows():

try:
currentOrtholog=bbh[bbh['gene']==r].reset_index()
listIDs.append(currentOrtholog.iloc[0]['subject'])
listPID.append(currentOrtholog.iloc[0]['PID'])

except:
listIDs.append('None')
listPID.append(0)

for col in ortho_matrix.columns:
if col in blast:

ortho_matrix[col]=listPID
geneIDs_matrix[col]=listIDs

1.3.3 Apply Similarity Threshold to Binarize Homology Matrix to Presence/Absence Matrix

In this step, choose a threshold for the PID to determine if a gene is a absent/present in the strain
of interest. We can then convert the homology matrix generated above into a binarized pres-
ence/absence matrix

[23]: # In this tutoriao, genes with a greater than 80% PID are considered present in␣
↪→the target strain genome

# and consequently less than 80% are considered absent from the target strain␣
↪→genome

for column in ortho_matrix:
ortho_matrix.loc[ortho_matrix[column]<=80.0,column]=0
ortho_matrix.loc[ortho_matrix[column]>80.0,column]=1

1.4 4. Perform BLASTn to check unannotated open reading frames to guide manual
curation

At this juncture it may be useful to execute a supplementary nucleotide BLAST to check for unan-
notated genes, results here become candidates for manual curation. In this tutorial we retain
unannotated genes that pass the threhsold for similarity and contain no premature stop codons
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[43]: #Define a function to generate FNA from the GBK files
def gbk2fasta(gbk_filename):

faa_filename = '.'.join(gbk_filename.split('.')[:-1])+'.fna'
input_handle = open(gbk_filename, "r")
output_handle = open(faa_filename, "w")

for seq_record in SeqIO.parse(input_handle, "genbank") :
print ("Converting GenBank record %s" % seq_record.id)
output_handle.write(">%s %s\n%s\n" % (

seq_record.id,
seq_record.description,
seq_record.seq))

output_handle.close()
input_handle.close()

[44]: #Define function to run the BLASTn
def run_blastn(seq, db,outfmt=6,evalue=0.001,threads=1):

import os
out = 'nucl/'+seq+'_vs_'+db+'.txt'
seq = 'nucl/'+seq+'.fa'
db = 'genomes/'+db+'.fna'

cmd_line='blastn -db %s -query %s -out %s -evalue %s -outfmt %s -num_threads␣
↪→%i' \

%(db, seq, out, evalue, outfmt, threads)

print ('running blastn with following command line...')
print (cmd_line)
os.system(cmd_line)
return out

[42]: # make nucleotide sequence databases
for strain in targetStrainIDs:

make_blast_db(strain,folder='genomes',db_type='nucl')

[45]: # convert genbank files to fna files for strains of interest
for strain in targetStrainIDs:

gbk2fasta('genomes/'+strain+'.gb')

Converting GenBank record CP000946.1
Converting GenBank record CU651637.1
Converting GenBank record CP002167.1
Converting GenBank record CU928163.2
Converting GenBank record CU928164.2
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[46]: # perform uni-directional BLASTn hit
genome_blast_res=[]
for strain in targetStrainIDs:

res = run_blastn(referenceStrainID,strain)
genome_blast_res.append(res)

[47]: #define a function to parse through the nucleotide BLAST results and form one␣
↪→matrix of all the results

def parse_nucl_blast(infile):
cols = ['gene', 'subject', 'PID', 'alnLength', 'mismatchCount',␣

↪→'gapOpenCount', 'queryStart', 'queryEnd', 'subjectStart', 'subjectEnd',␣
↪→'eVal', 'bitScore']

data = pd.read_csv(infile, sep='\t', names=cols)
data = data[(data['PID']>80) & (data['alnLength']>0.8*data['queryEnd'])]
data2=data.groupby('gene').first()
return data2.reset_index()

[48]: # parse the nucleotide blast matrix
na_matrix=pd.DataFrame()
for file in genome_blast_res:

genes =parse_nucl_blast(file)
name ='.'.join(file.split('_')[-1].split('.')[:-1])
na_matrix = na_matrix.append(genes[['gene','subject','PID']])

na_matrix = pd.pivot_table(na_matrix, index='gene',␣
↪→columns='subject',values='PID')

