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Abstract 
This study explores a GPT-2 architecture’s capacity to capture 
monolingual children’s comprehension behaviour in Korean, a 
language underexplored in this context. We examine its 
performance in processing a suffixal passive construction 
involving verbal morphology and the interpretive procedures 
driven by that morphology. Through model fine-tuning via 
patching and hyperparameter variations, we assess their 
classification accuracy on test items used in Shin (2022a). 
Results show discrepancies in simulating children’s response 
patterns, highlighting the limitations of neural networks in 
capturing child language features. This prompts further 
investigation into computational models’ capacity to elucidate 
developmental trajectories of child language that have been 
unveiled through corpus-based or experimental research. 

Keywords: Neural network; Child comprehension; Passive 
construction; Korean 

Introduction 
One notable trend in language sciences is to apply 
computational methods and techniques to pursue linguistic 
inquiries. This line of research has explored computational 
models’ capacity to simulate human language behaviour 
(Hawkins et al., 2020; Marvin & Linzen, 2019; Warstadt et al., 
2019), together with performance-wise variations across 
algorithms (Hu et al., 2020), thereby gaining momentum in 
addressing how learning occurs in the human mind without 
presuming innate knowledge about grammar (Contreras 
Kallens et al., 2023; O’Grady & Lee, 2023; Perfors et al., 2011; 
Warstadt & Bowman, 2020). An emerging—but less active—
strand of research applies computational methods and 
techniques to reveal developmental trajectories of linguistic 
knowledge (Alishahi & Stevenson, 2008; Ambridge et al., 
2020; Bannard et al., 2009; Chang, 2009; Sagae, 2021; You et 
al., 2021). Despite its significance, the current research practice 
bears three grave limitations. First, the field is skewed heavily 
towards a limited range of languages (and especially English) 
and language-usage contexts (e.g., adult language). In 
particular, based on the predominance of English-oriented 
Large Language Models (LLMs), the intensification of this 
research bias is being accelerated. This restricts the 
generalisability of findings from previous studies to lesser-
studied languages and registers. Second, while the vast 
majority of work on this topic seeks to propose new models or 
improve currently available models, researchers pay relatively 

little attention to whether and how the implications of 
computational simulations are compatible with those of other 
types of measurement, such as behavioural experiments and 
corpus findings revealing fundamental architectures of human 
language behaviour. We are aware of few studies informative 
in this regard (Ambridge et al., 2020; Oh et al., 2022; Xu et al., 
2023). Third, researchers’ access to computing resources in 
academia is limited. Researchers in academia often confront 
costly access to cutting-edge algorithms and pre-trained 
models, as well as weak computing power. Together, these 
limitations pose a serious threat to diversity, equity, and 
inclusion in research (cf. Bender et al., 2021). 

This study aims to alleviate these concerns by exploring how 
neural networks capture children’s comprehension behaviour. 
We adopt GPT-2 (Radford et al., 2019) for our inquiry. GPT 
utilises attention for effective computation by enhancing each 
part of the input sequence in consideration of various 
information about the whole sequence (e.g., segment position) 
to better identify the most relevant parts of that sequence 
(Vaswani et al., 2017). Because this algorithm targets a 
general-purpose learner whose learning trajectories are not 
subject to particular tasks, model training does not stand on the 
specifics of data or tasks (Radford et al., 2019); it can also 
perform new tasks with a relatively small number of examples. 
Despite the continuous development of the GPT-n architecture, 
GPT-2 is often employed to conduct simulations on language 
behaviour (Goldstein et al., 2022; Hosseini et al., 2022), 
yielding successful modelling on language tasks. 

