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A new method for analyzing spatial patterns was designed based on the variance of moving 

window averages (VMWA), which can be directly calculated in geographic information systems 

(GIS) or a spreadsheet program (e.g. MS Excel).  Different types of artificial data were generated 

to test the method. Regardless of data types, the VMWA method correctly determined the mean 

cluster sizes. This method was also employed to assess spatial patterns in historical plant disease 

survey data encompassing both airborne and soilborne diseases. The results obtained using the 

VMWA method were generally different from those obtained with Lloyd’s index of patchiness 

and beta-binomial distribution methods, were in partial agreement with the results from spatial 

analysis by distance indices, and were highly consistent with the results from semivariogram and 

spatial autocorrelation analysis methods. Results demonstrated that the VMWA method can be 

applied to many types of data, including binomial diseased or healthy plant counts, incidence, 

severity, and number of diseased plants or pathogen propagules although directional and edge 

effects may limit its application. 

Additional keywords: aggregation index, spatial dependency. 

 

Spatial patterns are considered as a manifestation of biological processes, reflecting the 

interactions among different determining factors.  Spatial patterns provide information regarding 

the mechanisms that bring about these patterns, which can then be applied to improve sampling 

techniques, and to develop strategies for the management of our environments.  Methods to 

detect and assess spatial pattern and to quantify spatial distribution and association among 

different elements in an ecological system, have received increasing attention in ecological 

research since the beginning of modern ecology.  This in turn has laid a strong foundation for a 
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better understanding of the biological processes that generate the patterns.  Methods for 

analyzing spatial patterns have been developed in a wide variety of disciplines, such as plant 

communities, statistics, forestry and geostatistics, over the past decades (Clark, 1979, Campbell 

and Noe 1985, Madden and Hughes 1995, Real and McElhany 1996, Liu 2001).   

A commonly used approach to determine spatial patterns is to compare the observed 

frequency distribution with theoretical frequency distributions such as Poisson, binomial, 

negative binomial, Neyman type A, and beta-binomial distributions (BBD) (Hughes and Madden 

1993, Madden and Hughes 1994).  Based on the best fit of observed frequencies to these 

distributions, a spatial pattern is considered aggregated, random or uniform (Campbell and Noe 

1985, Campbell and Madden 1990, and Madden and Hughes 1995).  It is generally accepted that 

for count data, a good fit to the Poisson distribution suggests random distribution (Fisher 1925), 

while a good fit to the negative binomial distribution implies heterogeneity (Madden and Hughes 

1995).  Similarly, for a binary variable a good fit to the binomial distribution indicates 

homogeneity while a good fit to the beta-binomial distribution suggests heterogeneity (Madden 

and Hughes 1995).  The frequency distribution approach has also been extended to calculate 

indices of aggregation or dispersion.  The indices that have been commonly used include, 

Fisher’s variance-to-mean ratio (Fisher, 1925), David and Moore’s index of clumping (David 

and Moore, 1954), the slope of the log (variance) to log (mean) line in the Taylor’s empirical 

power law (Taylor 1961), Morisita’s index, Iδ (Morisita 1962), Lloyd’s mean crowding and 

indices of patchiness (LIP) (Lloyd, 1967), the parameter k of the negative binomial distribution 

(Elliott 1977), and the parameter θ of beta- binomial distribution (Irwin, J. O. 1954, Griffiths, D. 

A. 1973, Hughes and Madden 1993, Madden and Hughes, 1994 & 1995).  Because the methods 

based on frequency distributions ignore the information about the locations of sample sites and 
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their spatial relationship, they reflect only the relationship among individuals within sample 

units.  If the presence of one individual enhances the presence of other individuals within the 

same sample unit, then the frequency distribution would be determined as aggregated; otherwise 

it follows a uniform or random distribution.  The aggregation determined using frequency 

distribution based methods has often been referred to as heterogeneity (Madden and Hughes 

1995). 

Other methods that take into consideration the location of sample sites have also been 

developed for characterization of spatial patterns. These methods include: spatial analysis by 

distance indices (SADIE), methods based on quadrat variance, spatial autocorrelation, distance 

based joint-counts/network method and geostatistics.  

SADIE (Perry and Hewitt 1991, Alston 1994, Perry 1995) determines an index of 

aggregation by comparing the observed spatial arrangement with other arrangements derived 

from it, such as those where individuals are arranged as crowded as possible, those as random as 

possible, and those as regular as possible.  Aggregation detected by SADIE method may be 

nonrandom in two different ways, nonrandom frequency distribution of counts regardless of the 

locations of sample units, and the nonrandom spatial arrangement of the sample units.  Perry and 

Hewitt (1991) defined ‘move to crowding’ as the minimal total number of moves required to 

move all individuals, one by one and step by step, so that all the individuals finish in the same 

sample unit. ‘Move to randomness’ was also defined similarly, and a test based on the ratio of 

‘move to crowding’ and ‘move to randomness’ was proposed as an index for detecting 

aggregation in spatial patterns.  Lately, ‘distance to regularity’ (D) was suggested as a 

replacement to ‘move to randomness’ (Alston 1994).  The approach was further extended to map 
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two-dimensional data, and a new method was developed to estimate the initial focus of a cluster 

based on the movements (Perry 1995).   

Blocked quadrat variances (BQV) (Greig-Smith 1952) method determines cluster size by 

identifying the peak of mean “local variance” (mean squared difference between adjacent blocks) 

as quadrat sizes increase by combining two contiguous quadrats to form a new quadrat.  The two 

major drawbacks with the BQV method are that the block sizes must be some power of 2, and 

that the starting position of blocking can affect the results.  The two-term local quadrat variance 

(TTLQV) method (Hill 1973) offers more flexibility to the block size, and reduces the effects of 

the starting position.  However, quadrats are still blocked along the belt transect and edge effects 

are important.  Therefore, the variance is affected not only by distance (spacing) but also by the 

block size.  This disadvantage was overcome in the paired-quadrat variance (PQV) and random 

paired quadrat variance (RPQV) methods, in which the variance was calculated for all possible 

paired quadrats along the belt at a given spacing for the former or for randomly selected paired 

quadrats for the latter (Goodall 1974).  The quadrat variance methods provide informative results 

of aggregation and the size of clumps and are independent of the assumption of distributions.  