[49]: na_matrix.head()

[49]: subject CP000946.1 CP002167.1 CU651637.1 CU928163.2 CU928164.2
gene
b0002 97.97 97.69 97.56 98.78 98.86
b0003 98.71 98.29 98.29 98.29 99.68
b0004 98.99 98.06 97.75 98.21 97.82
b0005 99.66 91.09 97.03 97.98 98.73
b0006 99.23 97.68 97.55 98.46 98.58

1.4.1 Examine unnannotated open reading frames

We compare the results from BLASTp and BLASTn and record any inconsistencies between the
two matrices due to missing annotation. This result is then saved to guide future manual curation.

[50]: # define a function to extract the sequence from fna file
def extract_seq(g, contig, start, end):

from Bio import SeqIO
handle = open(g)
records = SeqIO.parse(handle, "fasta")
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for record in records:
if record.name==contig:

if end>start:
section = record[start:end]

else:
section = record[end-1:start+1].reverse_complement()

seq = str(section.seq)
return seq

[51]: #Define updated matrices that will include genes based on sequence evidence that␣
↪→were missing due to lack of annotation

ortho_matrix_w_unannotated = ortho_matrix.copy()
geneIDs_matrix_w_unannotated = geneIDs_matrix.copy()

[52]: #Define matrix of the BLASTn results for all the pertinent model genes
nonModelGenes=[]
for g in na_matrix.index:

if g not in listGeneIDs:
nonModelGenes.append(g)

na_model_genes=na_matrix.drop(nonModelGenes)

[53]: #For each strain in the ortho_matrix, identify genes that meet threshold of SEQ␣
↪→similarity, but missing from

#annotated ORFS. Additionally, look at the sequence to ensure that these cases␣
↪→do not have early stop codons indicating

#nonfunctional even if the NA seqs meet the threshold

pseudogenes = {}

for c in ortho_matrix.columns:

orfs = ortho_matrix[c]
genes = na_model_genes[c]
# All the Model Genes that met the BLASTp Requirements
orfs2 = orfs[orfs==1].index.tolist()
# All the Model Genes based off of BLASTn similarity above threshold of 80
genes2 = genes[genes>=80].index.tolist()
# By Definition find the genes that pass sequence threshold but were NOT in␣

↪→annotated ORFs:
unannotated = set(genes2) -set(orfs2)

# Obtain sequences of this list to check for premature stop codons:
data = 'nucl/NC_000913.3_vs_%s.txt'%c
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cols = ['gene', 'subject', 'PID', 'alnLength', 'mismatchCount',␣
↪→'gapOpenCount', 'queryStart', 'queryEnd', 'subjectStart', 'subjectEnd',␣
↪→'eVal', 'bitScore']

data = pd.read_csv(data, sep='\t', names=cols)
#
pseudogenes[c] = {}
unannotated_data = data[data['gene'].isin(list(unannotated))]
for i in unannotated_data.index:

gene = data.loc[i,'gene']
contig = data.loc[i,'subject']
start = data.loc[i,'subjectStart']
end = data.loc[i,'subjectEnd']
seq = extract_seq('genomes/%s.fna'%c,contig, start, end)
# check for early stop codons - these are likely nonfunctional and␣

↪→shouldn't be included
if '*' in seq:

print (seq)
pseudogenes[c][gene]=seq
# Remove the gene from list of unannotated genes
unannotated-set([gene])

print (c, unannotated)

# For pertinent genes, retain those based off of nucleotide similarity␣
↪→within the orthology matrix and geneIDs matrix

ortho_matrix_w_unannotated.loc[unannotated,c]=1
for g in unannotated:

geneIDs_matrix_w_unannotated.loc[g,c] = '%s_ortholog'%g

CP000946.1 {'b4321', 'b0973', 'b0516', 'b3577', 'b1621', 'b1817', 'b1616',
'b2483', 'b0030', 'b4513', 'b1771'}
CU651637.1 {'b4321', 'b2930', 'b2344', 'b2690', 'b2430', 'b4513', 'b1588',
'b0150'}
CP002167.1 {'b4321', 'b2930', 'b4086', 'b1587', 'b0936', 'b2519', 'b2430',
'b3715', 'b4513', 'b3579', 'b1897'}
CU928163.2 {'b4513', 'b4515'}
CU928164.2 {'b4513', 'b4515'}