Acquisition of suffixal passive in Korean 
Korean is an agglutinative, SOV language with overt case-
marking via dedicated particles and active use of verbal 
morphology to indicate grammatical information. This 
language is understudied in the field and is computationally 
challenging due to its language-specific properties. Two major 
clausal constructions deliver transitivity in Korean: active 
transitive and passive. The canonical active transitive pattern 
in Korean, when fully marked as in (1a), occurs with a 
nominative-marked agent, followed by an accusative-marked 
theme; a verb carries no dedicated active morphology. Korean 
allows scrambling of sentential components as in (1b) if that 
reordering (agent–theme ® theme–agent) preserves the basic 
propositional meaning. In addition, omission of sentential 
components is permitted as in (1c-d) if event participants are 
clearly identified with no ambiguity arising within the context 
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(Sohn, 1999). Of the three types of passive construction, the 
suffixal passive (which is the most frequent type that children 
encounter; Shin & Mun, 2023a) consists of two arguments, a 
nominative-marked theme and a dative-marked agent 
occupying the subject and oblique positions, respectively; a 
verb carries dedicated passive morphology as one of the four 
allomorphic variants of suffixes -i-, -hi-, -li-, or -ki-. While the 
canonical pattern follows the theme–agent ordering as in (2a), 
it can be scrambled, yielding the agent–theme ordering as in 
(2b) with the propositional meaning intact. 
 
(1) Active transitive: ‘Mina hugged Pola.’ 

a. Canonical 
Mina-ka  Pola-lul   an-ass-ta. 
Mina-NOM  Pola-ACC hug-PST-SE1 

b. Scrambled 
Pola-lul  Mina-ka   an-ass-ta. 
Pola-ACC  Mina-NOM  hug-PST-SE 

c. Omission (case marker) 
Mina-ka  Pola-lul   an-ass-ta. 
Mina-NOM  Pola-ACC  hug-PST-SE 

d. Omission (argument & case marker) 
Mina-ka  Pola-lul   an-ass-ta. 
Mina-NOM  Pola-ACC  hug-PST-SE 

 
(2) Suffixal passive: ‘Pola was hugged by Mina.’ 

a. Canonical 
Pola-ka  Mina-hanthey  an-ki-ess-ta. 
Pola-NOM  Mina-DAT  hug-PSV-PST-SE 

b. Scrambled 
Mina-hanthey  Pola-ka  an-ki-ess-ta. 
Mina-DAT     Pola-NOM  hug-PSV-PST-SE 

 
Passive morphology serves as a key disambiguation point to 

identify the structural properties of the suffixal passive, forcing 
a comprehender to revise the initial analysis prior to that 
morphology. In Korean, a nominative-marked [+human] 
argument is likely to be interpreted as an agent, and a dative-
marked [+human] argument is likely to be interpreted as a 
recipient; these interpretations are supported by strong 
mapping between thematic roles and case markers attested in 
language use (Kim & Choi, 2004; Sohn, 1999). Therefore, a 
plausible way of analysing (2) prior to the verb is that Pola acts 
on/for Mina. However, this initial analysis is incongruent with 
the passive-voice information conveyed by verbal morphology. 
Thus, upon encountering the verb at the sentence-final position, 
a comprehender must revise the initial interpretation by 
recalibrating the arguments’ thematic roles, mapping a theme 
role onto the nominative-marked entity and an agent role onto 
the dative-marked entity. This revision process is demanding 
(Kendeou et al., 2013; Rapp & Kendeou, 2007; Trueswell et 
al., 1999), adding difficulty in children’s comprehension of this 
construction (Shin, 2022a; Shin & Deen, 2023; Kim et al., 
2017). 

Shin (2022a), the baseline of this study, explored Korean 
monolingual children’s comprehension behaviour involving 

 
1  Abbreviations: ACC = accusative case marker; DAT = dative 

marker; NOM = nominative case marker; PSV = passive suffix; PST = 

the suffixal passive construction through four picture-selection 
experiments combined with a novel methodology that 
systematically omitted or obscured portions of test sentences 
using acoustic sounds (e.g., cough, chewing). In each 
experiment, a pair of two pictures was presented involving the 
same action but reversed thematic roles (e.g., a dog kicking a 
cat; a cat kicking a dog), and a sentence indicating one of the 
two pictures (e.g., kangaci-ka koyangi-hanthey cha-i-eyo. dog-
NOM cat-DAT kick-PSV-SE ‘The dog is kicked by the cat.’) was 
presented twice orally; participants (3-4yrs; 5-6yrs; adults) 
were asked to choose a picture that matched the sentence.  