However, the calculations become complicated for two-dimensional data sets. 

Spatial autocorrelation, distance based joint-counts methods and geostatistics are all similar.  

Spatial autocorrelation can be defined as a spatial property that the presence of some quality at 

one sample site (quadrat, or location) makes its presence at proximal sample sites more or less 

likely (Cliff and Ord 1973).  Proximity can be determined by the connection between the two 

samples sites, such as distance, lag distance, vector or other criterion.  Unlike methods based on 

negative binomial and Poisson distributions, which can only be used for discrete count data, the 

spatial autocorrelation analysis can be conducted on any type of data, continuous or discrete.  
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Data used in spatial autocorrelation can be point based, area based, or even without information 

on the exact shape of areas.  The two most common coefficients in spatial autocorrelation 

analysis are Moran’s I, which is based on sum over the cross product of deviations from mean, 

and Geary’s c, which is based on sum of the squared difference (Moran 1950, Geary 1954).  

Joint-counts method, which has also been referred as distance-based methods and neighbor 

networks, is an analysis for discrete data based on point-pairs (Campbell and Madden 1990, Real 

and McElhany 1996, Liu 2001).  There are a number of ways for point-pairing, such as Gabriel 

connectedness (Gabriel and Sokal 1969), the nearest neighbor (Clark and Evans 1954, Pielou 

1959), and one- or two-dimensional distance class (Gray et al., 1986, Nelson et al., 1992, 

Ferrandino 1996).  After establishing connectedness, the number (or average distance) of each 

type of joint is counted and this observed value is then compared with the expected one under the 

assumption of randomness.  Geostatistical techniques, originally developed for use in mining 

(Clark 1979), can be used for both continuous and discrete variables, and require less stringent 

assumptions of stationarity compared with spatial autocorrelation techniques.  In geostatistics, 

spatial dependence can be analyzed directionally or omnidirectionally, and represented as 

semivariogram or correlogram. Semivariogram calculates semivariance against each lag distance 

(a vector h), in which semivariance is defined as half of mean squared difference between all 

point pairs (p, p+h) separated by h.  In a correlogram, the linear (Pearson’s) correlation 

coefficients between point pairs separated by a vector h are plotted against vector h, or lag 

distance at different directions.   

Recently, demand for spatial analysis has escalated because of advances in techniques for 

acquiring, transporting and processing data, which resulted in explosive growth of data available 

for spatial analysis.  Spatial analysis tools in geographic information systems (GIS) have also 
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made traditional spatial analysis techniques requiring extensive computing easier than ever to 

implement.  However, few spatial techniques have been developed based on GIS data.  An 

instinctive method of determining whether a spatial data set is aggregated by human beings is to 

visually scan through the spatial data and determine whether the data is aggregated based on 

whether the densities of individuals or mean value varies “significantly” among different sub-

areas.  In GIS software, such as GRID module of Arc/Info (Arc/Info version 7, Environmental 

Systems Research Institute (ESRI), Redlands, CA) and ArcGIS (ArcGIS version 9, ESRI), a 

common function called smoothing filter or focal mean, in which the value at the center of the 

moving window is computed as a simple arithmetic average of the other values in the window, is 

very similar to the scanning movement of human eyes and with a mental calculation of densities 

or mean values.  A spatial analysis method based on moving window averaging will eliminate 

the importance of the arbitrary and happenstantial positioning of contiguous quadrats which 

inflate the error for all fixed quadrat methods.  Such a method will be easy to interface with GIS 

programs, and establish a foundation for developing other spatial analysis techniques in the 

future. 

Our objective, therefore, was to develop a method that is based on moving window 

averaging.  Variance of the resulted averages is used to determine if the average varies 

significantly at different locations.  The relationship between the change of variance as the 

moving window changes size and the average cluster size of spatial data is analyzed.  The 

method, though not described in detail, has been used previously (Bhat et al. 2003) in analysis of 

spatial patterns, and briefly discussed in a review (Wu and Subbarao 2005).  

MATERIALS AND METHODS 
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Spatial dependence and variance of moving window averages (VMWA).  Generally, for n 
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i, i=1,…,n) each with a variance v,  the variance of their mean Y = /n  can be 

calculated as: 
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 Where var (X)=v, and cov(Xi,Xj) denotes covariance between Xi and Xj  (i≠j).  This suggests 

that the variance of averages of n samples is v/n if the samples are all randomly distributed and 

have a variance v (cov(Xi,Xj) =0 for i≠j), the variance of averages is greater than v/n if they are 

aggregately distributed or positively correlated with each other (cov(Xi,Xj) >0 for i≠j), and 

smaller than v/n if they are uniformly distributed (cov(Xi,Xj) <0).  Averaging by moving an n×n 

window is similar to calculating averages of n2 variables with the same variance and mean, the 

deviation of variance of the averages from v/n2, can therefore be used as a measure of spatial 

dependency within the window.  To use an index (or a set of indices) as a measure of the spatial 

dependency over the whole data set, first of all, a ‘stationary’ assumption is needed: i.e., there 

exists a general or universal degree of dependency over the whole data set.  The spatial 

dependency among the points within a moving window either does not change as the position of 

the moving window changes through the data set, or they are additive and their mean represents 

the degree of spatial dependency over the whole data set.  This is the basis of using a single 

index (or a set of indices) for the whole dataset.  Secondly, because a large window contains 

smaller windows, the spatial dependency at smaller windows will be carried over to larger 

windows.  To quantify the carryover effects, an ‘isotopic’ assumption is needed: the spatial 

dependency between any point pair in a large window is the same as in the smaller windows as 

long as the minimum size of window to cover the two points remains the same, regardless of the 
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direction of the vector linking the two points, and the overall spatial dependency within a 

window can therefore be decomposed as the sum of the spatial dependency between all the 

possible point pairs.    Based on these two assumptions, the new method of spatial analysis was 

developed using the variance of moving window averages (VMWA), the detailed mathematical 

derivations are presented in the Appendix at the end of the manuscript. 