[54]: #Save the Presence/Absence Matrix and geneIDs Matrix for future use
ortho_matrix_w_unannotated.to_csv('ortho_matrix.csv')
geneIDs_matrix_w_unannotated.to_csv('geneIDs_matrix.csv')
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2 Notebook 2: Generate multi-strain models

This notebook follows Notebook 1 in the tutorial, and continues to work on generating multi-
strain E.coli models. This notebook utilizes the output of notebook 1 (presence/absence matrix
and geneID matrix) to generate draft strain-specific models from the reference model. There are
two major steps involved:

1. Deletion of missing genes/reaction from reference model to generate draft models
2. Update gene-protein-reaction rule in each model

[4]: #import package needed
import cobra
import pandas as pd
from cobra.io import load_json_model
from glob import glob
from cobra.manipulation.delete import delete_model_genes, remove_genes

2.1 1. Deletion of missing genes/reaction from reference model

[5]: #Load the base E. coli reconstruction iML1515
model = load_json_model('iML1515.json')
model

[5]: <Model iML1515 at 0x7f8929212940>

[6]: ## Load the previously generated homology matrix for E. coli strains of interest
hom_matrix=pd.read_csv('ortho_matrix.csv')
hom_matrix=hom_matrix.set_index('Unnamed: 0')

2.1.1 Delete missing genes from copies of the iML1515 model

For each strain, start with the iML1515 model, identify the missing genes from the matrix, and
remove them and their associated reactions from the reference model

[5]: #create strain-specific draft models and save them
for strain in hom_matrix.columns:

#Get the list of Gene IDs from the homology matrix dataframe for the current␣
↪→strain without a homolog

currentStrain=hom_matrix[strain]
nonHomologous=currentStrain[currentStrain==0.0]
nonHomologous=nonHomologous.index.tolist()

#s0001 is an artificial gene used in iML1515 for spontaneous reactions and␣
↪→as such has no homologs,

#However, it is retained for these spontaneous reactions to function
nonHomologous.remove('s0001')

236



#Define a list of Gene objects from the base reconstruction to be deleted␣
↪→from the current strain

toDelete=[]
for gene in nonHomologous:

toDelete.append(model.genes.get_by_id(gene))

#Establish a model copy and use the COBRApy function to remove the␣
↪→appropriate content and save this model

modelCopy=model.copy()
remove_genes(modelCopy, toDelete, remove_reactions=True)
modelCopy.id=str(strain)
cobra.io.json.save_json_model(modelCopy, str('Models/'+strain+'.json'),␣

↪→pretty=False)

2.2 2. Update Model Gene Product Rules

[ ]: #load the geneID matrix from the notebook1
models=glob('%s/*.json'%'Models')
geneIDs_matrix=pd.read_csv('geneIDs_matrix.csv')
geneIDs_matrix=geneIDs_matrix.set_index('Unnamed: 0')

[8]: #Utilize the geneIDs matrix to update the GPRs in each of the strain-specific␣
↪→models with the proper gene ID

from cobra.manipulation.modify import rename_genes

for mod in models:
model=cobra.io.load_json_model(mod)
for column in geneIDs_matrix.columns:

if column in mod:
currentStrain=column

IDMapping=geneIDs_matrix[currentStrain].to_dict()
IDMappingParsed = {k:v for k,v in IDMapping.items() if v != 'None'}

rename_genes(model,IDMappingParsed)
cobra.io.json.save_json_model(model,mod, pretty=False)

2.2.1 Examine the draft strain specific model contents

[9]: # gather the general information on the draft models
for strain in hom_matrix.columns:

model=cobra.io.load_json_model(str('Models/'+strain+'.json'))
print (model.id,'Number of Model Genes:',len(model.genes),'Number of Model␣