The four experiments generated three major findings on the 
children’s comprehension of the suffixal passive (Table 1). 
First, given the competition between passive-voice knowledge 
(induced by verbal morphology) and active-voice knowledge 
(which is frequent in use and well-entrenched in children’s 
minds), utilising passive-voice knowledge was subject to age 
(as a proxy for language-usage experience). Second, the 5-6yrs 
were able to deploy passive-voice knowledge, but the degree 
to which they employed that knowledge was inversely 
proportional to the computational complexity of a sentence 
(e.g., number of arguments, type of case markers 
present/absent). Third, the 3-4yrs did not fully respect active-
like interpretation when comprehending the passive sentences. 
These findings indicate an emerging sensitivity to passive 
morphology and an increasing capacity to utilise passive-voice 
knowledge tied to that morphology with age, in conjunction 
with the interplay between voice-related knowledge involving 
a given stimulus. This suggests early emergence, but late 
mastery, of linguistic knowledge, the maturation of which 
necessitates a significant amount of language-usage experience. 

 
Table 1. Summary of experimental results: Shin (2022a) 

 
Exp Condition 3-4yrs 5-6yrs Adult 

Mean SD Mean SD Mean SD 
1 NNOMNACCVact 0.844 0.36 0.942 0.24 1.000 0.00 

NACCNNOMVact 0.778 0.42 0.710 0.46 1.000 0.00 
NNOMNDATVpsv 0.456 0.50 0.478 0.50 1.000 0.00 
NDATNNOMVpsv 0.511 0.50 0.768 0.43 1.000 0.00 

2 NCASENCASEVact 0.667 0.48 0.773 0.42 0.900 0.30 
NCASENCASEVpsv 0.545 0.50 0.424 0.50 0.150 0.36 

3 NNOMVact 0.944 0.23 0.971 0.17 0.933 0.25 
NACCVact 0.922 0.27 0.971 0.17 1.000 0.00 
NNOMVpsv 0.522 0.50 0.710 0.46 0.967 0.18 
NDATVpsv 0.533 0.50 0.841 0.37 0.950 0.22 

4 NCASEVact 0.426 0.50 0.604 0.50 0.667 0.48 
NCASEVpsv 0.593 0.50 0.333 0.48 0.100 0.30 

Note. ‘Mean’ denotes the average accuracy (in Exps 1 and 3) 
or the average rate of agent-first response (Exps 2 and 4). 
 
 

past tense marker; SE = sentence ender; Strikethrough in grey = 
obscured; V = verb. 
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Methods2 
Great interest lies in the ability of neural network models to 
recognise passive morphology and execute the necessary 
revision process for correctly interpreting suffixal passive 
sentences. We developed GPT-2 models by (i) fine-tuning via 
patching (i.e., pre-trained model + caregiver input) and (ii) 
adjusting hyperparameters, and assessed their classification 
performance on test stimuli identical to those used in Shin 
(2022a). Unlike other studies incorporating additional 
variables such as thematic role variables (Chang, 2002) and a 
separate layer encoding semantic information (Alishahi & 
Stevenson, 2008), our models solely engaged with formal 
features (i.e., raw text) during training and classification. This 
study also extends Shin & Mun (2023b), exploring how 
hyperparameter variations influence model performance with 
respect to child language data. 

Data Pre-processing 
We used caregiver input in CHILDES (MacWhinney, 2000), 
adopting the same data used in Shin & Mun (2023b) 
considering the comparability of findings between Shin & 
Mun (2023b) and this study. The data were pre-processed by 
(i) correcting typos and spacing errors and (ii) excluding any 
sentence whose length was less than five characters or those 
consisting only of onomatopoeic and mimetic words. This 
treatment resulted in 69,498 sentences (285,350 eojeols3). 

Model Training 
Table 2 provides details on the models created in this study.  
 

Table 2: Specification of computational models. 
 

