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Abstract Many algorithms for data mining or indexing time series data do not operate
directly on the raw data, but instead they use alternative representations that include
transforms, quantization, approximation, and multi-resolution abstractions. Choosing
the best representation and abstraction level for a given task/dataset is arguably the
most critical step in time series data mining. In this work, we investigate the problem
of discovering the natural intrinsic representation model, dimensionality and alphabet
cardinality of a time series. The ability to automatically discover these intrinsic features
has implications beyond selecting the best parameters for particular algorithms, as
characterizing data in such a manner is useful in its own right and an important sub-
routine in algorithms for classification, clustering and outlier discovery. We will frame
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Discover the intrinsic cardinality and dimensionality of time series 359

the discovery of these intrinsic features in the Minimal Description Length framework.
Extensive empirical tests show that our method is simpler, more general and more
accurate than previous methods, and has the important advantage of being essentially
parameter-free.

Keywords Time Series - MDL - Dimensionality reduction

1 Introduction

Most algorithms for indexing or mining time series data operate on higher-level rep-
resentations of the data, which include transforms, quantization, approximations and
multi-resolution approaches. For instance, Discrete Fourier Transform (DFT), Discrete
Wavelet Transform (DWT), Adaptive Piecewise Constant Approximation (APCA) and
Piecewise Linear Approximation (PLA) are models that all have their advocates for
various data mining tasks and each has been used extensively (Ding et al. 2008). How-
ever, the question of choosing the best abstraction level and/or representation of the
data for a given task/dataset still remains. In this work, we investigate this problem by
discovering the natural intrinsic model, dimensionality and (alphabet) cardinality of
a time series. We will frame the discovery of these intrinsic features in the Minimal
Description Length (MDL) framework (Griinwald et al. 2005; Kontkanen and Myl-
lym 2007; Pednault Pednault 1989; Rissanen et al. 1992). MDL is the cornerstone of
many bioinformatics algorithms (Evans et al. 2007; Rissanen 1989), and has had some
impact in data mining, however it is arguably underutilized in time series data mining
(Jonyer et al. 2004; Papadimitriou et al. 2005).

The ability to discover the intrinsic dimensionality and cardinality of time series
has implications beyond setting the best parameters for data mining algorithms. For
instance, it can help characterize the nature of the data in a manner that is useful
in its own right. It can also constitute an important sub-routine in algorithms for
classification, clustering and outlier discovery (Protopapas et al. 2006; Yankov et al.
2008). We illustrate this idea in the following example in Fig. 1, which consists of
three unrelated datasets.

The number of unique values in each time series is, from top to bottom, 14, 500
and 62. However, we might reasonably claim that the intrinsic alphabet cardinality is
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Fig. 1 Three unrelated industrial time series with low intrinsic cardinality. (/) Evaporator (channel one).
(II) Winding (channel five). (/II) Dryer (channel one)
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360 B. Hu et al.

instead 2, 2, and 12, respectively. As it happens, an understanding of the processes
that produced this data would perhaps support this claim (Keogh et al. 2006). In
these datasets, and indeed in many real-world datasets, there is a significant difference
between the actual and intrinsic cardinality. Similar remarks apply to dimensionality.

e Before we define more precisely what we mean by actual versus intrinsic cardinality,
we should elaborate on the motivations behind our considerations. Our objective is
generally not simply to save memory:! if we are wastefully using eight bytes per
time point instead of using the mere three bytes required by the intrinsic cardinality,
the memory space saved is significant; however, memory is getting cheaper, and
is rarely a bottleneck in data mining tasks. Instead, there are many other reasons
why we may wish to find the true intrinsic model, cardinality and dimensionality of
the data. For example, there is an increasing interest in using specialized hardware
for data mining (Sart et al. 2010). However, the complexity of implementing data
mining algorithms in hardware typically grows super linearly with the cardinality
of the alphabet. For example, FPGAs usually cannot handle cardinalities greater
than 256 (Sart et al. 2010).

e Some data mining algorithms benefit from having the data represented in the lowest
meaningful cardinality. As a trivial example, consider the time series: ..0, 0, 1, 0,
0, 1,0, 0, 1. We can easily find the rule that a ‘1’ follows two appearances of ‘0’.
However, notice that this rule is not apparent in this string: ..0, 0, 1.0001, 0.0001,
0, 1, 0.000001, 0, 1 even though it is essentially the same time series.

e Most time series indexing algorithms critically depend on the ability to reduce the
dimensionality (Ding et al. 2008) or the cardinality (Lin et al. 2007) of the time series
(or both Assent et al. 2008; Camerra et al. 2010) and search over the compacted
representation in main memory. However, setting the best level of representation
remains a “black art.”

e In resource-limited devices, it may be helpful to remove the spurious precision
induced by a cardinality/dimensionality that is too high. We elaborate on this issue
by using a concrete example below.

e Knowing the intrinsic model, cardinality and dimensionality of a dataset allows us
to create very simple outlier detection models. We simply look for data where the
parameters discovered in new data differ from our expectations learned on training
data. This is a simple idea, but it can be very effective as we show in our experimental
section.

1.1 A concrete example

For concreteness, we present a simple scenario that shows the utility of understanding
the intrinsic cardinality/dimensionality of data. Suppose we wish to build a time series
classifier into a device with a limited memory footprint such as a cell phone, pacemaker
or “smartshoe” (Vahdatpour and Sarrafzadeh 2010). Let us suppose we have only 20kB
available for the classifier, and that (as is the case with the benchmark dataset, TwoPat

1 However, Sect. 1.1 shows an example where this is useful.
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Keogh et al. 2006) each time series exemplar has a dimensionality of 128 and takes 4
bytes per value.

One could choose decision trees or Bayesian classifiers because they are space
efficient; however, recent evidence suggests that nearest neighbor classifiers can be
difficult to beat for time series problems (Ding et al. 2008). If we had simply stored forty
random samples in the memory for our nearest neighbor classifier, the average error
rate over fifty runs would be a respectable 58.7 % for a four-class problem. However,
we could also down-sample the dimensionality by a factor of two, either by skipping
every second point, or by averaging pairs of points (as in SAX, Lin et al. 2007), and
place eighty reduced-quality samples in memory. Or perhaps we could instead reduce
the alphabet cardinality by reducing the precision of the original four bytes to just
one byte, thus allowing 160 reduced-fidelity objects to be placed in memory. Many
other combinations of dimensionality and cardinality reduction could be tested, which
would trade reduced fidelity to the original data for more exemplars stored in memory.
In this case, a dimensionality of 32 and a cardinality of 6 allow us to place 852 objects
in memory and achieve an accuracy of about 90.75 %, a remarkable improvement in
accuracy given the limited resources. As we shall see, this combination of parameters
can be found using our MDL technique.

In general, testing all of the combinations of parameters is computationally infea-
sible. Furthermore, while in this case we have class labels to guide us through the
search of parameter space, this would not be the case for other unsupervised data min-
ing algorithms, such as clustering, motif discovery (Lin et al. 2002), outlier discovery
(Chandola et al. 2009; Vereshchagin and Vitanyi 2010; Yankov et al. 2008), etc.

As we shall show, our MDL framework allows us to automatically discover the para-
meters that reflect the intrinsic model/cardinality/dimensionality of the data without
requiring external information or expensive cross validation search.

2 Definitions and notation

We begin with the definition of a time series:

Definition 1 A time series T is an ordered list of numbers. T = t1, 12, ..., t,,. Each
value #; is a finite precision number and m is the length of the time series T.

Before continuing, we must justify the decision of (slightly) quantizing the time
series. MDL is only defined for discrete values,? but most time series are real-valued.
The cardinality of a set is defined as the measure of the number of elements of the set.
In math, discrete values have a finite cardinality, and real numbers have an infinite car-
dinality. When dealing with values stored in a digital computer, this distinction can be
problematic, as even real numbers must limited to a finite cardinality. Here we simply
follow the convention that for very high cardinalities numbers can be considered essen-
tially real-valued, thus we need to cast the “effectively infinite” 24 cardinality we typ-
ically encounter into a more obvious discrete cardinality to allow MDL to be applied.

2 The closely related technique of MML (Minimum Message Length Wallace and Boulton 1968) does
allow for continuous real-valued data. However, here we stick with the more familiar MDL formulation.
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Fig. 2 Each point on this plot 40 -
corresponds to a pair of time
series: the x-axis corresponds to
their Euclidean distance, while
the y-axis corresponds to the
Euclidean distance between the
8-bit quantized representations
of the same pair
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The obvious solution is to reduce the original number of possible values to a manage-
able amount. Although the reader may object that such a drastic reduction in precision
must surely lead to a loss of some significant information, this is not the case. To
illustrate this point, we performed a simple experiment. From each of the 20 diverse
datasets in the UCR archive (Keogh et al. 2006) we randomly extracted one hundred
pairs of time series. For each pair of time series we measured their Euclidean distance
in the original high dimensional space, and then in the quantized 256-cardinality space,
and used these pairs of distances to plot a point in a scatter plot. Figure 2 shows the
results.