Calculation of spatial dependency indices. The calculation of dependency indices of 

VMWA can be carried out easily in GIS, or in Microsoft Excel following a simple procedure.  

Step 1: Arrange the original two-dimensional data set, one sample point per cell; 

Step 2: Move a window (size 1×1, 2×2, 3×3, etc.) cell by cell two-dimensionally and 

calculate the average of samples within the moving window to generate a new data set by 

assigning the average to the center cell (or left upper cell closest to the center) of the moving 

window; 

Step 3: Calculate mean and variance of original data and the new data sets derived from 

different sizes of moving windows; 

Step 4:  Assess the edge effects based on the change of overall mean, dramatic changes in 

mean suggest strong edge effects, or the values at edges are very different from the values at 

other places; 

Step 5:  Calculate spatial dependency index at each window size based on variance of the 

averages at different window sizes by solving equations (equations 6 & 7 in the Appendix); 

Step 6: Interpret the results: if the index > 0, then aggregated; if the index = 0, then random; 

otherwise (index < 0) uniform distribution.  

Application of the VMWA method to artificial 0-1 data.  The VMWA method was first 

tested with artificially generated binary data with regular, random and aggregated distributions.  
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Six regularly distributed binary data sets were generated for a 20×20 field.  Among them, 

examples 1 and 2 consisted of alternatively arranged lines of 0s and 1s, diagonally and 

horizontally, respectively.  In examples 3-6, the 1s were only located at the four corners of 3×3 

to 6×6 windows, and the remainder of the cells were all 0s, so that no two 1s were located in any 

2×2 (to 5×5) window.  Random 0-1 data sets were generated based on an assumption that each 

sample site has a value of 0 or 1 randomly with P(x=1)=0.1 to 0.9 to equal 1 (500 data sets were 

generated at each P value), and that different sample sites are independent of each other.  

Aggregated 0-1 data were generated using commonly used Neyman-Scott cluster process 

(Cressie 1991), with the first step being the random generation of 1, 2, 4, 10 disease foci 

(infected plants have a value=1) in a field with 20×20 plants.  Then, whether a plant becomes 

infected from each of the foci was determined (simulating 200 times of infection) according to 

the distance (r) from the disease focus: if the distance was farther than the influence range 

(denoted here the maximum distance that pathogen propagules could be disseminated) parameter 

R or the plant has already been infected, then no action was taken, otherwise the plant had the 

potential of getting infected at a probability of P = e

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

-r/R/2πrR (van den Bosch et al. 1988).  For 

each focus number, four hundred data sets were generated for each influence range from R=1 to 

R=7.  

Application of the VMWA method to artificial count data.  Artificial count data with 

different distributions were generated and used to test the VMWA method.  Random distribution 

data sets were generated assuming that each sample unit consisted of 20 individuals and each of 

them randomly (independently) became diseased at a probability p=0.1-0.9, or otherwise 

remained healthy (500 data sets were generated at each p value).  Aggregated data sets were 

generated using a Neyman-Scott cluster process similar to the above.  First, 10 disease foci 

 



Wu et al.  11

(sample units) were randomly generated in a 20×20 field.  Then, disease (unlimited) was 

reproduced at each sample unit around each of these foci according to a given disease gradient 

function based on its distance r from the center of these foci, D(r)= e
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-r/R/(2πrR).  At each focus 

number, four hundred data sets were generated for each influence range from R=1 to R=16.  

Similar simulation was also done in a 40×40 field with influence range from R=1 to R=36.  

Application of VMWA to historical survey data.  The VMWA method was also employed 

to assess the spatial patterns in historical data from disease surveys and compared with the 

results obtained from other methods.   

First, the number of lettuce plants infected by Bremia lactucae from historical disease 

surveys in three fields, in which each sample unit consisted of 10 plants, and sample sites were 

20 m apart within a row and across rows (Wu et al. 2001), was analyzed using VMWA, BBD 

(Madden and Hughes 1994), SADIE (Perry 1995 & 1998), and spatial autocorrelation software 

LCOR2 (Gottwald et al. 1992).   

Second, the number of microsclerotia of Verticillium dahliae per gram soil from cauliflower 

fields, the number of plants infected by V. dahliae and the disease severity in the same field sites 

from a previous study (Xiao et al. 1997) were analyzed using the VMWA method.  Each site was 

divided into 8×8 contiguous quadrats, 2×2 m each (2-m length on two rows of cauliflower 

plants). The results obtained with the VMWA method were compared with those obtained with 

LIP, BBD, semivariogram and SADIE methods, as applicable to each data set.   

The VMWA method was also used to analyze historical data from disease surveys on pepper 

wilt caused by V. dahliae (Bhat et al. 2003).  The original data of healthy or diseased status for 

every individual plant, was used in this analysis instead of the 20-plant quadrats reported in the 

study (Bhat et al. 2003).  No comparison of the results with LIP, BBD, LCOR2, SADIE, or 
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semivariogram methods was made because none was applicable to these large binary data sets 

with missing data at some sample sites. 

RESULTS 

Application of the VMWA method to artificial 0-1 data.  For the six examples of regularly 

distributed 0-1 data, the index calculated using the VMWA method correctly reflected the spatial 

pattern.   In examples 1 and 2, the spatial dependency index was negative at moving window size 

2×2, and positive at 3×3, consistent with the one-line-wide gap between any two lines of 1s 

(Table 1).  In examples 3 to 6, the indexes remained negative or almost zero when moving 

windows were smaller than the minimum window sizes (3×3 to 6×6 in examples 3 to 6) required 

to cover any two 1s, and became positive when the moving windows were at the minimum sizes 

(Table 1).   

Regardless of the incidence, the VMWA method correctly classified the spatial patterns for 

randomly distributed 0-1 data sets since the value of the index was close to zero and varied little 

in the five hundred simulations at each incidence (Table 2). 