Python Package Transformers (version 4.35) 
Pre-trained model KoGPT2-base-v2 (Size: 51,200) 
Tokenisation Syllable-based; Byte Pair Encoding 
Internal setting Epoch: 10, Seed: 42, Epsilon: 0.00000001 

Embedding/hidden dimension: 768 
FFN inner hidden dimension: 3,072 
Attention head #: 12, Parameter #: 125M 
Transformer layer #: 12 

Hyperparameter 
variation 

Learning rate: 0.001, 0.0001 
Batch size: 16, 64 / Max. SeqLen: 64, 256 

 
Neural networks typically require large-scale data for training 
to ensure their optimal operation (Edwards, 2015), but there is 
no pre-trained model exclusively constructed with caregiver 
input nor enough Korean caregiver-input data to create a pre-
trained model. In addition, children encounter more than just 
caregiver input in real life; there are many types of exposure to 
language use with which children are surrounded. To cope with 
these issues, we employed a pre-trained model, which was 
open-access and representative at the moment of study, and 
patched the caregiver-input data to the pre-trained model when 
developing our models. The patching procedure increased the 

 
2 See this repository for the code and dataset. 

pre-trained model’s size (51,200 to 67,052). We believe that 
adopting a pre-trained model in conjunction with the caregiver-
input data can improve ecological validity for this type of 
modelling, but no research has scrutinised this point 
thoroughly, indicating the need for further attention. We also 
manipulated three hyperparameters to test whether and how 
hyperparameter variations influence model performance when 
handling child language data. Our choices were informed by 
previous studies (Budzianowski & Vulić, 2019; Dai et al., 
2023; Oh & Schuler, 2022; de Vries & Nissim, 2021). These 
variations generated 8 sub-models. 

For the binary classification of test items (Agent-First; 
Theme-First), our models were further fine-tuned on instances 
of all the constructional patterns expressing a transitive 
event—active transitive and suffixal passive, with scrambling 
and varying degrees of omission manifested—with labels 
indicating if the thematic-role ordering of these instances 
followed agent-first or theme-first. The instances were 
extracted from the caregiver-input data in CHILDES through 
an automatic search process developed by Shin (2022b); every 
sentence for each extraction was checked manually to confirm 
its accuracy. This treatment also aimed to ensure the 
compatibility between the simulation environments and the 
experimental settings of Shin (2022a), in which participants 
were presented transitive-event pictures prior to a stimulus to 
contextualise their interpretation of that stimulus. Furthermore, 
considering the zero occurrence of some patterns in the input, 
we adapted the Laplace smoothing technique (Agresti & Coull, 
1998) by adding one fake instance to all the patterns. 

As illustrated in Figure 3, each input sentence in the fine-
tuning stage was transformed into two embedding types.  
 

 
 

Figure 1: Model training (example sentence: napi-ka 
kkwulpel-ul an-ayo butterfly-NOM honeybee-ACC hug-SE ‘The 

butterfly hugs the honeybee.’). 
 

For token embedding, the sentences were tokenised as 
syllable units. Originally, GPT-2 utilised a character for this 
task in the case of English. However, KoGPT-2 employs a 
syllable as a basic unit of tokenisation, likely in consideration 
of the language-specific properties of Korean. For position 
embedding, each token was converted into a numeric value 
indicating a unique index of the token with reference to the 

3 An eojeol refers to a unit with whitespace on both sides that serves 
as the minimal unit of sentential components. This roughly corresponds 
to a word in English. 
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vocabulary in the patched pre-trained model. The maximum 
dimension size of position embeddings was determined by the 
maximum sequence length set in the hyperparameter-setting 
stage. The initial values of epsilon and seed were automatically 
updated with the outcomes of each epoch. The training 
occurred from the initial model with the zero value of gradients 
to an optimal model with updated values through feedforward 
and backpropagation. After the training, the model evaluated 
the test stimuli, accumulating by-syllable information 
sequentially (by generating respective hidden layers) and then 
comparing the outcomes (1 = Agent-First; 0 = Theme-First) to 
the actual labels of these stimuli. We repeated the same 
learning process 30 times in each epoch and averaged the by-
condition outcomes in assessing the models’ classification 
performance to alleviate potential variations during the task. 