The figure illustrates that all of the points fall close to the diagonal, and thus the
quantization makes no perceptible difference. Beyond this subjective visual test, we
also reproduced the heavily cited UCR time series classification benchmark experi-
ments (Keogh et al. 2006), replacing the original data with the 256-cardinality version.
For all cases the difference in classification accuracy was less than one tenth of 1 %
(full details are at www.cs.ucr.edu/~bhu002/MDL/MDL.html). Based on these con-
siderations, in this work we reduce all of the time series data to its 256 cardinality
version by using a discretization function:

Definition 2 A discretization function normalizes a real-valued time series 7' into
b-bit discrete values in the range [—2b—1 2b=1 _ 1] The discretization function used
in this manuscript is as follows:

. L T — min b b1
Discretizationy,(T) = round | — )« (2° — 1) — 2

max — min

where min and max are the minimum and maximum values in T', respectively.?

Given a time series 7, we are interested in estimating its minimum description
length, i.e., the smallest number of bits it takes to represent it.

3 This slightly awkward formula is necessary because we use the symmetric range [—128, 127]. If we use

range [1, 256] instead we get a more elegant: Discretization(T) = round (%) *(25—1)+ 1.
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Definition 3 A description length DL of a time series T is the total number of bits
required to represent it. When Huffman coding is used to compress the time series T,
the description length of the time series 7 is defined by:

DL (T) = |HuffmanCoding (T)|

In the current literature, the number of bits required to store the time series depends on
the idiosyncrasies of the data format or hardware device, not on any intrinsic properties
of the data or domain. Here we are instead interested in knowing the minimum number
of bits to exactly represent the data, i.e., the intrinsic amount of information in the time
series. The general problem of determining the smallest program that can reproduce
the time series, known as Kolmogorov complexity, is not computable (Li 1997). How-
ever, the Kolmogorov complexity can be approximated by using general-purpose data
compression methods, like Huffman coding (Griinwald et al. 2005; Vereshchagin and
Vitanyi 2010; Zwally and Gloersen 1977). The (lossless) compressed file size is an
upper bound to the Kolmogorov complexity of the time series (De Rooij and Vitanyi
2012).

Observe that in order to decompress the data HuffmanCoding(T ), the Huffman
tree (or the symbol frequencies) is needed, thus the description length could be more
precisely defined as DL(T) = |HuffmanCoding(T)|+ |HuffmanTree(T)|. One
could use a simple binary representation to encode the Huffman tree, however the most
efficient way to encode it is to assume that the tree in the canonical form (see, e.g.,
Chapter 2 of Witten et al. 1999). In a canonical Huffman code all the codes for a
given length are assigned their values sequentially. Instead of storing the structure of
the Huffman tree explicitly, only the lengths of the codes (i.e., the number of bits) are
required. Since the longest possible Huffman code over 2”symbols is at most 22 — 1 bits
long (when symbol frequencies are Fibonacci numbers), the number of bits necessary
to transmit its length is at most b. Thus, the number of bits necessary to represent
HuffmanTree(T) in canonical form can be bounded by O(b2b ).

We disregarded the cost Huffman tree in our formulation, because in practice

e The size of the tree is negligible compared to the number of bits required to represent
the time series because m >> b.

e The size of |[HuffmanTree(T)| has very low variance, and thus can be regarded
as a “constant” term. This is especially true when comparing similar models, for
example, a model with a dimensionality of 10 to a model with a dimensionality of
nine or eleven. When comparing vastly different models, for example a model with
a dimensionality of ten with a model with a dimensionality of one hundred, the
differences of the sizes of the relevant Huffman trees are greater, but this difference
is dwarfed by the bit saving gained by discovering the true dimensionality.

In the extensive experiments in Sect. 4 we found there is no measureable difference in
outcome of the formulations with or without the cost of |HuffimanTree(T)| included,
thus we report only the simpler formulation.

One of the key steps in finding the intrinsic cardinality and/or dimensionality
requires one to convert a given time series to another representation or model, e.g., by
using DFT or DWT. We call this representation a hypothesis:
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Definition 4 A hypothesis H is a representation of a discrete time series 7 after
applying a transformation M.

In general, there are many possible transforms. Examples include DWT, DFT,
APCA, and Piecewise Linear Approximation (PLA), among others (Ding et al. 2008).
Figure 8 shows three illustrative examples, DFT, APCA, and PLA. In this paper, we
demonstrate our ideas using these three most commonly used representations, but our
ideas are not restricted to these time series models (see Ding et al. 2008 for a survey
of time series representations).

Henceforth, we will use the term model interchangeably with the term hypothesis.

Definition 5 A reduced description length of a time series T given hypothesis H is
the number of bits used for encoding the time series 7', exploiting information in the
hypothesis H, i.e., DL (T'|H), and the number of bits used for encoding H, i.e., DL
(H). The reduced description length is defined as:

DL(T,H) = DL(H) + DL(T|H)

The first term DL (H) is called the model cost and represents the number of bits
required to store the hypothesis H. For instance, the model cost for the PLA would
include the bits needed to encode the mean, slope and length of each linear segment.

The second term, DL (T'|H), called the correction cost (in some works it is called
the description cost or error term) is the number of bits required to rebuild the entire
time series T from the given hypothesis H.

There are many possible ways to encode 7 given H. Perhaps the simplest way is
to store the differences (i.e., the difference vector) between 7" and H: one can easily
reconstruct exactly the time series 7 from H and the difference vector. Thus, we
simply use DL(T|H) = DL(T — H).

We will demonstrate how to calculate the reduced description length in more detail
in the next section.

3 MDL modeling of time series
3.1 An intuitive example of our basic idea

For concreteness, we will consider a simple worked example comparing two possible
dimensionalities of data. Note that here we are assuming a cardinality of 16, and a
model of APCA. However, in general we do not need to make such assumptions. Let
us consider a sample time series 7' of length 24:

7=11123456789101111121212121111101097

Figure 3 illustrates a plot of 7.

We attempt to model this data with a single constant line, a special case of APCA.
We begin by finding the mean of all of the data, which (rounding in our integer space)
is eight. We can create a hypothesis H; to model this data, which is shown in Fig. 4. It
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L ! I I I 1 I I I ! |

L 1
12 4 6 8 10 12 14 16 18 20 22 24

o—e

12 4 6 8 10 12 14 16 18 20 22 24

Fig.4 Time series T (bluelfine), approximated by a one-dimensional APCA approximation Hy (red/bold).
The error for this model is represented by the vertical lines (Color figure online)
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Fig.5 Timeseries T (bluelfine), approximated by a two-dimensional APCA approximation, H, (red/bold).
Vertical lines represent the error (Color figure online)

is simply a constant line with a mean of eight. There are 16 possible values this model
could have had. Thus, DL (H;) = 4 bits.

Model H; does not approximate 7" well, and we must account for the error.* The
errors eq, represented by the length of the vertical lines in Fig. 4, are:

e1=7776543210-1-2-3-3-4-4-4-4-3-3-2-2-11

As noted in Definition 5, the cost to represent these errors is the correction cost; this
is the number of bits encoding ejusing Huffman coding, which is 82 bits. Thus, the
overall cost to represent 7' with a one-dimensional model or its reduced description
length is:

DL (T, Hy) = DL (T|H,) + DL (Hy)
DL (T, Hy) = 82 + 4 = 86 bits

We can now test to see if hypothesis H,, which models the data with two constant
lines, could reduce the description length. Figure 5 shows the two segment approxi-
mation lines created by APCA.

4 The word error has a pejorative meaning not intended here; some authors prefer to use correction cost.
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As we expect, the error e;, shown as the vertical lines in Fig. 5, is smaller than the
error e1. In particular, the error e is:

e=22210-1-2-33210-1-1-2-2-2-2-1-10013

The number of bits encoding e> using Huffman coding or the correction cost to gen-
erate the time series 7 given the hypothesis H», DL (T |H3), is 65 bits. Although the
correction cost is smaller than one-dimensional APCA, the model cost is larger. In
order to store two constant lines, fwo constant numbers corresponding to the height of
each line and a pointer indicating the end position of the first line are required. Thus,
the reduced description length of model H; is:

DL (T, Hy) = DL (T|H) + DL (H»)
DL (T, Hy) = 65 + 2 % log, (16) + [log, (24)] = 78 bits

Because we have DL (T, H,) < DL (T, Hy), we prefer H; for our data.

We are not done yet: we should also test H3, Ha, Hs,etc., correspondingto 3,4, 5,
etc. piecewise constant segments. Additionally, we could also test alternative models
corresponding to different DFT or PLA representations and test different cardinalities.
For example, suppose we had been given 7> instead:

75,=00004444400008888881212121212

Here, if we tested multiple hypotheses as to the cardinality of this data, we would hope
to find that the hypothesis H, 4C that attempts to encode the data with a cardinality of
just 4 would result in the smallest model.

A review of the following facts may help make our contributions more intuitive.
The quality of an approximate representation of a time series is measured by the
reconstruction error (Ding et al. 2008; Keogh and Kasetty 2003). This is simply the
Euclidean distance between the model and the raw data. For example, in Fig. 4 we see
the reconstruction error of the single segment model is 18.78, and the reconstruction
error of the two segment model in Fig. 5 is just 8.42. This suggests a general truth;
for the APCA, PLA, and DFT approximations of time series, it is always the case
that the d-dimensional model has a greater or equal reconstruction error than d + 1
dimensional model (Ding et al. 2008; Palpanas et al. 2008). Note that this is only
true on average for the DWT, SAX, IPLA, PAA approximations (Ding et al. 2008).
However, even for these representations violations to this rule are very rare and minor.

