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Abstract of the Dissertation

Considerations in using Diagnostic Tests for

Disease Classification

by

Dat Thanh Huynh

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2014

Professor Ron Brookmeyer, Chair

In this thesis, we consider statistical issues in classification for disease using diag-

nostic testing. We discuss two aspects of disease classification: the generation of

testing algorithms to combine multiple diagnostic tests that address both accu-

racy and cost considerations and the application of an imperfect diagnostic test

to determine cases in a case-control study.

Motivated by the problem of combining multiple biomarkers to identify recent

HIV infection (< 1 year), we first develop methods for identifying “serial testing

algorithms” to reduce the cost of diagnosis. These “serial testing algorithms”

are characterized by the ability to make a classification determination before all

diagnostic markers are acquired. These algorithms are able to maintain accuracy

while controlling costs of the diagnostic testing.

We present two approaches to this problem. A logic regression approach in

which serial testing algorithms are developed by means of logical combinations of

dichotomous tests. Testing costs are optimized through a permutation algorithm

on the logical rule. We also develop a serial risk score classification approach. In

this method, we establish multiple ordered stages of classification determined by a

risk score model. In each stage, one or more diagnostic tests are added to the risk
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score model from the previous stage and each observation is either determined to

continue on for further testing or classified as positive or negative.

The methods are studied in simulations and compared with logistic regression.

We applied the methods to data from HIV cohort studies to identify HIV infected

individuals who are recently infected (< 1 year) by testing with assays for multiple

biomarkers. The biomarkers that we used as part of the classification rule were the

CD4 count, viral load, BED assay and avidity assay. We find that serial testing

algorithms can maintain accuracy while achieving a reduction in cost compared

to testing all individuals with all assays.

We then investigate the application of a non-gold standard test to a case control

study. This work was motivated by case-control studies for risk factors associated

with recent (<1 year) HIV infection when the duration of infection cannot be

directly observed. In this type of study, recently (< 1 year) and chronically

(> 1 year) infected people represent two types of cases. When the case type is

misclassified, the usual standard estimates for an odds ratio associated with one of

the case types can be biased. We discuss methods to adjust the odds ratio from a

case control study using the performance characteristics of a classification rule. In

particular, we discuss a matrix adjustment method to adjust the observed counts

of each case type, and an adjustment method based on a multinomial logistic

regression model. These methods have shown to reduce bias in the estimation of

the odds ratio.

We conclude with a discussion of the described methods in disease classifica-

tion that were motivated by problems in HIV research. These problems included

the cost of diagnostic tests and the fact that dates of infection cannot often be

determined. The methods we developed may also have application to other set-

tings especially when the costs of diagnostic testing is high and there are multiple

types of cases that cannot be distinguished with complete accuracy.
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CHAPTER 1

Introduction

Diagnostic testing is the process of determining the disease state of a person.

It can be thought of as a specific kind of a classification problem where one

decides if a person has a certain condition or does not. It can be characterized

by the use of biomarkers such as immunological assays to inform classification

determinations. Procedures for diagnostic testing can be both costly and time

consuming. Furthermore, a diagnostic test may not have perfect classification

ability which may affect the inferences made as a result.

In this thesis, we discuss considerations in using diagnostic tests for disease

classification. First, we discuss considerations in cost for diagnostic testing. Mul-

tiple diagnostic tests are often used to make an accurate diagnosis and with each

diagnostic test, costs will accumulate. A serial testing algorithm can reduce the

cost of diagnosis by classifying some subjects with fewer tests. A serial testing

algorithm is a classification method where tests are performed in a specified order,

one at a time. The costs associated with diagnosis can be reduced if classification

can occur before all tests are performed.

To make this concrete, consider the following simple example. Suppose there

are 2 diagnostic tests for a disease, B1 and B2 (e.g. assays for two different

biomarkers). These tests can be combined into a classification rule such as ‘either

positive’ or ‘both positive’ where the former refers to a positive diagnosis of disease

if either test is positive and the latter referring to positive diagnosis if both tests

are positive. If we use an ‘either positive’ rule, and B1 is positive, there is no need
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to test with B2. Similarly, if we use a ‘both positive’ strategy and B1 is negative,

there again is no need to test with B2.

Serial testing algorithms have been used in the Ivory Coast specifically to

reduce the cost of HIV testing with great success. In 1999, Nkengasong and

colleagues compared the performance of using a combination of three ELISA as-

says (ICE 1.0.2, Enzygnost, and Vironostika) for comparison to a standard algo-

rithm (Peptilav and p24 antigen assay) (Nkengasong et al., 1999). The algorithm

tested the sera with Enzygnost test and considered non-reactive sera as true HIV-

negative. If the sera was reactive with the Enzygnost test, the ICE 1.0.2 assay was

used and positive sera from the ICE 1.0.2 assay was considered true HIV-positive.

If there were discordant results, the Vironostika assay was used and the outcome

of that assay was considered true. These algorithms resulted in 100% sensitivity

and 99.95% specificity when compared to the standard. The advantage is that

the serial algorithm cost US$ 23,432 overall (US$ 2.80 per sample), while the the

standard Peptilav algorithm cost US$ 77,975 (US$ 9.50 per sample). The result

was 70% cost savings for the serial algorithm compared to the Peptilav algorithm.

These algorithms can be applied to defining cases in a case-control study. Con-

sider a case-control study examining the incidence of HIV. A simple comparison

of risk factors between sexually active HIV+ and HIV- groups (unaware of status)

may dilute the effect of risk factors. The reason for this dilution can be because

of a combination of two factors. The first factor is the long incubation time of

HIV where behavior changes can occur. The second factor is that the behavior

of a person can tend towards less risky behavior over time. For example, a 25

year old HIV+ person who was infected at age 20 may have altered risk behavior

patterns such as increased condom usage or reduced the number of sex partners

during the 5 year period of infection.

Many studies have found associations between age and incidence of HIV in-

fection. Studies of MSM populations in Western countries have shown younger
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populations ( ≤ 30) having greater frequencies of unprotected anal intercourse

and increased incidence of HIV (Mansergh and Marks, 1998; Crepaz et al., 2000).

Studies have shown that South African youth lack an understanding of the nature

of HIV and perceive a low risk of infection. A recent survey among South African

youth revealed 61% of HIV positive and 73% of HIV negative youth reporting

that they thought they were at no risk at all or had a small chance of getting HIV

(Eaton et al., 2003; Pettifor et al., 2005).

In addition, Pines et al. (2013) identified three sexual risk trajectories (low,

moderate and high-risk) among MSM in the United States which exemplifies the

transient nature of HIV risk behavior. Minimal changes in probability of engaging

in high-risk behaviors were reported over time for the low and high risk trajectory

groups, but the moderate risk trajectory group showed a strong decline of 29% to

17%. They also identified temporary attributes such as depression and “seasons

of risk” that may also play a role in increased risk behavior as well.

To resolve this issue, we suggest a comparison of recently infected (< 1 year)

HIV+ and HIV- groups to describe the leading edge of HIV transmission risk.

The problem is that while we can easily identify infection status, it is difficult

to separate those with chronic (> 1 year) infections from recent infections. The

disease history of each person may be unknown, so other methods for classification

must be used. An early method in HIV research uses detuned assays to identify

recent infections (Janssen et al., 1998). Another recent method has been described

to use serological biomarkers to a determine disease status (Laeyendecker et al.,

2013). Neither algorithm provided perfectly accurate classification.

The serial testing algorithms we describe in Chapter 2 can be used to distin-

guish between recently and chronically infected individuals with reasonable but

imperfect accuracy and a reduced cost; however, misclassification of the cases will

tend to bias the odds ratio towards the null and reduce the power of the study.

In Chapter 3, we discuss adjustments to the odds ratio based on knowledge of
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the misclassification rates to reduce the bias that is induced from the imperfect

classification.

1.1 Preliminary Concepts

To set the stage for our discussion, we describe preliminary concepts that will be

used throughout this thesis in this section.

1.1.1 Notation

Consider a sample study population of size N where each person is either diseased

or not diseased. Within the diseased group, a further division can be made into

two types: “case I” and “case II”. Let Yi denote the disease status of the individual

i in the study population. Let Yi = 0 indicate that the individual is uninfected and

is in the control group. Let Yi = j (for j = +1,−1) indicate an infected individual

in case group j where case I is indicated by +1 and case II is indicated by −1.

Let Ŷi denote the observed disease status that is obtained from a classification

algorithm. In addition, assume that an exposure E can be determined for each

person. We restrict the exposure of interest to a dichotomous exposure that is

accurately classified.

A classification algorithm combines multiple biomarkers in Xi = {Xi1, ..., Xip}

and provides the predicted outcome Ŷi for the true classification indicator Yi.

Classification methods will “search” over the classification algorithm space and

find one with optimal performance, say most accurate or most specific. In this

thesis, we assume Yi = 0 to be perfectly classified through external means. The

discussion will focus on only the classification between the two case types. For

a sample of size N, we define the quantities: number of false positives (FP ) and
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number of false negatives (FN) for a algorithm r applied to a certain sample,

FP (r) =
∑

{i|Yi=−1}

I(Ŷi = +1) and FN(r) =
∑
{i|Yi=1}

I(Ŷi = −1).

We define the number of true positives (TP ) and true negatives (TN) similarly,

TP (r) =
∑

{i|Yi=+1}

I(Ŷi = +1) and TN(r) =
∑

{i|Yi=−1}

I(Ŷi = −1).

The sensitivity and specificity of a classification algorithm are commonly used

in epidemiological settings to describe classification accuracy. The sensitivity (Se)

of a classification algorithm describes its ability to identify a positive subject. We

define the population sensitivity for a rule to be a conditional probability

Se = Pr(Ŷ = −1|Y = −1)

which we estimate from a sample with

Se = TP/(TP + FN).

We refer to Se as the apparent sensitivity. The specificity (Sp) of a classification

algorithm describes its ability to identify a negative subject. The population

specificity is defined as

Sp = Pr(Ŷ = 0|Y = 0)

which we estimate using

Sp = TN/(TN + FP ).

We refer to Sp as the apparent specificity.

For a given classification algorithm, the receiver operating characteristic (ROC)

curve is a plot of the sensitivity vs. (1 - specificity) when changing an optimal-

ity criteria. The ROC curve allows us compare our classification methods over

various threshold settings as well as over several optimal rules. We use the area

under the ROC curve as an overall comparison measure of the performance of

our classification methods under study without choosing an explicit optimality

criterion.
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1.2 Summary of Dissertation

This thesis is organized as follows. In Chapter 2, we will discuss methods for gen-

erating serial testing algorithms to save diagnostic costs while combining multiple

diagnostic tests to make accurate classifications. We describe two classification

methods, one based on logic regression and another novel approach called serial

risk score classification. In Chapter 3, we develop a method for adjusting the

estimate of an odds ratio between a case and control group in the aforementioned

setting where case types can be misclassified. Lastly, we provide final remarks

and a discussion of extensions to the discussed methods in Chapter 4.
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CHAPTER 2

Serial Testing Algorithm Optimization

2.1 Introduction

As previously mentioned, diagnostic testing for classifying a person into one of two

states (e.g. disease or no disease) can be costly, especially if multiple diagnostic

tests are required to make accurate diagnoses. While increasing the number of

biomarkers may increase accuracy, that comes at the price of increased costs of the

assays. The trade-off between accuracy and costs in diagnostic classification is of

concern particularly in countries with limited resources where adequate screening

is costly (Parpia et al., 2010).

In this chapter, we examine serial testing algorithms used for classifying HIV

infected persons as to whether their infection occurred recently or not (e.g., within

the previous year or not). The problem of accurately identifying recently occurring

infections is important for several reasons. It has been shown that individuals who

are recently infected have higher rates of HIV transmission (Wawer et al., 2005). It

is important to identify sexual partners of those recently infected so they can seek

testing and care. Treatment decisions may also depend on the recency of infections

(Sáez-Cirión et al., 2013). Additionally, knowledge of recency of infection is useful

in studies of risk factors for HIV infection and may help identify subgroups of the

population where HIV incidence is growing rapidly.

Our work builds upon a large body of research in biomarker-based HIV inci-

dence estimates that began with work by Brookmeyer and Quinn in 1995. They
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developed an approach to estimate incidence of infections using the number of

seronegative samples in a population that tested positive for HIV p24 antigen;

however, cost of the p24 antigen test and the short window period between de-

tection of the p24 antigen and seropositivity suggested that this method was only

suitable for large samples in population with high incidence (Brookmeyer and

Quinn, 1995). Concurrent work by Janssen and colleagues published in 1998 used

a ‘detuned’, or less sensitive, assay to discriminate recent and chronic infections

(Janssen et al., 1998). These early studies ultimately led to the development of a

variety of different serological assays for testing recent infection.

The testing algorithms presented in this paper combine 4 biomarker assays

with well known trajectories over the course of HIV infection. In the next section,

we discuss preliminary concepts important for the understanding of the method-

ology discussed in this paper. In section 2.3, we define two classification methods

that we apply to a serial testing framework. One of the methods is based on an

existing procedure called logic regression. The other is a novel method to combine

a serial testing algorithm with logistic regression to improve discrimination per-

formance versus current methods. We then evaluate and compare our methods

when applied to a cohort data in section 2.4.

2.2 Preliminary Concepts

2.2.1 Definitions

A continuous biomarker can be transformed into a dichotomous test with a dis-

crimination threshold or cut off. The threshold defines the line dividing a positive

classification region in the biomarker space and the negative classification re-

gion. Usually the test is represented as T = (X > c) where X is the continuous

biomarker and c is the threshold value.
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We can combine multiple tests using a logical rule. Here we define a logical

rule to be a combination of tests with binary operators ∧ (and), ∨ (or), ¬ (not).

The logical rule can form a basis for classification as in the following example:

Y =


+1, if r(X1, X2) = true

−1 otherwise

(2.1)

where

r(X1, X2) = (X1 > c1) ∨ (¬(X1 > c1) ∧ (X1 > c2) ∧ (X2 > c3)).

The operator ∧ results in a positive classification if both the operands are positive

and negative otherwise. The operator ∨ results in a positive classification if either

of the operands are positive and negative otherwise. The operator ¬ results in the

complement of the result of the operand. The parentheses are used in a normal

fashion and define precedence when combining more than two tests.

A serial testing algorithm is a decision tree representation of a logical rule.

Define a stage to be a node on the decision tree where a classification for an

individual can occur. For some stage s, the stage index i is defined by the total

number of stages + 1 that is traversed in a path to s starting from the root. In

each serial testing algorithm, we have M maximum number of stages. A serial

testing algorithm is distinct from a logical rule in that there is a specified ordering.

The ordering of tests in a serial testing algorithm is very important as it impacts

cost.

A graphical representation of some serial testing algorithms is given in Figure

2.1. The squares labeled A, B and C are representations of tests. The arrows

labeled + and - are the resulting outcomes from each test where indicates a true

result and - indicates a false result. The circles are the overall classification out-

come for a given rule. In figure 2.1(c), we see the representation of A ∧ B ∧ C.

Following the diagram, if one were to implement this algorithm for testing an

observation, if test A corresponding to the observation has a positive result, one
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continues to test B, otherwise the observation is classified as negative and testing

stops. If testing continues to test B and the result of test B is negative, then

the observation is classified as negative, otherwise testing continues to test C, in

which case final determination must be made.