Model Evaluation 
For test items, we employed the same stimuli used in Shin 
(2022a). Each condition comprised six instances, with animals 
as agents and themes and actional verbs at the end (Table 3). 
Each trained model classified every test stimulus, evaluating 
whether the stimulus fell into Agent-First or Theme-First.  
 

Table 3: Composition of test stimuli. 
 

Condition Example Expected 
classification 

NNOMNACCVact cat-NOM dog-ACC kick Agent-first 
NACCNNOMVact dog-ACC cat-NOM kick Theme-first 
NNOMNDATVpsv cat-NOM dog-DAT kick-PSV Theme-first 
NDATNNOMVpsv dog-DAT cat-NOM kick-PSV Agent-first 
NCASENCASEVact(a) cat dog kick Agent-first 
NCASENCASEVpsv(a) cat dog kick-PSV Theme-first 
NNOMVact cat-NOM kick Agent-first 
NACCVact dog-ACC kick Theme-first 
NNOMVpsv cat-NOM kick-PSV Theme-first 
NDATVpsv dog-DAT kick-PSV Agent-first 
NCASEVact(a) dog kick Agent-first 
NCASEVpsv(a) dog kick-PSV Theme-first 

 
We note that, while the stimuli in the case-less conditions in 
Shin (2022a) involved acoustic masking effects, the same 
stimuli in the simulations did not have such auditory effects. 
This was unavoidable considering this study’s simulation 
setting, in which the models worked exclusively with the 
textual data. We concede that this difference may serve as one 
confounding factor for interpreting the results. 

Results and Discussion 

Case-marked Conditions 
Two-argument conditions In NNOMNACCVact, all the models 
demonstrated high accuracy as the epoch progressed. 
However, in NACCNNOMVact, the models’ accuracy rates were 
close to 0. This indicates that the models classified the test 
stimuli in this condition into Agent-First most of the time 
(which should have been Theme-First), resembling those of 
Shin and Mun (2023b). In NNOMNDATVpsv, all the models’ 

accuracy rates were close to 0. This indicates that the models 
classified the test stimuli in this condition into Agent-First 
most of the time (which should have been Theme-First). 
However, in NDATNNOMVpsv, all the models demonstrated high 
accuracy as the epoch progressed. 
One-argument conditions In both NNOMVact and NACCVact, all 
the models demonstrated high accuracy as the epoch 
progressed. In NNOMVpsv, the models showed very low 
accuracy, regardless of hyperparameter type. This indicates 
that they classified the test stimuli in this condition into Agent-
First most of the time (which should have been Theme-First). 
In NDATVpsv, except the models with the learning rate of 
0.0001, all the models demonstrated high accuracy as the 
epoch progressed. 

Case-less Conditions (coded as Agent-First = 1) 
In both NCASENCASEVact and NCASENCASEVpsv, the models were 
at-chance or slightly above-chance. In NCASEVact, the models 
were at-chance or slightly below-chance, independently of 
hyperparameter types, which aligns with Shin & Mun (2023b) 
but not with Shin (2022a). In NCASEVpsv, whereas the models 
with a learning rate of 0.001 showed at-chance performance, 
the models with a learning rate of 0.0001 showed below-
chance performance, indicating that they classified the test 
stimuli in this condition as Theme-First most of the time. 

Discussion 
While the GPT-2 models’ performance converged with the 
children’s response patterns found in Shin (2022a) to some 
extent, the models did not faithfully simulate the children’s 
comprehension behaviour pertaining to the suffixal passive, 
which yielded by-condition/hyperparameter asymmetries. 