As for aggregated 0-1 data, the VMWA method correctly reflected the ranges used in 

epidemic simulations when the ranges were shorter than 5 in a 20×20 field regardless of whether 

the number of disease foci was 1, 2, 4, or 10 (Fig. 1A-D).  The indices were positive for moving 

window 2×2, remained positive till the window size was equal to influence range +1, and 

decreased to zero at the window size equal to range +2 (Fig. 1A-D).  However, as the range 

increased beyond 5, the index curve became slightly flatter.  For the small moving windows, the 

index topped off at range 3-4, and began to decrease as the range increased further (Fig. 1A-D) 

perhaps because the center of the disease foci became a plateau as the range increased. 
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Application of the VMWA method to artificial count data.  Simulations of count data 

(number of diseased plants) showed that the VMWA method correctly identified the spatial 

pattern as disease incidence ranged from 10% to 90%.  The indices were close to zero and varied 

little (Table 3).  As for the simulated aggregated data, the VMWA method correctly reflected the 

ranges used in simulation of the epidemics when the ranges were small.  The index curves 

changed little after the range increased beyond 10 in a 20×20 field (Fig. 2A) and 20 in a 40×40 

field (Fig. 2B).  These curves were slightly different from the curves for 0-1 data in Figs. 1A-D 

in that for count data, there was no decrease in the value of the index at small moving windows 

as the range increased.  This difference was perhaps because the center of a disease focus never 

became a plateau (unlimited disease level) as the range increased in simulation, unlike the 

simulation of 0-1 data. 
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Application of VMWA to historical survey data.  For the number of lettuce plants infected 

by B. lactucae, the VMWA method detected positive (positive index) association among the 

sample sites within a window size of 4 to 5 in all three fields (Table 4).  Therefore, it determined 

that the distributions were aggregated.  The field with 60% incidence had the lowest degree of 

aggregation, and the smallest cluster size among the three fields.  These results were highly 

consistent with the results from the previous semivariogram analysis (Wu et al. 2001) and results 

from LCOR2 (Table 5).  Results from SADIE (Perry 1995 & 1998) and BBD analysis (Madden 

and Hughes 1994) also defined that diseased plants in the three fields were all aggregated (Table 

4), suggesting a positive association not only within sample units but also across sample units. 

For the number of microsclerotia of V. dahliae per gram soil from cauliflower fields, weak 

aggregation (with positive, but small indexes) was detected by the VMWA method in sites A1, 

A2, B1, B2, B3, C2 and C3, but not in the other sites (Table 6), which suggests weak association 
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between the numbers of microsclerotia across sample sites.  The results were highly consistent 

with the previous results from semivariogram analysis (Xiao et al. 1997), but different from the 

results of LIP tests, which showed a LIP value higher than 1 in all the sites, indicating an 

aggregated distribution of microsclerotia within sample units (Xiao et al. 1997).  The results also 

differed from those obtained with SADIE, which showed aggregated spatial patterns of 

microsclerotia only in sites A2 and C2 (Table 6).  As for the number of cauliflower plants 

infected by V. dahliae (Xiao et al. 1997), the VMWA method detected aggregated distributions 

not only in field sites A1, A2, and B3 in which BBD detected aggregation previously (Xiao et al. 

1997), but also in sites B1, B2, C1, D1, and D3 (Table 6) in which aggregation was not detected 

previously by BBD (Xiao et al. 1997).  The results were partly consistent with the results 

obtained from SADIE method, which also defined aggregated distribution for diseased plants in 

sites B1, C1, and D1, but not in sites B2, B3, and D3.  Furthermore, no aggregation was found by 

the VMWA method (Table 6) in field sites A3 and C3 where aggregation was defined previously 

by BBD method (Xiao et al. 1997), but not by SADIE method (Table 6).  When disease severity 

was analyzed, aggregation was detected in four out of the six field sites examined (Table 6).  The 

LIP, BBD and SADIE methods were not suitable for these data sets.  

As for the binary data of healthy or diseased (infected by V. dahliae) pepper plants, the 

VMWA method revealed strong aggregation in field sites 1A, 1B and 1C, weak aggregation in 

field sites 2A, 2B, and 3B (Table 7), and random distribution in the other three sites 2C, 3A, and 

3C, highly consistent with the visual impression of the maps (Fig. 3). 

DISCUSSION 

Based on the above analyses, the VMWA method possesses certain advantages over 

currently available techniques for spatial pattern analysis.  First, choice of proper software for 
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spatial pattern analysis has long been the bane for average users in spatial pattern analysis 

because of the variety of programs available, the level of computer knowledge required to use 

these programs and their applicability being restricted to certain types of data.  This has resulted 

in many cases of inappropriate application of spatial analysis methods.  The VMWA method can 

be applied to many types of data including binary diseased or healthy plant counts, disease 

incidence, and number of diseased plants or pathogen propagules.  Therefore, VMWA method 

offers significant advantages over other methods that are only applicable for certain types of 

data.  Second, the calculation of the VMWA method does not require additional sophisticated 

software, and can easily be performed in GIS or Microsoft Excel, in which a user will only need 

to paste the data into a spreadsheet, or run a macro program for multiple data sets.  Furthermore, 

if the purpose is only to determine whether or not there is aggregation over the whole study area, 

the method can be further simplified by ignoring the locations of data points in the moving 

windows.  Therefore, all COV
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k at different window sizes k=1, 2, …, n  (equation 6 in the 

appendix) can be considered equal.  Aggregation can be defined as long as vn is significantly 

greater than v/n. 