−

_

A

B

+ −

+
_

+

(a) A ∧B

+

A

B+

_+

+ −

−

(b) A ∨B

−

+

A

B

C

_

_

_
+

+ −

+ −

(c) A ∧B ∧ C

−

A

B

C

+

+

_+

+ −

+ −

+

(d) A ∨B ∨ C

+

_

A

B

+ −

C+

_+

+ −

−

(e) A∧(B∨C)

+

A

B+

_
C

+ _

+ −

−+

−

(f) A∨(B∧C)

−

A

B

C

+ _
+ −

C

+ _+

+ −

−+ +

(g) (A ∧B) ∨ C

+

A

C

+ _
+ −

B

C

+ _
+ −

_

+ −

−

(h) (A ∨B) ∧ C

Figure 2.1: Decision tree representation of logical classification rules combining

tests A, B, C. Lines represent outcomes from a test. Circles represent resulting

classification from combined tests. Cost savings occur at intermediate nodes below

the bottom level of each tree.
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2.2.2 Optimality Criterion

We define an optimal algorithm r∗ to be an algorithm in the algorithm space R

defined by the biomarker set X that minimizes a loss function L(·). The set of

optimal algorithms form a subset of R, R∗ = {r∗},R∗ ⊂ R.

One example of a classification loss function L uses a weighted average of false

negatives and false positives, i.e. L(r, p) = pFP (r)+FN(r) where p is the relative

contribution to the loss of a false positive (FP ) compared to a false negative (FN).

Larger values for p will indicate a preference for lower rates of false positives to the

classification algorithm i.e. a preference for specificity. Similarly, smaller values

of p indicate a preference for lower rates of false negatives and sensitivity. This

loss function was adopted to generate the logic rule ROC curve (Etzioni et al.,

2003). We continue the use of this loss function for consistency when drawing the

ROC curves presented in the next section.

The total cost of an algorithm is defined by the number of individuals who are

tested with a diagnostic test and the cost of the diagnostic test itself. Let Z be

the set of a diagnostic tests used in a classification algorithm. Let bi be the cost

for diagnostic test zi. Let nzi be the number of individuals tested with zi in an

algorithm. For example, suppose an algorithm uses diagnostic test zi in the first

stage, then in this case, nzi = N . We define the total cost of an algorithm by:

cost =
Z∑
zi

binzi.

We define the average cost savings (ACS) of an algorithm by the “discount” of

using the serial testing algorithm versus a classification algorithm that uses all

diagnostic tests with all individuals.

ACS =
Z∑
zi

bi(N − nzi)/N).
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We can expand the loss function to include the cost of diagnosis

Lr(p1, p2, cost) = p1FP + p2FN + h(cost). (2.2)

where h(·) is a function of the diagnostic cost; however, the parameters p1, p2

and the function h(·) depend greatly on the study population, the biomarkers

required in the classification routine, and the objectives of the study. It may not

be clear what parameters are appropriate for a specific application as arbitrary

selection may emphasize one particular feature of the loss function when a balance

is appropriate. An alternative approach to balancing diagnostic accuracy and cost

is to first minimize the loss function L(p) and then consider cost among candidate

algorithms that have the same minimal value.

2.3 Classification Methods

2.3.1 Risk score Estimation

Methods for classification using multiple diagnostic tests have been extensively

developed. A fundamental approach is based on estimating risk scores, S(X) =

P (Y = +1|X) where X is a vector of predictors (e.g., diagnostic tests or assays

for biomarkers) and Y = +1 if a person has the disease and Y = −1 otherwise

(Pepe, 2003).

A standard tool for risk score modeling for binary classification is logistic

regression. In order to estimate the risk score for each of the subjects, we use the

biomarkers as predictors in the logistic regression model and the true classification

of the subject as the response variable. More explicitly, we fit models of the form

log

(
RS(X)

1−RS(X)

)
= β0 + h(β,X). (2.3)

In this approach, a person is classified as positive with disease if RS(X) > c and

otherwise negative without disease, where c is the discrimination threshold and is

chosen according to optimality constraints (i.e. minimizing the loss function).
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In our discussion, we only use linear first-order terms with no interaction terms;

this is a controversial choice as it has been shown that using linear rules can be too

restrictive (McIntosh and Pepe, 2002). In practice, a more complex model would

be appropriate, but we use the linear terms here for comparison with our other

models. Prediction of the risk score will require that we have all of the biomarker

information available at time of classification. The total cost of logistic regression

will be the cost of all biomarkers multiplied by the number of people. We discuss

a serial testing classification method in the following sections to reduce the total

cost.

2.3.2 Logic Regression

An advantage of risk score modeling is that it uses all the biomarker (or diagnostic

test) information, and can account for biomarker data that is either continuous or

categorical; however, it does require that all the diagnostic tests be performed on

all persons which can be expensive. On the other hand, serial testing algorithms

can be cost effective because not all persons are necessarily evaluated with all

diagnostic tests. Given a set of tests and a condition that we seek to classify,

our problem is finding the right classification algorithm that minimizes our loss

function. We can attempt to search through the entire space of combinations of

predictors, thresholds and binary operators, but the problem becomes intractable

with an increasing number of predictors and thresholds. Instead, we use an ap-

proach that was developed by Ruczinski et al. (2003) to find a set of optimal

rules using a combination of biomarkers. We employ a classification algorithm to

generate optimal classification rules called logic regression.

Logic regression is a regression methodology that can be used when the co-

variates in the data are binary or dichotomous (Ruczinski et al., 2003). The goal

of logic regression is to find predictors that can be combined using boolean oper-

ators to model the response variable. Given B1, B2, ..., Bk binary predictors, and
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a response variable Y , logic regression fits models of the form

g(E[Y ]) = β0 + β1M1 + ...+ βnMn,

where Mj is a boolean expression of the predictors. For example, M1 = B1 ∧

B2 ∨B3. In our case, the binary predictors are all of the tests generated from the

biomarkers and thresholds i.e. B1j = (X1 < c1j).

Since a binary outcome can be fully expressed with Mj, the link function g(·)

is the identity, g(·) = ·, and the regression model collapses into

E[D] = +1 ·M1.

Because the space of classification rules is computationally intractable to search

over, logic regression minimizes the loss function L(·) through a iterative heuristic

procedure called simulated annealing (Ruczinski et al., 2003).

We apply logic regression to combining multiple continuous biomarkers in the

following manner. We begin with m continuous biomarkers. We choose a set

of k thresholds {c1j, c2j, ..., ckj} for each biomarker j. Then we form boolean

predictors of biomarker j by forming k tests (Xj < c1j), (Xj < c2j), ..., (Xj < ckj).

The k ×m tests of all the biomarkers are entered into a logic regression model.

The logic regression algorithm then provides us with an optimal rule based on

those predictors that minimizes the loss function L.

An example of a model from a logic regression procedure is

E[Y ] = +1 · (B1 ∧B2 ∨B3) (2.4)

where B1 = (X1 < c1), B2 = (X2 < c2), B3 = (X3 < c3)

This model fits into one of the serial testing algorithms we have considered,

namely, figure 2.1(e) if we map B1 to A, B2 to B and B3 to C. The cost savings

in this particular model occur when B1 evaluates to false. According to the logic

given by equation 2.4, if B1 evaluates to false, there is no need to evaluate B2 and

B3. No matter what B2 and B3 evaluate to, E[Y ] will be false.
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Table 2.1: Translation table of a logical rule to a serial testing rule. Here the

binary variables A and B represent a diagnostic test or another logical rule. The

table is applied recursively to a logical rule by order of precedence.

Logical Rule Decision Tree

(A)
−

_+

A

+

not A
−

_+

A

+

A ∧B
−

_

A

B

+ −

+
_

+

A ∨B
+

A

B+

_+

+ −

−

As a result, in the context of biomarkers, X1, X2, X3, with respective costs

r1, r2, r3 of obtaining the biomarker, if an optimal rule follows the model given by

equation 2.4, all subjects with (X1 > c1) only need a fraction of the total cost

r1/(r1+r2+r3) to make a diagnosis. This may be even more apparent in graphical

representations of rules given by figure 2.1. Any ⊕ or 	 circle above the bottom

level of the classification tree represents a savings in diagnostic cost versus testing

with all biomarkers. We provide a translation table for logical rules to a serial

testing rule in Table 2.1.

We incorporate diagnostic cost into logic regression by extending the method

to look at permutations of equivalent logic rules. Logic rules have well known

commutative properties over ∧ and ∨. We exploit this to reorder the serial testing
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algorithm to change the diagnostic costs for a given algorithm. By performing

swaps of the logical operands of ∧ and ∨, we find equivalent classification rules

that assign the same classification to the same predictors but at different costs.

This is illustrated with an example in Figure 2.2. Among the set of equivalent

logic rules R, we find the permutation that minimizes the classification cost in

the training sample.

−

A

B+

_
C

+ _

+ −

−+

−+

A

+

_

+ _

+ −

−+

−+

B

C

A

+

+ −

_

+

C

+

A

+

+ −

_

+

−

B

Figure 2.2: Illustration of swaps of logical operands in a decision tree. The tree

in the left hand column represents the rule A∨ (B ∧C). From this rule, logically

equivalent rules A ∨ (C ∧B) and (C ∧B) ∨ A are spawned.

In order to compute Lr(p, cost), each rule considered during the simulated

annealing portion of the logic regression procedure needs to perform the above

procedure to find the minimal cost of the proposed rule. While this method will

work in the logic regression framework, this procedure is computationally intensive

and quickly becomes intractable with the large set of predictors. For reasons of

computation, we approximate the optimal classification rule r∗ which minimizes

Lr(p, cost) with the optimal rules r that minimize L(p). Among those rules, we

find the permutation which minimizes cost using the method as described above.
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2.3.3 Serial Risk Score Algorithm

2.3.3.1 Overview

The disadvantage of a serial testing rule when compared with risk score modeling is

that there is a restriction on the type of rules you can create with logical operators,

biomarkers and thresholds especially with limits on the complexity of the rule. A

rule based on a linear combination of two biomarkers, for instance, would not be

available. As an illustration, consider a two dimensional plotting of biomarkers

X1 and X2. All combinations of logical rules would generate rectangular regions

that represent positive classification. If the true classification is (X1 < X2), it

would be difficult this simple rule without a fairly complex model. Figure 2.3

illustrates this example.
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Figure 2.3: Illustration plot where a logical rule may fail. Two biomarkers X

and Y, the logical rules form rectangles in the biomarker space, but the true

classification is formed from a linear combination.

Here we outline a strategy that combines aspects of a risk score modeling

approach and a serial testing approach to use all available information while min-
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imizing costs. We call the method serial risk score classification. Our approach

introduces several stages of classification where a person may either be classified

as positive for disease, negative for disease, or neutral (i.e. undecided) when there

is not enough evidence for either a positive or negative classification. Neutral clas-

sification was originally suggested to keep misclassification rates under a specified

level (Rao, 1947) and has also been described in engineering literature as a re-

ject, an event when a recognition system withholds its recognition decision (Chow,

1970). Most recently, Jeske et al. (2007) formalized a framework for a Bayesian

neutral zone classifier using posterior class probabilities to define a neutral zone.

A general description of our strategy is as follows. Suppose we have a total

of M different diagnostic tests that can be used for disease classification. At the

first stage of diagnostic testing, each person is evaluated with m1 diagnostic tests.

The m1 diagnostic tests are a subset of the M diagnostic tests. Based on those

m1 test results, we classify each person into one of three categories: positive for

disease (Ŷ = +1), negative for disease (Ŷ = −1), or neutral (undecided; Ŷ = ∅).

Persons classified as neutral proceed to the second stage. At the second stage, an

additional diagnostic test is performed on persons who were classified neutral at

the first stage. We then reclassify those neutral persons from the first stage as

either positive, negative, or still neutral using all m1 + 1 diagnostic test results

available at the second stage (i.e, the m1 tests from the first stage together with the

additional test performed at the second stage). We proceed similarly through each

stage. In general, at the ith stage, we reclassify those persons classified as neutral

at the (i − 1) stage using all the mi diagnostic tests that are available (i.e, mi−1

tests from the preceding (i − 1) stages plus the additional test performed at the

ith stage). The classification at the ith stage is based on risk scores, determined,

for example, from logistic regression. Risk score thresholds are determined at

each stage, such that if the score is below (above) a lower (upper) threshold, the

person is classified as negative (positive) for disease, and otherwise the person
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is classified as neutral. We allow a maximum of K stages where K ≤ M . All

persons are classified at or before the Kth stage because we do not allow for neutral

classification at the last Kth stage. The serial risk score classification approach

can be less costly than testing all persons with all M diagnostic tests because some

persons are classified as positive or negative before undergoing all M diagnostic

tests.s

The strategy described above define a serial testing algorithm. An example

illustration of the strategy is given in Figure 2.4. Figure 2.4 is an illustration of

our strategy with 4 stages and 4 diagnostic tests which are labeled z1, z2, z3 and

z4. At the first stage, a single diagnostic test z1 is performed (m1 = 1). Risk

scores S(z1) are estimated from a risk score model (e.g., logistic regression) and

persons are classified as negative if their scores are below a lower threshold c1l,

as positive if their risk scores are above an upper threshold c1u, or as neutral if

their scores lie between the lower and upper thresholds. At the second stage,

an additional diagnostic test z2 is performed only on those persons who were

classified as neutral at the first stage. These persons are assigned updated risk

scores S(z1, z2) from a risk score model using both diagnostic tests z1 and z2

and they are then reclassified (using these updated risk scores) based on updated

thresholds c2l and cu2. Similarly, at the third stage, an additional diagnostic test

z3 is performed on those persons still neutral at the second stage. At the fourth

and final stage, the last diagnostic test z4 is performed on those persons neutral

at the third stage, and a classification (positive or negative) is finally made for

these persons.
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Ŷ = +1

Ŷ = +1

Ŷ = +1

Ŷ = +1

Ŷ = −1

Ŷ = −1

Ŷ = −1

Ŷ = −1

Ŝ1(z1)

Ŝ2(z1, z2)

Ŝ3(z1, z2, z3)

Ŝ4(z1, z2, z3, z4)

Ŝ1(z1) < c1l

Ŝ2(z1, z2) < c2l

Ŝ3(z1, z2, z3) < c3l

Ŝ4(z1, z2, z3, z4) < c4

Ŝ1(z1) ≥ c1u

Ŝ2(z1, z2) ≥ c2u

Ŝ3(z1, z2, z3) ≥ c3u

Ŝ4(z1, z2, z3, z4) ≥ c4

c1l ≤ Ŝ1(z1) < c1u

c2l ≤ Ŝ2(z1, z2) < c2u

c3l ≤ Ŝ3(z1, z2, z3) < c3u

Figure 2.4: Illustration of serial risk score classifier with a maximum of K = 4

stages. At each level of the classifier, a risk score model is estimated and thresholds

are defined. The threshold values determine whether an observation continues

onto further testing or is classified as positive or negative. Four diagnostic tests

are shown which are labeled z1, z2, z3 and z4.
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2.3.4 Methods and Estimation of a Serial Risk Score Algorithm

In this section, we detail and formalize the approach outlined in 2.3.3.1. We

assume we have available a training dataset that includes Y and all M diagnostic

test results for each person in the dataset. In this section, we describe the methods

for determining the risk score thresholds and the sequential order to add particular

diagnostic tests at each successive stage.

Suppose we have a training data set of N subjects, of whom n+ have disease

(Y = +1) and n− do not have disease (Y = −1). The total number of diagnostic

tests is M which are named z1, ..., zM . Each of the M diagnostic tests are per-

formed on each person. Let Xi be a vector of mi diagnostic tests available at the

ith stage for risk score modeling. The vector Xi includes all the diagnostic tests

in Xi−1 plus one additional diagnostic test that is performed at stage i, and thus

mi = mi−1 + 1.

