
UC Davis
UC Davis Previously Published Works

Title
Discovery of Serotransferrin Glycoforms: Novel Markers for Diagnosis of Liver Periductal 
Fibrosis and Prediction of Cholangiocarcinoma

Permalink
https://escholarship.org/uc/item/7qq6k006

Journal
Biomolecules, 9(10)

ISSN
2218-273X

Authors
Jamnongkan, Wassana
Lebrilla, Carlito B
Barboza, Mariana
et al.

Publication Date
2019

DOI
10.3390/biom9100538

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qq6k006
https://escholarship.org/uc/item/7qq6k006#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


biomolecules

Article

Discovery of Serotransferrin Glycoforms: Novel
Markers for Diagnosis of Liver Periductal Fibrosis
and Prediction of Cholangiocarcinoma

Wassana Jamnongkan 1,2, Carlito B. Lebrilla 3, Mariana Barboza 3, Anchalee Techasen 2,4,
Watcharin Loilome 1,2 , Paiboon Sithithaworn 5, Narong Khuntikeo 2,6, Chawalit Pairojkul 7,
Nittaya Chamadol 8, Raynoo Thanan 1,2,* and Puangrat Yongvanit 1,*

1 Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
wassana_jk@hotmail.co.th (W.J.); watclo@kku.ac.th (W.L.)

2 Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
anchte@kku.ac.th (A.T.); nkhuntikeo@gmail.com (N.K.)

3 Department of Chemistry, University of California, Davis, CA 95616, USA;
cblebrilla@ucdavis.edu (C.B.L.); mbarboza@ucdavis.edu (M.B.)

4 Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
5 Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;

paib_sit@kku.ac.th
6 Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
7 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;

chawalit-pjk2011@hotmail.com
8 Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;

nittayachamadol@yahoo.com
* Correspondence: raynoo@kku.ac.th (R.T.); puangrat@kku.ac.th (P.Y.)

Received: 29 August 2019; Accepted: 25 September 2019; Published: 27 September 2019
����������
�������

Abstract: Cholangiocarcinoma (CCA) caused by chronic liver fluke infection is a major public health
problem in Northeast Thailand. Identification of CCA risk groups is urgently needed for the control
of CCA in this region. Periductal fibrosis (PDF) induced by chronic inflammation of bile ducts is
known as a pre-neoplastic lesion of CCA. We aimed to identify the serum CCA and PDF biomarkers
using mass spectrometry (UPLC-ESI-QqQ) with multiple reaction mode (MRM) analysis. Here,
serum levels of serotransferrin glycoforms at the glycopeptide level were measured in the sera of
CCA (n = 100), PDF (n = 50), and healthy control (n = 100) subjects. The results indicated that
serotransferrin peptide levels were generally the same between the control and PDF groups, whereas
CCA patients had reduced levels. Moreover, 56 serotransferrin glycoforms were detected, with nine
increased in CCA compared to control subjects. Among them, the serum levels of four glycoforms
were increased in PDF and CCA patients compared to control subjects. In particular, highly sialylated
multi-branched glycans of serotransferrin serum were significantly correlated with poor prognosis
and tumor stage in CCA patients. Taken together, these glycoforms could be used as risk biomarkers
and prognosis and diagnosis markers of CCA.

Keywords: biomarkers; serotransferrin; glycobiology; cholangiocarcinoma; periductal fibrosis; mass
spectrometry; liver fluke