Due to the similarity in principle between the VMWA method and spatial autocorrelation 

(semivariogram), the results from these methods are highly consistent with each other for most 

of the example data sets (when edge effect is ignorable) used in this paper.  The VMWA method 

theoretically differs from spatial autocorrelation in that only the average association over all 

directions is given in the outputs of VMWA while the latter can also give the association for 

each direction, and that the VMWA method uses a window size that is slightly different from the 

distance (vector) used in autocorrelation (or semivariogram).  Because of these, compared with 

spatial autocorrelation and semivariogram methods, the VMWA method is more suitable when 
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data sets are small, and when the topological relationship between any two sample sites is more 

important than the physical distance and orientation between them.  It should also be noted that 

the number of calculations for moving average is considerably fewer than the number of 

calculations for distance between any two pairing points, as the size of a dataset increase.  This is 

also a significant benefit of the VMWA method as more and more raster data are becoming 

available, and the resolution of the data increasing over years.  For example, for a dataset 

composed of 1.0×10

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

8 (10000×10000) points, spatial autocorrelation needs to calculate distance 

for about 5.0*1015 point pairs while the VMWA method, at maximum, needs to calculate 

1.0×1012 averages.  Furthermore, if we are only interested in the spatial dependence at a smaller 

scale, such as within a 500×500 or smaller window, the number of averaging calculations can be 

further reduced to 5.0×1010 (for a 3-GHz CPU, it takes about 20 seconds, compared with 278 

hours to do spatial autocorrelation).  This would significantly reduce the computing time, and 

make it feasible to do spatial analysis for datasets covering large areas and with high resolutions. 

The VMWA method is, to some extent, also similar to the quadrat variance methods.  The 

latter calculate the ‘local variance’ between adjacent blocks or paired-quadrats, and then 

calculate the overall average (Greig-Smith 1952, Hill 1974, and Goodall 1974, Ludwig and 

Goodall 1978).  For example, at block size 1, the ‘local variance’ can be calculated differently in 

different quadrat variance methods, such as [(x1-x2)2+(x3-x4)2+…...]/2, or [(x1-x2)2+(x2-x3)2+(x3-

x4)2+…...]/2, and more.  Taking the first formula as an example and assuming that the mean of 

the data sets is m, it can be further rewritten as: Σ(x-m)2/2-[(x1-m)(x2-m)+ (x3-m)(x4-m)+…].  It 

becomes clear that the second part of the formula is a portion of total cross product at distance 1 

(one-dimensional data).  Because calculation of the ‘local variance’ becomes complicated as the 

block size increases, the quadrat variance methods become complicated as well.   Besides, the 
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results of the methods are usually affected by the starting place of quadrat and block size, and it 

is difficult to use these methods in two-dimensional data sets, which are more common in nature.  

The VMWA method, in contrast, is intrinsically more suitable for two-dimensional data than the 

traditional quadrat variance methods because the calculation of average is very easy within each 

moving window.  Moreover, moving the windows two dimensionally makes the results of the 

variance reflecting the whole data set better, and is less affected by local variation or by the 

starting position of the moving windows.  The partition of variance for a big moving window 

into variance at smaller windows solved the carryover problem satisfactorily.  These together 

make the VMWA method more stable as well as more accurate. 

As with most other methods, there are also certain limitations with the VMWA method.  As 

stated above, it cannot detect directional differences.  Instead, it gives an average degree of 

spatial association between two samples.  It is inappropriate to use this method when directional 

effects are significant because the calculation of spatial dependency index relies upon the 

‘isotopic’ assumption.  In addition to this limitation of directional effect, edge effect is another 

factor that may limit the use of VMWA method because a moving window consists of fewer 

pairs far apart at the edges than at the center, and the number of pairs affected increases as the 

window size increases. Although another method was developed as a comparison, it was found 

that the edge effect, in general, tends to cause the aggregation index to fluctuate.  In cases where 

edge effect was not significant, the two methods ended in very similar results (results not 

shown). 

The VMWA method has also great potential for interfacing with GIS because moving 

window averaging is a common function in GIS, such as in ArcGIS, a widely used GIS software.  

This feature makes VMWA very easy to carry out although more studies are needed to adapt this 
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1 

2 

3 

4 

method into GIS.   To further increase its flexibility, it is also possible to use different shapes of 

moving windows, such as rectangle windows to determine the shape of clusters in addition to the 

average cluster size (see equations 12-14 in the Appendix).   

Appendix: Mathematical derivations 

Assuming that the original data set {yij} (1<i<L, and 1<j<W) has a mean m, and averages are 

calculated within an n × n moving window w consists of y

5 

6 

7 

8 

w11, yw12, …, yw1n, …ywn1, ywn2, …, 

ywnn (composed of fw points).  The variance (Sn) of the new data set (with an average mn) derived 

by moving window (n × n) averaging can be calculated as: 
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Based on the ‘isotopic’ assumption, product ( ) ( )mymy jiji −⋅− 2,21,1  was only determined by k, 

the minimum window size covering (i1, j1) and (i2, j2), two points in the moving window then: 
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Assuming also (yw,1-m)(yw,k-m) is not dependent on the position of the moving window w (the 

stationary assumption), and defining COVk = /LW, then, ( )({ }∑ −−
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where δn,k  =  (see equations 8-11( )∑
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Therefore, we can calculate COVk based on S1,…,Sk  by solving equations 6, and define: 

In=COVn/COV1=COVn/v                                                                                        (7) 

 

 as equivalents to spatial autocorrelation coefficients to measure the spatial dependency between 

sample points.  

Calculation of coefficients δn,k . When an n×n window is moving through a L×W (L<W) 

data set, the number of the data points that the window contains is n×n in the middle and less 

than n×n along the edges and corners.  The overall frequency (F
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10 a,b) that a moving window is  full 

or partially full (n-a) × (n-b) [n<L and a, b<int(n/2)] can be calculated as:   11 

12 

13 

14 

15 

0, if
0,0 if
0,0 if

0 if

/)]/2int(2)][/2int(2[
/)1)](/2int(2[
/)1)](/2int(2[

/)1)(1(

,

>
>=
=>

==

⎢
⎢
⎢
⎢

⎣

⎡

−−
+−−
+−−

+−+−

=

ba
ba
ba

ba

LWnbna
LWnLnb
LWnWna

LWnWnL

F ba                                   (8) 

In a full or partially full window (n-a)×(n-b), the coefficient λa,b,n,k  for point pairs that can 

only be placed in a window not smaller than k × k, define A=n-a and B=n-b, can be calculated as: 
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k

knba −−=∑λ 2 for any a, b, and n, therefore σ can be calculated as:  a,b,n,,k   16 
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σ a,b,n,,k =λa,b,n,k /fw
2 =λa,b,n,k /(n-a)2/(n-b)2                                                                       (10) 1 

2 

3 

4 
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 Therefore, the weighted average number of the point pairs that can only fit in a window not 

smaller than k × k can be calculated by integrating formulae 8-10:  
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δ n,,k are dependent on the size of dataset (L and W), moving window size n, and k (the 

minimum window to cover the point pair), and therefore can be calculated with a program for 

using in equation 6. 