The reader may have noted that in the example discussed, the range of the error
vector (i.e. {max(e;)-min(e;)}) also decreased, from 12 (7 to —4) in the former case,
to just 7 (3 to —3) in the latter. This is not necessarily the case; the relevant algorithms
are minimizing the global error of the model, not the maximum error on any individual
segment/coefficient, and one can certainly construct synthetic datasets for which this
is not the case. However, it is almost always the case, and necessarily so. Recall that
as d approaches m, this range approaches zero. Further note that this range is an upper
bound for the number of unique values that the compression algorithm must encode
in the description length.
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12 4 6 8 10 12 14 16 18 20 22 24 12 4 6 8 10 12 14 16 18 20 22 24

Fig. 6 Left The figure shown in Fig. 4 contrasted with an attempt to approximate the raw data with a
constant segment that clearly has too great a mean value (right). Note that while the number of repeated
residuals (“errors”) is identical in both cases, the magnitude of the residuals is much greater in the latter
case. It is this unnecessarily large magnitude that tells us this is a poor choice of an approximation

We note that this tight relationship between Euclidean distance and MDL has been
observed/exploited before. In Fig. 12 of Rakthanmanon et al. (2012), Rakthanmanon
et al. shows a scatterplot illustrating the extraordinary high correlation between the
Euclidean distance of pair of subsequences, and the MDL description length when
using one subsequence to encode the other (using essentially the same MDL formu-
lation that we use here). Thus we can see the naturalness of using MDL to score
our model choice, which is solely concerned with minimizing the Euclidean distance
between the model and the original data.

We have just one more issue to address before moving on. We had glossed over this
issue to enhance the flow of the presentation above. Consider Fig. 6 which contrasts
the original single-segment approximation shown in Fig. 4 with an alternative single-
segment approximation.

Intuitively, the alternative is much worse, vastly overestimating the mean of the
original data. However, on what basis could MDL make this distinction? If our MDL
formulation considered the Y-axis values to be categorical variables then there would
be no reason to prefer either model.

However, note that the sum of the magnitude of the residuals is much greater in
for Fig. 6—right. This is true by definition, as using the mean minimizes this value.
However, nothing in our model description length explicitly accounts for this. An
obvious solution to this issue is to encode a term that accounts for the range of numbers
required to be modeled in the description length, in addition to their entropy. This issue
is unique to ordinal data, and does not occur with categorical data. For example, when
dealing with categorical data, there is no cost difference between say sx = aaab,
and sy, = mmm n. However, in our domain there is a significant difference between
say ex = 1112, and ey = 3334, because the latter condemns us to consider values
in a log,(4) range in the description length for the model, whereas the former allows
us to only consider values in the smaller log,(2) range.

In principle, this term is included in the size of |HuffinanTree(T)|, but as we noted
above, we ignore this term in our model. The problem with Huffman coding is code
words in Huffman coding can only have an integer number of bits. Thus the size of
|HuffmanTree(T)|, does not distinguish between alternative models if we shift the
mean up or down a few values. Arithmetic coding can be viewed as a generalization of
Huffman coding, effectively allowing non-integer bit lengths. For this reason it tends
to offer significantly better compression for small alphabet sizes, and we should expect
a good hypothesis to have a small alphabet size by definition. In Fig. 7 we show the
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Fig. 7 The logy of the range of the residual errors for all possible single constant polynomial models of
the data introduced in Fig. 3. Note that the model that minimizes this value (with a tie) is also the model
that minimizes the residual error
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Fig. 8 A time series T shown in bold/blue and three different models of it shown in fine/red: from left to
right: DFT, APCA, and PLA (Color figure online)

effect of considering fractional bits for this problem. Note that the factional bits have a
narrow range of 3 to 4, and the Huffman encoding does not make any distinction here.

The reader can now appreciate our why “solution” to this issue was to simply ignore
it. Because the underlying dimensionality reduction algorithms we are using (APCA,
DFT, PLA) are attempting to minimize the residual error,” they are also implicitly
minimizing the range of residuals. As shown by Fig. 7, if we explicitly added a term
for the range of residuals it would have no effect, as the dimensionality reduction
algorithm has already minimized it.

We have shown a detailed example using APCA. However, essentially all of the
time series representations can be encoded in a similar way. As shown with three
representative examples in Fig. 8, essentially all of the time series models consist of
a set of basic functions (i.e., coefficients) that are linearly combined to produce an
approximation of the data.

5 DFT does minimize the residual error at any desired dimensionality given its set of basis functions. For
both APCA and PLA, while there are algorithms that can minimize the residual error, they are too slow to
use in practice. We use greedy approximation algorithms that are known to produce near optimal results
(Keogh et al. 2011; Rakthanmanon et al. 2012).
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Discover the intrinsic cardinality and dimensionality of time series 369

As we apply our ideas to each representation, we must be careful to correctly
“charge” each model for the number of parameters used in the model. For example,
each APCA segment requires the mean value and length, whereas PLA segments
require the mean value, segment length and slope. Each DFT coefficient can be repre-
sented by the amplitude and phase of each sine wave; however, because of the complex
conjugate property, we get a “free” coefficient for each one we store (Camerra et al.
2010; Ding et al. 2008). In previous comparisons of the indexing performance of var-
ious time series representations, many authors have given an unfair advantage to one
representation by counting the cost to represent an approximation incorrectly (Keogh
and Pazzani 2000). The ideas in this work explicitly assume a fair comparison. Fortu-
nately, the community seems to have become more aware of this issue in recent years
(Camerra et al. 2010; Palpanas et al. 2008).

In the next section we give both the generic version of the MDL model discov-
ery for time series algorithms and three concrete instantiations for DFT, APCA, and
PLA.

3.2 Generic MDL for time series algorithms

In the previous section, we used a toy example to demonstrate how to compute the
reduced description length of a time series with a competing hypothesis. In this sec-
tion, we will show a detailed generic version of our algorithm, and then explain our
algorithm in detail how we apply our algorithm to the three most commonly used time
series representations.

Our algorithm not only discovers the intrinsic cardinality and dimensionality of an
input time series, but it can also be used to find the right model or data representation
for a given time series. Table 1 shows a high-level view of our algorithm for discovering
the best model, cardinality, and dimensionality which will minimize the total number
of bits required to store the input time series.

Because MDL is the core of our algorithm, the first step is to quantize a real-valued
time series into a discrete-valued (but still fine-grained) time series, 7 (line 1). Next,
we consider each model, cardinality, and dimensionality one by one (lines 3-5). Then,
a hypothesis H is created based on the selected model and parameters (line 6). For
example, a hypothesis H, shown in Fig. 5, is created when the model M = APCA,
cardinality ¢ = 16, and dimensionality d = 2; note that, in that case, the length of the
input time series was m = 24.

The reduced description length is finally calculated (line 7), and our algorithm
returns the model and parameters that minimize the reduced description length for
encoding T (lines 8—13).

For concreteness, we will now consider three specific versions of our generic algo-
rithm.

3.3 Adaptive Piecewise Constant Approximation

As we have seen Sect. 3.1, an APCA model is simple; it contains only constant seg-
ments. The pseudo code for APCA, shown in Table 2, is very similar to the generic
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Table 1 Generic MDL algorithm for time series

Algorithm: Generic MDL algorithm for time series

Input: TS: time series

Output: intrinsic model: intrinsic model
intrinsic card : intrinsic cardinality

intrinsic dim : intrinsic dimensionality

1.T = Discretization(TS)

2.bsf = e

3.for all M in {APCA,PLA,DFT,MIXTURE}
4. for all cardinality c

5. for all dimensionality d

6. H = ModelRespresentation(T,M,c,d)
7. total cost = DL(H)+ DL(T|H)
8. if (bsf > total cost)

9. bsf = total cost

10. intrinsic model = M

11. intrinsic card = c

12. intrinsic dim =d

13. end if

14 end for

15. end for

16. end for

algorithm. First of all, we quantize the input time series (line 1). Then, we evaluate
all cardinalities from 2 to 256 and dimensionalities from 2 to the maximum, which is
half of the length of the input time series T'S (lines 3—4). Value m denotes the length
of the input time series.

Note that if the dimensionality were more than m/2, some segments would contain
only one point. Then, a hypothesis H would be created using the values of cardinality ¢
and dimensionality d, as showninFig. 5, wherec = 16andd = 2.Themodelcont-
ains d constant segments, so the model cost is the number of bits required for storing
d constant numbers, and d - 1 pointers to indicate the offset of the end of each
segment (line 6). The difference between T and H is also required to rebuild 7". The
correction cost is computed; then the reduced description length is calculated from the
combination of the model cost and the correction cost (line 7). Finally, the hypothesis
that minimizes this value is returned as an output of the algorithm (lines 8—13).
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Table 2 Our algorithm specific to APCA

Algorithm: Intrinsic Discovery for APCA
Input: TS (time series)

Output: intrinsic card ; intrinsic dim

1.7 = Discretization (TS)

2.bsf = =

3. for ¢ = 2:256

4. for d = 2 to m/2

5. H = APCA(T,c,d)

6. model cost = d*log,c+(d-1)*log,m
7. total cost = model cost + DL(T|H)
8. if (bsf > total cost)

9. bsf = total cost

10. intrinsic card = ¢

11. intrinsic dim =d

12. end if

13. end for

14. end for

3.4 Piecewise Linear Approximation

An example of a PLA model is shown in Fig. 8—right. In contrast to APCA, a hypoth-
esis using PLA is more complex because each segment contains a line of any slope,
instead of a constant line in APCA. The algorithm used to discover the intrinsic cardi-
nality and dimensionality for PLA is shown in Table 3, which is similar to the algorithm
for APCA, except for the code in line 5 and 6.