To be clear, the tests included in earlier stages are available for analysis at later

stages, that is, the diagnostic tests in Xi are a subset of the diagnostic tests in Xj

for i < j. For example, in figure 2.4, X1 = (z1), X2 = (z1, z2), X3 = (z1, z2, z3),

and X4 = (z1, z2, z3, z4). The Xi vectors are not fixed or predetermined. Rather,

we use our methods described below to determine the sequential order of tests to

perform at each stage that balances accuracy and cost considerations.

At the ith stage, let Ŝi(Xi) be a model for the risk score, P (Y = +1|Xi).

For example, when using a logistic regression model, we have Ŝi(Xi) = 1/{1 +

exp(−XT
i βi)} where βi are estimated regression coefficients.

For risk score models Ŝi(Xi), 1 ≤ i < k−1, we divide the risk score space into

“positive”, “negative”, and “neutral” regions using the lower and upper thresholds
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cil and ciu, where cil ≤ ciu, and both lie between 0 and 1, so that

Ŷi =


−1, if Ŝi(Xi) < cil

∅ if cil ≤ Ŝi(Xi) < ciu

+1, if Ŝi(Xi) ≥ ciu

where 0 indicates neutral or no classification in stage i. At the last stage, we do

not assign a neutral zone and use a single threshold ck to divide the risk score

space, i.e.

Ŷk =


−1, if Ŝk(Xk) < ck

+1, if Ŝk(Xk) ≥ ck.

For a person assigned to the neutral zone in the first j − 1 stages, the final

classification of that individual is Ŷj.

We now present a formal definition for a serial risk score classification algo-

rithm. It is a classification algorithm where the prediction Ŷ ( Ŷ = 1 if classified

positive for disease and -1 otherwise) is based on a logical rule r (or algorithm)

of the following form (where ∧ is a logical AND operator and ∨ is a logical OR

operator):

r ={Ŝ1(X1) ≥ c1u}

∨ [{Ŝ2(X2) ≥ c2u} ∧ {Ŝ1(X1) ≥ c1l}]

∨ [{Ŝ3(X3) ≥ c3u} ∧ {Ŝ1(X1) ≥ c1l} ∧ {Ŝ2(X2) ≥ c2l}]
...

∨ [{Ŝk(Xk) ≥ ck} ∧ {Ŝ1(X1) ≥ c1l} ∧ · · · ∧ {Ŝk−1(Xk−1) ≥ c(k−1)l}] (2.5)

where

Ŷ =


+1, if r = true

−1, if r = false.

In equation 2.5, the first line refers to persons classified as positive at the end

of stage 1; the second line refers to persons neutral at the end of stage 1 but
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subsequently classified as positive at the end of stage 2; and so on. The set of

algorithms given by (2.5) define a space of algorithms R which is generated by

the various sequential orders of adding diagnostic tests and choices for the risk

score thresholds.

For a specified value of p, we could simply find the minimal value, Lmin(p), of

the loss function that is achievable with any algorithms in the space of algorithms

R. However we also want to balance accuracy with cost considerations. The

algorithm that corresponds to Lmin(p) may not have the lowest total cost. To

help achieve balance between both cost and accuracy considerations, we adopt

the following strategy. We find the collection of algorithms that have accuracy

loss functions “close” to the minimal value. Among these algorithms that are

“nearly” equivalent with regard to accuracy, we find the one with minimal total

cost. To quantify the meaning of “close” with respect to accuracy, we introduce

a tolerance t on the accuracy loss function. Consider the set of algorithms R(t, p)

that give values of the loss function within a percentage t × 100% of Lmin(p) so

that

R(t, p) = {r : Lmin(p) ≤ L(r, p) < (1 + t) · Lmin(p)}.

That is, R(t, p) is a set of algorithms that are nearly equivalent with respect

to accuracy as calibrated by the tolerance t. We define an optimal algorithm rp as

an algorithm in the set R(t, p) with minimal total cost. It is possible that multiple

algorithms satisfy this optimality criteria. For a chosen set of p ∈ P, these optimal

algorithms form a subset of R, RP(t) = {rp : ∃ p ∈ P, rp = arg min
cost

R(t, p)}. The

set RP(t) is used to construct a ROC curve. As t decreases more weight is given

to accuracy compared to cost for determining the optimal algorithm.

The space of algorithms R includes an algorithm of performing all M diagnos-

tic tests at the first stage and not allowing any person to be classified as neutral,

that is, m1 = M and c1l = c1u. Such an algorithm is equivalent to a risk score

model using all diagnostic tests. Thus, if the tolerance t is set to 0, then the
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serial risk score classification algorithm can achieve the same accuracy as stan-

dard logistic regression. If there is another algorithm which has a lower or equal

value of the accuracy loss function as that achieved by logistic regression using all

diagnostic tests and has lower total cost, then the serial risk score classification

algorithm will be as accurate but less expensive.

2.3.5 Evaluation of Methods

2.3.5.1 Bootstrapping misclassification rates and cost

Here we describe a method for bootstrapping the sensitivity (Se), and specificity

(Sp) in order to characterize the prediction ability of the algorithm with a future

unobserved subject. When the same data is used to both construct and evaluate an

algorithm, the apparent sensitivity and specificity can tend to be over optimistic

(Efron, 1983). The reason is that the classifiers are chosen specifically to minimize

the loss function with respect to the training data. In this section, we describe a

bootstrapping method to estimate this optimism, or bias, and how we adjust for

it.

In the following discussion, as it is understood that Se and Sp will depend on

a particular p and optimal algorithm rp, we notationally omit this dependency for

brevity.

We define the biases in the apparent sensitivity and specificity respectively by

ese = Se−Se with expectation εse, and esp = Sp−Sp with expectation εsp. If εse

was known, then Ŝe = Se− εse would be an unbiased estimate for Se. Similarly

if εse was known, Ŝp = Sp− εsp is an unbiased estimate for Sp as well.

Our strategy is to estimate εse and εsp using a bootstrap method. Once an

estimate is found, we can adjust our apparent estimates by the errors to reduce

the bias incurred from overfitting. The diagnostic costs can be adjusted by the

bootstrap error in the same fashion. Let Cost be the apparent total cost of an
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algorithm found from (2.2.2). The error of the total cost is ecost = Cost − Cost

where Cost is the true cost for an optimal algorithm with some p. If we let εcost

be the expectation of this error, then the adjusted cost Ĉost = Cost+ εcost.

For a training data set T = {Y,X} where X is a N ×M matrix of diagnostic

tests and a chosen p, the bootstrap procedure is described below.

1. Draw a bootstrap sample T ∗ from T with replacement.

2. Use the serial risk score classification method to find the optimal algorithm

r∗p from T ∗.

3. Use the optimal algorithm r∗p, applied to the bootstrap sample, T ∗, to cal-

culate the apparent sensitivity, specificity and cost, which we denote respec-

tively by, Se(r∗p|T ∗), Sp(r∗p|T ∗), Cost(r∗p|T ∗).

4. Use the optimal algorithm r∗p, applied to the original training data set, T , to

calculate the sensitivity, specificity, and cost, which we denote respectively

by, Se(r∗p|T ), Sp(r∗p|T ), Cost(r∗p|T ).

5. Calculate e∗sp = Se(r∗p|T ∗) − Se(r∗p|T ), e∗sp = Sp(r∗p|T ∗) − Sp(r∗p|T ), e∗cost =

Cost(r∗p|T ∗)− Cost(r∗p|T ).

6. Repeat 1 - 5 for B times. Estimate ε̂se = 1/B
∑B

b=1 e
∗
seb

, ε̂sp = 1/B
∑B

b=1 e
∗
spb

,

ε̂cost = 1/B
∑B

b=1 e
∗
costb

.

Following the bootstrap procedure, we estimate the adjusted sensitivity Ŝe =

Se− ε̂se, specificity Ŝp = Sp− ε̂sp, and cost, Ĉost = Cost+ εcost.

The bootstrap samples allow the construction of a (1− 2α)% confidence inter-

val for Se and Sp. For each p, we find the interval (Ŝeα, Ŝe1−α) where Ŝeα and

Ŝe1−α are the α and 1 − α percentiles of the empirical distribution of the boot-

strapped sensitivity (Efron and Tibshirani, 1993). The percentile-based bootstrap

confidence interval is constructed similarly for Sp.
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2.3.5.2 Simulation Procedure

We evaluated the performance of the logic regression and serial risk score classi-

fication method and bootstrap procedures through a series of simulations. Each

simulation was comprised of 1000 simulated datasets. In each dataset, we gener-

ated data for 500 subjects with two diagnostic markers z1 and z2 from a truncated

bivariate normal distribution where µ = [2, 9]T and Σ is set so that z1 and z2 have

a standard deviation of 1 and 3 respectively and a correlation of ρ. We modeled

the outcome Y using a logistic regression model.

We considered two situations for the correlation coefficient ρ between the two

markers: ρ = 0.5 and ρ = 0.0. We also considered 2 cases for the coefficients

in the logistic regression model: (Model I) where the coefficients β1 and β2 are

chosen so that a 1 standard deviation increase in z1 doubles the risk of Y = 1

and 1 standard deviation increase in z2 triples the risk; and (Model II) where 1

standard deviation increase in z2 triples the risk and β1 = 0. Lastly, we assumed

the cost of z2 was 10 times that of z1.

The resulting values for each simulation are averaged over the 1000 simulations

to generate the Monte Carlo estimates for sensitivity, specificity and average cost

savings for each classification method and for each specified value of p in the loss

function L(r, p) = pFP (r) + FN(r).

We computed bootstrap adjusted estimates for both the logic regression method

and serial risk score classification using 500 bootstrap samples. We also compared

the sensitivity and specificity estimates of each classification method as determined

by our bootstrapping procedure with an independent data set of 500 values drawn

from the same distribution for each simulation.
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2.3.5.3 Simulation Results

We present the results for correlated diagnostic markers in Tables 2.2 and 2.3.

In each simulation, we compared the logic regression and serial risk score classi-

fication method to logistic regression with backward elimination (non-significant

terms at the α = 0.05 level were eliminated).

Table 2.2 corresponds to the (Model I) logistic model specified in section

2.3.5.2. We find that both serial testing methods presented have slightly dimin-

ished accuracy performance as measured by the AUC (area under curve) compared

to logistic regression, but the cost savings are substantial. This makes intuitive

sense because both diagnostic markers have information about disease risk, so

both diagnostic markers are not necessary to make a determination. While z2

has a stronger effect size on the disease risk than z1, we find z1 can determine

classifications on its own without diminishing the sensitivity and specificity of the

algorithm. The serial risk score algorithms show greater average cost savings when

compared to logic regression algorithms while maintaining a practically equivalent

AUC.

In Table 2.3, the results of simulation under the (Model II) logistic model

is presented. We find smaller cost savings and accuracy performance compared

to (Model I) indicating a larger proportion of the sample using both tests for

classification. There are still significant cost savings in (Model II) because of

the correlation between the two diagnostic tests. The correlation allows the less

expensive diagnostic test to be used as a proxy for the significantly more expensive

test. Some information from one diagnostic test about disease risk is included in

the other, and thus the less expensive diagnostic test can take the place of the

more expensive one to some extent.

Table 2.4 and 2.5 presents the results for a simulation using uncorrelated di-

agnostic tests (ρ = 0.0) for logistic models (Model I) and (Model II) respectively.
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In (Model I), we find a markedly reduced cost savings with uncorrelated (Table

2.4) compared to correlated diagnostic tests (Table 2.2) with a minor reduction

in accuracy. Because the diagnostic tests are no longer correlated, both tests are

more often necessary for correct classification.

In (Model II), the cost savings are further reduced, and only very minor cost

savings are achieved. We note that at large values of p, we show dramatic cost

savings for the serial risk score algorithm. This may indicate an improper random

determination of classification for a large portion of the sample. It should be noted

that the cost savings we report in this simulation are dependent on the disease

prevalence and different results will be obtained with different prevalence rates.

The bootstrap adjusted SRS estimates of the performance measures appear

in good agreement with the estimates found when the algorithms are applied to

the independent data sets. We believe this demonstrates the bias reduction from

the bootstrap procedure is effective. We also performed the simulation reported

in section 2.3.5.2 with only 100 bootstraps and obtained very similar results as

that reported here with 500 bootstraps. When the serial risk score algorithm is

applied to data where the diagnostic tests have no discrimination ability, we find

an AUC of .50 as expected.

The serial risk score classification procedure was performed at different levels

of tolerance (t = 0.0, 0.05, and 0.10). We find the tolerance t calibrates the trade-

off between accuracy and cost. Increasing t puts more priority on decreasing costs

at the expense of accuracy. A comparison table for the different values of t is

presented in Appendix A.
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2.4 Application to HIV Data

2.4.1 Description of Data

The dataset consisted of 1782 samples from three cohort studies: a vaccine pre-

paredness study (HIVNET001, men and women with different risk factors for HIV

infection, (Celum et al., 2001)), a cohort study of intravenous drug users (the AIDS

Linked to Intravenous Experience (ALIVE) cohort, (Vlahov et al., 1991)), and a

cohort study of men who have sex with men (the Multicenter AIDS Cohort Study

(MACS), (Kaslow et al., 1987)).

The data has repeated measures for each subject; however, for this analysis, we

treated each as independent observations to study our classification procedures.

We estimated seroconversion date using the midpoint between the time when

a subject first tested positive and when the subject last tested negative. We

excluded observations without all 4 biomarkers and which had a time between

first positive test and last negative test of 1.5 years. Originally the data set

contained 2106 observations, but the complete case analysis reduced the data set

to 1782.

Recent infection is defined to be infected for < 1 year. We define chronic infec-

tion by as infected > 1 year. Only the HIVNET001 cohort had recently infected

observations, but we use information from all cohorts to train the classification

rules. The complete case data set contained 310 observations that were classified

as “recent infection.” (17.4% of the observations classified as recent.) The data

provided the 4 biomarkers: CD4, Avidity, BED and Viral Load. The laboratory

costs for performing the BED-CEIA, avidity, CD4, and viral load assays were,

relative to the BED assay, 1,2,5 and 10 respectively. Table 2.6 presents the means

and standard deviations of the biomarkers in the recently infected population and

chronically infected population.

CD4 is the CD4 blood cell count in a cubic millimeter volume of blood. The
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CD4 blood cell count will drop over the course of the disease. A normal uninfected

individual will have CD4 blood cell counts between 500 to 1200. Figure 2.5(a)

displays smoothed density curves of CD4 stratified by recent infection. CD4 is

higher ( ¯CD4 = 610.4(228.8) ) on average for recently infected observations than

observations with chronic infection ( ¯CD4 = 484.5(284.2) ), but the figure displays

relatively poor separation from this biomarker alone.

Avidity is a measure of the strength of the binding between immunoglobulin

G (IgG) antibodies and the corresponding antigen, a property that increases over

a period of months in newly acquired infections. In past studies, avidity indices

(AI) of ≤ 80 reproducibly identified seroconversion within the previous 142 days

(Chawla et al., 2007). In figure 2.5(b), avidity indices for recently infected ob-

servations are spread relativity evenly across avidity indices from 10 to 100. Of

the chronically infected observations, the majority of the avidity indices take on

the value of 100. In figure 2.6(b), the pattern is more obvious; as time from sero-

conversion increases, the avidity values tend to take on avidity indices of around

100.

The BED (BED-CEIA) assay detects levels of anti-HIV IgG relative to total

IgG and is based on the observation that the ratio of anti-HIV IgG to total

IgG increases with time after HIV infection. It has been used with the serologic

testing algorithm for recent HIV seroconversion (STARHS) to estimate incidence

rates, but can overestimate recent infection (Hargrove et al., 2008). In figure

2.5(c), recently infected observations clearly show a lower BED values on average

than chronically infected observations. Figure 2.6(c) shows the trend for BED to

increase over time, and it appears to level out over 2 years from seroconversion.