The results of this study are attributable to various factors. 
For instance, whereas Korean caregiver input joins the general 
characteristics of child-directed speech (Shin, 2022b; cf. 
Cameron-Faulkner et al., 2003; Stoll et al., 2009), it also 
manifests language-specific properties, such as scrambling and 
omission of sentential components. The models may thus have 
been sensitive to the specific word order and the type of case 
markers present in a stimulus during the classification task, 
particularly as shown in NACCNNOMVact, NNOMNDATVpsv, 
NCASENCASEVact, NCASENCASEVpsv, NCASEVact, and NCASEVpsv. 
This finding aligns with previous reports on language-specific 
challenges to the automatic processing of Korean (Shin, 
2022b; Kim et al., 2007), also partially aligning with Ambridge 
et al. (2020) showing the failure of modelling human 
judgements in K'iche'. 

Regarding language-specific and construction-specific 
properties, the models’ capacity to recognise passive 
morphology and conduct the required revision process 
involving the suffixal passive did not emerge clearly. In 
NCASENCASEVpsv and NCASEVpsv, the core conditions testing 
how the models cope with passive morphology and its related 
interpretive procedures for classification, not all the sub-
models succeeded in classifying the test stimuli as Theme-First 
as intended (NCASENCASEVpsv: Learning rate = 0.0001, Batch = 
16, MaxSeqLen = 256; NCASEVpsv: Learning rate = 0.0001). 
Moreover, the classification accuracy of model outputs in 
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NNOMNDATVpsv, NDATNNOMVpsv, NNOMVpsv, and NDATVpsv did 
not seem to reasonably approximate the children’s picture-
selection patterns found in Shin (2022a), also manifesting 
notable by-hyperparameter asymmetries. The precise locus of 
these asymmetries seems nebulas, as is often the case when 
interpreting LLMs’ performance against downstream language 
tasks. However, the divergence between the models’ 
performance and the children’s comprehension behaviour in 
the suffixal passive conditions imply that neural networks are 
not agile with coping with linguistic cues that are language 

specific, or at least, neural networks handle linguistic cues 
differently from the (developing) human processor does so. 

Another factor possibly contributing to the models’ 
performance is the simulation environments in this study. We 
trained each model with all the transitive-event instances in 
CHILDES, considering how the children in Shin (2022a) 
attuned their interpretation to transitive events before being 
exposed to the stimuli. Despite this treatment, the models’ 
testing environment may not have fully conformed to what the 
children partially experienced due to the pre-trained models, 

Figure 2. Model performance by condition and learning rate. X-axis = epoch; Y-axis = mean accuracy for case-marked 
conditions; mean rate of agent-first response for case-less conditions. Error bars = 95% CIs. 
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mostly comprising adult language features, when constructing 
each model. Moreover, the test items in the simulations 
involved no overt acoustic-masking effects as used in Shin 
(2022a) that informed the children of something that was 
somehow hidden. This absence of auditory signals about the 
marker(s), which was inevitable given the simulation settings 
in which the models worked exclusively with the textual data, 
may have affected the model performance unexpectedly (cf. 
Stoyneshka et al., 2010). Together, the simulations stood on a 
somewhat different ground than the experiments (as most 
modelling research does), possibly inviting the observed 
model–children asymmetry to the extent that the models did 
not handle the stimuli in the same way as the children did in 
the experiments. However, we cannot jump to a firm 
conclusion that these are the all-and-only reasons explaining 
the disparity between the models’ performance and the 
children’s picture-selection patterns in Shin (2022a) because 
these issues have not been fully explored in this field.  

In addition to these factors, algorithmic characteristics of a 
computational architecture may be a core source of this 
disparity. Neural networks often utilise contextual information 
through window-based computation (Haykin, 2009; Kriesel, 
2007) when presented with a sampling of data points. This 
involves driving contextual information from formal 
sequences of words or characters, relying heavily on form (cf. 
Firth, 1957) rather than a context in a linguistic sense. In other 
words, when the models access the meaning or function of a 
linguistic unit, they resort to the formal co-occurrences in the 
incoming input, not directly drawing upon the meaning or 
function of that unit. Moreover, while neural networks excel at 
generalising from pre-trained models and fine-tuning data, 
they struggle with extrapolating beyond their training space 
(Marcus, 1998). Deep-learning models attempt to resolve this 
issue by using massive amounts of data to cover every potential 
instance of formal co-occurrences; state-of-the-art LLMs with 
billions of parameters benefit from deploying exceedingly 
large training sets. They often yield good performance when 
handling known inputs but remain unsatisfactory with novel 
inputs (cf. Choi, 2023), particularly for accessing meaning or 
function through form (Ettinger et al., 2023; West et al., 2023). 
More broadly, computational models encounter language 
usage indirectly and not in a grounded manner; they do not 
directly engage in language-usage profiles and situations to 
which language refers (Clark, 1996; McClelland et al., 2020). 
Relatedly, neural networks are particularly susceptible to 
frequency effects (Marcus, 1995; McCurdy et al., 2020). 