A PLA hypothesis H is created from the external module PLA (line 5). To represent
each segment in hypothesis H, we record the starting value, ending value, and the
ending offset (line 6). The slope is not kept because storing a real number is more
expensive than 1og;c.

The first two values are represented in cardinality ¢ and thus 1 o0g» c bits are required
for each of them. We also require 1ogom bits to point to any arbitrary offset in 7.
Thus, the model cost is shown in line 6. Finally, the reduced description length is
calculated and the best choice is returned (lines 8—13).

3.5 Discrete Fourier Transform

A data representation in DFT space is simply a linear combination of sine waves, as
shown in Fig. 8-left. Table 4 presents our algorithm specific to DFT. After we quantize
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Table 3 Our algorithm specific to PLA

Algorithm: Intrinsic Discovery for PLA
Input: TS (time series)

Output: intrinsic card; intrinsic dim

1. T = Discretization (TS)

3. for c = 2:256

4. for d = 2 to m/2

5. H = PLA (T,c,d)

6. model cost = 2*d*log,c +(d-1)*log,m
7. total cost = model cost + DL (T|H)

8 if (bsf > total cost)

9. bsf = total cost

10. intrinsic card = ¢

11. intrinsic dim = d

12 end if

13. end for

14. end for

the input time series to a discrete time series 7' (line 1), the external module DFT is
called to return the list of sine wave coefficients that represent 7. The coefficients
in DFT are a set of complex conjugates, so we store only half of all coefficients
which contain complex numbers without their conjugate, called half_coef [line
5]. Whenhalf_coef isprovided,itis trivial to compute their conjugates and obtain
all original coefficients.

Instead of using all of half_coef toregenerate T, we test using subsets of them
as the hypothesis to approximately regenerate 7', incurring an approximation error.
We first sort the coefficients by their absolute value (line 6). We use top-d coefficients
as the hypothesis to regenerate 7 by using InverseDFT (line 8). For example, when
d=1 we use only the single most important coefficient to rebuild 7', and when d=2
the combination of top-two sine waves are used as a hypothesis, etc. However, it is
expensive to use 16 bits for each coefficient by keeping two complex numbers for its
real part and imaginary part. Therefore, in line 7, we reduce those numbers to just ¢
possible values (cardinality) by rounding the number to the nearest integer in a space
of size ¢, and we also need a constant number of bits (32 bits) for the maximum
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Table 4 Our algorithm specific to DFT

Algorithm: Intrinsic Discovery for DFT
Input: TS (time series)

Output: intrinsic card; intrinsic dim

1. T = Discretization (TS)
2. bsf = =

3. for ¢ = 2:256

4. for d = 2 to m/2

5. half coef = DFT(T)

6. sorted coef = SortByPolar (half coef)
7. round coef = Round(sorted coef, c)

8 H = InverseDFT (round coef (l:n))

9. model cost = 2*d*log,ctd*log,(m/2))+32
10. total cost = model cost + DL (T|H)
11. if (bsf > total cost)

12. bsf = total cost

13. intrinsic card = ¢

14. intrinsic dim = d

15. end if

16. end for

17. end for

and minimum value of both the real parts and the imaginary parts. Hence, the model
contains top-d coefficients whose real (and imaginary) parts are in a space of size c.
Thus, the model cost and the reduced description length are shown in lines 9 and 10.

For simplicity we placed the external modules APCA, PLA, and DFT inside two
for-loops; however, to improve performance, they should be moved outside the loops.

3.6 A mixed polynomial degree model

For a given time series 7', we want to know the representation that can minimize the
reduced description length for 7. We have shown how to achieve this goal by applying
the MDL principle to three different models (APCA, PLA and DFT). However, for
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Fig. 9 A toy example of a time series that has more than one state

some complex time series, using only one of the above models may not be sufficient
to achieve the most parsimonious representation, as measured by bit cost, or by our
subjective understanding of the data (Lemire 2007; Palpanas et al. 2008). It has been
shown that averaged over many highly diverse datasets; there is not much difference
among the different representations (Palpanas et al. 2008). However, it is possible that
within a single dataset, the specific model used could make a significant difference. For
example, consider each of the two time series that form the trajectory of an automobile
as it drives through Manhattan. These time series are comprised of a combination of
straight lines and curves. We could choose just one of these possibilities, either repre-
senting the automobile’s turns with many piecewise linear segments, or representing
the long straight sections with a degenerate “curve.” However, a mixed polynomial
degree model is clearly more natural here.

For clarity, we show a toy example that can benefit from a mixed polynomial degree
model in Fig. 9. Itis easy to observe that there are constant, linear and quadratic patterns
in this example. In Sects. 4.9 and 4.10, we further demonstrate the utility of our ideas
on real datasets (Keogh et al. 2011; Lemire 2007; National Aeronautics and Space
Administration 2011).

Several works propose that it may be fruitful to use a combination of different
models within one time series (Keogh et al. 2011; Lemire 2007; Palpanas et al. 2008).
For example, Lemire (2007) proposes a mixed model wherein the polynomial degree
of each interval in one time series can vary. The polynomial degree can be zero, one,
two or higher. The goal of Lemire (2007) is to minimize the Euclidean error between
the model and the original data for a given number of segments. However, note that
Lemire (2007) requires the user to state the desired dimensionality, something we
obviously wish to avoid. Minimizing the Euclidean error between the model and the
original data is a useful objective function for some tasks, but it is not necessarily
the same as discovering the intrinsic dimensionality, which is our stated goal. In
the following, we show that our proposed algorithm returns the intrinsic model by
minimizing the reduced description length using MDL. Moreover, our algorithm is
essentially parameter-free.

We propose a mixed model framework using MDL that optimizes a mixture of
constant, linear and quadratic representations for different local regions of a single
time series. In this case, the operator space of the segmentation algorithm (Table
6) becomes larger. Table 5 shows a high-level view of the algorithm. Lines 1-4 are
similar to the algorithm for APCA and PLA. The function in line 5 is the return for
the d segments with the hypothesis H, the model cost and the starting point of each
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Table 5 Our algorithm specific to the mixed polynomial degree model

Algorithm: Intrinsic Model Discovery for the mixed polynomial
degree representations

Input: TS (time series)

Output: intrinsic card; intrinsic dim

1. T = Discretization (TS)

2. bsf = e

3. for ¢ = 2:256

4. for d = 2 to m/2

5. segment info= bottom up mixed(T,c,d) // See Table 6
6. H = sum(segment info.H)

7. model cost = sum(segment info.model cost) + (d-I1)*log,m
8. total cost = model cost +DL(T|H)

9. if (bsf > total cost)

10. bsf = total cost

11. intrinsic card = ¢

12. intrinsic dim = d

13. end if

14 end for

15. end for

segment. Table 6 illustrates how the bottom-up mixed polynomial degree algorithm
works in detail. Each segment is represented by a different polynomial degree to
minimize the reduced description length. The model costs for constant, linear and
quadratic representations are 1ogy ¢ bits, 2*log, ¢ bits and 3*log, ¢ bits, respectively.
For example, if ¢ is 256, the model costs for the above three representations are 8
bits, 16 bits and 24 bits, respectively. In line 7, In addition to the total model cost of
all of the segments, the model cost of the whole time series needs to use extra bits to
store the starting point of each segment. Observe that the model cost for a segment is
independent of the length of the segment. More specifically, the model cost for each
segment is only determined by the polynomial degree of the representation and the
cardinality c.

Table 6 shows the bottom-up mixed polynomial degree model algorithm. By choos-
ing the minimum description costs as the objection function, the algorithm shown in
Table 6 is a generalization of the bottom-up algorithm for generating the PLA intro-
duced in Keogh et al. (2011). There are two main differences between our bottom-up
mixed model algorithm and the bottom-up algorithm described in Keogh et al. (2011).
The first is a minor pragmatic point: instead of using two points in the finest possible
approximation, the algorithm shown in Table 6 uses three points. This is because when
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Table 6 Bottom-up mixed polynomial degree model algorithm

Algorithm: Bottom-up algorithm for mixed polynomial degree model
Input: TS (time series), c, d
Output: Seg TS

1. T = Discretization (TS)
2. for i = 1:3:length(T)
3. Seg TS = concat(Seg TS, T([i:i+2]))
4. end
5. for 1 = 1: length(Seg TS) - 1
//Find the merging cost of each pair of segments
6. merge cost (i) = calculate MDL cost (merge(Seg TS(i), Seg TS(i+l)),c);
7. end
8. while length(segment) > d
9. ind = min (mergeicost) // Find cheapest pair to merge
10. Seg TS(i) = merge(Seg TS (ind), Seg TS(ind+1l))) // Merge them
11. delete (Seg_TS (ind+1)) // Update records
12. merge cost(i)= calculate MDL cost(Seg TS(i), Seg TS(i+1l)),c)
13. merge cost(i-1)=calculate MDL cost (merge(Seg TS(i-1), Seg TS(i)),c)
14. end

the polynomial degree of the representation is two, the number of points by using this
approximation must be at least three. Second, instead of using Euclidean distance as
the objective function, the algorithm in Table 6 uses MDL cost. The algorithm cal-
culates the MDL costs for three degrees of polynomial degree representations for a
segment. The polynomial degrees are zero, one and two, respectively. Next, it chooses
the one that can minimize the cost (the description length). The algorithm begins by
creating the finest possible approximation of the input time series. So for a length of n
time series, there are n/3 segments after this step, as shown in Table 6, lines 2—4. Then
the cost of merging each pair of adjacent segments is calculated, as shown in lines 5-7.
To minimize the merging cost for the two inputsegments, this calculate_ MDL_cost
function calculates the MDL costs for three kinds of polynomial degree representa-
tions, and then chooses the minimum one as the merging cost (line 6). After this step,
the algorithm iteratively merges the lowest cost pair until a stopping criterion is met.
In this scenario, the stopping criterion is the input number of segments. This means
that the algorithm will not terminate as long as the current number of segments is
larger than the input number of segments.

