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Abstract

Historically, patient datasets have been used to develop and validate various reconstruction 

algorithms for PET/MRI and PET/CT. To enable such algorithm development, without the need 

for acquiring hundreds of patient exams, in this article we demonstrate a deep learning technique 

to generate synthetic but realistic whole-body PET sinograms from abundantly available whole-

body MRI. Specifically, we use a dataset of 56 18F-FDG-PET/MRI exams to train a 3-D residual 
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UNet to predict physiologic PET uptake from whole-body T1-weighted MRI. In training, we 

implemented a balanced loss function to generate realistic uptake across a large dynamic range 

and computed losses along tomographic lines of response to mimic the PET acquisition. The 

predicted PET images are forward projected to produce synthetic PET (sPET) time-of-flight 

(ToF) sinograms that can be used with vendor-provided PET reconstruction algorithms, including 

using CT-based attenuation correction (CTAC) and MR-based attenuation correction (MRAC). 

The resulting synthetic data recapitulates physiologic 18F-FDG uptake, e.g., high uptake localized 

to the brain and bladder, as well as uptake in liver, kidneys, heart, and muscle. To simulate 

abnormalities with high uptake, we also insert synthetic lesions. We demonstrate that this sPET 

data can be used interchangeably with real PET data for the PET quantification task of comparing 

CTAC and MRAC methods, achieving ≤ 7.6% error in mean-SUV compared to using real data. 

These results together show that the proposed sPET data pipeline can be reasonably used for 

development, evaluation, and validation of PET/MRI reconstruction methods.

Keywords

Digital phantoms; full-convolutional neural networks; PET/MRI qualification; standardized uptake 
value (SUV) quantification

I. INTRODUCTION

There is currently an unrealized potential for PET/MRI systems in synergistic and 

quantitative reconstructions that account for and leverage simultaneous data acquisition 

of PET, which provides functional tissue information, and MRI, which provides excellent 

anatomic information, to correct for artifacts, motion, and improve localization [1]. An 

example of one of the challenges is quantitative PET reconstruction, which requires accurate 

attenuation maps that are not directly measured by MRI. This affects the quantification 

of PET from reconstructed imagery, since the photon attenuation map is embedded in the 

forward system model. As a result, the development of novel attenuation correction methods 

and other advanced PET/MRI reconstructions requires real or realistic data, which can be 

difficult and/or expensive to obtain. With increased PET/MRI adoption, it is necessary to 

establish standards for the quality of reconstruction, which can vary based on subtleties of 

PET data collection, including scanner geometry and detector nonidealities, but also the 

choice of reconstruction algorithm, attenuation correction method, and patient anatomy (e.g., 

scattering and hyper-attenuation). Simulating the whole range of patient variability in terms 

of anatomy and patient-specific radiotracer uptake is infeasible, e.g., using purely digital 

phantoms and Monte Carlo simulation [2], [3], necessitating the acquisition of real patient 

PET data. For PET/CT systems, qualification methods are established by the American 

College of radiology (ACR) using qualitative evaluation of whole-body clinical scans and 

quantitative evaluation using a ACR PET Phantom, a cylinder based on the Jaszczak Deluxe 

Flangeless ECT phantom with the spheres removed, a PET faceplate composed of several 

fillable cylinders, and acrylic rods of various diameters [4]. PET reconstruction performance 

can also be measured using the NEMA phantom, which is composed of multiple fillable 

spheres and cylindrical inserts that aim to mimic attenuation and activity found in different 

parts of the human body [5].
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Unfortunately, phantoms used for PET/CT are insufficient for evaluating PET/MRI 

reconstruction performance because they cannot evaluate modern MR-based attenuation 

correction (MRAC) methods that rely on detecting typical human anatomy from MRI data. 

These methods include vision-based atlas techniques [6], [7], [8], joint-reconstruction of 

attenuation and activity [9], [10], and direct prediction of pseudo-CT via deep learning-

based domain translation [11], [12], [13], [14]. A physical PET/MRI phantom to evaluate 

reconstruction performance would require an anthropomorphic distribution of materials with 

properties that match both 511-keV photon attenuation as well as MRI properties of proton 

density, T1, and T2, which is extremely challenging especially for bone due to its high 

attenuation but rapid T2 decay rate [15].

Consequently, the standard approach to evaluating PET/MRI performance is to utilize 

human subject datasets acquired on PET, CT, and MR [11], [16]. This allows for a relative 
performance measure, by comparing the standardized uptake value (SUV) of MRAC-

based PET reconstructions relative to PET reconstructions utilizing CT-based attenuation 

correction (CTAC) [16]. However, for sites to conduct such evaluations, numerous 

PET/CT/MR scans are required to characterize scanner and algorithm performance at 

operating points exhibiting natural imperfections that impact the physics of PET collection, 

such as those arising from detector characteristics, scattering, or unexpected attenuation 

[17]. This patient-specific data is expensive to collect, hindering new PET/MRI algorithm 

development that normally requires recollecting PET data.