↪→Reactions:',len(model.reactions))
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CP000946.1 Number of Model Genes: 1484 Number of Model Reactions: 2664
CU651637.1 Number of Model Genes: 1420 Number of Model Reactions: 2613
CP002167.1 Number of Model Genes: 1425 Number of Model Reactions: 2614
CU928163.2 Number of Model Genes: 1460 Number of Model Reactions: 2650
CU928164.2 Number of Model Genes: 1459 Number of Model Reactions: 2622

3 Notebook 3: Investigate Strain-Specific Capabilities

In this notebook, we showcase some simple applications of strain-specific models including
growth simulation on different media. This notebook utilize the draft models created from Note-
book 2. Note that the models constructed and used here could undergo further manual curation
to increase their quality and content.

[3]: import cobra
import pandas as pd
import seaborn as sns
from cobra.io import load_json_model
from glob import glob

[4]: #load the draft models created from Notebook2
model_files=glob('%s/*.json'%'Models')
model_files

[4]: ['Models/CP000946.1.json',
'Models/CU651637.1.json',
'Models/CU928164.2.json',
'Models/CP002167.1.json',
'Models/CU928163.2.json']

3.1 Begin Constraint-Based Modeling on Group of Strain-Specific Models

[5]: #Establish a definition that initializes models to an in silico representation␣
↪→of M9 media

def m9(model):
for reaction in model.reactions:

if 'EX_' in reaction.id:
reaction.lower_bound=0

model.reactions.EX_ca2_e.lower_bound=-1000
model.reactions.EX_cl_e.lower_bound=-1000
model.reactions.EX_co2_e.lower_bound=-1000
model.reactions.EX_cobalt2_e.lower_bound=-1000
model.reactions.EX_cu2_e.lower_bound=-1000
model.reactions.EX_fe2_e.lower_bound=-1000
model.reactions.EX_fe3_e.lower_bound=-1000
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model.reactions.EX_h_e.lower_bound=-1000
model.reactions.EX_h2o_e.lower_bound=-1000
model.reactions.EX_k_e.lower_bound=-1000
model.reactions.EX_mg2_e.lower_bound=-1000
model.reactions.EX_mn2_e.lower_bound=-1000
model.reactions.EX_mobd_e.lower_bound=-1000
model.reactions.EX_na1_e.lower_bound=-1000
model.reactions.EX_tungs_e.lower_bound=-1000
model.reactions.EX_zn2_e.lower_bound=-1000
model.reactions.EX_ni2_e.lower_bound=-1000
model.reactions.EX_sel_e.lower_bound=-1000
model.reactions.EX_slnt_e.lower_bound=-1000
model.reactions.EX_glc__D_e.lower_bound=-20
model.reactions.EX_so4_e.lower_bound=-1000
model.reactions.EX_nh4_e.lower_bound=-1000
model.reactions.EX_pi_e.lower_bound=-1000
model.reactions.EX_cbl1_e.lower_bound=-.01
model.reactions.EX_o2_e.lower_bound=-20

return model

[6]: #Load each target Strain model, initialize it to glucose M9 media and see if the␣
↪→model can optimize for

# biomass production

for model in model_files:
mod=cobra.io.load_json_model(model)
m9(mod)
print (mod.id, mod.optimize().f)

CP000946.1 1.1207961081933524
CU651637.1 1.1207855410255514
CU928164.2 1.1207855410255527
CP002167.1 1.1207855410255525
CU928163.2 1.1207961081933542

[7]: #In this Tutorial we see that all of the target-strain models are immediately␣
↪→able to solve in the defined medium

#This will not always be the case and gap-filling and identification of␣
↪→auxotrophies may be necessary

#(see original protocol)

3.2 Example of examining strain-specific capabilities: carbon source utilization

In this example, we examine the draft models abilities to simulate growth on different carbon
sources. The carbon sources are limited to those with exchange reactions in the model
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[8]: # load the reference model and extract the list of carbon source to test

model = load_json_model('iML1515.json')

StrainsOfInterest=pd.read_excel('Strain Information.xlsx')
targetStrainIDs=list(StrainsOfInterest['NCBI ID'])

listPotCarbonSources=[]
for r in model.reactions:

if 'EX_' in r.id:
for m in r.metabolites:

if 'C' in m.formula:
listPotCarbonSources.append(r.id)

[9]: #create a dataframe to store the simulation result on list of carbon source
growthCapabilities=pd.