Itis important to note that, similar to the algorithm (Keogh etal. 2011), our algorithm
is greedy in the sense that once two regions have been joined together in a single
segment, they will remain together in that segment (which may get larger as it is
iteratively joined with other segments). There are only join operators; there are no split
operators. However, if a region in our algorithm is initially assigned to a polynomial
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Donoho-Johnstone Benchmark

| | |
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Fig. 10 A version of the Donoho—Johnstone block benchmark created 10 years ago and downloaded from
Sarle (1999)

of a particular degree, this does not mean it cannot later be subsumed into a larger
segment of a different degree. In other words, a tiny region that locally may consider
itself, say, linear has the ability to later become part of a constant or quadratic segment
as it obtains a more “global” view.

4 Experimental evaluation

To ensure that our experiments are easily reproducible, we have set up a website which
contains all data and code, together with the raw spreadsheets of the results (www.
cs.ucr.edu/~bhu002/MDL/MDL.html). In addition, this website contains additional
experiments that are omitted here for brevity.

4.1 A detailed example on a famous problem

We start with a simple sanity check on the classic problem specifying the correct
time series model, cardinality and dimensionality, given an observation of a corrupted
version of it. While this problem has received significant attention in the literature
(Donoho and Johnstone 1994; Salvador and Chan 2004; Sarle 1999), our MDL method
has two significant advantages over existing works. First, there is no explicit parameter
to set, whereas most other methods require several parameters to be set. Second, MDL
helps to specify the model, cardinality and dimensionality, whereas other methods
typically only consider the model and/or dimensionality.

To eliminate the possibility of data bias (Keogh and Kasetty 2003) we consider a
ten-year-old instantiation (Sarle 1999) of a classic benchmark problem (Donoho and
Johnstone 1994). In Fig. 10 we show the classic Donoho-Johnstone block benchmark.
The underlying model used to produce it consists of 12 piecewise constant sections
with Gaussian noise added.

The task is challenging because some of the piecewise constant sections are very
short and thus easily dismissed during a model search. Dozens of algorithms have been
tested on this time series (indeed, on this exact instance of data) in the last decade:
which should we compare to? Most of these methods have several parameters, in
some cases as many as six (Firoiu and Cohen 2002; Garcia-Lopez and Acosta-Mesa
2009). We argue that comparisons to such methods are inappropriate, since our explicit
aim is to introduce a parameter-free method. The most cited parameter-free method
addressing this problem is the L-Method (Salvador and Chan 2004). In essence, the
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/ \‘ Two regression lines from 1 to K, and from K+1 to end. Here K =10 (lines
shifted up for visual clarity)
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The sum of the residual errors of these two lines is denoted R

0

0 10 20 30 40 50 60 70 80 90 100
Residual error between piecewise constant model and benchmark data for different
numbers of segments, K
R {

The ?inimum isat 10

0 10 20 30 40 50 60 70 80 90 100
The value of R for all values of K from 2 to 100

Fig.11 Theknee-finding L-Method. Top A residual error versus size-of-model curve (blue/bold) is modeled
by all possible pairs of regression lines (red/light). Here, just one possibility is shown. Bottom The location
that minimizes the summed residual error of the two regression lines is given as the optimal “knee” (Color

figure online)
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Fig. 12 The description length of the Donoho—Johnstone block benchmark time series is minimized at a
dimensionality corresponding to 12 piecewise constant segments, which is the correct answer (Sarle 1999)

L-Method is a “knee-finding” algorithm. It attempts to explain the residual error vs.
size-of-model curve using all possible pairs of two regression lines. Figure 11—top
shows one such pair of lines, from one fo ten and from eleven to the end. The location
that produces the minimum sum of the residual errors of these two curves, R, is offered
as the optimal model. As we can see in Fig. 11—bottom, this occurs at location ten,
a reasonable estimate of the true value of 12.

We also tested several other methods, including a recently-proposed Bayesian Infor-
mation Criterion-based method that we found predicted a too coarse four-segment
model (Zhao et al. 2008). No other parameter-free or parameter-lite method we found
produced intuitive (much less correct) results. We therefore omit further comparisons
in this paper (however, many additional experiments are available at www.cs.ucr.edu/
~bhu002/MDL/MDL.html).

We solve this problem with our MDL approach. Figure 12 shows that of the 64
different piecewise constant models it evaluated, MDL selected the 12-segment model,
which is the correct answer.

The figure above uses a cardinality of 256, but the same answer is returned for (at
least) every cardinality from 8 to 256.

Beyond outperforming other techniques at the task of finding the correct dimension-
ality of a model, MDL can also find the intrinsic cardinality of a dataset, something
for which methods (Salvador and Chan 2004; Zhao et al. 2008) are not even defined.
In Fig. 13 we have repeated the previous experiment, but this time fixing the dimen-
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Fig. 13 The description length of the Donoho—Johnstone block benchmark time series is minimized with
a cardinality of 10, which is the true cardinality (Sarle 1999)
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Fig. 14 The description length of the Donoho—Johnstone block benchmark time series is minimized with
a piecewise constant model (APCA), not a PLA or Fourier representation (DFT)

sionality to 12 as suggested above, and testing all possible cardinality values from 2
to 256.

Here MDL indicates a cardinality of ten, which is the correct answer (Sarle 1999).
We also re-implemented the most referenced recent paper on time series discretization
(Garcia-Lopez and Acosta-Mesa 2009). The algorithm is stochastic, and requires the
setting of five parameters. In one hundred runs over multiple parameters we found it
consistently underestimated the cardinality of the data (the mean cardinality was 7.2).

Before leaving this example, we show one further significant advantage of MDL
over existing techniques. Both Salvador and Chan (2004) and Zhao et al. (2008) try to
find the optimal dimensionality, assuming the underlying model is known. However,
in many circumstances we may not know the underlying model. As we show in Fig. 14,
with MDL we can relax even this assumption. If our MDL scoring scheme is allowed to
choose over the cross product of model = { APCA, PLA, DFT}, dimensionality = {1 to
512} and cardinality = {2 to 256}, it correctly chooses the right model, dimensionality
and cardinality.

4.2 An example application in physiology

The Muscle dataset studied by Morchen and Ultsch (2005) describes the muscle activa-
tion of a professional inline speed skater. The authors calculated the muscle activation
from the original EMG (electromyography) measurements by taking the logarithm of
the energy derived from a wavelet analysis. Figure 15—top shows an excerpt. At first
glance it seems to have two states, which correspond to our (perhaps) naive intuitions
about skating and muscle physiology.

We test this binary assumption by using MDL to find the model, dimensionality
and cardinality. The results for the model and dimensionality are objectively correct,
as we might have expected given the results in the previous section, but the results for
cardinality, shown in Fig. 16—Ileft, are worth examining.
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Fig. 15 Top An excerpt from the Muscle dataset. Bottom A zoomed-in section of the Muscle dataset which
had its model, dimensionality and cardinality set by MDL
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Fig. 16 Left The description length of the muscle activation time series is minimized with a cardinality of
three, which is the correct answer. Right The Persist algorithm, using the code from Morchen and Ultsch
(2005), predicts a value of four

Our MDL method suggests a cardinality of three. Glancing back at Fig. 15—bottom
shows why. At the end of the stroke there is an additional level corresponding to an
additional push-off by the athlete. This feature was noted by physiologists who worked
with Morchen and Ultsch (2005). However, their algorithm weakly predicts a value
of four.® Here, once again we find the MDL can outperform this latter approach, even
though Morchen and Ultsch (2005) acknowledges that their reported result is the best
obtained after some parameter tuning using additional data from the same domain.

4.3 An example application in astronomy

In this section (and the one following) we consider the possible utility of MDL scoring
as an anomaly detector. Building an anomaly detector using MDL is very simple. We
can simply record the best model, dimensionality and/or cardinality predicted for the
training data, and then test on future observations that have significantly different
learned parameters. We can illustrate this idea with an example in astronomy. We
begin by noting that we are merely demonstrating an additional possible application
of our ideas. We are only showing that we can reproduce the utility of existing works.

6 The values for k = 3,4 or 5 do not differ by more than 1 %.
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Fig. 17 Top The distribution of intrinsic dimensionalities of star light curves, estimated over 5,327 human-
annotated examples. Botfom Three typical examples of the class RRL, and a high intrinsic dimensionality
example, labeled as an outlier by Protopapas et al. (2006)

However note that our technique is at least as fast as existing methods (Protopapas et al.
2006; Rebbapragada et al. 2009), and does not require any training data or parameter
tuning, an important advantage for exploratory data mining.