More generally, if one uses n rectangle moving windows MW1, …, MWn, (with width w and 
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, then the equations 6 can be expressed  as DC=V.  However, 

the calculation of δ n,,k is slightly different from the one for square moving windows:  First, 

frequency Fa,b for a full or partially full moving window (l-a) × (w-b) {where l<L, w<W,  

a<int(l/2), and b<int(w/2)} can be calculated as:   13 
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Defining A=l-a and B=w-b, calculation of λa,b,l,w,k will be the same as for that of λA,B,,k in formula 

9, then δn,k can be calculated based on the l and w of the n-th moving windows as: 
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As long as D-1 exists, COV1~COVn  can be calculated based on V1~Vn :  1 
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C=D-1V          (14) 
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TABLE 1.  Spatial dependency indices at different window sizes calculated using a method 

based on variance of moving window averages (VMWA) for artificial binary data with a regular 

distribution 

Window 
size Example1a Example2 Example3 Example4 Example5 Example6

2×2 -0.38b -0.31 -0.33 -0.09 -0.03 0.02 
3×3 0.23 0.39 0.33 -0.17 -0.12 -0.13 
4×4 -0.10 -0.45 -0.33 0.26 -0.03 0.02 
5×5 0.03 0.50 0.34 -0.09 0.21 -0.04 
6×6 -0.01 -0.50 -0.34 -0.14 -0.07 0.16 
7×7 0.02 0.48 0.32 0.21 -0.09 -0.04 
8×8 -0.02 -0.48 -0.32 -0.10 -0.04 -0.05 

4 

5 

6 

7 

8 

9 

a All example datasets were composed of 20×20 data points each with a value 0 or 1.  In examples 1 and 2, 0s and 1s 

were arranged in alternative lines, diagonal and horizontal, respectively.  In examples 3 to 6, 1s were only located at 

the four corners of 3×3 to 6×6 windows in the order, and the rest were all 0s, so that no two 1s were located in any 

2×2 to 5×5 (in the same order) windows. 

b Positive values of index indicate positive association, negative values indicate negative association, and zero 

values indicate random distribution, or independence. 
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TABLE 2.  Averages and standard deviations of spatial dependency indices at different window 

sizes calculated using a method based on the variance of moving window averages (VMWA) for 

simulated binary data with a random distribution and different incidence levels  

Spatial dependency indices at different window sizes 
Incidence 2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 

10% 
-0.002a 

±0.028b

0.000 

±0.029 

-0.003 

±0.023

-0.003 

±0.021

-0.002 

±0.024

-0.004 

±0.022

-0.003 

±0.027 

-0.004 

±0.019

0.000 

±0.031

20% 
-0.004 

±0.028 

-0.003 

±0.025 

-0.001 

±0.021

-0.004 

±0.002

-0.002 

±0.022

-0.004 

±0.020

0.000 

±0.026 

-0.003 

±0.020

-0.001 

±0.031

30% 
-0.004 

±0.028 

-0.003 

±0.023 

-0.002 

±0.020

-0.004 

±0.020

-0.002 

±0.022

-0.004 

±0.020

-0.001 

±0.026 

-0.004 

±0.019

-0.001 

±0.029

40% 
-0.004 

±0.028 

-0.002 

±0.024 

-0.001 

±0.020

-0.005 

±0.020

0.000

±0.021

-0.003 

±0.020

-0.003 

±0.024 

-0.005 

±0.019

-0.003 

±0.027

50% 
-0.004 

±0.026 

-0.004 

±0.023 

0.000 

±0.021

-0.003 

±0.021

-0.001 

±0.023

-0.004 

±0.019

0.000 

±0.024 

-0.003 

±0.020

-0.001 

±0.029

60% 
-0.001 

±0.028 

-0.002 

±0.024 

-0.002 

±0.019

-0.004 

±0.019

-0.002 

±0.023

-0.002 

±0.019

0.000 

±0.024 

-0.004 

±0.020

-0.001 

±0.029

70% 
-0.002 

±0.029 

-0.001 

±0.022 

0.000 

±0.020

-0.004 

±0.021

-0.003 

±0.022

-0.005 

±0.020

-0.002 

±0.024 

-0.005 

±0.019

0.000 

±0.029

80% 
-0.002 

±0.028 

-0.003 

±0.026 

-0.003 

±0.023

-0.004 

±0.020

-0.002 

±0.021

-0.002 

±0.019

-0.003 

±0.024 

-0.004 

±0.018

-0.002 

±0.029

90% 
-0.005 

±0.030 

-0.001 

±0.029 

-0.002 

±0.023

-0.003 

±0.021

-0.004 

±0.025

-0.006 

±0.023

0.002 

±0.023 

-0.003 

±0.020

0.000 

±0.030

4 

5 

6 

7 

8 

9 

 

a The average of the index in  500 simulations.  Positive values indicate positive association, negative values indicate 

negative association, and zero values indicate random distribution, or independence.  Each data set was generated 

based on the assumption that in a field with 20×20 healthy plants (value =0), each plant (sample unit) has a 

probability (p=0.10% to 90%) to become diseased (with value 1) independently.     
b The standard deviation of the index immediately above. 
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TABLE 3.  Averages and standard deviations of spatial dependency indices at different window 

sizes calculated using a method based on the variance of moving window averages (VMWA) for 

simulated number of diseased plants with random distribution and different incidence levels 

Spatial dependency indices at different window sizes 
Incidence 2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 