Viral load measures the number of virus copies per ml in the blood sera. In

recently infected individuals, viral load is high and gradually drops to an equi-

librium level through the course of the disease if untreated in the natural course

of infection. Onset of AIDS or other factors can make the viral load rise again
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which can confound the usage of this biomarker for recent infection. In the data

set, viral load ranges from 25 to almost 3 million with a median of 11220. We

used a log transformation to alleviate the skewness of the variable.

Table 2.6: Biomarkers means and standard deviations of chronic (infected > 1

year) and recently (infected < 1 year) infected observations. Means and standard

deviations calculated from complete case data only.

Chronically Infected (n = 1472) Recently Infected (n = 310)

Avidity 96.46 (11.51) 72.81 (28.73)

BED 2.03 (1.12) 1.17 (0.92)

CD4 484.50 (284.2) 610.40 (228.8)

log Viral Load 8.54 (2.86) 9.17 (2.33)

2.4.2 Application of Logistic Regression to HIV data

Using a risk score modeling approach, we fit, using maximum likelihood, the model

logit(RS(X)) = β0 + β1Avidity + β2CD4 + β3BED + β4log(Viral Load) (2.6)

Using the dataset as described in the previous section (n = 1782), we present the

estimated coefficients of the risk score model fitted by the glm function in R using

a logit link function in Table 2.7. All of the biomarker coefficients are significant at

the α = 0.05 level. As expected, the coefficients for Avidity and BED are negative

which suggests an increase in these predictors leads to a decrease in odds of being

recently infected. Conversely, higher values of CD4 and viral load indicate higher

odds of being recently infected.

For a selected value of p, an appropriate threshold c of the risk score RS(X)

that minimizes L(p) is found to generate a classifier (RS(X) > c).
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Figure 2.5: Estimated densities of the biomarkers used to predict recent infection

using kernel smoothing. Densities of recent infections (infected < 1 yr.) in blue

and chronic infections (infected > 1 yr.) in red, estimated separately.

2.4.3 Application of Logic Regression to HIV data

The thresholds in Table 2.8 were applied to the biomarkers to form the logical

predictors in the logic regression routine. Logic regression models were limited to

using a maximum of 4 “leaves” or predictors to avoid overfitting. Although this

might seem too restrictive, the method still displays good discrimination ability.

This restriction also allows a researcher or clinician to apply the rule more readily

in the field.

In Table 2.9, we present the bootstrap adjusted sensitivity, specificity, ACS
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(a) CD4

Years from Seroconversion
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(b) Avidity
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Figure 2.6: Scatter plot of each biomarker against time since infection among

untreated individuals.

A smooth loess curve has been added.

and the generated logical rule for selected values of p. The generated logical rule

is presented in the ordering that produced the minimal cost; that is, if read from

right to left and using the parenthesis to indicate precedence. We can see from the

tables that increasing p, the weight of false positives relative to false negatives,

decreases the sensitivity of the classification rule, but increases the specificity.

The cost of classification varies between choices of the penalty factor but the

classification algorithms provide an average cost savings of at least 69% versus

using all biomarkers. The avidity biomarker is used first in 8 out of the 9 rules

presented.

37



Table 2.7: Estimated coefficients of logistic risk score model given by (2.6). All

biomarker coefficients are highly significant at α = .05 level. Each biomarker has

been scaled as shown in the first column.

Estimate Std. Error Z score p-value

(Intercept) −0.83 0.49 −1.69 0.091

Avidity / 100 −4.46 0.42 −10.60 < 0.001

BED /10 −5.86 0.89 −6.60 < 0.001

CD4 /1000 2.26 0.29 7.86 < 0.001

log(Viral Load) /10 3.32 0.35 9.50 < 0.001

We present logic rule ROC curves for adjusted and unadjusted sensitivity

and specificity from serial testing algorithms generated from the logic regression

in figures 2.7. Each point on the ROC curve represents a different algorithm

corresponding to a particular p selected by minimization of the loss L(p). For

each point, the 95% lower and upper confidence limits of Ŝe, and Ŝp are plotted

to form the confidence intervals shown on the graph. The AUC of the bootstrap

adjusted ROC curves presented is 0.87. We employed the bootstrap procedure

described in Section 2.3.5.1 to compute adjusted estimates for sensitivity and

specificity and cost using 500 bootstrap samples. We have compared results using

100 bootstraps and 500 bootstraps and similar results were obtained.

2.4.4 Application of Serial Risk Score to HIV data

The serial risk score classification method was applied to the HIV data described

in section 2.4.1. Because of the computational constraints of brute force searching,

we limited the risk score thresholds {c1l · · · c(k−1)l}, {c1u · · · c(k−1)u}, and ck to using

only the deciles of the risk score space at each stage. This approximate algorithm

set Rapprox was used to find the RP(t), an optimal algorithm set with the tolerance
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Figure 2.7: ROC curves generated using logic regression classification procedure.

The bootstrap adjusted ROC curve shown as a solid black line was generated

from the algorithm specified in Section 2.3.5.1. The adjusted ROC curve rep-

resents the expected performance of the algorithm. The unadjusted ROC curve

is constructed from the unadjusted (apparent) error rates given by Sp and Se.

The 95% confidence interval curves are constructed using a percentile bootstrap

confidence interval.
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t = 0.10.

In table 2.10, we present a comparison table of the adjusted and unadjusted

sensitivities and specificities for optimal algorithms generated by logistic regres-

sion, logic regression and the serial risk score classification. As expected, the

adjusted bootstrap estimates have reduced the upward bias of the apparent esti-

mates for sensitivity and specificity. For each of these algorithms, the cost savings

for the values of p shown is decreased by at least 62% versus a classification method

using all biomarkers (e.g. logistic regression). The AUC of the three methods are

very similar with both logic regression and serial risk score classification perform-

ing better than logistic regression.

We present ROC curves for adjusted and unadjusted sensitivity and specificity

from serial testing algorithms generated from the serial risk score classification

algorithm in figure 2.8. For each point, the 95% lower and upper confidence

limits of Ŝe, and Ŝp are plotted to form the confidence intervals shown on the

graph. A comparison of the figures 2.8 and 2.7 shows wider bootstrap confidence

intervals with logic regression for Ŝe and Ŝp. This suggests greater uncertainty in

estimating misclassification rates with logic regression than with serial risk score

classification.

In table 2.11, we present an example optimal algorithm chosen when p = .3.

In each column, the risk score model coefficients for Ŝ(Xi) for classification stage i

are displayed. The decision rules for recent classification are also displayed under

the corresponding risk score model coefficients. We also show the cumulative

percentage that are classified in each stage as well as cumulative percentage of

total cost in each stage. From the table, we can see that the majority of the

observations are classified with only 2 tests.
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Figure 2.8: ROC curves generated using serial risk score classification procedure.

The bootstrap adjusted ROC curve shown as a solid black line was generated

from the algorithm specified in Section 2.3.5.1. The adjusted ROC curve rep-

resents the expected performance of the algorithm. The unadjusted ROC curve

is constructed from the unadjusted (apparent) error rates given by Sp and Se.

The 95% confidence interval curves are constructed using a percentile bootstrap

confidence interval.
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Table 2.8: Biomarker threshold values used to generate predictors for logic re-

gression procedure. Threshold values were generated from {5th, 10th, 15th

...} percentiles of the empirical distribution of each biomarker as noted in col-

umn 1; that is, for a biomarker X with value x and percentile p in the table,

P (X < x) ≤ p and P (X ≥ x) ≤ 1− p

Percentile (%) Avidity BED CD4 log(Viral Load)

0 10.4 0.06 0 3.2

5 40.2 0.26 83 3.7

10 71.5 0.38 166 4.4

15 88.7 0.54 227 4.7

20 95.3 0.73 268 6.0

25 96.8 0.92 302 6.5

30 97.8 1.09 340 7.3

35 98.6 1.28 376 8.0

40 99.1 1.49 412 8.5

45 99.5 1.69 449 9.0

50 99.8 1.86 479 9.3

55 100.0 2.02 508 9.6

60 - 2.20 542 9.9

65 - 2.39 581 10.2

70 - 2.54 620 10.5

75 - 2.72 672 10.8

80 - 2.85 729 11.1

85 - 3.06 787 11.4

90 - 3.31 869 11.8

95 100.5 3.79 1006 12.4

100 106.9 6.02 1948 14.9
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Table 2.11: Estimated regression coefficients to serial risk score rule chosen for

p = 0.30 when t = 0.10. The decision rules for classification are displayed under

the corresponding risk score model coefficients. Cumulative % classified refers to

the percentage of observations classified (Ŷ = +1 or −1) up to and including the

specified stage. Cumulative % of total cost is cost expenditure up to and including

the specified stage divided by the total cost at the end of stage 4.

Stage

1 2 3 4

Reg. Coefficients

Intercept 3.27 51.61 −72.73 −21.37

Avidity Index −0.05 −0.54 0.71 0.21

BED-CEIA −0.28 0.06 −0.14

Log Viral Load 0.41 0.01

CD4 2.7× 10−3

Decision Rule

Ŷ = −1 Ŝ < 0 Ŝ < 0.18 Ŝ < 0.27 Ŝ < 0.33

Ŷ = 0 0 ≤ Ŝ < 0.13 0.18 ≤ Ŝ < 0.51 0.27 ≤ Ŝ < 1.00 —

Ŷ = +1 Ŝ ≥ 0.13 Ŝ ≥ 0.51 Ŝ ≥ 1.00 Ŝ ≥ 0.33

Cumulative %

Classified
20.1 92.0 96.0 100

Cumulative % of

Total Cost
10.6 67.5 81.1 100

The serial risk score algorithm presented here is based on 4 diagnostic biomarkers: avidity,

BED-CEIA, CD4 and viral load. Avidity is shown measured as the avidity index (in %). BED

capture immunoassay (BED-CEIA) is shown measured in normalized optical density (OD-n).

The viral load assay is shown measured in copies/ml. CD4 is shown measured in cells/mm3.

For each decision rule in stage i, Ŝi = 1/(1 + e−Xiβi) where βi is given in the ith column of the

regression coefficients.
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2.5 Discussion

In this chapter, we described methods for generating serial testing algorithms for

diagnostic testing and classification with considerations for cost. The first is logic

regression with an extension for cost optimization which generates logic rules that

fit into a serial testing framework. The second is serial risk score classification

which uses risk score modeling in a serial testing structure. These two methods

create two non overlapping sets of algorithms for diagnostic testing.1

The serial testing approach is designed to make classifications before proceed-

ing to the next stage and incurring additional costs associated with additional

diagnostic tests. Using this methodology, we were able to realize at least a 62%

reduction in costs for identifying recently HIV infected persons (<1 year) using

up to 4 diagnostic tests compared to testing all persons with all 4 diagnostic tests

using standard risk score modeling based on logistic regression. In addition, the

algorithms created by both logic regression and serial risk score classification had

similar accuracy to logistic regression.

A challenge with the serial risk score classification approach we have proposed

is the computational intensity of the optimization. Each additional biomarker

exponentially increases the computation time as well as memory requirements to

store the generated algorithms. The bootstrapping adjustment procedure further

complicates the method, as each bootstrap sample requires a new set of gener-

ated algorithms. Fortunately, the approach is capable of being parallelized in a

computation cluster.

The implementation of serial risk score classification described in the applica-

tion was limited in a number of ways. The number of risk score thresholds for

consideration at each stage had been limited to deciles of the risk score space.

It would be useful to examine the sensitivity of the accuracy to this choice. We

1For instance, one rule not reproduceable by serial risk score classification is (B1 ∧ B2) ∨
(B3 ∧B4). We address a rule not possible with logic regression in Section 2.3.4.
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might consider introducing refinements to the risk score model such as interac-

tions or polynomial terms. We used logistic regression models to estimate the risk

score, but alternative models could be used such as a probit or a Bayesian proba-

bility classifier (Kim, 2013). There may also be restrictions in the ordering of the

assays that may require consideration. For example, it may be logistically impor-

tant to perform the CD4 assay first, because of the difficulty associated with cryo

preserving viable samples (Brookmeyer et al., 2013b; Laeyendecker et al., 2013).

In addition, there are considerations in choosing the tolerance of the loss func-

tion. Using a larger tolerance may lower costs further but may diminish accuracy.

A smaller tolerance may increase costs, but increase accuracy. Approaches for

choosing the tolerance could be studied. Finally, McIntosh and Pepe (2002), have

discussed modeling considerations for combining diagnostic tests which could be

incorporated into our risk score estimation within each stage. We discuss further

extensions for research in Chapter 4.

The method we have presented describes an approach to develop algorithms

for diagnostic testing that mediates the trade-off between cost and accuracy. The

method has shown to be accurate but with considerably less cost than logistic

regression in many situations of interest. We believe the serial testing algorithms

proposed can be a useful approach for screening populations in resource-limited

settings.

47



CHAPTER 3

Estimation of the Odds Ratio under

Misclassification of Cases

3.1 Introduction

In this chapter, we examine the case-control study design previously mentioned

to examine risk factors for disease where the case group may be misclassified.

Our focus is on the estimation of an odds ratio, ωy, for a specific case type y in

exposed and unexposed persons. The populations of interest here are the control

population, the true case population (called case I), and a population which can

be misclassified as cases (called case II). We assume an imperfect rule is employed

to separate the two case groups. If the risk profiles of the two case groups are very

different, ωy will be biased by the misclassification. We show that an adjustment

of the odds ratio estimate can be made using knowledge of the misclassification

rates of a particular algorithm to reduce the bias.

Our problem is motivated by studies where the interest is in examining risk

factors for incident infection in HIV. The control group in this type of study

are uninfected persons, whereas the cases are recently infected. The remarks

concerning behavior changes over time in Chapter 1 apply here. As a result,

the recently infected represent the leading edge of incidence risk and are most

informative in discovering contributing risk factors for infection.

The adjustment for misclassification between cases and controls and exposure

has been described previously (Barron, 1977; Greenland et al., 1983). The setting

48



we describe in this paper is distinguished from prior work in that misclassification

occurs between two different types of cases.

3.1.1 Preliminary Concepts

3.1.1.1 Notation

In this chapter, we redefine Y and Ŷ to take on values from {0, 1, 2}, correspond-

ing to the disease statuses: uninfected, case I and case II respectively to reduce

confusion in the notation. We will consider two kinds of study designs in this

chapter. The first in which the study population is randomly sampled in a cross-

sectional study. The second in which a random sample is drawn from each disease

status group in a case-control study.

Define the vector n = (n00, n01, n02, n10, n11, n12)
ᵀ where ney is the number

of observations where the dichotomous exposure variable E = e and the disease

status classification Ŷ = y. Define the single subscript notation nk to represent

the element in the vector n at the index k. A sample of size N is tabulated in the

2× 3 contingency table shown in Table 3.1 where the counts of all combinations

of disease status and exposure populate the cells of the table. The subscript ·
indicates either the sum over a column or a row, so that ni· denotes the row

totals and n·j denotes the column totals. We assume N is large and there are no

zero counts in any of the table cells.

Dependent on the sampling design, the counts in nmay represent samples from

the joint probability Pr(E, Ŷ ) in a random sampling setting or a conditional prob-

ability Pr(E|Ŷ ) as in a case control setting. Let p = (p00, p01, p02, p10, p11, p12)
ᵀ

define a probability distribution for n so that n ∼ Multinomial(N,p).

Define the odds ratio ωy of a case of type y and the control group as,
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Table 3.1: Sample counts divided into cells indicating classification of disease stage

and exposure E. ney represents the counts of persons who have been classified into

the table cell (e, y) using an imperfect classification rule.