Globally there are hundreds of telescopes covering the sky and constantly recording
massive amounts of astronomical data (Protopapas et al. 2006). Moreover, there is a
worldwide effort to digitize tens of millions of observations recorded on formats
ranging from paper/pencil to punch cards over the last hundred years. Having humans
manually inspect all such observations is clearly impossible (Malatesta et al. 2005).
Therefore, outlier detection can be useful to catch anomalous data, which may indicate
an exciting new discovery or just a pedestrian error. We took a collection of 1,000 hand-
annotated RRL variable stars (Protopapas et al. 2006; Rebbapragada et al. 2009), and
measured the mean and standard deviation of the DFT dimensionality, which turned
out to be 22.52 and 2.12, respectively. As shown in Fig. 17—top, the distribution is
Gaussian.

We then took a test set of 8,124 objects, known to contain at least one anomaly, and
measured the intrinsic DFT dimensionality of all of its members, and discovered that
one had a value of 31. As shown in Fig. 17—bottom, the offending curve looks different
from the other data, and is labeled RRL_OGLE053803.42-695656.4.1.folded ANOM .
This curve is a previously known anomaly. In this case, we are simply able to reproduce
the anomaly finding ability of previous work (Protopapas et al. 2006; Rebbapragada
etal. 2009). However, we achieved this result without extensive parameter tuning, and
we can do so very efficiently.

4.4 An example application in cardiology

In this section we show how MDL can be used to mine ECG data. Our intention is not to
produce a definitive method for this domain, but simply to demonstrate the utility and
generality of MDL. We conducted an experiment that is similar in spirit to the previous
section. We learned the mean and standard deviation of the DFT dimensionality on
200 normal heartbeats, finding them to be 20.82 and 1.70, respectively. As shown in
Fig. 18—top, the distribution is clearly Gaussian. We used these learned values to
monitor the rest of the data, flagging any heartbeats that had a dimensionality that
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Fig. 18 Top The distribution of intrinsic dimensionalities of individual heartbeats, estimated over the 200
normal examples in record 108 of the MIT BIH Arrhythmia Database (bottom)

was more than three standard deviations from the mean. Figure 18—bottom shows a
heartbeat that was flagged by this technique.

Once again, here we are simply reproducing a result that could be produced by other
methods (Yankov et al. 2008). However, we reiterate that we are doing so without any
parameter tuning. Moreover, it is interesting to note when our algorithm does not flag
innocuous data (i.e., produces false positives). Consider the two adjacent heartbeats
labeled A and B in Fig. 18—bottom. It happens that the completely normal heartbeat B
has significantly more noise than heartbeat A. Such non-stationary noise presents great
difficulties for distance-based and density-based outlier detection methods (Yankov et
al. 2008), but MDL is essentially invariant to it. Likewise, the significant wandering
baseline (not illustrated) in parts of this dataset has no medical significance and is
ignored by MDL, but it is the bane of many EEG anomaly detection methods (Chandola
et al. 2009).

4.5 An example application in geosciences

Global-scale Earth observation satellites such as the Defense Meteorological Satellite
Program (DMSP) Special Sensor Microwave/Imager (SSM/I) have provided tempo-
rally detailed information about the Earth’s surface since 1978, and the National Snow
and Ice Data Center (NSIDC) in Boulder, Colorado makes this data available in real
time. Such archives are a critical resource for scientists studying climate change (Picard
et al. 2007). In Fig. 19, we show a brightness temperature time series from a region in
Antarctica, using SSM/I daily observations over the 2001-2002 austral summer.

We used MDL to search this archive for low complexity annual data, reason-
ing that low complexity data might be amenable to explanation. Because there is
no natural starting point for a year, for each time series we tested every possible
day as the starting point. The simplest time series we discovered required a piece-
wise constant dimensionality of two with a cardinality of two, suggesting that a
very simple process created the data. Furthermore, the model discovered (piece-
wise constant) is somewhat surprising, since virtually all climate data is sinusoidal,

@ Springer



Discover the intrinsic cardinality and dimensionality of time series 383

280
SSM/I Brightness Temperature

260
E 240
= Piecewise Constant
E 220 Melt day (154) Approximation
S 200
5 \
A 180

160 et ] o

o u T
140l - . . . . . , . )
0 100 200 300 365 0 100 200 300 365
Days since July 1, 2001 Circular rotation of 2001 data, starting at Dec 15t

Fig. 19 Left A time series of temperatures in a region of Antarctica. Right Of the hundreds of millions of
such time series archived at NSIDC, this time series (and a few thousand more) is unusual in that it has a
very low complexity, being best modeled with just two linear segments

Fig. 20 A time series showing 1200
the annual discharge rate of "
Senegal River from the year E 800
1903 to 1988 400
1900 1920 1940 1960 1980

Years

reflecting annual periodicity; thus, we were intrigued to find an explanation for the
data.

After consulting some polar climate experts, the following explanation emerges.
For most of the year the location in question is covered in snow. The introduction of a
small amount of liquid water will significantly change the reflective properties of the
ground cover, allowing the absorption of more heat from the sun, thus producing more
liquid water in a rapid positive feedback cycle. This explains why the data does not
have a sinusoidal shape or a gradual (say, linear) rise, but a fast phase change, from a
mean of about 155 Kelvin to a ninety-day summer of about 260 Kelvin.

4.6 An example application in hydrology and environmental science

In this section we show two applications of our algorithm in hydrological and envi-
ronmental domains.

The first application is the hydrology data studied by Kehagias (2004) describing
the annual discharge rate of the Senegal River. This data was measured at Bakel station
from the year 1903 to 1988 (Kehagias 2004), as shown in Fig. 20.

The authors of Kehagias (2004) reported the optimal segmentation occurs when the
number of segments is five using a Hidden Markov Model (HMM)-based segmentation
algorithm, as shown in Fig. 21—top.

As illustrated in Fig. 21—bottom, we get a similar plot by hard coding the number
of segments to five, using the MDL-based APCA algorithm shown in Table 2. How-
ever, as shown in Fig. 22, our MDL algorithm actually predicts fwo as its intrinsic
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Fig. 21 Top The blue/light line is Senegal River data. The black/bold line is the segmentation result found
in Section 5.1 of Kehagias (2004). Bottom We obtained the red/bold line by hard coding the number of
segments to five using the MDL algorithm (Color figure online)
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Fig. 22 Our MDL algorithm predicts that the intrinsic dimensionality of the annual discharge rate of the
Senegal River is two. The approximation is shown in red/bold (Color figure online)

dimensionality of data in Fig. 20. Note that there is no ground truth for this problem.’
Nevertheless, for the Donoho—Johnstone block benchmark dataset that has ground
truth in Sect. 4.1, we have correctly predicted its intrinsic dimensionality, and we
would argue that the two-segment solution shown in Fig. 22 is at least subjectively as
plausible as the five segment solution.

Below we consider an application of our algorithm in a similar domain in environ-
mental data. The data we consider is the time series of the annual global temperature
change from the year 1700 to 1981 (Kehagias 2004), as shown in Fig. 23.

In Kehagias (2004) the authors suggest that the optimal segmentation occurs when
the number of segments is four, as shown in Fig. 24—top.

As illustrated in Fig. 24—bottom, using the algorithm in Table 2, we obtain a very
similar plot by hard coding the number of segments to four. As before there is no
external ground truth explanation as to why the optimal segmentation of this global
annual mean temperature time series should be four. However, as shown in Fig. 25,
our MDL algorithm predicts that the intrinsic dimensionality of the global temperature

7 In Kehagias (2004) authors claimed that to obtain the optimal segmentation, the number of segments
should be five. This claim is very subjective, simply because this “optimal” segmentation is with respect
to the total deviation from segment means. Moreover, there is no hydrological interpretation of the five
segments with regard to the real data.

@ Springer



Discover the intrinsic cardinality and dimensionality of time series 385

(=N

o o

Temperature
Change °C
Moo s

1700 1750 1800 1850 1900 1950 2000
Years

Fig. 23 A time series showing the annual global temperature change from the year 1700 to 1981
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Fig. 24 Top The bluellight line is the annual global temperature change. The black/bold line is the segmen-
tation result found in Section 5.2 of Kehagias (2004). Bottom We obtained a similar but slightly different
model, as shown in the red/bold line, by hard coding the number of segments to four using the MDL
algorithm (Color figure online)
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Fig. 25 Our MDL algorithm obtains fwo as the intrinsic dimensionality of the time series for the global
annual mean temperature

change data is two. Here, there is at least some tentative evidence to support our two
segment model. Research done by Linacre and Geerts (2011), National Aeronautics
and Space Administration (2011) and US Environmental Protection Agency (2011)
suggests that there was a global temperature rise between 1910 and 1940. To be more
precise, this period of rapid warming was from 1915 to 1942 (Linacre and Geerts 2011;
US Environmental Protection Agency 2011). Moreover, there were no significant
temperature changes after 1700 other than during this rapid warming period.

4.7 An example application in biophysics

In Bronson et al. (2009), the authors also proposed an HMM-based approach (dis-
tinct from, but similar in spirit to that described in Kehagias (2004) and discussed in
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Fig. 26 A representative smFRET trace from Bronson et al. (2009) and vbFRET Toolbox (2012)
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Fig. 27 Top The time series in blue from Fig. 26 is predicted to have three states (Bronson et al. 2009;
vbFRET Toolbox 2012). The approximation is shown in black/bold. Bottom Our algorithm also finds three
as the intrinsic cardinality. Piecewise constant approximation is shown in red/bold (Color figure online)

the previous section) to segment the time series from single-molecule Forster reso-
nance energy transfer (smFRET) experiments. Figure 26 shows a time series from the
smFRET experiment (Bronson et al. 2009; vbFRET Toolbox 2012).