In this article, we present a method for generating synthetic PET data using routinely 

collected and abundantly available MRI that naturally captures important scanner and 

detector imperfections, adapts to varied tracer distributions and anatomy, and allows for 

insertion of synthetic lesions. We believe this will allow for the creation of large and 

diverse synthetic data for development, evaluation, and validation of PET reconstruction 

algorithms. Our approach leverages recent work in deep learning-based domain translation 

using fully convolutional networks (FCNs) and in Section II we describe how to train a 3-D 

residual UNet to predict SUV-normalized synthetic PET (sPET) imagery from whole-body 

postconstrast T1-weighted MRI (Fig. 1). This requires only paired input and output image 

examples, and—crucially—no additional annotation or scanner geometry details. For this 

problem, we assume a supervised setting, where the absolute and relative error between 

the measured (reconstructed) and FCN-generated volumes provide a quantitative measure of 

performance, albeit at different scales that must be balanced. Note that an approach based 

purely on generative adversarial networks (GANs) is not desirable here, since we require 

the sPET volumes to correspond anatomically to the MRI volumes to support PET/MRI 

reconstruction research. To this end, in Section III, we show that the predicted sPET imagery 

can be forward projected to generate sPET time-of-flight (TOF) sinogram data that can 

be used interchangeably with real PET sinogram data in vendor-provided reconstruction 

algorithms. We further evaluate this capability for qualification research by performing 

a classical PET-SUV quantification experiment, comparing reconstructions with CT- and 

2-point MR-Dixon-based AC maps, using both synthetic FDG-PET and measured FDG-PET 

sinograms. Our results show that evaluation using sPET can achieve < 8% quantification 

error in mean-SUV in synthetically inserted lesions compared real PET data (averaged over 

a several synthetic lesions in a cohort of patients), suggesting the wide applicability of 
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domain-translated sPET for PET reconstruction algorithm development and qualification 

research. The role of synthetic lesions as proposed and demonstrated in this study is to 

provide methods for evaluation and optimization of image reconstruction algorithms. These 

algorithms continue to change and, with the introduction of deep learning/ AI methods for 

image reconstruction and denoising algorithms, many new parameters are being introduced 

and more robust methods for evaluation and optimization are needed to demonstrate the 

clinical impact of the image processing algorithms

A. Prior Work

Prior work in deep learning-based domain translation has demonstrated that FCNs based 

on UNet-like encode-decoder architectures are widely applicable to a range of 2-D and 

3-D cross-modality medical image translation tasks, including MRI-to-CT [11], PET-to-CT 

[18], and MRI-to-MRI [19]. These architectures are typically trained independently for each 

anatomical region (e.g., head, chest, and pelvis) of interest. For PET/MRI specifically, a 

major focus has been in MRI-to-CT domain translation for enhanced attenuation correction 

maps, which are ultimately combined with measured PET sinogram data for enhanced 

image reconstruction [11], [13], [18]. Recently, such architectures have been applied to the 

reconstruction and denoising of low-dose PET imagery, including using supervised [20], 

[21] and unsupervised [22] methods, and extensions to dynamic PET reconstruction [23]. In 

some cases, these image-enhancement techniques have been shown to successfully improve 

diagnostic interpretability [24].

In contrast to these works, the focus of this article is domain translation of whole-body 

MRI-to-PET without any initial PET data, i.e., to produce a novel image series we refer to as 

synthetic PET (sPET). While previously in-silico PET image generation has been explored 

using physics-based simulation tools such as GATE [25] with Monte Carlo techniques, such 

as PENELOPE [26] and SimPET [3] to reproduce realistic image quality, a predominant 

issue here is knowing realistic spatial distribution of physiologic PET uptake to seed the 

simulation. Our work addresses this issue by using a neural network to learn from real 

PET scans, such that realistic physiologic uptake can be inferred from abundantly available 

MRI. This is an important point since we do not believe sPET can accurately predict 

patient-specific functional information for diagnosis.

B. Contributions

Thus, our contributions are as follows.

1. We introduce a deep learning method for generating whole-body 3-D sPET 

volumes from one or more routinely collected MRI series, including a balanced 

loss function that improves reconstruction of both low- and high-SUV regions.