This nature may have caused the models’ performance to 
deviate from the children’s response patterns on some test 
items which could be out of range. The stimuli in Shin (2022a), 
consisting of animal names as entities, would be new instances 
for our models in this respect (and also considering the typical 
composition of transitive sentences in ordinary speech—
animate agents and inanimate themes e.g., Dowty, 1991). 
Some stimuli involved scrambling or omission of sentential 
components, which are also non-typical. These factors may 
have led the models to malfunction in their operation. The key 
evidence for this argument comes from the models’ 
performance on the conditions in which a simulated learner 

must determine the thematic role of the first and sole case-less 
noun only with its presence (NCASEVact; NCASEVpsv) compared 
to their performance on one-argument case-marked conditions 
in which a simulated learner has more information about the 
first noun’s thematic role indicated by a case marker next to 
the noun (NNOMVact; NACCVact; NNOMVpsv; NDATVpsv). 

Relatedly, the notable variations in the models’ performance 
generated by hyperparameter manipulation further support our 
claim regarding the major role of algorithmic characteristics of 
a computational model for simulating human language 
behaviour. We found that, of the three hyperparameters we 
selected in each architecture, the learning rate was the most 
influential in adjusting the models’ classification behaviour. 
Considering its concept in machine learning (i.e., a 
hyperparameter that controls the rate at which an algorithm 
updates or learns the values of a parameter estimate), it likely 
serves as a proxy for the degree and manner to which humans 
generalise (linguistic) knowledge. Scholars have debated how 
learners derive linguistic knowledge from concrete items and 
apply it towards abstract representations—gradual abstraction 
(conservatism when transferring current knowledge to new 
items; Ambridge & Lieven, 2015; Theakston et al., 2015) vs. 
early abstraction (rapid generalisation of current knowledge to 
other relevant items; Fisher, 1996; Lidz et al., 2003). If our 
approach is on the right track, the simulations in this study 
could open a new window to complementing and advancing 
the literature on how children generalise linguistic knowledge 
as a function of exposure to linguistic environments and 
domain-general learning capacities. Nevertheless, we concede 
that our claim here is based on exploratory observations and is, 
therefore, speculative. Thus, further examination is needed. 

Conclusion 
Our study revealed that, while the GPT-2 architecture tested in 
this study may be able to utilise information about formal co-
occurrences to access the intended message to a certain degree, 
(the outcome of) this process may substantially differ from 
how a child, as a developing processor, engages in 
comprehension of this construction. To discern verbal 
morphology indicating the voice and recalibrate the initial, 
garden-pathed alignments between thematic roles and case 
markers to formulate a correct interpretation, the child 
processor likely draws upon multiple morpho-syntactic and 
semantic cues, which are searchable from their language-usage 
profiles and are sensitive to usage frequencies. Moreover, its 
operation is likely influenced by multiple sources, including 
event/world knowledge (Friedman, 2000; Snedeker & 
Trueswell, 2004), memory operation (Kim et al., 2017), task 
type (Huang et al., 2013), and cognitive bias (e.g., Agent-First 
strategy; Shin, 2021; Abbot-Smith et al., 2017). This interplay 
may not have been properly captured and modelled by the 
modelled learners in this study. We believe this study provides 
evidence of the limits of the neural networks’ capacity to 
address child language features. This invites subsequent 
inquiries on the extent to which computational models reveal 
developmental trajectories of child language that have been 
unveiled through corpus-based or experimental research.  
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