Not Diseased Case I Case II

(Ŷ = 0) (Ŷ = 1) (Ŷ = 2) Total

(E = 0) n00 n01 n02 n0·
(E = 1) n10 n11 n12 n1·

Total n·0 n·1 n·2 N

ωy =
Pr(Ei = 1|Yi = y)

Pr(Ei = 0|Yi = y)

Pr(Ei = 0|Yi = 0)

Pr(Ei = 1|Yi = 0)
(3.1)

Note that an application of the Bayes rule to the conditional probabilities in

equation 3.1 leads to an equivalent statement in terms of the joint probabilities.

ωy =
Pr(E = 1, Y = y)

Pr(E = 0, Y = y)

Pr(E = 0, Yi = 0)

Pr(E = 1, Yi = 0)
(3.2)

3.1.1.2 Assumptions of Misclassification

In the general case of misclassification, we define a 6× 6 misclassification proba-

bility matrix Q = (qij), i, j = (1 . . . 6), where qij represents the probability that

an observation is classified into the count ni when the its true classification is in

nj. We make the assumption that each observed misclassification event is inde-

pendent; therefore, p = Qπ where π indicates the latent true probability vector

for n under no misclassification. In addition, we assume non-differential misclas-

sification between case I and case II, so that the probability of misclassification is

independent of the exposure E.

For misclassification of disease status, Y , the matrix Q is specified by the sen-

sitivity and specificity of the classification algorithm in a given sample. Exogenous
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estimates for sensitivity and specificity of a rule can be applied; however, misspec-

ification of these parameters may bias the estimates (Rothman et al., 2008).

Let Se and Sp denote the known sensitivity and specificity of a classification

algorithm for the sample under study. Then with no misclassification of the

control group and non-differential misclassification between the two cases, the

misclassification matrix Q is block diagonal and is specified,

Q =


1 0 0

0 Se (1− Sp)

0 (1− Se) Sp

⊗
 1 0

0 1


For a cross-sectional random sample of a given population, Se and Sp may be

specified using general population-based estimates; however, these estimates will

not apply to a case-control sample of the same population due to the oversam-

pling of cases. (Greenland et al., 1983). It is suggested a validation substudy be

conducted to gather these rates (Greenland et al., 1983). For now, we assume

that Q is correctly specified for the sample under study.

A classification algorithm where Se + Sp < 1 lies below the line of no-

discrimination in a ROC curve and would be considered a very poor classifier.

We make the weak assumption that classification algorithms in our discussion

have sensitivities and specificities where Se+ Sp > 1.

3.2 Estimators of Odds Ratio

3.2.1 Näıve Estimator

A näıve estimate of the odds ratio that does not account for misclassification is

derived by assuming Y = Ŷ . Using MLE estimates for Pr(E|Y ) in equation 3.1,
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we define the näıve odds ratio estimate,

ω̄y =
P̂ r(E = 1|Ŷi = y)

P̂ r(E = 0|Ŷi = y)

P̂ r(E = 0|Ŷi = 0)

P̂ r(E = 1|Ŷi = 0)
=
n1y/n·y
n0y/n·y

n00/n·0
n10/n·0 =

n1y

n0y

n00

n10

.

We note that the estimate is the same for a cross-sectional or case-control study.

An alternative formulation of the näıve estimator is given by a logistic model using

dummy indicator variables for disease status, e.g. I(Ŷi = y) = 1 if Ŷi = y. Define

the vector Ŷi = [1, I(Ŷi = 1), I(Ŷi = 2)]ᵀ. Then,

log

(
Pr(Ei = 1|Ŷi)

1− Pr(Ei = 1|Ŷi)

)
= β0 + β1I(Ŷi = 1) + β2I(Ŷi = 2) = βᵀŶi (3.3)

We also write the above model as

P (Ei = 1|Ŷi) =
exp(βᵀŶi)

1 + exp(βᵀŶi)
:= C(βᵀŶi)

In this formulation, ω̄y = exp(βy). Under no misclassification, it has been shown

that ω̄y computed through maximum likelihood yields consistent results for the

odds ratio ωy for both cross-sectional and case-control samples (Prentice and Pyke,

1979). Furthermore, the covariance matrix for β is valid for both study designs

and at worst conservative under case-control (Carroll et al., 1995).

To examine the misclassification bias of this model, we first enumerate the

possible values of C(Yi = y;β) = c1y over the range of Yi and let c0y = 1− c1y,

c00 =
1

1 + exp(β0)
c10 =

exp(β0)

1 + exp(β0)

c01 =
1

1 + exp(β0 + β1)
c11 =

exp(β0 + β1)

1 + exp(β0 + β1)

c02 =
1

1 + exp(β0 + β2)
c12 =

exp(β0 + β2)

1 + exp(β0 + β2)
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Solving for the β’s, we find the relationships,

β0 = log(c10/c00)

β1 = log(
c11c00
c01c10

)

β2 = log(
c12c00
c02c10

)

Let β∗ be the true coefficients for the model under no misclassification. We

define the bias of β1, ∆1(Se, Sp) = β∗ − β.

∆1(Se, Sp) = β∗ − β

= log

(
Se+ (1− Sp)γ02/γ01
Se+ (1− Sp)γ12/γ11

)

An examination of this equation reveals conditions for unbiasedness, namely, if

specificity is equal to one or if the odds ratio between case I and case II is 1. This

is demonstrated in the Figure 3.1, a plot of the percent error of the näıve estimate

across three misclassification rates by ω1/ω2. It is shown that the magnitude of

the percent error increases as the ratio ω1/ω2 diverges from 1, that is, as the risk

profiles of the two case groups diverge, bias of the näıve estimator increases. In

addition, as specificity increases the percent error decreases towards the line of no

error.
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Figure 3.1: Percent error of ω̄1 by ω1/ω2. Percent error is defined by

100% · (ω̄1 − ω1)/ω1. Each line corresponds to a different rule with parameters

sp, se labeled above the line.
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3.2.2 Matrix-adjusted Odds Ratio

One method for adjusting the odds ratio is to adjust the counts in each cell by

inverting a misclassification matrix Q. The expectation of counts of subjects in

each cell of table 3.1 can be expressed as a function of the latent true counts and

the misclassification rates. Here we describe a matrix-adjustment formulation

described previously by Greenland, Ericson, and Kleinbaum (1983). The matrix

adjustment draws on the assumption that En = QπN given by the multinomial.

This expression leads to an adjusted odds ratio estimate based on adjusted counts,

n̂. Using n in place for En, we estimate the true counts for the sample to be

n̂ = Q−1n,

3.2.2.1 Matrix-adjusted Odds Ratio under Random Sampling

The adjustment matrix Q is block diagonal so the inverse is easily specified,

Q−1 =


1 0 0

0 Sp
Se+Sp−1

−(1−Sp)
Se+Sp−1

0 −(1−Se)
Se+Sp−1

Se
Se+Sp−1

⊗
 1 0

0 1


The misclassification matrix Q is singular and not invertible if Se + Sp = 1,

which corresponds to a completely random classifier. Under random sampling, we

define the adjusted estimate for θ,

θ̂ = n̂/N = Q−1(n/N).

This estimate is a consistent estimator for θ if the misclassification rates are

known. Since n/N →p p and Q−1p = θ, then θ̂ →p θ. Using the adjusted

estimates for θij, we estimate ωy by

ω̂y =
θ̂1y

θ̂0y

θ̂00

θ̂10
(3.4)
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Hence, the matrix adjusted estimator for ω̂1 and ω̂2 are given by the equations,

ω̂1 =

(
Sp · n11 − (1− Sp)n12

Sp · n01 − (1− Sp)n02

)
n00

n10

. (3.5)

ω̂2 =

(
Se · n12 − (1− Se)n11

Se · n02 − (1− Se)n01

)
n00

n10

. (3.6)

By a delta method approximation, the log matrix adjusted odds ratio has an

approximate asymptotic normal distribution where

log(ω̂y) ∼ N (log(ωy), σ/
√
N),

where

σ2 =
1

p00
+

1

p10
+

Sp2p01 + (1− Sp)2p02
(Sp p01 − (1− Sp)p02)2

+
Sp2p11 + (1− Sp)2p12

(Sp p11 − (1− Sp)p12)2
− 4

We define a Wald confidence interval by the large sample normality of log(ω̂y) to

be

log(ω̂y)± zα/2σ̂(log(ω̂y))

where

σ̂(log(ω̂y)) =
√

1
n00

+ 1
n10

+ Sp2n01+(1−Sp)2n02

(Sp n01−(1−Sp)n02)2
+ Sp2n11+(1−Sp)2n12

(Sp n11−(1−Sp)n12)2
− 4/N .

The consistency of this matrix adjusted estimator is examined and compared

to the näıve estimator in Figure 3.2. The estimator appears to converge to the

true odds ratio with increasing sample size, whereas the näıve estimator is biased.
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Figure 3.2: Odds ratio estimates (OR) with the matrix adjusted estimator and

the näıve estimator with increasing sample size. Here the true odds ratio of X

for case I and controls is given by the dark horizontal line at OR = 2. The odds

ratio of X for case II and controls was set to 1. The classification algorithm has a

sensitivity of 0.84 and a specificity of 0.7.

3.2.2.2 Matrix-adjusted Odds Ratio under Case-Control Sampling

If Q is known for the specific case-control sample, then estimates for ωy have the

same form as given in Section 3.2.2.1.

Alternatively, an estimator for the odds ratio under case-control sampling may

be derived by adjusting for the oversampling of the cases. Let ρ∗j = Pr(Ŷi = j)

be the population prevalences of each disease status classification. Since under

case-control sampling the sample data arises from the conditional distribution

Pr(X = i|Ŷ = j), we reduce the problem to the one described in Section 3.2.2.1

by multiplying the conditional and marginal distributions to obtain the joint distri-

bution Pr(X = i, Ŷ = j), i.e. Pr(X = i, Ŷ = j) = Pr(X = i|Ŷ = j)Pr(Ŷ = j).
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Thus, the matrix adjusted estimator for ω̂1 and ω̂2 are given by the equations,

ω̂1 =

(
ρ∗1Sp · n11 − ρ∗2(1− Sp)n12

ρ∗1Sp · n01 − ρ∗2(1− Sp)n02

)
n00

n10

. (3.7)

ω̂2 =

(
ρ∗2Se · n12 − ρ∗1(1− Se)n11

ρ∗2Se · n02 − ρ∗1(1− Se)n01

)
n00

n10

. (3.8)

Again, the log matrix adjusted odds ratio has an approximate asymptotic

normal distribution where

log(ω̂y) ∼ N(log(ωy), σ/
√
n),

where

σ2 =
1

p00
+

1

p10
+

(ρ∗1)
2Sp2p01 + (ρ∗2)

2(1− Sp)2p02
(ρ∗1Sp p01 − ρ∗2(1− Sp)p02)2

+
(ρ∗1)

2Sp2p11 + (ρ∗2)
2(1− Sp)2p12

(ρ∗1Sp p11 − ρ∗2(1− Sp)p12)2
− 4

A confidence interval is defined similarly as in the previous section by substi-

tution of nij/N for pij in σ2.

3.2.3 Limitations of Matrix Adjustment Method

A limitation of this simple matrix adjustment method in our misclassification

framework is that it may lead to inadmissible estimates where π̂j /∈ (0, 1) for some

j = (1 . . . 6) (Viana, 1994). Since misclassification occurs only between cases,

attention is focused on probabilities pe1 and pe2 for exposure e.

According to our assumptions of misclassification, the relationship between

pe1, pe2 and the πe1, πe2 is stated thusly, pe1

pe2

 =

 Se (1− Sp)

(1− Se) Sp

 πe1

πe2

 .
Conditioning on Yi ∈ (1, 2) and E = e, we find pe1/(pe1 + pe2)

pe2/(pe1 + pe2)

 =

 Se (1− Sp)

(1− Se) Sp

 πe1/(πe1 + πe2)

πe2/(πe1 + πe2)

 . (3.9)
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where pe1 + pe2 = πe1 + πe2. From (3.9), we find that pe1/(pe1 + pe2) is a weighted

average of Se and (1−Sp) where πe1/(πe1+πe2) and πe2/(πe1+πe2) act as weights.

Likewise, pe2/(pe1+pe2) is a weighted average of (1−Se) and Sp with πe1/(πe1+πe2)

and πe2/(πe1 + πe2) as weights. Therefore, for matrix adjusted estimates of the

odds ratio to be valid, pe1 and pe2 must be subject to the constraints,

min(Se, (1− Sp)) ≤ pe1/(pe1 + pe2) ≤ max(Se, (1− Sp))

and

min((1− Se), Sp) ≤ pe2/(pe1 + pe2) ≤ max((1− Se), Sp).

A similar logic can be applied in the case control situation for the conditional

probabilities. If any of the empirical proportions, p̂e1 = ne1/N , p̂e2 = ne2/N fall

outside of these constraints, we may be subject to inadmissible estimates.

The following example can provide insight into this issue. Consider the cross-

sectional sample of 2000 observations presented in Table 3.2.3 where case I and

case II were classified with an algorithm with specificity of 90% and sensitivity of

60%. This sample fails the condition where pe1/(pe1 + pe2) > min(Se, (1 − Sp)),

(.095 > .1). If we continue with the matrix adjusted estimator to estimate ω1, we

find an odds ratio of −35 which is not valid.

Table 3.2: Example data for limiting case of matrix adjustment

Not Diseased Case (I) Case (II)

(Ŷ = 0) (Ŷ = 1) (Ŷ = 2) Total

(E = 0) 951 6 57 1014

(E = 1) 873 21 92 986

Total 1824 27 149 2000
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3.3 Multinomial Logistic Regression Estimator

Here we develop a multinomial logistic regression model that is based on a max-

imum likelihood method and not subject to the admissibility constraints of the

matrix adjusted estimator. This method can also extend our estimation discussion

beyond a dichotomous risk factor. The multinomial regression model assumes the

log odds of either case I or case II is linear in E and is given by,

log
P (Yi = j|Ei)
P (Yi = 0|Ei)

= βj0 + βj1Ei, for j = 1, 2. (3.10)

Solving for P (Yi = y|Ei) := Φy(Ei;β), we find an expression for the probabilities

for each disease status defined by the model.

Φ0(Ei;β) =
1

1 + exp(β10 + β11Ei) + exp(β20 + β21Ei)

Φ1(Ei;β) =
exp(β10 + β11Ei)

1 + exp(β10 + β11Ei) + exp(β20 + β21Ei)

Φ2(Ei;β) =
exp(β20 + β21Ei)

1 + exp(β10 + β11Ei) + exp(β20 + β21Ei)

From this model definition, we find the following result,

βj1 = log

(
P (Yi = 1|Ei = 1)

P (Yi = 0|Ei = 1)
− logP (Yi = 1|Ei = 0)

P (Yi = 0|Ei = 0)

)
= log

(
P (Yi = 1|Ei = 1)P (Yi = 0|Ei = 0)

P (Yi = 1|Ei = 0)P (Yi = 0|Ei = 1)

)
.

Hence with a dichotomous predictor, the interpretation of the coefficient βj1 for

j = 1, 2 is the log odds ratio of case type (j) to the uninfected group. With a

continuous predictor, βj1 describes the log odds ratio for case type (j) vs. the

uninfected group or the change in log odds associated with a one unit increase in

E.
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3.3.1 Multinomial Logistic Regression Under Cross-sectional Sampling

In a cross-sectional study with misclassification, the sampling model yields the

following conditional log likelihood,

logL =
N∑
i=1

2∑
j=0

I(Ŷi = j) logP (Ŷi = j|Ei = e) (3.11)

To adjust for misclassification, we derive P (Y ∗i = j|Ei = e) as a function of

the misclassification rates and the true classification model.