2. We evaluate the utility of sPET in a downstream development task involving 

the quantification of PET SUV in images reconstructed using MR- and CTAC, 

demonstrating that sPET sinograms can be used seamlessly in place of real 

PET data for PET/MRI qualification with minimal impact to the observed 

quantification error in synthetically inserted lesions.
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II. SYNTHETIC PET VIA DOMAIN TRANSLATION

Although the physics and acquisition are fundamentally different, MRI and PET imagery 

share a great deal of structural similarity due to contouring of patient anatomy by 

physiologic uptake. This similarity can be exploited by FCNs to efficiently and implicitly 
implement the codebook C:ℝMR

n ℝPET
n  mapping MRI to PET-SUV imagery using a cascade 

of nonlinear filters, avoiding explicit storage of input–output pairs (x, y) in a database. Note 

that this map C describes a statistical relationship between MRI and PET, and not a causual 

or functional one. Besides being differentiable and amenable to backpropagation-based 

optimization using historical PET/MRI datasets, FCNs have strong spatial regularization 

properties that reduce degeneracy across image patches to create seamless and realistic 

anatomy-conforming 3-D PET imagery from MRI.

Here, degeneracy refers to the typical inconsistencies in the codebook arising from the fact 

that PET and MRI contain different (orthogonal) information about a patient. The inverse 

image C−1(y) of a 3-D PET patch y ∈ ℤPET
n  may not be unique, since different anatomical 

regions can experience the same uptake. Conversely, a given 3-D MR patch x ∈ ℝMR
n  may 

have multiple images C(x) ∈ ℤPET
n , corresponding to various patterns of PET uptake across 

individuals. Thus, the map C is general, which frustrates conventional atlas and dictionary-

based implementations that must keep track of this in ℝMR
n  [27]. In comparison, due to 

the supervised training process, FCNs naturally choose y E[C(x)] for sPET given input 

MRI x. In this respect, the task of predicting PET from MRI is distinct from approaches 

predicting full-dose PET imagery from low-dose PET imagery, since those models are 

responsible for enhancing the signal-to-noise ratio (SNR) of existing activity images [20], 

[21], rather than directly learning anatomy-conforming physiologic biodistributions of PET 

uptake.

A. Assumptions

In this article, we assume the availability of historical PET/MRI datasets of patients 

receiving a calibrated (full) dose of the same PET radiotracer. Although the proposed 

method is applicable to varying dose levels, low-dose PET imagery exhibits lower SNR, 

and is therefore not ideal for training. In this work, we register scanner-reconstructed 

whole-body 18F-FDG-PET and post-contrast T1-weighted MRI volumes, collected on a 

3.0 T ToF PET/MRI scanner (Signa, GE Healthcare, Waukesha WI), to the MRI image 

space and resample to 1-mm isotropic resolution using the ANTS toolbox interface provided 

via Nipype [28]. To increase the regularity and identifiability of MR structures, we apply 

contrast-limited adaptive histogram normalization to the resampled MRI volumes, using a 

kernel-size of 100 mm and clipping limit of 0.05 [29]. For consistency, we convert the 

raw PET intensity values (counts) to SUV using known radiotracer dose, half-life, positron 

fraction, elapsed time, and patient weight [30]. Finally, we split our dataset into 40 whole-

body PET/MRI training exams, 16 whole-body PET/MRI testing exams, and 20 independent 

pelvic PET/MRI testing exams where corresponding CT was available (discussed in Section 

III). We make no explicit assumption of age, race, gender, or ailment, other than through the 

image characteristics of the acquired dataset.
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B. Model Architecture

By fiat, we choose a 3-D residual UNet architecture that combines the well-studied 2-D/3-D 

UNet [31] with residual (skip) connections [32] and convolutional upsampling (Fig. 1). In 

our implementation, we take a one-channel 3-D MRI volume as input, and employ 3 × 3 

× 3 convolutional kernels followed by 2 × 2 × 2 maxpooling in each layer of the encoder 

(channel dimensions: [32, 64, 128, 256, 512]), and 3 × 3 × 3 convolutional upsampling 

kernels in each layer of the decoder (channel dimensions: [256, 128, 64, 32]), ultimately 

resulting in a one-channel 3-D output. This architecture can be adapted to multichannel 

inputs (multicontrast MRI) and outputs (multiple PET radiotracers and/or dose levels) by 

modifying the first and last layers of the network, respectively.

Inference is performed by breaking large whole-body MRI volumes into smaller overlapping 

volumetric patches with dimensions divisible by 32 (e.g., [128 × 128 × 128] mm, with 50% 

overlap) prior to applying the 3-D UNet, and taking the sample mean of the resulting outputs 

at each 3-D grid position to assemble the full whole-body volume. While the aforementioned 

resampling ensures MRI is processed at nearly native resolution to allow recognition of 

fine structural details, the PET groundtruth is considerably upsampled, especially in the z
dimension. This can be remedied by resampling the predicted volumes to the native PET 

image space and resolution, e.g., prior to performing PET/MRI reconstruction (Section III).