10% -0.002a 
±0.029b

-0.003 
±0.027 

-0.002 
±0.020

-0.003 
±0.020

-0.001 
±0.021

-0.004 
±0.019

-0.001 
±0.026 

-0.004 
±0.020 

-0.002 
±0.027

20% -0.006 
±0.027 

-0.002 
±0.024 

-0.003 
±0.020

-0.004 
±0.020

0.000 
±0.022

-0.005 
±0.019

-0.001 
±0.025 

-0.004 
±0.019 

-0.001 
±0.029

30% -0.003 
±0.028 

-0.003 
±0.024 

-0.001 
±0.021

-0.003 
±0.020

-0.002 
±0.021

-0.003 
±0.02

0.000 
±0.025 

-0.004 
±0.020 

-0.002 
±0.029

40% -0.001 
±0.026 

-0.003 
±0.024 

-0.003 
±0.021

-0.003 
±0.019

-0.002 
±0.022

-0.004 
±0.020

-0.001 
±0.024 

-0.004 
±0.019 

-0.001 
±0.028

50% -0.005 
±0.028 

-0.003 
±0.024 

-0.004 
±0.020

-0.002 
±0.020

-0.003 
±0.021

-0.004 
±0.020

0.000 
±0.024 

-0.004 
±0.018 

-0.003 
±0.029

60% -0.004 
±0.027 

-0.001 
±0.026 

-0.002 
±0.020

-0.002 
±0.020

-0.002 
±0.022

-0.004 
±0.021

0.000 
±0.027 

-0.002 
±0.020 

-0.002 
±0.028

70% -0.002 
±0.026 

-0.003 
±0.026 

0.000
±0.022

-0.004 
±0.019

-0.001 
±0.021

-0.006 
±0.020

0.001 
±0.025 

-0.004 
±0.019 

-0.001 
±0.031

80% -0.001 
±0.029 

-0.002 
±0.025 

-0.002 
±0.020

-0.004 
±0.021

-0.001 
±0.022

-0.005 
±0.02

0.000 
±0.026 

-0.003 
±0.018 

-0.001 
±0.029

90% -0.004 
±0.028 

-0.001 
±0.025 

-0.004 
±0.022

-0.002 
±0.020

0.000
±0.022

-0.004 
±0.019

0.000 
±0.025 

-0.003 
±0.018 

-0.003 
±0.029

4 

5 

6 

7 

8 

9 

 

a The average of spatial dependency indices in  500 simulations. Positive values indicate positive association 

negative values indicate negative association, and zero values indicate random distribution, or independence.   

Each data set, consisted of 20×20 sample units, was generated assuming that each sample unit consisted of 20 

individuals and each of them randomly (independently) became diseased (with p=0.1-0.9) or remained healthy.   
b The standard deviation of the index immediately above. 
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3 

TABLE 4. Characterization of spatial patterns of lettuce plants showing 

downy mildew symptoms in 1998 surveys (Field A-C) using the 

VMWA, SADIE, and BBD methods 

Method Indices/ 
Coefficients 

Field A 
(31.5%) 

Field B 
(60.0%) 

Field C 
(71.0%) 

VMWA I2
a 0.58 0.30 0.49 

 I3 0.51 0.02 0.18 
 I4 0.24 0.15 0.40 
 I5 0.18 -0.07 0.05 
SADIE Ia 3.32*b 1.56* 3.20* 
BBD θ 0.41* 0.16* 0.36* 

 D 3.66* 2.26* 3.40* 
4 

5 

6 

7 

8 

 

a I2 to I5 denote spatial dependency indices at window sizes 2×2, 3×3, 4×4, and 5×5, 

respectively.  Positive values indicate positive association, negative values indicate 

negative association, and zero values indicate random distribution, independence. 

b Ia, θ and D values followed by asterisk were significant (P<0.05). 
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1 

2 

TABLE 5. Analysis of spatial patterns of lettuce plant showing downy mildew in 1998 

surveys (Field A-C) using LCOR2  

Axes 0 1 2 3 4 5 6 7 8 9 
Field A  Incidence  = 31.5%       
0 1.00** 0.61** 0.53** 0.29** 0.39** 0.40** 0.59** 0.43** 0.34* 0.27 
1 0.61** 0.53** 0.41** 0.25* 0.29** 0.37** 0.44** 0.39** 0.38* 0.16 
2 0.57** 0.42** 0.38** 0.15 0.27* 0.20 0.33* 0.20 0.17 0.08 
3 0.53** 0.47** 0.37** 0.16 0.26* 0.25* 0.31* 0.22 0.33* 0.24 
4 0.46** 0.32** 0.34** 0.18 0.25 0.22 0.39** 0.22 0.28 0.18 
5 0.34** 0.23* 0.17 0.11 0.12 0.07 0.14   -0.08   -0.11   -0.29 
6 0.17 0.09 0.11   -0.08 0.05   -0.05 0.01   -0.14 0.11   -0.06 
7 0.14 0.12 0.18 0.14 0.06   -0.04 0.04   -0.14 0.19   -0.04 
8 0.22 0.16 0.25 0.10 0.15 0.05 0.06   -0.14 0.33 0.31 
9 0.09 0.00   -0.12   -0.08   -0.25   -0.10 0.09   -0.14   -0.01   -0.32 
Field B Incidence  =  60.0%       
0 1.00** 0.25** 0.27** 0.20* 0.15 0.02 0.04 0.09 0.23 0.17 
1 0.38** 0.19* 0.09 0.15 0.02 0.05 0.01 0.08 0.16 0.01 
2 0.12 0.07 0.03 0.06   -0.06 0.10   -0.08 0.01   -0.11   -0.03 
3 0.04 0.00 0.02 0.00 0.01 0.03 0.02   -0.12 0.04 0.00 
4   -0.06   -0.21   -0.13   -0.10   -0.15   -0.10   -0.01   -0.17   -0.18 0.04 
5   -0.11   -0.07   -0.22   -0.14   -0.34*   -0.25   -0.16   -0.09   -0.11   -0.06 
6   -0.03   -0.02   -0.11   -0.10   -0.24   -0.02 0.01 0.01 0.24 0.06 
7   -0.05   -0.05   -0.01   -0.08 0.14 0.08 0.15   -0.04 0.35 0.04 
8   -0.27   -0.17   -0.03   -0.01 0.15 0.17 0.30 0.13 0.08   -0.03 
9   -0.27   -0.17   -0.08 0.06 0.23 0.23 0.33   -0.04 0.19   -0.03 
Field C Incidence = 71.0%       
0 1.00** 0.32** 0.31** 0.46** 0.20 0.19 0.22 0.25   -0.02 0.33* 
1 0.70** 0.29** 0.28** 0.43** 0.07 0.17 0.25* 0.20   -0.07 0.29 
2 0.64** 0.34** 0.26* 0.44** 0.06 0.16 0.26* 0.01 0.02 0.23 
3 0.57** 0.24* 0.21 0.43** 0.02 0.16 0.18 0.12 0.10 0.17 
4 0.52** 0.15 0.23* 0.34** -0.12 0.10 0.17 0.06   -0.16 0.10 
5 0.49** 0.17 0.23 0.37** 0.02 0.16 0.13 0.17   -0.15 0.26 
6 0.46** 0.18 0.25 0.38** 0.10 0.16 0.14 0.08   -0.33 0.20 
7 0.45** 0.21 0.36* 0.38** 0.07 0.19 0.08 0.17   -0.08 0.31 
8 0.51** 0.33* 0.37* 0.47** 0.22 0.32 0.04 0.08 0.05 0.30 
9 0.46** 0.30 0.39* 0.43* 0.38 0.33 0.20 0.05 0.03 0.56 