↪→DataFrame(index=listPotCarbonSources,columns=targetStrainIDs)

[10]: #iterature through all the models to simulate growth on different carbon sources
# to do so, we closed the default carbon source glucos by setting the lower␣

↪→bound of its exchange reaction to 0.
# and open the exchange reaction of the carbon source of interest to enable␣

↪→nutrient update

for model in model_files:
mod=cobra.io.load_json_model(model)
listCapabilities=[]

for source in listPotCarbonSources:
m9(mod)
mod.reactions.EX_glc__D_e.lower_bound=0
mod.reactions.get_by_id(source).lower_bound=-1000
listCapabilities.append(mod.optimize().f)

for col in growthCapabilities.columns:
if col in model:

growthCapabilities[col]=listCapabilities

[11]: growthCapabilities

[11]: CP000946.1 CU651637.1 CP002167.1 CU928163.2 CU928164.2
EX_acgam_e 12.842831 12.842748 12.842748 12.842831 12.842748
EX_cellb_e 11.878912 11.878870 11.878870 11.878912 11.878870
EX_chol_e 0.000000 0.221636 0.221636 0.000000 0.000000
EX_ade_e 0.496634 0.496627 0.496627 0.496634 0.281315
EX_4abut_e 0.562435 0.562428 0.562428 0.562435 0.562428
EX_ac_e 0.428358 0.428352 0.428352 0.428358 0.428352
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EX_akg_e 8.364325 8.364251 8.364251 8.364325 8.364251
EX_ala__L_e 2.899720 2.899686 2.899686 2.899720 2.899686
EX_arg__L_e 2.798891 2.798856 2.798856 2.601610 2.798856
EX_asp__L_e 9.704300 9.704202 9.704202 9.704300 9.704202
EX_cytd_e 19.192908 19.192791 19.192791 19.192908 19.192791
EX_dcyt_e 18.878871 18.878697 18.878697 18.878871 18.878697
EX_fum_e 9.704300 9.704202 9.704202 9.704300 9.704202
EX_glu__L_e 7.951270 7.951201 7.951201 7.951270 7.951201
EX_gua_e 1.396844 1.396771 1.396771 1.396844 0.934816
EX_met__L_e 0.000000 0.000000 0.000000 0.000000 0.000000
EX_metsox_S__L_e 0.000000 0.000000 0.000000 0.000000 0.000000
EX_crn_e 0.000000 0.000000 0.000000 0.000000 0.000000
EX_glcn_e 16.301036 16.300949 16.300949 16.301036 16.300949
EX_gln__L_e 5.138213 5.138151 5.138151 5.138213 5.138151
EX_glyc_e 7.683620 7.683557 7.683557 7.683620 7.683557
EX_man_e 11.878912 11.878870 11.878870 11.878912 11.878870
EX_rib__D_e 5.746865 5.746832 5.746832 5.746865 5.746832
EX_sbt__D_e 9.614060 9.614019 9.614019 9.614060 9.614019
EX_ura_e 0.000000 0.000000 0.000000 0.000000 0.000000
EX_val__L_e 0.000000 0.000000 0.000000 0.000000 0.000000
EX_xan_e 0.481995 0.481989 0.481989 0.481995 0.256790
EX_co2_e -0.043467 -0.043463 -0.043463 -0.043467 -0.043730
EX_hxan_e 0.494887 0.494880 0.494880 0.494887 0.280753
EX_ile__L_e -0.043467 -0.043463 -0.043463 -0.043467 -0.043730
... ... ... ... ... ...
EX_urate_e 0.393785 0.393779 0.393779 0.393785 0.208581
EX_cpgn_un_e -0.043467 -0.043463 -0.043463 -0.043467 -0.043730
EX_tartr__D_e 10.041344 10.041214 10.041214 10.041344 10.041214
EX_crn__D_e 0.000000 0.000000 0.000000 0.000000 0.000000
EX_psclys_e 10.165027 0.000000 0.000000 0.000000 0.000000
EX_galctn__L_e 16.005483 0.000000 0.000000 16.005483 0.000000
EX_5dglcn_e 0.000000 18.987283 18.987283 18.987322 18.987283
EX_ppal_e 0.428358 0.428352 0.428352 0.428358 0.428352
EX_LalaDglu_e 6.970883 6.970794 6.970794 6.970883 6.970794
EX_LalaLglu_e 6.970883 6.970794 6.970794 6.970883 6.970794
EX_ttrcyc_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_mincyc_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_doxrbcn_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_fusa_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_cm_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_novbcn_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_rfamp_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_quin_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_3hpp_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_5mtr_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_arbt_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_dxylnt_e 0.000000 -0.043463 0.000000 6.285708 0.000000
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EX_mththf_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_dhps_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_cs1_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_mepn_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_sq_e 0.000000 -0.043463 0.000000 14.547635 14.547530
EX_4abzglu_e 0.000000 -0.043463 0.000000 0.000000 0.000000
EX_metglcur_e 18.428009 18.427911 18.427911 18.428009 18.427911
EX_2dglc_e 0.000000 0.000000 0.000000 0.000000 0.000000