C. Learning

One of the primary challenges with domain translation of MRI to PET is maintaining high 

accuracy across the full dynamic range of PET. Although SUV scaling does provide a 

more consistent and intuitive numerical range, we find that explicit control in the objective 

function is required to prevent smoothing over suitable minima. For example, the histogram 

distribution of a whole body 18F-FDG-PET exam (Fig. 2) reveals that different tissues differ 

in the amount of physiologic uptake. For example, in the lungs, heart, and liver there is 

often increased activity between [1,4] SUV, and in regions, such as the bladder and brain 

the recorded SUV can be greater than 20. In particular, since we are interested in using the 

predictions of our model for PET quantification studies, we require high accuracy across 

all relevant scales. This precludes the use of simple p-norm objective functions, such as the 

mean absolute error (MAE), that may be dominated by the high absolute or relative error in 

one or more histogram bins.

To address this, we minimize the balanced objective

Jtotal = J + λJLOR (1)

where JLOR represents a regularization function with parameter λ, and J is a linear 

combination of absolute and relative errors across B different histogram bins, expressed 

as follows:

J = ∑
j = 1

B αj

ℎj
∑E ℎj + ∑

k = 1

B βk

ℎk
∑ E ℎk

y ℎk + ϵ (2)
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where E = |F (x) − y| is the conventional voxel-wise absolute error, x is the MRI input 

volume, y is the groundtruth PET volume, and F (x) represents the predicted synthetic sPET. 

In (2), ℎj represents an indicator variable selecting the voxels belonging to bin j of the B-bin 

histogram of y, and ϵ is chosen as 1e-3 to prevent overflow. The histogram bins (Fig. 2) 

and corresponding weights (α = [1, 1, 1, 1, 0], β = [0, 0, 1, 1, 1]) were chosen based on empirical 

observation to prevent domination of J by high absolute errors in high-SUV regions or by 

high relative errors in low-SUV regions. The intention of this flexible formulation with α and 

β is to define a family of functionals that can be tailored to different patient datasets, PET 

tracers, and anatomic regions.

To further improve both the perceptual image quality and convergence, during training 

we integrate and compare the groundtruth PET y and the predicted sPET y = F (x) along 

random angles using a projection operator Rθ, ϕ, mimicking tomographic data collection in 

a uniform, isotropic attenuating media along hypothetical PET lines of response (LOR), as 

follows:

JLOR = Rθ, ϕ ⋅ (F (x) − y)/(y + ϵ) 2 . (3)

In addition to tying together the performance of different tomographically related voxels, 

JLOR measures the error in the coarse scale of predictions on a line-by-line basis. For 

example, if a 3-D image patch shows little to no activity, Rθ, ϕy 2 will be nearly zero, 

whereas a patch from a region with high uptake may yield either high- or low-valued 

Rθ, ϕy 2. This improves convergence and combats overfitting by supervising the spatial 

distribution of sPET without explicit assumptions of patient anatomy.

For all results shown in this article, we used the Adam optimizer with an initial learning rate 

of 1e-4, weight decay of 1e-3, and effective batchsize of 16 [128×128×128] mm volumetric 

patches generated systematically (in a random order) from the aforementioned whole-body 
18F-FDG-PET/MRI dataset.

To improve convergence during training, we defined a custom 3-D image patch sampler 

that performs round-robin sampling of different PET/MRI phenotypes present in the training 

dataset. These phenotypes were determined by first cataloging all the volumetric patches 

in the training dataset and computing their intensity histograms. Using k-means clustering 

(K = 10), we computed a semantic grouping of these histograms that defined the different 

PET/MRI phenotypes that were sampled cyclically during model training.

D. Image Quality Metrics

We measure the quality of predicted sPET using quantitative error metrics, including the 

MAE, mean relative absolute error (MRAE), and the 3-D structural similarity index measure 

(SSIM). For each exam we compute MAE over all voxels N, as follows:

MAE = 1
N ∑

n
yn − yn 1 (4)
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while we compute MRAE only over voxels K of at least 0.1 SUV, as follows:

MRAE = 1
K ∑

k

yk − yk 1

yk
. (5)

The 3-D-SSIM captures this information in a different way, accounting for differing scales 

and magnitudes through a measure of correlation within a 3-D window, as follows:

SSIM(x, y) = 2μxμy + c1 2σxy + c2

μx
2 + μy

2 + c1 σx
2 + σy

2 + c2
(6)

where μx and σx
2 represent the mean and variance of volume x, μy and σy

2 represent the 

mean and variance of volume y, σxy represents the covariance of x and y, and c* is chosen 

proportional to the dynamic range of pixel values [33].