1. Introduction

Cholangiocarcinoma (CCA) is a slowly progressing tumor, in which patients develop symptoms
over a long period of time. Because the majority of CCA cases are clinically silent and not detected
in early stages of the disease, CCA is a tumor with a high mortality rate. The known causes of CCA
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are chronic bile duct inflammatory diseases [1]. In northeast Thailand, where CCA is highly endemic,
the major cause of CCA is liver fluke (Opisthorchis viverrini (Ov)) infection [2]. This parasite infection
induces periductal fibrosis (PDF), which consequently develops into CCA in animal models [3,4].
Thus, PDF is recognized as a CCA risk factor in humans [5]. Since CCA is a major cause of death
in Thailand, earlier identification of CCA risk group is urgently needed for better control of CCA in
regions where it is endemic. At present, PDF and CCA are usually diagnosed using a combination of
several advanced techniques, including abdominal ultrasonography, CT scanning, and tissue biopsy.
However, only a limited number of PDF and CCA patients are diagnosed using these techniques due
to the high cost and the risk associated with taking samples. Although various tumor markers, such as
carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA-19-9), are used in the diagnosis of CCA,
these are not specific for CCA because their levels increase in other cancers and even in benign biliary
disorders [6,7]. Additionally, the tumor markers for PDF subjects have not been explored extensively.
Therefore, identification and validation of biomarkers that could be used to screen subjects at high risk
for PDF and CCA using a simple biochemical method are still needed.

Protein glycosylation, one of the most common post-translational modifications, was proposed
as a new source of potential biomarkers for healthy and diseased states [8]. The most common type
of protein glycosylation occurs with the addition of specific glycan residues to asparagine (N-linked
glycosylation or N-glycans) [9]. Modification of glycosylation influences tumorigenesis by affecting
growth, differentiation, metastasis, and immune surveillance. N-glycans are critical in a wide range of
biological processes, including protein folding, localization, trafficking, and biological activities, as well
as in cell–cell interactions and signal transduction by membrane proteins [10–14]. N-glycans are also
involved in many pathological events, such as cancers and congenital disorders of glycosylation [15–17].

Serum transferrin (serotransferrin) is the fourth most abundant serum glycoprotein in humans and
plays an important role in iron metabolism. In humans, serotransferrin consists of a polypeptide chain
of 679 amino acid residues and is synthesized in the liver [18]. It is a bi-lobal protein with N-terminal
and C-terminal domains and glycans which attach to the C-terminal domain [19,20]. Serotransferrin has
two N-linked glycan chains which mostly exist as complex biantennary types with terminal sialic acids.
The protein is fully glycosylated, with these glycans present on two major Asn-linked glycosylation
sites, namely, Asn432 (Asn-Lys-Ser) and Asn630 (Asn-Val-Thr) [21]. Glycosylation is site specific,
especially core fucosylation, which occurs only at the Asn630 site [22]. Changes in glycosylation of
serotransferrin occur in hepatocellular carcinomas, showing an increase in highly branched fucosylated
glycans [23].

Glycoproteomics is an important branch of proteomics that identifies carbohydrate types and
linkages on polypeptides, and has become a useful tool for biomarker discovery [24,25]. It is now
well-established that glycosylation is altered significantly in cancer cells compared to their normal
counterparts [26–28]. Many potential carbohydrate-related biomarkers (glyco-biomarkers) of various
cancers have been discovered and some have been used in clinical practice [29,30]. For example,
Her2/neu has been used as the marker for breast cancer, prostate-specific antigen (PSA) for prostate
cancer, CA125 for ovarian cancer, and CEA for colorectal, bladder, breast, pancreatic, and lung
cancers [24,25]. However, the identification of specific carbohydrate structures on a given glycoprotein
is difficult because a large amount of glycoprotein is required for isolation and purification. For better
characterization of glycoproteins, a simple method to determine the N-glycans of a target protein
is essential.

The structural complexity of glycosylation allows the discovery of novel biomarkers at various
levels. The monosaccharides present in a specific glycan can be accurately monitored via mass
spectrometry [31,32]. Multiple-reaction monitoring (MRM) on triple quadrupoles (QqQ) mass
spectrometry has the potential to be one of the key techniques in this field. The ability to accurately
quantitate compounds is an important aspect of mass spectrometry, especially in clinical application.
For many years, MRM has been the standard for quantitation in targeted applications, particularly in
proteomics [33] and metabolomics [34]. Therefore, MRM methods are suitable for fast, sensitive, and
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specific quantitative analysis of multiple compounds simultaneously in the presence of other, more
abundant compounds in bio-fluids.