[298 rows x 5 columns]

[12]: #use heatmap to visualize the difference in growth simulation on carbon sources
##Already differences in growth capabilities are apparent between just these 5␣

↪→strains
sns.clustermap(growthCapabilities)

[12]: <seaborn.matrix.ClusterGrid at 0x7f4ec11877f0>

3.3 Example of gap-filling a model through a custom gap-filling implementation de-
fined below

In this example, we examine the draft model of CP000946.1 and it’s inability to grow using
EX_metglcur_e as a carbon source as this is readily apparent and different from the other draft
models from the proceeding analysis

[ ]: #Gather the list of base strain genes that have no homolog in strain of␣
↪→interest, an input to the below function

hom_matrix=pd.read_csv('ortho_matrix.csv')
hom_matrix=hom_matrix.set_index('Unnamed: 0')
strain=hom_matrix['CP000946.1']
missingGenes=list(strain[strain==0.0].index)

[ ]: def gapfill_multi(model, missing_genes, **kwargs):
"""
Generate a list of gapfilling reactions from a list of missing genes for a␣

↪→strain-specific model.

:param model: COBRA model for the base strain with the objective coefficient␣
↪→for the reaction of interest (e.g. biomass reaction) set to 1.

:param missing_genes: list of genes with no homologs in the strain of␣
↪→interest.

:param lower_bound: minimum allowable yield of gapfilled model.

:param biomass: override the current model settings and temporarily assign␣
↪→the objective coefficient for a function of interest to 1.
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:return: a list of gapfilling reactions.

"""

if 'lower_bound' in kwargs.keys():
lower_bound = kwargs['lower_bound']

else:
lower_bound = model.optimize().objective_value*0.5

biomass_reactions = [rx.id for rx in model.reactions if rx.
↪→objective_coefficient == 1]

if 'biomass' in kwargs.keys():
biomass = kwargs['biomass']
if len(biomass_reactions) > 1:

for rx in set(biomass_reactions) - {biomass}:
model.reactions.get_by_id(rx).objective_coefficient = 0

else:
if len(biomass_reactions) > 1:

raise Exception("This model has more than one objective. \n Please␣
↪→adjust the objective coefficient to 1 for the chosen objective reaction (e.g.␣
↪→biomass or ATP) and 0 for the rest of the reactions, \n or specify the␣
↪→reaction ID to use as an objective.")

if len(biomass_reactions) > 1:
raise Exception("The model doesn't have an objective function.␣

↪→Please set the appropriate objective coefficient to 1, or specify the reaction␣
↪→ID to use as an objective.")

biomass = biomass_reactions[0]

model.solver.configuration.tolerances.feasibility = 1e-9
constraints = []
indicators = []

for rx in cobra.manipulation.find_gene_knockout_reactions(model,␣
↪→missing_genes):

indicator = model.problem.Variable('%s_i'%rx.id , type = 'binary')
indicators.append(indicator)

new_cstr1 = model.problem.Constraint( rx.flux_expression - rx.
↪→upper_bound*indicator ,ub = 0)

new_cstr2 = model.problem.Constraint(-rx.flux_expression + rx.
↪→lower_bound*indicator ,ub = 0)

constraints += [new_cstr1, new_cstr2]
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model.add_cons_vars([new_cstr1, new_cstr2, indicator])

model.reactions.get_by_id(biomass).lower_bound = lower_bound
model.objective = model.problem.Objective(-sum(indicators))
sol = model.optimize()
indicator_results = [ind.name[:-2] for ind in indicators if ind.primal != 0.