E. Results on Whole-Body 18F-FDG PET-MR Datasets

We find that prediction of synthetic FDG-PET, domain translated from T1-weighted post-

contrast MRI, works well despite the lack of salient tracer specific or functional information 

in MRI (Fig. 3). Numerical results comparing the effect of different training objectives on 

test-set performance is shown in Table I. Qualitative analysis reveals that physiologic uptake 

is predicted accurately and reconstructed seamlessly throughout the body without obvious 

spatial artifacts, except in regions where we expect variable uptake (e.g., heart and bladder). 

In the myocardium, for example, FDG-PET uptake depends on patient metabolism, which 

can vary across exams for even a single patient. Similarly, in the bladder PET uptake is often 

dependent on a patient’s water consumption and timing of voiding [34].

The MAE and MRAE results show that incorporation of both balanced histogram losses 

and tomographic projection-based losses can significantly reduce the quantitative error in the 

prediction of sPET from MRI. The SSIM results show that this reduction in error boosts 

the image quality of the sPET image relative to the real PET image. The inclusion of SSIM 

is important to assess the realness of sPET, in lieu of reporting MAE and MRAE within 

different organs and anatomical structures.

III. PET QUANTIFICATION USING SYNTHETIC PET

PET/MRI quantification is important for establishing the accuracy and reproducibility of 

PET reconstructions when the photon attenuation maps are inferred entirely from MRI. 

As the error in PET/MRI reconstruction is composed of errors involving prediction of 

the attenuation map and errors involving the reconstruction (e.g., choice of the objective 

function), a standard approach is to measure the compound effect caused by the AC map 

by directly comparing PET volumes reconstructed with MRAC and CTAC voxel-wise and 

regionally [16], [35].

Specifically, we evaluate the applicability of our MR-derived sPET imagery for algorithm 

development by replicating an MRAC versus CTAC PET SUV quantification task using 

sPET data in place of real list-mode PET data. To achieve this we forward project sPET data 

Rajagopal et al. Page 8

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



into sinogram space using vendor-provided software that incorporates scanner geometry, 

detector response, and normalization.

A. Reconstruction Model and Parameters

For time-of-flight PET (ToF-PET), the measured sinogram data is modeled within the 

forward model as follows [36]:

ypt = Aptx + bpt (7)

where ypt represents the ToF projection data measured by the scanner, x is the PET image 

to be found, and the system matrix A models the probability of an event emitted in voxel 

m to be detected by detector pair p within the signed timing bin number t, summarizing 

the attenuation of the media along PET LoR, patient-scanner geometry, and detector 

efficiencies. bpt corresponds to the background counts of the timing bin t and detector pair p. 

For this model, a basic reconstruction approach is to solve the optimization problem

x = min
x

Ax − b
2
+ R(x) (8)

where R is a regularization function (e.g., total variation). In practice, vendor-

provided ordered-subset expectation-maximization (OSEM) or ToF-OSEM with point-

spread-function (PSF) modeling are used for clinical imaging [36], [37]. In our experiments, 

we utilize clinical image reconstruction parameters for the GE Signa PET/MRI (Table II).

B. Synthetic Sinogram Generation and Lesion Insertion

For a given system matrix A, a reconstructed PET image x can be projected into the 

sinogram domain by applying the forward model (7) to yield ysimulated. The forward projection 

tool provided with the Duet to toolbox (v02.03, GE Healthcare) performs this operation on 

a synthetic volume of dimension equal to the reconstructed volume, to generate a synthetic 

lesion sinogram that is added to the sinogram corresponding to x. Image reconstruction can 

then be performed on this “lesion-inserted” sinogram, as if it were the real sinogram, using a 

variety of methods (e.g., ToF, PSF, and regularization).

We exploit this mechanism to generate sPET sinogram data from domain-translated sPET 

imagery. However, as Duetto currently does not incorporate scatter simulation, we perform 

reconstructions with scatter estimation and correction turned off. As this introduces an 

additional discrepancy between real PET and sPET reconstructions, in both cases we start 

by forward projecting a 3-D “source” volume xsource to yield a simulated ToF-sinogram that is 

subsequently inserted with synthetic lesions (Fig. 4).