In the present study, using Agilent 1290 infinity ultrahigh-performance liquid chromatography
(UPLC) system and electrospray ionization (ESI) coupled with an Agilent 6490 triple quadrupoles
(QqQ) mass spectrometer (UPLC-ESI-QqQ) for MRM analysis, we determined the N-glycosylation
site occupancy of serotransferrin in the sera of the following study subject groups: (i) a CCA risk
group (PDF), who were diagnosed with PDF ultrasonographically, with a current or previous history
of infection with Ov [5], (ii) CCA patients, and (iii) healthy control subjects. Then, we analyzed the
correlations between the degree of glycosylation of serotransferrin and the clinical data of the CCA
patients including age, sex, metastasis status, histopathological results, and survival rate.

2. Materials and Methods

2.1. Human Serum Specimens

Sera of CCA patients (n = 100) were obtained from the bio-bank of the Cholangiocarcinoma
Research Institute, Khon Kaen University. The research protocols were approved by the Human
Research Ethics Committee, Khon Kaen University (#HE571283). Healthy control and PDF sera were
obtained from subjects living in the Donchang and Banwa Districts, Khon Kaen Province, Thailand,
during an epidemiological survey for Ov infection. Healthy controls (n = 100) had no history of Ov
infection, as proven by negative results for Ov antibody detection and the fecal egg examination, while
PDF subjects (n = 50) were Ov-positive by antibody or fecal egg examination and had proven PDF as
shown by abdominal ultrasonography performed by a radiologist. Informed consent was obtained
from each subject. The protocol of serum sample collection and study design were approved by the
Ethics Committee for Human Research, Khon Kaen University (#HE551303). All sera were kept frozen
at –20 ◦C until use. The characteristics of the participants are listed in Table 1.

Table 1. Characteristics of study subjects.

Variable Control (n = 100) # PDF (n = 50) $ CCA(n = 100)

Age (Years)
<56 57 29 41
>56 43 21 59

Gender
Male 42 22 46

Female 58 28 54
Histological grading

Papillary - - 55
Tubular - - 45

Metastasis stage - - 48
Non-metastasis - - 52

# PDF represents periductal fibrosis subjects, and $ CCA represents cholangiocarcinoma pateints

2.2. Tryptic Digestion In Solution

For the reduction of proteins, 20 µL of serotransferrin standard (2 µg/µL; Merck, St. Louis, MO,
USA) and 2 µL of serum samples were added to 2 µL of 550 mM dithiothreitol (DTT; Promega, Madison,
WI, USA) and incubated at 60 ◦C in a water bath for 50 min, then alkylated by adding 4 µL of 450 mM
iodoacetamide (IAA; Merck) and incubated at room temperature in the dark for 30 min. Then, the
solution was digested with trypsin (enzyme to substrate ratio = 1:50) at 37 ◦C for 16 h. The resulting
peptide and glycopeptide samples were cleaned up using a C-18 Zip-Tip column (Agilent Technologies,
Santa Clara, CA, USA) prior to mass spectrometry (UPLC-ESI-QqQ).
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2.3. UPLC-ESI-QqQ analysis

An Agilent Eclipse plus C18 column (RRHD 1.8 µm, 2.1 × 100 mm) was used for UPLC separation.
The peptide samples were analyzed using UPLC-ESI-QqQ mass spectrometry (Agilent Technologies).
Briefly, the serotransferrin standard sample was diluted serially in nano-pure water prior to injection
to obtain a calibration curve for protein quantitation. For each run, 1 µL of sample was injected.
Three replicate injections were performed for each serotransferrin standard solutions to evaluate the
instrument repeatability. A nano-pure water blank was run after every three-sample run to evaluate
potential carry over. To access the stability of the sample preparation during the experiment, we
included two serotransferrin standard samples (Merck) before and after running the patient samples.

After injection of 5 µL of serum sample, peptides and glycopeptides were separated using a
10 min binary gradient consisting of 3% acetonitrile and 0.1% formic acid for solvent A and 90%
acetonitrile and 0.1% formic acid for solvent B in nano-pure water (v/v) at a flow rate of 0.5 mL/min.
The QqQ instrument was used at dynamic MRM mode, in which transitions were monitored only
when the target molecules were eluted. The transitions were monitored. The retention times and
collision energies used re summarized in Supplementary Table S1. The MRM results were analyzed
using Agilent MassHunter Quantitative Analysis B.5.0 software. The peak area was integrated using
quantitation software. The detection limit was defined as a signal-to-noise ratio of ≥3.