↪→0]

# removing changes to model
model.remove_cons_vars(constraints+indicators)
for rx in set(biomass_reactions):

model.reactions.get_by_id(rx).objective_coefficient = 1

return indicator_results

[ ]: # We see that in this condition the model cannot synthesize biomass in this␣
↪→condition as per

# above analysis
model=cobra.io.load_json_model('Models/CP000946.1.json')
m9(model)
model.reactions.EX_glc__D_e.lower_bound=0
model.reactions.EX_metglcur_e.lower_bound=-1000
model.optimize()

[ ]: # We see that however the base model can synthesize biomass in this condition
base=cobra.io.load_json_model('iML1515.json')
m9(base)
base.reactions.EX_glc__D_e.lower_bound=0
base.reactions.EX_metglcur_e.lower_bound=-1000
base.optimize()

[ ]: #By runnning the above function we obtain the list of candidate reactions
gapfill_multi(base, missingGenes)

[ ]: base.reactions.METGLCURt2pp.genes

[ ]: #Upon further inspection we see that the lack of a homolog in the b1616 gene is␣
↪→what causes the CP000946.1 strain

#to lose this functionality
'b1616' in missingGenes
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Appendix E

Systems biology approach to

functionally assess the Clostridioides

difficile pan-genome reveals genetic

diversity with discriminatory power
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E.1 Supplementary Text

E.1.1 Functional Annotation Specific Driven Typing

In addition to using the full accessory genome to define strain groupings, we were in-

terested in evaluating each functional annotation subset ability to drive typings. The full set

of accessory genes was split into the 4 categories of Metabolism, Information Storage and Pro-

cessing, Cellular Processes and Signaling, and Uncharacterized as described within the section

“Characterizing the C. difficile pan-genome”. Each of these 4 sets were then independently used

following the same algorithm described when analyzing the full accessory genome. When using

these subsets the 451 strains can be grouped into 94, 166, 182, and 209 groups based on acces-

sory metabolic, information related, signaling related, and uncharacterized genes respectively.

Grouping based on these subsets allows for insight into the differential similarity as exhibited by

the RT002 strains which did not group into a singular all accessory content, but were exclusively

grouped by only the metabolic related accessory genes.

E.1.2 Expanded Comparison to Additional Typing Schemes

In addition to our presented comparisons to the most-widely used MLST and PCR Ribo-

typing schemes, we also compared STAG to other available typing schemes that consider increased

genetic content. We were able to establish groups through SNP-based, KMER-based, and a

core-genome MLST (CGMLST) approach. Additionally, we also analyzed the ability of standard

distance-based clustering methods, namely hierarchical clustering, to derive strain groups on the

same accessory genome matrix used as input to STAG. These comparisons serve to evaluate two

key aspects of the STAG approach: 1) the effect of increased amount of genetic content used to

establish groups, and 2) the iterative sorting based on shifting similarity thresholds to establish
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groups versus an existing clustering technique.

Overall, the SNP and CGMLST strain types had similar compression to the STAG PGTs,

however a slightly greater percentage (59.6%, 60.4% respectively versus 55.6%) of the final strain

types in each case were single strain sized (Supplementary Figure E.9). The KMER approach

failed to establish meaningful groups and only compressed the 451 strains into 312 groups. Con-

versely, the hierarchical clustering based groupings resulted in 99 strain groups compared to the

176 PGTs with 48.5% of these groups being single strain groups. On average each typing scheme

of STAG, CGMLST, KMER, and SNP resulted in comparable average strain group sizes of 2.56,

2.62, 1.44, 3.09 respectively. The use of hierarchical clustering necessitated the specification of

a single distance threshold on which to define groups (.05 here) and the lack of flexibility in

distance metrics leads to larger groups encapsulating more diverse strains more similarly to the

MLST system. The largest group of strains when using hierarchical clustering is 68 strains, which

results in limited interpretability. The goal of any strain-typing scheme is to provide a means

to describe the variation of strains into meaningful groups. To this end each approach has its

strengths and careful consideration of what content drives the resulting strain types is important.