The authors in Bronson et al. (2009) noted that there are biophysical reasons to
think that the data is intrinsically piecewise constant, but the number of states is
unknown. Their method suggests that there are three states in the above time series,
as shown in Fig. 27—top). We obtain the same results, as our algorithm finds that the
intrinsic cardinality for the data in Fig. 26 is also three using the algorithm in Table 2.
Figure 27—bottom illustrates our approach. However, there are several parameters in
the HMM-based approach used by Bronson et al. (2009). Moreover, their approach
iteratively finds the number of states with the maximum likelihood, which results in
a very slow algorithm. In contrast, our algorithm is parameter-free and significantly
faster. Note that we do not even have to have the assumption (made by Bronson et al.
2009) that the data is piecewise constant. The mixed polynomial algorithm introduced
in Sect. 3.6 considered and discounted a linear, quadratic or mixed polynomial model
to produce the model shown in Fig. 27—bottom.

4.8 An example application in prognostics

In this section, we demonstrate our framework’s ability to aid in clustering problems.
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Fig. 28 Top An example of an operational variable in the PHMO8 dataset. Botfom An example of a non-
operational variable in the PHMO8 dataset

Recently, the field of prognostics for engineering systems has attracted a huge
amount of attention due to its ability to provide an early warning for system fail-
ures, forecast maintenance as needed, and estimate the remaining useful life of a
system (Goebel et al. 2008; Prognostics Center of Excellence, National Aeronau-
tics and Space Administration (NASA) 2012; Vachtsevanos et al. 2006; Wang et al.
2008; Wang and Lee 2006). Data-driven prognostics are more useful than model-
driven prognostics, since a model-driven prognostic requires incorporating a physical
understanding of the systems (Goebel et al. 2008). This is especially true when we
have access to large amounts of data, a situation that is becoming more and more
common.

There may be thousands of sensors in a single engineering system. Consider, for
example, a typical oil-drilling platform that can have 20,000-40,000 sensors on board
(IBM 2012). All of these sensors stream data about the health of the system (IBM
2012). Among the huge number of variables, there are some variables called oper-
ational sensors that have a substantial effect on system performance. In order to do
a prognostic analysis, first the operational variables should be filtered from the non-
operational variables that are just responding to the operational ones (Wang et al.
2008).

We analyzed the Prognostics and Health Management Challenge (PHMOS) dataset
which contains data from 233 different engines (PHM Data Challenge Competition
2008; Prognostics Center of Excellence, National Aeronautics and Space Administra-
tion (NASA) 2012). Each engine has data from around 900 engine cycles for one air-
craft. Each engine cycle represents one aircraft flying from one destination to another.
Figure 28 implies that the data from the operational variable and the non-operational
variable are visually very similar.

The defined task here is to cluster the operational variables and non-operational
variables into two groups. For ease of exposition, we only consider one variable in
each group. Nevertheless, our framework can be easily extended to multivariate prob-
lems. We calculate the intrinsic cardinality and the reduced description length for one
operational variable and one non-operational variable from all of the 233 engines. One
marker in Fig. 29 represents one variable from one engine.
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Fig. 29 The bluelcross markers represent operational variables. The red/circle markers represent non-
operational variables. The variables from 233 engines are analyzed in the plot (Color figure online)

Although data from the two kinds of variables look very similar (Fig. 28), our results
in Fig. 29 show that there is a significant difference between them: the operational
variables lie in the lower left corner of Fig. 29 with low cardinalities and small reduced
description lengths. In contrast, the non-operational variables lie in the upper right
corner of Fig. 29 with high cardinalities and large reduced description lengths. This
implies that the data from the operational variables is relatively ‘simple’ compared
to the data from the non-operational variables, since the intrinsic cardinalities and
reduced description lengths of the data from the operational variables are relatively
small. This result was confirmed by a Prognostics expert: the hypothesis for filtering
out the operational variables is that data from operational variables tends to have
simpler behavior, since there are only several crucial states for the engines (Heimes
and BAE Systems 2008; PHM Data Challenge Competition 2008; Prognostics Center
of Excellence, National Aeronautics and Space Administration (NASA) 2012; Wang
et al. 2008; Wang and Lee 2006). Note that in our experiment we did not need to
tune any parameters, while most of the related literature for this dataset use multi-
layer perceptron neural networks (Heimes and BAE Systems 2008; Wang et al. 2008;
Wang and Lee 2006), which have the overhead of parameter tuning and are prone to
overfitting.

4.9 Testing the mixed polynomial degree model

In Sect. 3.6 we introduced an algorithm for finding mixed polynomial degree models
for a time series. In this section, we demonstrate the application of our proposed
algorithm to the synthetic time series shown in Fig. 9. As shown in Fig. 30, we
calculated its intrinsic dimensionality using the algorithms in Tables 5 and 6. The
minimum cost occurs when the dimensionality is eight.

Figure 31 shows the data and its intrinsic mixed polynomial degree representations.
In Fig. 31—bottom, we observed that there are four constant segments, two linear
segments and two quadratic segments, which correctly reflects how we constructed
this toy data.
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Fig. 30 The description length of the synthetic time series shown in Fig. 9 minimizes when the dimen-
sionality is eight, which is the intrinsic dimensionality
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Fig. 31 Top A toy time series shown in Fig. 9 has constant, linear and quadratic segments. Bottom data
in fop is represented by a mixed polynomial degree model. The segments are brushed with different colors
according to the polynomial degree of the representations. Red indicates a constant representation. Black
indicates a linear representation and green indicates a quadratic representation (Color figure online)

4.10 An example application in aeronautics

Having demonstrated the mixed polynomial degree model on a toy problem, we are
now ready to consider a real-world dataset. The Space Shuttle dataset contains time
series produced by the inertial navigation system error correction system, as shown in
Fig. 32.

Using only one approximation to represent the time series like the ones in Fig. 32
does not achieve a natural segmentation, since the data itself is intrinsically composed
of more than one state. We applied the mixed polynomial degree algorithm in Tables 5
and 6 to the data shown in Fig. 32. The algorithm returns different polynomial degrees
for different segments, as demonstrated in Fig. 33. We observe that there are three
different states in both of the two time series shown in Fig. 32. An understanding of
the processes that produced this data seems to support this result (Keogh et al. 2006).

4.11 Quantifiable experiments

We conclude this section with a set of quantifiable experiments that explicitly allow us
to demonstrate the robustness of our algorithm to various factors that can cause it to fail.
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In every case, we push our algorithm passed its failure point, and by archiving all data
(www.cs.ucr.edu/~bhu002/MDL/MDL.html) we establish baselines for researchers
to improve on our results. We are particularly interested in measuring our algorithms
sensitivity to:

e Noise The results shown in Sects. 4.1 and 4.2 suggest that our framework is at least
somewhat robust to noise, but it is natural to ask at what point it breaks down, and
how gracefully it degrades.

e Sampling rate For many applications the ubiquity of cheap sensors and memory
means that the data is sampled at a rate higher than any practical application needs.
For example, in the last decade most ECG data has gone from being sampled at
256Hz to sampling rates of up to 10KHz, even though there is little evidence that
this aids analysis in any way. Nevertheless, there are clearly situations in which the
data may be sampled at a lower rate than the ideal, and again we should consider
how gracefully our method degrades.
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Model assumptions While we have attempted to have our algorithm as free of
assumptions/parameters as possible, we still must specify the model class (es) to
search over, i.e. DFT, APCA, and PLA. Clearly even if we had noise-free data, the
data may not be exactly a “platonic idea” created from pure components of our
chosen model. Thus we must ask ourselves how much our model assumptions can
be violated before our algorithm degrades.

To test these issues we created modifications of the Donoho—Johnstone block bench-
mark (Sarle 1999). Our version is essentially identical to the version shown in Fig. 10,
except it initially has no noise. We call this initial prototype signal P. After adding var-
ious distortions/modifications to the data, we can measure the success of our algorithm
in three ways:

The Root-Mean-Square-Error (RMSE). This is the average of the sum of squared
differences between P and the predicted output of our algorithm. This is essen-
tially the mean of square lengths of the gray hatch lines shown in Fig. 5. While
zero clearly indicates a perfect recreation of the data, the absolute value of RMSE
otherwise has little intuitive value. However the rate at which it changes due
to a distortion is of interest here. This measure is shown with blue lines in
Fig. 34.

Correct cardinality prediction This is a binary outcome, either our algorithm pre-
dicted the correct cardinality or it did not. This is shown with black lines in Fig. 34.
Correct dimensionality prediction This is also a binary outcome, either our algo-
rithm predicted the correct dimensionality or it did not. Note that we only
count a correct prediction of dimensionality if every segment endpoint is within
three data points of the true location. This measure is shown with red lines in
Fig. 34.

As shown in Fig. 34 our strategy is to begin with an easy case for our algorithm
and progressively add more distortion until both the cardinality and dimensionality
predictions fail. Concretely:

In Fig. 34—top we start with the initial prototype signal P which has no noise,
and we add noise until the signal-to-noise (SNR) ratio is —4.0. The SNR is
calculated according to the standard equation in Signal to Noise Ratio (http://
en.wikipedia.org/wiki/Signal-to-noise_ratio). As we can see, the cardinality pre-
diction fails at a SNR of about —1.7, and the dimensionality prediction shortly
thereafter.

In Fig. 34—middle we start with the initial prototype signal Pwith an SNR of —0.22,
which is the published DJB data with the medium-noise setting (Sarle 1999). We
progressively resample the data from 2048 datapoints (the original data) down to
just 82 datapoints. Both the cardinality and dimensionality predictions fail as we
move from 300 to 320 datapoints.