3 

4 

 

* Values followed by asterisk were significant (*: P<0.05, and **: P<0.01). 
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TABLE 6. Characterization of spatial patterns in number of microsclerotia of Verticillium 

dahliae, number of cauliflower plants infected by the pathogen and disease severity (Xiao et al. 

1997) using the VMWA, LIP or BBD (Madden and Hughes, 1994) methods 

1 

2 

3 

Number of microsclerotia  Number of diseased plants Disease severity Plot VMWAa LIP Ia
c VMWA θ b Ia

c VMWA 
A1 0.10 2.17 1.234  0.17 0.055* 1.682*  
A2 0.13 1.15 1.533*  0.44 0.145* 2.481*  
A3 -0.01 1.08 1.273  0.04 0.047* 0.941  
B1 0.07 1.10 1.101  0.15 0.019 1.543*  
B2 0.12 1.06 1.265  0.16 0.017 1.147  
B3 0.11 1.09 0.929  0.10 0.056* 1.272  
C1 -0.01 1.07 0.909  0.13 0.007 1.618* 0.38 
C2 0.10 1.17 1.618*  -0.06 0.010 0.802 0.13 
C3 0.07 1.11 1.120  -0.02 0.040* 1.095 0.12 
D1 -0.08 1.09 1.129  0.27 0.004 2.069* 0.13 
D2 -0.01 1.06 1.138  -0.18 0.011 0.823 0.04 
D3 -0.06 1.04 1.175   0.07 0.018 1.308 -0.13 

4 

5 

6 

7 

8 

9 

 

a Spatial dependency index I at window size of 2 (two nearby sample sites) using VMWA method. Positive values 

indicate positive association, negative values indicate negative association, and zero values indicate random 

distribution, independence. 
b a θ value from BBD followed by “*” indicated an aggregation of diseased plants (Xiao et al. 1997). 

 c Ia from SADIE method followed by “*” indicates an aggregation (P<0.05). 
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TABLE 7. Spatial dependency indices at different window sizes for spatial patterns of pepper 

plants infected by Verticillium dahliae in 1998 surveys at Field 1, Field 2 and Field 3 calculated 

using the VMWA method 

1 

2 

3 

Window 
size Field 1A Field 1B Field 1C Field 2A Field 2B Field 2C Field 3A Field 3B Field 3C

2×2 0.42a 0.37 0.45 0.07 0.08 0.05 0.04 0.11 0.02 
3×3 0.39 0.35 0.39 0.03 0.04 -0.04 0.01 0.05 0.01 
4×4 0.31 0.27 0.35 0.02 0.03 0.01 0.04 0.04 0.04 
5×5 0.41 0.24 0.29 0.01 0.05 0.02 -0.02 0.06 0.00 
6×6 0.14 0.15 0.24 0.03 -0.04 -0.02 0.03 -0.03 0.01 
7×7 0.49 0.21 0.27 0.02 0.08 0.01 -0.04 0.10 0.01 
8×8 -0.10 0.03 0.08 0.01 -0.08 0.01 0.08 -0.04 -0.01 
9×9 0.52 0.23 0.22 0.02 0.05 0.00 -0.03 0.06 -0.01 

a Positive values indicate positive association, negative value indicate negative association, and zero values indicate 

random distribution, independence. 

4 

5 
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Fig. 1. Spatial analysis of the aggregated binary data using the VMWA method.  Data were 

artificially generated using a Neyman-Scott cluster process with 1 (A), 2 (B), 4 (C), and 

10 (D) disease foci.  Each index (In) in the figure was the average in four hundred 

simulations.  R1 to R7 in the figure denote the influence range R=1 to 7 used in the 

simulation.  In each simulation, disease foci were first randomly initiated in a 20×20 

field.  Then, whether a plant became infected from each focus was determined 

(simulating 200 times of infection) according to the distance (r) from the focus: if the 

distance was farther than the influence range R or the plant has already been infected, 

then no action was taken, otherwise the plant had the potential of getting infected at a 

probability of p = e-r/R/2πrR.   

Fig. 2.  Spatial analysis of the aggregated count data with VMWA method. Data were artificially 

generated in a field containing 20×20 (A) and 40×40 (B) sample units using a Neyman-

Scott cluster process with 10 disease foci and different influence ranges 1 to 36 (denoted 

as R01 to R36).  Each index (In) in the figure was the average in four hundred 

simulations.  In each simulation, 10 disease foci were randomly fixed, and disease 

(unlimited) at each sample unit was then simulated around each disease focus. 

Fig. 3.  Distribution of pepper plants infected by Verticillium dahliae in historical field surveys 

(Bhat et al. 2003) at three sites in Fields 1-3. H = healthy plant, D = diseased plant, and 

NA = missing. 
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