P (Ŷi = j|Ei = e) =
2∑
y=0

P (Ŷi = j|Yi = y, Ei = e)P (Yi = y|Ei)

=
2∑
y=0

P (Ŷi = j|Yi = y)P (Yi = y|Ei) (3.12)

This allows us to write the expression for the conditional likelihood incorpo-

rating the misclassification rates.

logL =
N∑
i=1

2∑
j=0

I(Ŷi = j) log
2∑
y=0

qj(y+1)Φy(Ei;β)

where qj(y+1) is the element at the jth row and (y + 1)st column of the misclas-

sification matrix Q1. The β parameters are solved through maximum likelihood

methods. Estimating equations for this model are given by the partial derivatives

of the likelihood with respect to β. They are listed in Appendix B.

3.3.2 Multinomial Logistic Regression Under Case-control Sampling

The model 3.10 based on P (Yi|Ei) can be applied to a case-control setting to

produce consistent non-intercept parameters (Prentice and Pyke, 1979); however,

the formulation of the likelihood is altered to include an inclusion variable. We

introduce a probability of inclusion in the study to account for oversampling of

1Here this notation exploits the fact that Q is composed of two identical blocks diagonally.
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either of the cases. We introduce a variable Z which represents if an individual is

selected for the study or not. The log likelihood now is conditional on E and the

inclusion indicator Z and equation 3.11 becomes

logL =
N∑
i=1

2∑
j=0

I(Ŷi = j) logP (Ŷi = j|Ei = e, Z).

Define ηj = Pr(Ŷi = j|Zi = 1) = nj/N where nj is the sample size of the group

with disease status j and N is the total sample size. Also as before define

ρ∗j = Pr(Ŷi = j) =
∑
i

Pr(Ŷi = j|Yi = i)Pr(Yi = i).

We derive the new sampling probability in the following way,

Pr(Ŷi = yi|Ei, Zi) =
Pr(Zi = 1|Ŷi)Pr(Ŷi|Ei)∑2

y=0 Pr(Zi = 1|Ŷi = y) · Pr(Ŷi = y|Ei)

=
(ηyi/ρ

∗
yi

)Pr(Ŷi = yi|Ei)∑2
y=0(ηj/ρ

∗
j) · Pr(Ŷi = j|Ei)

This assumes conditional independence between the E and the sampling indicator

Z given Y . Thus in a case-control sampling setting the likelihood is specified by,

logL =
N∑
i=1

2∑
j=0

I(Ŷi = j) log
(ηyi/ρ

∗
yi

)
∑2

y=0 qj(y+1)Φy(E;β)∑2
y=0(ηj/ρ

∗
j) ·
∑2

y=0 qj(y+1)Φy(E;β)

where qj(y+1) is the element at the jth row and (y + 1)st column of the misclassi-

fication matrix Q. Estimation continues in the usual fashion through maximum

likelihood.

3.3.3 Identifiability Conditions

Identifiability of the β1 and β2 parameters in this model can be shown using

a similar argument for the misclassified probit model case given by Hausman

et al. (1998). The argument hinges upon monotonicity conditions on fy(E; β) =
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Pβ(Ŷi|Ei). We present partial derivatives of fy(E; β) in Appendix B. It is clear

from the partial derivatives of f0(E; β) that it is monotonically decreasing. For

f1(E; β) and f2(E; β) to be monotonically increasing, inspection of the partial

derivatives of each reveal two conditions that must be fulfilled.

Se(1− Φ1(E;β))− (1− Sp)Φ2(E;β) > 0 (3.13)

(1− Sp)(1− Φ2(E;β))− SeΦ1(E;β) > 0 (3.14)

The expression 3.13 can also be written as

Se

1− Sp
>

Φ2(E;β)

Φ0(E;β) + Φ2(E;β)

which will be always satisfied when Se+ Sp > 1.

Similarly, expression 3.14 is

Se

1− Sp
<

Φ0(E;β) + Φ1(E;β)

Φ1(X;β)

which will be always satisfied when Se+ Sp > 1.

Both consistency and asymptotic normality of the log odds ratio ωy follow

from identifiability of the β from standard maximum likelihood theorems (Newey

and McFadden, 1994).

3.3.4 Simulation

We evaluated the performance of the odds ratio estimators with misclassification

using a simulation of 1000 data sets. In each simulation, we have modeled the

latent counts n∗ using a multinomial distribution where the probability vector is

given by the model (3.10). The observed counts n are modeled using a Bernoulli

random variable conditional on selected sensitivities and specificities.

We generated data for the simulations using the logistic model (3.10) where

coefficients in the logistic model were specified, βj = [bj log(wj)] for j = (1, 2).
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The bj parameter will affect the prevalence of each case type in the population.

We define the bj parameters so that the prevalence of case I is set to 10%, the

prevalence of case II is set to 20% and control prevalence is set to 30%. The

classification of each case type was determined by Ŷi|Yi ∼ BernoulliŶ |Y (p) where

p = Se if Y = 1 and p = Sp if Y = 2.

We considered two sampling situations: (1) the situation a sample of size N

= 2000 is drawn randomly from the above model and (2) a case-control sampling

situation. For case-control sampling, we specified equal allocation of 500 persons

for the samples of control and case types. We sampled each from a large pool

of � 1500 persons from the logistic model specified above. Prevalences of each

classified case type was given and assumed known for each estimation method.

In Table 3.3, we provide the results of the simulation of a cross-sectional study

specified by situation (1). We find that the näıve estimator can provide consistent

results when the ω2 = ω1, i.e. the risk profiles between the two case types are the

same. Otherwise, the näıve estimates are predictably biased downward if ω2 < ω1

and upward if ω2 > ω1. The multinomial regression estimator produces estimates

that are fairly close to the true values and the coverage of confidence interval is

close to the expected 95%. Matrix adjusted estimates of ω1 were nearly identical

to the presented results for the multinomial estimator and we omit the results for

display.

In Table 3.4, we display results of the simulation of a case control study. The

adjusted estimates are close to the true values and the coverage of the confidence

interval is again close to the expected 95%. We note that in the case of when

ω1 = ω1, the näıve estimator performs well with a narrower confidence interval

than the other method. Considerations should be made as to the whether handling

misclassification is necessary as there is a penalty in the variance when adjusting

for misclassification.
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Table 3.3: Monte Carlo simulation results 1 with cross-sectional sampling com-

paring the näıve and likelihood adjusted multinomial regression estimators for the

odds ratio, ω1 = 2, of case I (Y = 1) to control group (Y = 0). Results presented

for each estimation method are estimates for the odds ratio ω1, standard error

(SE) and the coverage probability of the 95% confidence interval (%In).

Naive Estimator Multinomial Regression

ω2 Sp Se ω̄1 SE %In ω̂1 SE %In

1.00 0.50 0.93 1.39 0.12 11.1% 2.19 0.35 96.9%

0.70 0.84 1.49 0.13 37.5% 2.11 0.29 95.9%

0.90 0.59 1.69 0.17 79.7% 2.09 0.27 95.8%

1.33 0.50 0.93 1.63 0.12 55.3% 2.14 0.33 97.2%

0.70 0.84 1.71 0.13 73.4% 2.13 0.28 95.5%

0.90 0.59 1.83 0.17 90.2% 2.09 0.26 96.0%

2.00 0.50 0.93 2.03 0.12 94.0% 2.13 0.31 96.9%

0.70 0.84 2.03 0.13 94.9% 2.10 0.26 96.1%

0.90 0.59 2.05 0.17 95.0% 2.11 0.25 95.3%

4.00 0.50 0.93 2.83 0.12 19.0% 2.09 0.29 97.3%

0.70 0.84 2.66 0.14 49.1% 2.07 0.25 95.4%

0.90 0.59 2.41 0.18 83.9% 2.09 0.25 95.6%

1Here we performed 1000 simulations. On each simulation, we sampled 500 values for the

control and each case group (N = 1500) from 106 generated values from a multinomial where

for Yi ∈ (0, 1, 2), and Ei ∈ (0, 1) P (Yi = y|Ei) = 1/
∑2
i=0 exp((βi − βy)ᵀ ~Ei), (β0 = 0), βj =

[αj log(wj)] for j = (1, 2); αj was chosen for the prevalences of case I and case II to be 10% and

20% respectively. The classification of case type was determined Ŷ |Y ∼ BernoulliŶ |Y (p) where

p = Se if Y = 1 and p = Sp if Y = 2. Table cells represent average values over 1000 simulations.
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Table 3.4: Monte Carlo simulation results 1 with case-control sampling comparing

the näıve and likelihood adjusted multinomial regression estimators for the odds

ratio, ω1 = 2, of case I (Y = 1) to control group (Y = 0). Results presented for

each estimation method are estimates for the odds ratio ω1, standard error (SE)

and the coverage probability of the 95% confidence interval (%In).

Naive Estimator Multinomial Regression

ω2 Sp Se ω̄1 SE %In ω̂1 SE %In

1.00 0.93 0.50 1.40 0.13 17.1% 2.09 0.28 95.2%

0.84 0.70 1.50 0.13 35.2% 2.07 0.23 96.1%

0.59 0.90 1.69 0.13 71.1% 2.04 0.17 95.3%

1.33 0.93 0.50 1.63 0.13 62.8% 2.11 0.27 96.9%

0.84 0.70 1.70 0.13 73.3% 2.06 0.22 95.0%

0.59 0.90 1.82 0.13 87.9% 2.04 0.17 95.0%

2.00 0.93 0.50 2.00 0.13 93.3% 2.05 0.25 94.8%

0.84 0.70 2.03 0.13 94.6% 2.07 0.21 95.4%

0.59 0.90 2.03 0.13 95.2% 2.04 0.17 95.5%

4.00 0.93 0.50 2.83 0.13 25.9% 2.07 0.24 96.5%

0.84 0.70 2.64 0.13 44.8% 2.04 0.21 96.6%

0.59 0.90 2.38 0.13 76.7% 2.03 0.16 96.1%

1Here we performed 1000 simulations. On each simulation, we sampled 500 values for the

control and each case group (N = 1500) from 106 generated values from a multinomial where

for Yi ∈ (0, 1, 2), and Ei ∈ (0, 1) P (Yi = y|Ei) = 1/
∑2
i=0 exp((βi − βy)ᵀ ~Ei), (β0 = 0), βj =

[αj log(wj)] for j = (1, 2); αj was chosen for the prevalences of case I and case II to be 10% and

20% respectively. The classification of case type was determined Ŷ |Y ∼ BernoulliŶ |Y (p) where

p = Se if Y = 1 and p = Sp if Y = 2. Table cells represent average values over 1000 simulations.
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3.4 Discussion

In this chapter we discussed methods to adjust the odds ratio under misclassifica-

tion in a cross-sectional and case-control study design. These methods are useful

in a case control setting where there are two types of cases. This can be impor-

tant in HIV research where the recently infected population can characterize risk

factors for infections that are happening right now rather than some time in the

past.

We presented two methods for reducing the bias of misclassification. One

method is based on a matrix adjustment on the expected counts of the exposure

and disease status. The second method, based on multinomial regression, is a

likelihood based method that is constrained in the estimation to avoid the prob-

lems of the matrix adjustment. These estimators have shown good performance

in simulations of a cross-sectional study and in a case-control study.

There are several extensions to this work presented in this chapter. Covariates

can be introduced into the multinomial logistic regression model to control for

confounding or interaction effects as well as increase power. This misclassification

rates can also be dependent on risk factors or other covariates as well. In addition,

the multinomial regression likelihood extends to allow for the estimation of mis-

classification rates as well under certain regularity and identifiability conditions

(Lewbel, 2000).

We note that these methods produce more conservative confidence intervals

than the näıve estimator; therefore, in situations where the specificity of a classifier

is extremely high (with a suitable sensitivity as well), or when the risk profiles of

the two case groups are equivalent, it may be advisable to use the näıve estimator

instead of one that accounts for misclassification.
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CHAPTER 4

Discussion

The goal of this dissertation was to examine problems in diagnostic testing arising

out of current problems in HIV research. We have presented two novel approaches

for developing “serial testing algorithms” for diagnostic testing while controlling

costs: logic regression and serial risk score classification. These approaches were

motivated by screening for recent HIV infection using multiple biomarkers. We

have also discussed methods for adjusting an odds ratio in a case control study

using an imperfect classification algorithm. Taken together, these approaches can

be applied to examine risk factors for incident infections of HIV.

The serial testing algorithms we have described in Chapter 2 have shown to

produce a great reduction of cost (at least 62%) in testing a cohort of HIV infected

persons while maintaining the accuracy of a logistic regression approach. The logic

regression method presented the highest cost savings among the studied methods,

but the bootstrap confidence intervals suggest a larger variance in estimation of

sensitivity and specificity when compared to serial risk score classification.

These classification methods could be extended in a number of directions. It

would be useful to incorporate covariates into the risk score modeling performed

at each stage of a serial risk score algorithm. For example, in our HIV application,

it may be helpful to incorporate covariates such as HIV transmission group (e.g.,

intravenous drug use, men who have sex with men) and age. Furthermore, the

modeling procedures we implemented tended to overfit the data in each stage. A

simple variable selection procedure computed in each stage should help reduce this
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effect and produce algorithms that are transferable and cross validation methods

could be applied during optimization to reduce the variability of the accuracy

estimates and overfitting.

Our problem is motivated by studies in HIV where the interest is in examining

risk factors for incident infection. The control group in this type of study are

uninfected persons, whereas the cases are recently infected. The recently infected

represent the leading edge of incidence and are most informative in discovering

contributing risk factors for infection. The issue is that while we can easily identify

infection status, it is difficult to separate long-standing (chronic) infections from

recent infections. The disease history of each person may be unknown, so other

methods for classification must be used. An early method in HIV research used

detuned assays to identify recent infections (Janssen et al., 1998). Another recent

method has been described to use serological biomarkers to a determine disease

status (Laeyendecker et al., 2013). Neither algorithm provided perfectly accurate

classification.

The adjusted odds ratios that are discussed in Chapter 3 are shown to provide

consistent estimates under misclassification. One limitation of the estimation of

the adjusted odds ratio is the assumption of known misclassification rates. In prac-

tice, these rates can vary between populations and may not be known and should

be accounted for in the variance of our estimates. One can avoid this problem by

estimating the misclassification matrix using a validation substudy. This would

allow for direct estimation of misclassification rates in a sample without knowl-

edge of the prevalence rates and would allow for incorporation of the sampling

error of the misclassification. In addition, one method for accounting for the extra

variance is to use a bootstrapping method on a validation subsample to determine

a bootstrap joint distribution for the misclassification rates. This distribution can

be incorporated into the estimates to account for the extra variance.

It may also be useful to account for errors in the formulation of the true disease
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classification Y . For example, in our HIV application, the calendar date of infec-

tion was based on midpoint imputation of the interval of seroconversion, which

would introduce error into Y . Methods have been suggested for incorporating

uncertainties in the dates of infection in HIV studies, and their extensions to our

methods would be useful (Brookmeyer et al., 2013a; Sweeting et al., 2010).

The methods we have discussed were presented with a focus on problems mo-

tivated by HIV research but can be applied in other contexts. We believe our

methods can be a useful approach in settings where diagnostic screening proce-

dures are cost prohibitive in resource limited areas or even in cases where the gold

standard test is painful or time-intensive.

70



CHAPTER 5

Bibliography

Barron, B. A. (1977), “The effects of misclassification on the estimation of relative

risk,” Biometrics, 414–418.