In Fig. 34—bottom we again start with the initial prototype signal Pwith an SNR of
—0.22, this time we gradually add a global linear trend from O to 0.45, as measured
by the gradient of the data. Both the dimensionality and cardinality predictions fail
as the gradient is increase pasted 0.3.
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Fig. 34 The robustness of our algorithm to various distortions added to the DJB data. In a—left we show
the DJB data with no noise, and in a—right we plot the RMSE between a—I/eft and the corrupted versions.
In b—Ieft we start with the same data shown in Fig. 10 (the noise level in b—Ieft is also marked in pointed
out in (a)—right). In b—right, we show the RMSE between (b)—/eft and the downsampled versions of
the data. In c—Ieft we again start with the data used in Fig. 10, and in ¢—right we plot the RMSE between
(c)—left and the linear trend added versions

The results in Fig. 34 suggest our algorithm is quiet robust to these various distor-
tions. To give the reader a better appreciation of when our algorithm fails, in Fig. 35
we show the most corrupted version of the signals for which our algorithm correctly
predicted either the cardinality or the dimensionality.

It is important to reiterate that the experiment that added a linear trend to the data
but only considered a constant model was deliberately testing the mismatch between
assumptions and reality. In particular if we repeat the technique shown in Fig. 14, of
testing over all models spaces in {DFT, APCA, PLA}, our algorithm does correctly
predict the datain Fig. 35¢ as consisting of piecewise linear segments, and still correctly
predicts the cardinality and the dimensionality.
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5 Time and space complexity

The space complexity of our algorithm is linear in the size of the original data. The
time complexity of the algorithms that use APCA and PLA as the representation in
Tables 2 and 3 is O (m?) and the time complexity of the algorithm using DFT as the
approximation in Table 4 is O (mlogm). Although we have two for-loops in the above
three tables, the for-loops just add constant factors; they do not increase the degree of
the polynomial to the time complexity. This is because outer for-loop is the range of
cardinalities ¢ from 2 to 256 and the inner for-loop is the range of the dimensionalities
d from 2 to 64.

Our framework achieves the time complexity of O (m?). Note that the data in Sect.
4.5 were obtained over a year and the datasets in Sect. 4.6 were obtained over more
than 80 years. Thus compared to how long it takes to collect the data, our algorithm’s
execution time (a few seconds) is inconsequential for most applications.

Nevertheless, we can use the following two methods to speed up the search by
pruning the search space of combinations of everyc and d that are very unlikely to be
fruitful.

First, there are nested for-loops in Tables 2, 3 and 4. It appears that we have to
calculate the MDL cost for every combination of each ¢ and d, thus the results will form
a 2D matrix. However, instead of finding the MDL cost from the every combination of
each c and d, we can just calculate the MDL cost in a very small subset of the matrix, in
particular, just one row and one column. This works as follows, for a given time series,
we first calculate its intrinsic dimensionality given a fixed cardinality of 256. Secondly,
with the intrinsic dimensionality in hand, we scan a range of cardinality from 2 to 256
to find out the intrinsic cardinality. We illustrate the intuition as to why searching
only one row and one column of the matrix are generally sufficient for finding the
intrinsic cardinality and dimensionality. Consider the Donoho—Johnstone benchmark
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Fig. 36 A comparison of the effect from differing cardinalities on our framework’s ability to discover the
correct intrinsic dimensionality of DJB data. For any cardinality from 512 to 4, the discovered intrinsic
dimensionality does not change. Only when the cardinality is set to a pathologically low three or two (bottom
right) does the cardinality value affect the predicted dimensionality

(DJB) data as an example in Fig. 36, there is no need to search over the whole matrix,
because changing the cardinality from 512 to 4 does not produce different predicted
dimensionalities.

In order to calculate the intrinsic dimensionality for DJB, we first fix the cardinal-
ity at 256, then find the MDL cost with dimensionality from range 2 to 64 (the inner
for-loop in Table 2). In this example, the time complexity for finding the intrinsic
dimensionality is O (m?). After we discover the intrinsic dimensionality is 12, we
hardcode the dimensionality at 12, then calculate the MDL cost with cardinality rang-
ing from 2 to 256. Thus, the time complexity for finding the intrinsic cardinality is O
(m?). Using with this method, there is no need to calculate the MDL cost for every
combination of ¢ and d.

Second, we further can optimize the algorithm by caching the results from the
PLA/APCA/DFT approximations. We can do the DFT/PLA/APCA decomposition
once at the finest granularity, and cache the results, leaving only a loop that per-
forms efficient calculations on integers with Huffman coding. After this optimiza-
tion, the time taken for our algorithms is O (m?) without any constant factors
for using PLA and APCA approximation. Figure 37 demonstrates the compari-
son of running time using APCA and our MDL framework. As Fig. 37 shows,
after caching the results for PLA, the overhead ratio for calculating the MDL
costs is relatively small and decreases for larger dataset. This is because the over-
head is dominated by the Huffman coding, whose time complexity is only O
(mlogm).
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Fig. 37 The running time comparison between our MDL based approach (red/fine) and the APCA

(bluelbold) approximation for DJB dataset. The x axis is the length of different instantiations of the DJB
data (Color figure online)

6 Discussion and related work

We took the opportunity to show an initial draft of this manuscript to many respected
researchers in this area, and this paper greatly benefits from their input. However,
many researchers passionately argued often mutually exclusive points related to MDL
that we felt were orthogonal to our work and irrelevant distractions from our claims.
We will briefly address these points here.

The first issue is who should be credited with the invention of the basic idea we are
exploiting, that the shortest overall two-part message is most likely the correct expla-
nation for the data. Experts in complexity theory advocate passionately for Andrey
Kolmogorov, Chris Wallace, Ray Solomonoff, Jorma Rissanen or Gregory Chaitin,
etc. Obviously, our work is not weighing in on such a discussion, and we refer to Li
(1997) as a good neutral starting point for historical context. We stand on the shoulders
of all such giants.

One researcher felt that MDL models could only be evaluated in terms of the pre-
diction of future events, not on post-hoc explanations of the models discovered (as we
did in Fig. 15, for example). However, we have carried out prediction experiments.
For example, in the introduction we used our MDL technique to predict which of
approximately 700 combinations of settings of the cardinality/dimensionality/number
of exemplars would produce the most accurate classifier under the given constraints.
Clearly the 90.75 % accuracy we achieved significantly outperforms the default set-
tings that gave only 58.70 %. However, a brute force search shows that our predicted
model produced the best result (three similar settings of the parameters tied with the
90.75 % accuracy). Likewise, the experiment shown in Fig. 18 can be cast in a pre-
diction framework: “predict which of these heartbeats a cardiologist is most likely
to state is abnormal.” To summarize, we do not feel that the prediction/explanation
dichotomy is of particular relevance here.

There are many works that use MDL in the context of real-valued time series.
However, our parameter-free method is novel. For example, Firoiu and Cohen (2002)
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uses MDL to help guide a PLA segmentation of time series; however, the method also
uses both hybrid neural networks and hidden Markov models, requiring at least six
parameters to be set (and a significant amount of computational overhead). Similarly,
Molkov et al. (2009) use MDL in the context of neural networks, inheriting the utility
of MDL but also inheriting the difficulty of learning the topology and parameters of a
neural network.

Likewise, the authors of Davis et al. 2008 use MDL to “find breaks” (i.e., segments)
in a time series, but their formulation uses a genetic algorithm which requires a large
computational overhead and the careful setting of seven parameters. Finally, there are
now several research efforts that use MDL for time series (Vatauv 2012; Vespier et
al. 2012) that were inspired by the original conference version of this work (Hu et al.
2011).

There are also examples of research efforts using MDL to help cluster or carry
out motif discovery in time series; however, to the best of our knowledge, this is
the first work to show a completely parameter-free method for the discovery of the
cardinality/dimensionality/model of a time series.

7 Conclusions

We have shown that a simple, yet powerful methodology based on MDL can robustly
identify the intrinsic model, cardinality and dimensionality of time series datain a wide
variety of domains. Our method has significant advantages over existing methods
in that it is more general and is essentially parameter-free. We have further shown
applications of our ideas to resource-limited classification and anomaly detection.
We have given away all of our (admittedly very simple) code and datasets so that
others can confirm and build on our results from www.cs.ucr.edu/~bhu002/MDL/
MDL.html.

A reader may assert that our claim to be parameter-free is unwarranted because: we
“choose” to use a binary computer instead of say a ternary computer,® we use Huffman
coding, not Shannon—Fano coding and we hard code the maximum cardinality of time
series to 256. However, a pragmatic data miner will still see our work as being a way
to explore time series data, free from the need to have to adjust parameters. In that
sense our work is truly parameter-free.

In addition to the above, we need to acknowledge other shortcomings and limitations
of our work. Our ideas, while built upon the solid theoretical foundation of MLD, are
heuristic, we have not proved any properties of our algorithms. Moreover, our method
is essentially a scoring function; as such it will inherit any limitations of the search
function used (cf. Table 3). For example while there is an optimal algorithm for finding
the cheapest (in the sense of lowest root-mean-squared error) PLA of a time series given
any desired d, this algorithm is too slow for most practical purposes and thus we (and
virtually all the rest of the community) must content ourselves with an approximate
PLA construction algorithm (Keogh et al. 2011).

8 Of course, no commercial ternary computers exist, however they are at least a logical possibility.
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