C. Quantification Experiment Summary

The pelvic CTAC versus MRAC FDG-PET reconstruction and SUV quantification 

experiment can be summarized as follows.
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1. Forward project xsource using a registered CT-based attenuation map to yield 

sinogram ysimulated. To evaluate the applicability of different sPET sources for this 

pipeline, we choose xsource as follows.

a. Real PET xreal: The true patient activity distribution, corresponding to 

measured patient sinogram yreal.

b. Reconstructed Patient Phantom xlive: A PET/CT image volume, 

reconstructed from measured PET sinogram data with a CT-based 

attenuation map.

c. Uniform SUV∼1 xuniform: We threshold a T1-weighted postcontrast MRI 

volume to define a body-mask filled with activity corresponding to 

SUV 1.

d. Synthetic sPET xsyntℎetic: An sPET volume generated from a T1-weighted 

postcontrast MRI using the aforementioned 3-D UNet.

2. Forward project synthetic lesions specified by a 3-D volume xlesion to yield 

ylesion‐simulated. In our experiments, a board-certified radiologist annotated four sites 

for lesion insertion in each pelvic MR exam: a) in the acetabulum; b) sacrum; 

c) rectum; and d) lymph nodes. These locations were specifically identified 

to challenge the ability of MR-based reconstruction to reproduce activity 

surrounded by soft tissue and bone. For each location, a spherical lesion with 

diameter 12 mm and activity corresponding to SUV 8 was added to a zero-filled 

xlesion volume.

3. Reconstruct lesion-inserted sinograms using vendor-provided CTAC and MRAC 

methods (with parameters specified in Section III-A), resulting in PET images 

xCT and xMR, respectively, for each xsource.

4. Evaluate voxel-wise and regional absolute and relative error between xCT and xMR

in each lesion volume of interest (VOI) for each xsource for each exam. Evaluation 

within each VOI can also provide a quantitative measure of accuracy, since the 

activity was synthetically inserted.

In particular, we evaluate the ability of different synthetic sinograms (corresponding to a 

choice of xsource) to reproduce the CTAC versus MRAC “quantification error” Δquant, normally 

estimated using real measured PET sinogram data. We quantify this by computing and 

comparing deviation of error in mean-, max-, and peak-SUV between xCT and xMR for each 

xsource in each VOI compared to using real PET sinogram data. That is, for each xsource we 

compute

Δquant,source = quant xCT[V] − quant xMR[V] 1 (9)

δquant, source = Δquant, true − Δquant, source (10)
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γquant, source = Δquant, true − Δquant, source

Δquant, true
× 100% (11)

where V  represents an indicator function for voxels in a VOI, quant represents the mean-, 

max-, or peak-SUV computation in a VOI, we take Δtrue as the corresponding mean-, max-, 

or peak-SUV quantification error computed using the reconstruction patient phantom xlive

as the source, and δ and γ represent absolute and relative quantification error, respectively. 

To benchmark systematic error arising from the reconstruction and reprojection in the 

experimental procedure, we also compare to the quantification error arising from using 

measured sinogram data yreal corresponding to the true patient distribution xreal (i.e., following 

the standard approach in [16]).

For each patient exam, we select five different VOIs: lesion voxels corresponding to 

the four annotated regions (acetabulum, sacrum, rectum, and lymph), and “background,” 

representing all nonzero voxels outside of the synthetic lesions. Quantification error is 

computed for each VOI by comparing mean-, max-, and peak-SUV between CTAC-based 

and MRAC-based reconstructions. Subsequently, we compare the quantification error 

predicted by each PET data source to that predicted by the aforementioned reconstructed 

PET/CTAC live phantom. The absolute error is quantified for the background pixels, but 

the relative error is not since many voxels are devoid of any activity, positively skewing 

(overestimating) the mean relative error computation. In lieu of individual regions within the 

pelvis, the relative error in background voxels is better evaluated qualitatively by comparing 

slices in the transverse plane (Fig. 5).

D. Results on Pelvic 18F-FDG PET/MR/CT Datasets

Numerical results presented in Tables III and IV indicate that domain-translated MR-based 

sPET can achieve low absolute and relative deviation in quantification error compared to 

the quantification error predicted by the live PET/CTAC phantom source for synthetically 

inserted pelvic lesions. Table III shows that sPET-based evaluation to compare CTAC 

and MRAC-based reconstruction achieves SUV errors that were very similar to the 

measured PET-based evaluation across inserted lesions and in the background. The percent 

quantification errors in Table IV shows that sPET-based evaluation was more similar to 

measured PET-based evaluation than uniform SUV∼1-based evaluation, outperforming for 

mean-SUV evaluations across lesion types. This suggests the applicability of synthetic sPET 

as a suitable replacement for real measured PET in PET-SUV quantification tasks. In the 

supplementary material (Figs. 6 and 7), we provide the Bland–Altman plots that compare 

the CTAC-versus MRAC error computed by the various types of phantoms and the Live 