Brookmeyer, R., Konikoff, J., Laeyendecker, O., and Eshleman, S. H. (2013a),

“Estimation of HIV incidence using multiple biomarkers,” American Journal of

Epidemiology, 177, 264–272.

Brookmeyer, R., Laeyendecker, O., Donnell, D., and Eshleman, S. H. (2013b),

“Cross-Sectional HIV Incidence Estimation in HIV Prevention Research,” Jour-

nal of Acquired Immune Deficiency Syndromes, 63, S233–S239.

Brookmeyer, R. and Quinn, T. C. (1995), “Estimation of current human im-

munodeficiency virus incidence rates from a cross-sectional survey using early

diagnostic tests,” American Journal of Epidemiology, 141, 166–172.

Carroll, R., Wang, S., and Wang, C. (1995), “Prospective analysis of logistic case-

control studies,” Journal of the American Statistical Association, 90, 157–169.

Celum, C. L., Buchbinder, S. P., Donnell, D., Douglas, J. M., Mayer, K., Koblin,

B., Marmor, M., Bozeman, S., Grant, R. M., Flores, J., et al. (2001), “Early

human immunodeficiency virus (HIV) infection in the HIV Network for Preven-

tion Trials Vaccine Preparedness Cohort: risk behaviors, symptoms, and early

plasma and genital tract virus load,” Journal of Infectious Diseases, 183, 23–35.

Chawla, A., Murphy, G., Donnelly, C., Booth, C., Johnson, M., Parry, J., Phillips,

A., and Geretti, A. (2007), “Human immunodeficiency virus (HIV) antibody

71



avidity testing to identify recent infection in newly diagnosed HIV type 1 (HIV-

1)-seropositive persons infected with diverse HIV-1 subtypes,” Journal of clin-

ical microbiology, 45, 415–420.

Chow, C. (1970), “On optimum recognition error and reject tradeoff,” Information

Theory, IEEE Transactions on, 16, 41–46.

Crepaz, N., Marks, G., Mansergh, G., Murphy, S., Miller, L. C., Appleby, P. R.,

et al. (2000), “Age-related risk for HIV infection in men who have sex with

men: examination of behavioral, relationship, and serostatus variables,” AIDS

Education and Prevention, 12, 405–415.

Eaton, L., Flisher, A. J., and Aarø, L. E. (2003), “Unsafe sexual behaviour in

South African youth,” Social Science & Medicine, 56, 149–165.

Efron, B. (1983), “Estimating the error rate of a prediction rule: improvement on

cross-validation,” Journal of the American Statistical Association, 78, 316–331.

Efron, B. and Tibshirani, R. (1993), An introduction to the bootstrap, vol. 57,

CRC press.

Etzioni, R., Kooperberg, C., Pepe, M., Smith, R., and Gann, P. (2003), “Com-

bining biomarkers to detect disease with application to prostate cancer,” Bio-

statistics, 4, 523–538.

Greenland, S., Ericson, C., and Kleinbaum, D. G. (1983), “Correcting for misclas-

sification in two-way tables and matched-pair studies,” International Journal

of Epidemiology, 12, 93–97.

Hargrove, J., Humphrey, J., Mutasa, K., Parekh, B., McDougal, J., Ntozini, R.,

Chidawanyika, H., Moulton, L., Ward, B., Nathoo, K., et al. (2008), “Improved

HIV-1 incidence estimates using the BED capture enzyme immunoassay,” AIDS,

22, 511.

72



Hausman, J. A., Abrevaya, J., and Scott-Morton, F. M. (1998), “Misclassification

of the dependent variable in a discrete-response setting,” Journal of Economet-

rics, 87, 239–269.

Janssen, R. S., Satten, G. A., Stramer, S. L., Rawal, B. D., O’Brien, T. R.,

Weiblen, B. J., Hecht, F. M., Jack, N., Cleghorn, F. R., Kahn, J. O., et al.

(1998), “New testing strategy to detect early HIV-1 infection for use in incidence

estimates and for clinical and prevention purposes,” JAMA: the journal of the

American Medical Association, 280, 42–48.

Jeske, D. R., Liu, Z., Bent, E., and Borneman, J. (2007), “Classification rules that

include neutral zones and their application to microbial community profiling,”

Communications in Statistics − Theory and Methods, 36, 1965–1980.

Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F., Rinaldo,

C. R., et al. (1987), “The Multicenter AIDS Cohort Study: rationale, organi-

zation, and selected characteristics of the participants,” American Journal of

Epidemiology, 126, 310–318.

Kim, H. (2013), “Sequential Neutral Zone Classifier,” Unpublished paper pre-

sented at Quality and Productivity Research Conference 2013.

Laeyendecker, O., Brookmeyer, R., Cousins, M. M., Mullis, C. E., Konikoff, J.,

Donnell, D., Celum, C., Buchbinder, S. P., Seage, G. R., Kirk, G. D., et al.

(2013), “HIV incidence determination in the United States: a multiassay ap-

proach,” Journal of Infectious Diseases, 207, 232–239.

Lewbel, A. (2000), “Identification of the binary choice model with misclassifica-

tion,” Econometric Theory, 16, 603–609.

Mansergh, G. and Marks, G. (1998), “Age and risk of HIV infection in men who

have sex with men,” AIDS, 12, 1119–1128.

73



McIntosh, M. W. and Pepe, M. S. (2002), “Combining Several Screening Tests:

Optimality of the Risk Score,” Biometrics, 58, pp. 657–664.

Newey, W. K. and McFadden, D. (1994), “Large sample estimation and hypothesis

testing,” Handbook of Econometrics, 4, 2111–2245.

Nkengasong, J. N., Maurice, C., Koblavi, S., Kalou, M., Yavo, D., Maran, M.,

Bile, C., Nguessan, K., Kouadio, J., Bony, S., Wiktor, S. Z., and Greenberg,

A. E. (1999), “Evaluation of HIV serial and parallel serologic testing algorithms

in Abidjan, Cote d’Ivoire,” AIDS, 13, 109–17.

Parpia, Z. A., Elghanian, R., Nabatiyan, A., Hardie, D. R., and Kelso, D. M.

(2010), “p24 antigen rapid test for diagnosis of acute pediatric HIV infection,”

Journal of Acquired Immune Deficiency Syndromes, 55, 413.

Pepe, M. S. (2003), The statistical evaluation of medical tests for classification

and prediction., Oxford, United Kingdom: Oxford University Press.

Pettifor, A. E., Rees, H. V., Kleinschmidt, I., Steffenson, A. E., MacPhail, C.,

Hlongwa-Madikizela, L., Vermaak, K., and Padian, N. S. (2005), “Young peo-

ple’s sexual health in South Africa: HIV prevalence and sexual behaviors from

a nationally representative household survey,” AIDS, 19, 1525–1534.

Pines, H. A., Gorbach, P. M., Weiss, R. E., Shoptaw, S., Landovitz, R. J., Javan-

bakht, M., Ostrow, D. G., Stall, R. D., and Plankey, M. (2013), “Sexual risk tra-

jectories among MSM in the United States: implications for pre-exposure pro-

phylaxis delivery,” Journal of Acquired Immune Deficiency Syndromes (1999).

Prentice, R. L. and Pyke, R. (1979), “Logistic disease incidence models and case-

control studies,” Biometrika, 66, 403–411.

Rao, R. C. (1947), “The Problem Of Classification And Distance Between Two

Populations,” Nature, 159, 30–31.

74



Rothman, K. J., Greenland, S., and Lash, T. L. (2008), Modern Epidemiology,

Wolters Kluwer Health.

Ruczinski, I., Kooperberg, C., and LeBlanc, M. (2003), “Logic Regression,” Jour-

nal of Computational and Graphical Statistics, 12, 475–511.
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Appendix A

Comparison of Tolerance Values in Serial Risk

Score Simulation

Here we provide a comparison of the sensitivity and specificity and ACS over

different tolerance values from the simulation in Section 2.3.5.3. We see from

these tables that using a larger tolerance may lower costs further but may diminish

accuracy.
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Appendix B

Technical Details for the Adjusted Multinomial

Logistic Model

In this appendix, we derive the estimating equations for the misclassification ad-

justed multinomial logistic model. We list the partial derivatives of the log likeli-

hood with respect to each β parameter below. Estimating equations are formed

by setting each partial derivative to zero.

∂

∂β00
L =

N∑
i

I(Ŷi = 1)
SeΦ1(Xi;β)(1− Φ1(Xi;β))− (1− Sp)Φ1(Xi;β)Φ2(Xi;β)

SeΦ1(Xi;β) + (1− Sp)Φ2(Xi;β)

+I(Ŷi = 2)
(1− Se)Φ1(Xi;β)(1− Φ1(Xi;β))− SpΦ1(Xi;β)Φ2(Xi;β)

(1− Se)Φ1(Xi;β) + (Sp)Φ2(Xi;β)

−I(Ŷi = 0)Φ1(Xi;β)

(B.1)

∂

∂β01
L =

N∑
i

I(Ŷi = 1)
XiSeΦ1(Xi;β)(1− Φ1(Xi;β))−Xi(1− Sp)Φ1(Xi;β)Φ2(Xi;β)

SeΦ1(Xi;β) + (1− Sp)Φ2(Xi;β)

+I(Ŷi = 2)
Xi(1− Se)Φ1(Xi;β)(1− Φ1(Xi;β))−XiSpΦ1(Xi;β)Φ2(Xi;β)

(1− Se)Φ1(Xi;β) + (Sp)Φ2(Xi;β)

−I(Ŷi = 0)XiΦ1(Xi;β)

(B.2)
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∂

∂β10
L =

N∑
i

I(Ŷi = 1)
(1− Sp)Φ2(X;β)(1− Φ2(X;β))− SeΦ1(X;β)Φ2(X;β)

SeΦ1(X;β) + (1− Sp)Φ2(X;β)

+I(Ŷi = 2)
SpΦ2(X;β)(1− Φ2(X;β))− (1− Se)Φ1(X;β)Φ2(X;β)

(1− Se)Φ1(X;β) + (Sp)Φ2(X;β)

−I(Ŷi = 0)Φ2(Xi;β)

(B.3)

∂

∂β11
L =

N∑
i

I(Ŷi = 1)
X(1− Sp)Φ2(X;β)(1− Φ2(X;β))−XSeΦ1(X;β)Φ2(X;β)

SeΦ1(X;β) + (1− Sp)Φ2(X;β)

+I(Ŷi = 2)
XSpΦ2(X;β)(1− Φ2(X;β))−X(1− Se)Φ1(X;β)Φ2(X;β)

(1− Se)Φ1(X;β) + (Sp)Φ2(X;β)

−I(Ŷi = 0)XΦ2(X;β)

(B.4)

We also derive partial derivatives of the functions fy := P (Ŷ = y|X). Mono-

tonicity of these functions will imply identification of the multinomial logistic

regression likelihood specified in Section 3.3.

f0(X; β) = Φ0(X;β)

f1(X; β) = SeΦ1(X;β)− (1− Sp)Φ2(X;β)

f2(X; β) = (1− Se)Φ1(X;β)− (Sp)Φ2(X;β)

∂

∂β10
f0(X; β) = −Φ0Φ1

∂

∂β11
f0(X; β) = −XΦ0Φ1

∂

∂β20
f0(X; β) = −Φ0Φ2

∂

∂β21
f0(X; β) = −XΦ0Φ2

(B.5)
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∂

∂β00
f1(X; β) = SeΦ1(Xi;β)(1− Φ1(Xi;β))− (1− Sp)Φ1(Xi;β)Φ2(Xi;β)

∂

∂β01
f1(X; β) = XiSeΦ1(Xi;β)(1− Φ1(Xi;β))−Xi(1− Sp)Φ1(Xi;β)Φ2(Xi;β)

∂

∂β10
f1(X; β) = (1− Sp)Φ2(X;β)(1− Φ2(X;β))− SeΦ1(X;β)Φ2(X;β)

∂

∂β11
f1(X; β) = X(1− Sp)Φ2(X;β)(1− Φ2(X;β))−XSeΦ1(X;β)Φ2(X;β)

(B.6)
∂

∂β00
f2(X; β) = (1− Se)Φ1(Xi;β)(1− Φ1(Xi;β))− SpΦ1(Xi;β)Φ2(Xi;β)

∂

∂β01
f2(X; β) = Xi(1− Se)Φ1(Xi;β)(1− Φ1(Xi;β))−XiSpΦ1(Xi;β)Φ2(Xi;β)

∂

∂β10
f2(X; β) = SpΦ2(X;β)(1− Φ2(X;β))− (1− Se)Φ1(X;β)Φ2(X;β)

∂

∂β11
f2(X; β) = XSpΦ2(X;β)(1− Φ2(X;β))−X(1− Se)Φ1(X;β)Φ2(X;β)

(B.7)
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Appendix C

R Source Code Listings

The following code is provided to generate a serial risk score classification rule as

well as make predictions for a serial risk score classification rule.

library(gtools) # permutations

library(caTools)

sensspec <- function( true, guess ) {

# Description: Calculate sensitivity, specificity,

## true positives (tp), true negatives (tn), false

## positives (fp) and false negatives (fn)

# Usage: sensspec( true, guess )

# Arguments: true: Vector of true values in binary test

## guess: Vector of estimated values of binary test

# Output: List of sensitivity (sens) and specificity (spec) and

## a vector of true positives (tp), true negatives (tn),

## false positives (fp) and false negatives (fn).

sens <- sum( as.integer( true == 1 & guess == 1) ) / sum( as.

integer( true == 1 ))

spec <- sum( as.integer( true == 0 & guess == 0) ) / sum( as.

integer( true == 0 ))

tp <- sum( as.integer( true == 1 & guess == 1) )

tn <- sum( as.integer( true == 0 & guess == 0) )

fp <- sum( as.integer( true == 0 & guess == 1) )

fn <- sum( as.integer( true == 1 & guess == 0) )
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list( sens = sens, spec = spec, c = c(tp,tn,fp,fn) )

}

srsc <- local({

# Description: Generate a serial risk score classification rule set

## from training data. This function writes a function

## for some number of biomarkers and then evaluates the

## function

#Usage:

## srsc( data, outcome, markers, costs, outputfile )

#Arguments:

## data: Data frame from which to train rules

## outcome: String with name of the outcome variable in data

## markers: A string vector contain the names of the markers in data

## costs: A vector of costs corresponding to markers

## outputfile: name of file to write set of rules

##Output:

# A set of serial risk score classification rules are written to

# outputfile

buildFunction <- function(numMarkers ) {

strmodels <- paste( paste( rep("model.", numMarkers),

seq( 1, numMarkers), sep = "" ), collapse = "," )

strthresholds <- paste( rep("crs.", numMarkers - 1),

seq( 1, numMarkers - 1 ), sep = "" )

strthresholds <- c( strthresholds, strthresholds)

strthresholds <- strthresholds[ order( strthresholds ) ]

strthresholds <- paste( c( paste( strthresholds, c(".1", ".2"),

sep = "" ), paste("crs.", numMarkers, sep = "")), collapse = ",")
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strsetup <- paste( "

numcols <- length(markers)

numclass <- rep( 0, numcols )

perms <- permutations(numcols,numcols)

divisions <- 10

cat(\"id,sens,spec,tp,tn,fp,fn,avgcost,", strmodels,",",

strthresholds, "\\n\", file = outputfile, append = FALSE)

data$class <- 0

neutral.0 <- data

for(i in 1:nrow(perms) ) {

", sep = "")

strbody <- recurseFunction( numMarkers, numMarkers )

strend <- "}"

paste( strsetup, strbody, strend, sep = "")