STAG presents another valuable tool that is easy and efficient to use and offers a high degree of

interpretability and information in regard to accessory genome content.
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E.2 Supplementary Figures

Figure E.1: 28 Non-Unanimous Growth Supporting Carbon Sources. The carbon sources where
strains varied in terms of growth capabilities and as a result define the varying metabolic profiles.
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Figure E.2: Average fit parameters across 35 isolates. After averaging the AUC and K, the
most growth supporting nutrients across our dataset emerge.
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Figure E.3: Reaction Subsystems with High Degree of Non Conserved Genes. Pictured are
the subsystems identified through the use of GEMs where greater than 15% of the reactions in
the subsystem contain at least one non conserved gene within the set of 35 clinical isolates.
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Figure E.4: Comparison of SNP-based dendrogram (left) and accessory-genome based dendro-
gram (right). Colored lines connecting the two trees indicate groups of strains with identical
clustering hierarchies, gray lines indicate different clustering hierarchies. The two trees have a
correlation of 0.55 and entanglement of 0.12 indicating that accessory genome content is not
completely concordant with SNP-based phylogeny. Tree comparisons and visualizations were
constructed using the dendextend package (see Methods).
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Figure E.5: Accessory gene cluster presence absence for each strain. Pictured is each of the
451 strains (ordered by eventual PGT) and presence/absence of each of the 4,057 accessory gene
clusters.
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Figure E.6: STAG Workflow for Establishing Pan-Genome Typings. A) Strain genomes are
first clustered using CD-Hit to establish the accessory genome. The Jaccard Similarity was
calculated on accessory genome vectors between strains. B) A range of similarity thresholds
are evaluated at each iterative pass of the sorting algorithm over the jaccard similarity matrix.
Exclusive groupings are identified at each potential threshold and the threshold that maximized
compression of exclusive groups is selected. Exclusive groups become PGTs and the identified
threshold is the beginning threshold range, M, of the next pass. The strains sorted into an
exclusive PGT are dropped from the similarity matrix.
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Figure E.7: Assigned Typings for All Strains with Ribotyping Information. For the 108 strains
for which a typing is available in all three schemes, the relative composition of typings is shown.
While there are strains of unique RT and MLST, there are a far greater number of strains that
are assigned as unique PGT.
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Figure E.8: Analysis of treRA operon characteristic to RT078 and related gene clusters. A)
We identified the gene clusters within the pan-genome that include the sequences of a previously
identified four-gene insertion responsible for increased ability to catabolize trehalose by RT078
strains. These clusters are present within 73 strains studied, including all strains of PGT1 which
includes all RT078 strains within the study. The remainder of the strains represent a variety of
Clade 1 strains that have also been shown to potentially include this gene insertion. By analyzing
the identified related clusters to the treA2 and ptsT gene clusters of the insertion we were able
to identify variants unique to one strain as well as a variant ptsT specific to strains classified as
PGT2. B) The alignment of the representative sequences for ptsT clusters demonstrates that
the PGT2 specific variant is of closest relation to the known ptsT indicative of RT078. C) The
alignment of the representative sequences for treA2 clusters demonstrates that of the two unique
variants to strain 1496.1669 one is more related to that within the RT078 operon and the other
to genes more core genes in the population.
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Figure E.9: Expanded comparison of different strain typing schemes. A) Number of strain
groups identified as detailed within Figure 4 expanded to include CGMLST, KMER, SNP, and
hierarchical clustering of the accessory genome. B) The compression factor as a function as a
function of the number of strains typed demonstrates that the use of a single distance metric
in hierarchical clustering results in groups in between MLST and CGMLST, SNP, and STAG in
terms of resolution.
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