Phantom. Each column represents a different sPET phantom. Each row represents a different 

error metric (absolute error or relative error in mean-SUV, peak-SUV, or max-SUV). This 

analysis shows no significant differences between sPET and measured PET using the 

aforementioned figures of merit.
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IV. DISCUSSION

Overall, we have shown that MR-derived synthetic FDG-PET accurately captures the 

background physiologic distribution of PET imagery, creating images with realistic spatial 

distributions, and that it can be combined with synthetic lesion insertion to provide data for 

the evaluation of PET quantification methods. However, the main limitation we observed 

is that it is smoother than corresponding full-dose imagery, perhaps due to the implicit 

regularization properties of convolutional networks (e.g., exploited by DIP techniques 

[22]). While this is desirable for enhancing low-dose or noisy PET/MRI, it is not entirely 

beneficial for our application due to mismatches in the intensity distribution used in the 

quantification experiment.

This is a good opportunity for future works that make use of GANs, which may seek to 

better match the statistical distribution of sPET and PET to increase its realism, rather 

than simply regressing by value. Note that a pure GAN approach based on noise vectors 

is not valid here because it may not provide anatomic conformity between the MRI and 

sPET image, which is important to maintain for PET/MRI reconstruction algorithm research. 

Instead, adversarial losses may be added to the existing approach to increase realism and to 

help reduce artifacts in the regions where variable uptake is expected, or where patch-based 

inference lacks sufficient context to prevent gridding or stitching artifacts (although the 

effect of these artifacts is often reduced after forward projection to sinogram space). In this 

respect, the physics-based tomographic LOR loss utilized in this article not only works to 

increase the realism of sPET but also improves its quantitative accuracy.

We believe that such physics-based approaches are crucial for the development of 

quantitative imaging and dataset generation techniques based on neural networks. While 

the tomographic LOR loss used in this work improves the quantitative error rates and 

qualitative realism (partially captured by SSIM) associated with sPET, advanced physics-

based modeling could further improve both the realism as well as the applicability 

of the developed approach to more PET/MRI systems, e.g., by utilizing their system 

matrix to optimize directly in the singoram domain, or measure congruence after image 

reconstruction.

Results from the downstream PET SUV quantification experiment indicate that sPET can 

serve as an adequate surrogate for real data in an MRAC versus CTAC quantification 

experiments. This experiment also indicates that the PET background distribution does not 

significantly impact quantification performance when using synthetically inserted lesions 

and without any scatter and randoms simulation. Thus, further investigation of a more 

complete reconstruction is required to determine whether the PET background distribution 

affects quantification for real lesions. Based on the realistic appearance of sPET, we believe 

it will be an important tool in evaluations when accurate background distribution is required.

Although in some cases the estimate based on sPET underestimates the benchmark 

(reconstructed patient phantom) error, the strong agreement over a number of exams 

(N = 20) and lesions indicates that sPET may be used as a qualification method when 

a large number of exams is required. This is precisely the domain for which sPET was 
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designed, as large MRI/CT databases can be retrospectively utilized to establish a large 

sPET/MRAC/CTAC dataset for scanner and algorithm qualification. Interestingly, in many 

cases the quantification error predicted by the synthetic sPET phantom more closely matches 

the quantification error predicted using real PET sinogram data, compared to even that of 

the live PET/CT phantom. However, for most VOIs and phantom types, the deviation in 

quantification error is minimal. Here, synthetic sPET has an advantage over the uniform 

SUV∼1 phantom, because it a represents a realistic, anthropomorphic PET uptake pattern.

One limitation of our methodology is that it does not directly model noise or count statistics 

associated with PET data collection, which has been shown to impact the performance of 

PET reconstruction algorithms [38], [39], [40]. To address this, we note that the MR-based 

sPET images proposed in this article can be treated simply as an ideal source volume 

and, thus, readily combined with Monte Carlo PET simulators, such as with GATE [25], 

SIMSPET [41], or SimPET [3]. An alternative data-driven approach to address this issue 

may be to utilize a adversarial training, which can increase the realism of sPET, thereby 

indirectly capturing statistical noise properties of PET acquisition in the image domain.

V. FUTURE WORK

Detailing the generation of sPET from 3-D MRI and, importantly, demonstrating its utility in 

downstream qualification research, opens the path to new research directions that can enable 

us to study new PET image reconstruction algorithms that can address important clinical 

questions. For example, virtual PET clinics have been previously proposed as a technique to 

evaluate PET detector systems and patient studies in a virtual simulation environment [2]. 