}

recurseFunction <- function( numMarkers, totalMarkers ) {

if( numMarkers < 2) {

strbegin <- "

df.%d <- get( paste( \"neutral.\", %d - 1, sep = \"\") )

y <- with( df.%d, get( outcome ))

testlist <- list()

for( testidx in seq_len( %d ) ) {

testlist[[ testidx ]] <- with( df.%d, get(

markers[ perms[i, testidx] ] ))

}

logt.formula <- as.formula(paste(\"y ˜ \",

paste( \"testlist[[\", seq( 1, %d ) , \"]]\",

collapse = \"+\" )))

if( nrow( df.%d) - 2 > %d ) {

logt.model <- tryCatch( glm( logt.formula,

family=binomial(link=\"logit\"), na.action=na.omit ),

error=function(e) e, warning=function(w) w)
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if( is( logt.model, \"warning\") ) {

rs.%d <- rep( 0, nrow( df.%d ))

thresholdset.%d <- c(0,1)

coefs.%d <- c(1)

} else {

rs.%d <- fitted.values( logt.model )

coefs.%d <- coef( logt.model )

thresholdset.%d <- as.numeric(c(0, quantile( rs.%d,

probs = seq(0,1,1/divisions) ),1))

}

} else {

rs.%d <- rep( 0, nrow( df.%d ))

thresholdset.%d <- c(0,1)

coefs.%d <- c(1)

}

model.%d <- base64encode( unname( coefs.%d ) )

for(i.%d in seq_len( length(thresholdset.%d)) ) {

crs.%d <- thresholdset.%d[i.%d]

classneg.%d <- df.%d[(rs.%d < crs.%d), ]

classpos.%d <- df.%d[(rs.%d >= crs.%d), ]

classneg.%d <- classneg.%d[ complete.cases( classneg.%d), ]

classpos.%d <- classpos.%d[ complete.cases( classpos.%d), ]

if( nrow(classneg.%d) > 0 ) { classneg.%d$class <- 0}

if( nrow(classpos.%d) > 0 ) { classpos.%d$class <- 1}

class.%d <- rbind( classneg.%d, classpos.%d )

numclass[ %d ] <- nrow( class.%d )

"

strbegin <- gsub( "%d",

as.character( totalMarkers - numMarkers + 1), strbegin )

strrecurse <- paste( "df <- rbind(",

paste( paste( rep("class.", totalMarkers),

seq( 1, totalMarkers), sep = "" ),
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collapse = "," ), ")" )

strmodels <- paste( paste( rep("model.", totalMarkers),

seq( 1, totalMarkers), sep = "" ),

collapse = "," )

strthresholds <- paste( rep("crs.", totalMarkers - 1),

seq( 1, totalMarkers - 1 ), sep = "" )

strthresholds <- c( strthresholds, strthresholds)

strthresholds <- strthresholds[ order( strthresholds ) ]

strthresholds <- paste( c( paste( strthresholds,

c(".1", ".2"), sep = "" ),

paste( "crs.", totalMarkers, sep = "")), collapse = ",")

strend <- paste( "

L <- sensspec( with(df, get( outcome )), df$class )

cost <- cumsum( costs[perms[i,]] ) %*% numclass

avgcost <- cost / nrow( df )

outtmp <- paste( i,

L$sens, L$spec,

L$c[1], L$c[2], L$c[3], L$c[4],

avgcost", strmodels, strthresholds,

"sep = \",\")

cat(outtmp, file = outputfile, append = TRUE)

cat(\"\\n\", file = outputfile, append = TRUE)

}", sep = ",")

} else {

strbegin <- "

df.%d <- get( paste( \"neutral.\", %d - 1, sep = \"\") )

y <- with( df.%d, get( outcome ))

testlist <- list()

for( testidx in seq_len( %d ) ) {

testlist[[ testidx ]] <- with( df.%d, get(

markers[ perms[i, testidx] ] ))

}
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logt.formula <- as.formula(paste(\"y ˜ \",

paste( \"testlist[[\", seq( 1, %d ) , \"]]\",

collapse = \"+\" )))

if( nrow( df.%d) - 2 > %d ) {

logt.model <- tryCatch( glm( logt.formula,

family=binomial(link=\"logit\"), na.action=na.omit ),

error=function(e) e, warning=function(w) w)

if( is( logt.model, \"warning\") ) {

rs.%d <- rep( 0, nrow( df.%d ))

thresholdset.%d <- c(0,1)

coefs.%d <- c(1)

} else {

rs.%d <- fitted.values( logt.model )

coefs.%d <- coef( logt.model )

thresholdset.%d <- as.numeric(c(0, quantile( rs.%d,

probs = seq(0,1,1/divisions) ),1))

}

} else {

rs.%d <- rep( 0, nrow( df.%d ))

thresholdset.%d <- c(0,1)

coefs.%d <- c(1)

}

revthresholdset.%d <- thresholdset.%d[ order(thresholdset.%d,

decreasing = T)]

model.%d <- base64encode( unname( coefs.%d ) )

for( i.%d.1 in seq_len(length(thresholdset.%d)/2 + .5)) {

for( i.%d.2 in seq_len(length(thresholdset.%d) - i.%d.1 + 1)

) {

crs.%d.1 <- thresholdset.%d[i.%d.2]

crs.%d.2 <- revthresholdset.%d[i.%d.1]

classneg.%d <- df.%d[(rs.%d < crs.%d.1),]

classpos.%d <- df.%d[(rs.%d >= crs.%d.2),]
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classneg.%d <- classneg.%d[ complete.cases( classneg.%d),

]

classpos.%d <- classpos.%d[ complete.cases( classpos.%d),

]

if( nrow(classneg.%d) > 0 ) { classneg.%d$class <- 0}

if( nrow(classpos.%d) > 0 ) { classpos.%d$class <- 1}

class.%d <- rbind( classneg.%d, classpos.%d )

numclass[ %d ] <- nrow( class.%d )

neutral.%d <- df.%d[ (rs.%d >= crs.%d.1 & rs.%d < crs.%d

.2 ), ]

"

strbegin <- gsub( "%d", as.character( totalMarkers -

numMarkers + 1 ), strbegin )

strrecurse <- Recall( numMarkers - 1, totalMarkers )

strend <- "}}"

}

paste( strbegin, strrecurse, strend )

}

f <- function( data, outcome, markers, costs, outputfile ) {

tmpcode <- buildFunction( length(markers) )

eval( parse( text = tmpcode))

}

})

predict.srsc <- function( row, newdata, outcome, markers, costs) {

# Description: Classify newdata with a serial risk score

## classification rule

# Usage: predict.srsc( row, newdata, outcome, markers, costs)

# Arguments:

## row: Rule from srsc rule set
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## newdata: Data frame of data to be classified

## outcome: String with name of the outcome variable in data

## markers: A string vector contain the names of the markers in data

## costs: A vector of costs corresponding to markers

##Output:

# A list ’acc’ = a list of sensitivity, specificity values,

## ’avgcost’ = cost of classification,

## ’data’ = the data frame newdata with a

## classification vector ’class’.

numMarkers <- length(markers)

perms <- permutations(numMarkers,numMarkers)

df <- newdata

df$class <- 0

numclass <- rep(0, numMarkers )

crs1vec <- rep(0, numMarkers)

crs2vec <- rep(0, numMarkers)

for( modelidx in seq_len( numMarkers - 1 ) ) {

crs1vec[modelidx] <- with( row, get( paste( "crs.", modelidx, "

.1", sep = "")))

crs2vec[modelidx] <- with( row, get( paste( "crs.", modelidx, "

.2", sep = "")))

}

crs1vec[numMarkers] <- with( row, get( paste( "crs.", numMarkers,

sep = "")))

crs2vec[numMarkers] <- with( row, get( paste( "crs.", numMarkers,

sep = "")))

coeflist <- list()

classneg <- list()

classpos <- list()

class <- list()
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for( modelidx in seq_len(numMarkers) ) {

coeflist[[modelidx]] <- base64decode( with( row, get( paste( "

model.", modelidx, sep = ""))), "double" )

if( nrow( df ) > 0 ) {

y <- with( df, get( outcome ))

modelmat <- matrix( nrow = nrow(df), ncol = modelidx + 1)

modelmat[,1] <- rep(1, nrow(df ))

for( testidx in seq_len( modelidx ) ) {

tmptest <- with( df, get( markers[ perms[row$id, testidx]

] ))

modelmat[,testidx+1] <- tmptest

}

if( length( coeflist[[modelidx]] ) > 1 ) {

y_hat <- modelmat %*% coeflist[[modelidx]]

rs <- exp(y_hat)/(1 + exp(y_hat))

} else {

rs <- rep( 0, nrow( df ) )

}

classneg[[modelidx]] <- df[ (rs < crs1vec[modelidx]), ]

classpos[[modelidx]] <- df[ (rs >= crs2vec[modelidx]), ]

classneg[[modelidx]] <- classneg[[modelidx]][ complete.cases(

classneg[[modelidx]]), ]

classpos[[modelidx]] <- classpos[[modelidx]][ complete.cases(

classpos[[modelidx]]), ]

if( nrow(classneg[[modelidx]]) > 0 ) {classneg[[modelidx]]$

class <- 0}

if( nrow(classpos[[modelidx]]) > 0 ) {classpos[[modelidx]]$

class <- 1}

class[[modelidx]] <- rbind( classneg[[modelidx]], classpos[[

modelidx]])

numclass[ modelidx ] <- nrow( class[[modelidx]] )
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df <- df[ (rs >= crs1vec[modelidx] & rs < crs2vec[modelidx] )

, ]

df <- df[ complete.cases( df ), ]

} else {

class[[modelidx]] <- df

numclass[ modelidx ] <- nrow( class[[modelidx]] )

}

}

data <- do.call( "rbind", class )

L <- sensspec( with( data, get( outcome )), data$class )

cost <- cumsum( costs[perms[row$id,]] ) %*% numclass

avgcost <- cost / nrow(data)

list(acc = L, avgcost =avgcost, data=data)

}

srsc2biomarkers <- function( data, outcome, markers, costs,

outputfile ) {

##Description: SRSC algorithm with a fixed number of biomarkers (2)

##Usage:

#srsc2biomarkers( data, outcome, markers, costs, outputfile )

##Arguments:

# data: Data frame from which to train rules

# outcome: String with name of the outcome variable in data

# markers: A string vector contain the names of the markers in data

# costs: A vector of costs corresponding to markers

# outputfile: name of file to write set of rules

##Output:
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# A set of serial risk score classification rules are written to

outputfile

numcols <- length(markers)

numclass <- rep( 0, numcols )

perms <- permutations(numcols,numcols)

divisions <- 10

cat("id,sens,spec,tp,tn,fp,fn,avgcost,model.1,model.2,crs.1.1,crs

.1.2,crs.2\n", file = outputfile, append = FALSE)

data$class <- 0

neutral.0 <- data

for(i in 1:nrow( perms ) ) {

df.1 <- get( paste( "neutral.", 1 - 1, sep = "") )

y <- with( df.1, get( outcome ))

testlist <- list()

for( testidx in seq_len( 1 ) ) {

testlist[[ testidx ]] <- with( df.1, get( markers[ perms[

i, testidx] ] ))

}

logt.formula <- as.formula(paste("y ˜ ",paste( "testlist[[",

seq( 1, 1 ) , "]]", collapse = "+" )))

if( nrow( df.1) - 2 > 1 ) {

logt.model <- tryCatch( glm( logt.formula, family=

binomial(link="logit"), na.action=na.omit ), error=

function(e) e, warning=function(w) w)

if( is( logt.model, "warning") ) {

rs.1 <- rep( 0, nrow( df.1 ))

thresholdset.1 <- c(0,1)

coefs.1 <- c(1)

} else {

rs.1 <- fitted.values( logt.model )

coefs.1 <- coef( logt.model )

thresholdset.1 <- as.numeric(c(0, quantile( rs.1,

probs = seq(0,1,1/divisions) ),1))

}
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} else {

rs.1 <- rep( 0, nrow( df.1 ))

thresholdset.1 <- c(0,1)

coefs.1 <- c(1)

}

revthresholdset.1 <- thresholdset.1[ order(thresholdset.1,

decreasing = T)]

model.1 <- base64encode( unname( coefs.1 ) )

for( i.1.1 in seq_len(length(thresholdset.1)/2 + .5)) {

for( i.1.2 in seq_len(length(thresholdset.1) - i.1.1 +

1)) {

crs.1.1 <- thresholdset.1[i.1.2]

crs.1.2 <- revthresholdset.1[i.1.1]

classneg.1 <- df.1[(rs.1 < crs.1.1),]

classpos.1 <- df.1[(rs.1 >= crs.1.2),]

classneg.1 <- classneg.1[ complete.cases( classneg.1)

, ]

classpos.1 <- classpos.1[ complete.cases( classpos.1)

, ]

if( nrow(classneg.1) > 0 ) { classneg.1$class <- 0 }

if( nrow(classpos.1) > 0 ) { classpos.1$class <- 1 }

class.1 <- rbind( classneg.1, classpos.1 )

numclass[ 1 ] <- nrow( class.1 )

neutral.1 <- df.1[ (rs.1 >= crs.1.1 & rs.1 < crs.1.2

), ]

df.2 <- get( paste( "neutral.", 2 - 1, sep = "") )

y <- with( df.2, get( outcome ))

testlist <- list()

for( testidx in seq_len( 2 ) ) {

testlist[[ testidx ]] <- with( df.2, get( markers

[ perms[i, testidx] ] ))

}
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logt.formula <- as.formula(paste("y ˜ ",paste( "

testlist[[", seq( 1, 2 ) , "]]", collapse = "+" )

))

if( nrow( df.2) - 2 > 2 ) {

logt.model <- tryCatch( glm( logt.formula, family

=binomial(link="logit"), na.action=na.omit ),

error=function(e) e, warning=function(w) w)

if( is( logt.model, "warning") ) {

rs.2 <- rep( 0, nrow( df.2 ))

thresholdset.2 <- c(0,1)

coefs.2 <- c(1)

} else {

rs.2 <- fitted.values( logt.model )

coefs.2 <- coef( logt.model )

thresholdset.2 <- as.numeric(c(0, quantile(

rs.2, probs = seq(0,1,1/divisions) ),1))

}

} else {

rs.2 <- rep( 0, nrow( df.2 ))

thresholdset.2 <- c(0,1)

coefs.2 <- c(1)

}

model.2 <- base64encode( unname( coefs.2 ) )

for(i.2 in seq_len( length(thresholdset.2)) ) {

crs.2 <- thresholdset.2[i.2]

classneg.2 <- df.2[(rs.2 < crs.2), ]

classpos.2 <- df.2[(rs.2 >= crs.2), ]

classneg.2 <- classneg.2[ complete.cases(

classneg.2), ]

classpos.2 <- classpos.2[ complete.cases(

classpos.2), ]

if( nrow(classneg.2) > 0 ) { classneg.2$class <-

0}
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if( nrow(classpos.2) > 0 ) { classpos.2$class <-

1}

class.2 <- rbind( classneg.2, classpos.2 )

numclass[ 2 ] <- nrow( class.2 )

df <- rbind( class.1,class.2 )

L <- sensspec( with(df, get( outcome )), df$class

)

cost <- cumsum( costs[perms[i,]] ) %*% numclass

avgcost <- cost / nrow( df )

outtmp <- paste( i,

L$sens, L$spec, L$c[1], L$c[2], L

$c[3], L$c[4], avgcost,

model.1,model.2,crs.1.1,crs.1.2,

crs.2,sep = ",")

cat(outtmp, file = outputfile, append = TRUE)

cat("\n", file = outputfile, append = TRUE)

}

}

}

}

}
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