MRM transitions were developed on the QqQ-MS, and the instrument parameters were optimized
to obtain best sensitivity for the glycopeptides. The peptides and glycopeptides were both quantified
using MRM in the same run. The absolute amount of serotransferrin protein was determined using a
peptide-calibration curve, while the degree of glycosylation was normalized to the total protein content.
Using this strategy, protein abundance of the protein and degree of glycosylation were monitored
simultaneously and at the site-specific level, as described by Hong et al. (2015) [35].

2.4. Statistical Analysis

Data were expressed as graphs and were analyzed using GraphPad Prism 5 (GraphPad Software,
San Diego, CA, USA) Statistical analyses were performed using IBM SPSS version 19.0 software
(IBM Cooperation, Armonk, NY, USA). Survival curves were calculated according to the method of
Kaplan and Meier. A p-value of <0.05 was considered to be statistically significant. Identification of
glycopeptides and glycan patterns was performed using in-house software designed by Barboza et al.
(2012) [36]. Glycopeptide composition was assigned on the basis of the exact mass and fragmentation
patterns. The diagnostic performances of the serotransferrin peptides and glycopeptides were evaluated
using receiver operating characteristic (ROC) curve analysis. The area under the ROC curve (AUC)
was determined using 95% Confidence Interval (CI). Data were presented as mean ± SD.

3. Results

3.1. Absolute Quantiytation of Serotransferrin in Serum

Serotransferrin levels of each investigated group are presented in Figure 1A as scatter plots.
CCA patients had significantly lower serotransferrin levels than the healthy control and PDF groups.
The areas under the ROC curves (AUC) (Figure 2B,C) between the control group, the PDF group,
and the CCA group were 0.812 (95% CI, 0.751–0.871; p < 0.001) and 0.814 (95% CI, 0.739–0.887;
p < 0.001), respectively.
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Figure 1. Distribution of serotransferrin peptides in serum. (A) Absolute quantitation of serotransferrin
peptides were determined using the multiple reaction mode (MRM) method. Data are represented as
mean ± SD. Receiver operating characteristic (ROC) curves in subjects with CCA (n = 100) compared
with the control group (n = 100) are represented in (B). ROC curves in patients with PDF (n = 50)
compared to CCA (C) are constructed. The area under ROC curve (AUC) and statistical comparisons
are indicated.

3.2. Glycopeptides of Serotransferrin Standard

The total MRM chromatograms of N-linked glycopeptides in a tryptic digest of serotransferrin
standard at Asn432 and Asn630 are shown in Figure S1. The glycan forms were represented in
glycan composition numbers of hexose (Hex), hexNAc, fucose (Fuc), and N-acetyl neuraminic
acid (NeuAc), respectively. Two sizes of tryptic digested peptides of Asn432, including (i)
421CGLVPVLAENYNK433 and (ii) 421CGLVPVLAENYNKSDNCEDTPEAGYFAIAVVK452, were
observed. The Hex6HexNAc5NeuAc1 (6501), Hex6HexNAc5NeuAc2 (6502), Hex5HexNAc4 Fuc2
(5420), Hex5HexNAc4NeuAc1 (5401), Hex5HexNAc4Fuc2NeuAc1 (5421), Hex5HexNAc4NeuAc2
(5402), Hex4HexNAc3NeuAc1 (4301), and Hex5HexNAc4Fuc1NeuAc2 (5412) were detected
at Asn432 of the 421CGLVPVLAENYNK433 peptide. Also, Hex5HexNAc4NeuAc2 (5402),
Hex5HexNAc4Fuc2NeuAc1 (5421), Hex5HexNAc4Fuc1NeuAc1 (5411), Hex5HexNAc4Fuc2NeuAc2
(5422), Hex4HexNAc3 (4300), and Hex6HexNAc5NeuAc2 (6502) glycoforms were detected at Asn432 of
the 421CGLVPVLAENYNKSDNCEDTPEAGYFAIAVVK452 peptide. The Hex5HexNAc4Fuc2NeuAc2
(5422), Hex4HexNAc3 (4300), Hex4HexNAc3NeuAc1 (4301), Hex5HexNAc4NeuAc1 (5401),
Hex5HexNAc4Fuc2 (5420), Hex5HexNAc4Fuc2NeuAc1 (5421), Hex5HexNAc4NeuAc2 (5402),
Hex5HexNAc4Fuc1NeuAc2 (5412), Hex6HexNAc5NeuAc1 (6501), and Hex5HexNAc4Fuc1NeuAc1
(5411) glycoforms were detected at the Asn630 glycosite. Most of the glycoforms of N-glycosylation at
Asn432 and Asn630 detected in this study have been previously reported in earlier works [37,38] using
nano liquid chromatography (LC)-chip/quadrupole time-of-flight mass spectrometry (MS) analysis
and 360 MHz proton magnetic resonance spectroscopy.