This could also be extended to address 4D PET/CT and PET/MRI modalities [42], enabling 

new approaches to diagnose cancers, such as the identification of recurrent gliomas using 

FET PET [43], [44]. In another vein, sPET can also be used to directly improve image 

reconstruction algorithms themselves, e.g., by generation of a deep learning prior image 

that can help regularize PET image reconstruction [45]. These applications provide a strong 

motivation for future work in curating large databases of PET/MRI with multiple MRI 

contrasts and PET radiotracer images, which could mirror and complement the impact of 

other synthetic MRI [46], [47]. In this respect, the methods developed in this article provide 

the framework and context necessary for such development.

VI. CONCLUSION

In conclusion, we have demonstrated a method using deep learning to generate realistic, 

synthetic whole-body PET data from MRI, and that it is a suitable substitute for real 

PET data in a reconstruction evaluation task. The sPET data, which mimics physiologic 

tracer distribution, can be combined with synthetic lesion insertion to mimic abnormal 

regions of high update. We demonstrated its equivalent performance to real PET data for 

comparing CTAC and MRAC for PET reconstruction, and believe this result combined with 

the apparent realism of the synthetic images will make this method broadly applicable for 

evaluating the robustness of PET/MRI reconstructions and component techniques, including 

attenuation correction, scatter correction, and MR-guided reconstruction algorithms, using 

large and diverse patient datasets.
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All source code for this article, including sPET training code, PET reconstruction wrappers, 

and quantification experiments, is available freely at: https://gitlab.com/abhe/SyntheticPET-

TRPMS22https://gitlab.com/abhe/SyntheticPET-TRPMS22

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
3-D residual UNet architecture for generating sPET from MRI, requiring only paired 

(registered) PET/MRI data without annotation.
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Fig. 2. 
Histogram distribution of a whole-body PET exam reveals disparate levels of physiologic 

activity across different anatomy.
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Fig. 3. 
(a) and (b) Test-set evaluation of whole-body MR-based synthetic FDG-PET (sPET) in 

comparison to real 18F-FDG-PET/MRI. sPET mimics the typical physiologic uptake of 

FDG, showing high uptake in the brain and bladder as well as moderate uptake in 

liver, kidneys, heart, and muscle. High relative error with the real PET data is expected 

in many regions where there is typically high physiologic variability between subjects 

(e.g., tumors, heart, and bladder). While (a) and (b) represent patient exams from the 

intentionally withheld test set, (c) represents an exam from the additional validation set 
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(with corresponding Pelvic PET/CT) exhibiting significant stitching artifacts (blue arrows) 

in the T1w-MRI between bed positions as well as loss in resolution in the head (green 

arrows). Various transverse slices in the abdomen are shown for comparison on the right 

of (c). Evaluation and inclusion of this exam in the validation cohort demonstrates that 

the proposed 3-D UNet is able to recover reasonable FDG-uptake even in the presence of 

significant domain shift, a common issue when applying deep learning algorithms to clinical 

data acquired on a different scanner, or with different imaging protocols and image quality 

checks.
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Fig. 4. 
Measured and simulated sinograms representing different PET sources with corresponding 

synthetically inserted lesion sinograms. The annotation (yellow arrow) highlights a region 

affected by lesion insertion.

Rajagopal et al. Page 21

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Example evaluation of synthetically inserted lesions into 3-D reconstructions using various 

PET data sources (anterior is superior in our presentations). For the PET data source 

(columns), we compute a reconstruction using CTAC and MRAC, and compute the absolute 

and relative errors for each slice. Shown here is a single slice from a single patient with 

contributions from three synthetically inserted lesions. The error in the sPET prediction is 

considerably lower than using the phantom with SUV∼1, and has a similar distribution to 

using real PET data.
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TABLE I

TEST-SET PERFORMANCE ± 1 STDEV USING DIFFERENT SUPERVISED MR-TO-PET DOMAIN TRANSLATION TRAINING 

OBJECTIVES

Objective MAE (Eq. 4) MRAE (Eq. 5) 3D-SSIM (Eq. 6)

MAE (Eq. 4) 0.090 ± 0.021 0.654 ± .074 0.473 ± 0.073

J  (Eq. 2) 0.083 ± 0.031 0.487 ±.145 0.863 ± 0.089

Jtotal (Eq. 1) 0.066 ± 0.026 0.369 ± .092 0.938 ± 0.060
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TABLE II

SUMMARY OF PET RECONSTRUCTION HYPERPARAMETERS

Parameter Value

Objective Function ToF-OSEM-PSF

Subsets 28

Iterations 2

Transverse Filter (FWHM) 2.0 mm

Axial Filter (FWHM) 4.0 mm

Transverse Field-of-View (FOV) 600 mm

Transverse matrix size [256,256]

# Projection Angles / Views 180
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