3.3. Identification of Altered Glycosylation at Asn432 and Asn630 of Serotransferrin in CCA

Nine glycoforms were significantly higher in CCA sera compared with control sera. The
glycan moieties overexpressed in the sera of CCA patients were Hex6HexNAc5NeuAc3 (6503),
Hex5HexNAc4Fuc2NeuAc2 (5422), Hex6HexNAc5NeuAc2 (6502), Hex6HexNAc5Fuc1NeuAc1 (6511),
and Hex6HexNAc5Fuc2NeuAc1 (6521) at the Asn432 residue, and Hex5HexNAc4NeuAc2 (5402),
Hex5HexNAc4Fuc1NeuAc2 (5412), Hex5HexNAc4Fuc2NeuAc1 (5421), and Hex6HexNAc5NeuAc1
(6501) at the Asn630 residue. Figure 2 shows the serum levels of the altered glycoforms in the control,
PDF, and CCA groups. The degree of glycosylations (mean ± SD) in each glycoform are shown in
Table S2. Table 2 shows the AUC values of each glycan for the control, PDF, and CCA groups. The
ROC curves are shown in Figure S2–S10. Among them, the serum levels of 6503, 6502, 6501, and 5412
were significantly different among the control, PDF, and CCA subjects.
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Figure 2. Serum levels (mean ± SD) of altered serotransferrin glycofoms at Asn432 and Asn630 residues
in healthy control (n = 100), PDF (n = 50) and CCA (n = 100) subjects. The 6503, 5422, 6502, 6511, and
6521 glycoforms were detected at the Asn432 residue. The 5402, 5412, 5421, and 6501 glycoforms were
detected at the Asn630 residue. P-values were calculated using Student’s t-test. The glycan forms are
represented in glycan composition numbers of hexose, hexNAc, fucose, and N-acetyl neuraminic acid,
respectively. The pictures of glycoform structures represent of N-acetylglucosamine (blue square),
mannose (green circle), galactose (yellow circle), N-acetyl neuraminic acid (pink diamond), and fucose
(red triangle).

Table 2. The differentiation powers (# AUC values) of serotransferrin glycoforms.

Group
$ Glycoform

6503 5422 6502 6511 6521 5402 5412 5421 6501

Control vs. PDF 0.608 * 0.511 0.651 ** 0.632 ** 0.578 0.596 * 0.653 ** 0.596 0.653 **
Control vs. CCA 0.681 *** 0.593 * 0.792 *** 0.610 ** 0.696 *** 0.637 ** 0.710 *** 0.637 ** 0.710 ***

PDF vs. CCA 0.604 * 0.595 0.682 *** 0.500 0.735 *** 0.544 0.609 * 0.539 0.685 **
# P-values are represented as * p < 0.05, ** p < 0.01, and *** p < 0.001. $ The glycoforms are represented in glycan
composition numbers of hexose, hexNAc, fucose, and N-acetyl neuraminic acid, respectively.
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3.4. The Association of Altered Glycoforms of Serotransferrin and Clinicopathological Data of CCA Patients

Levels of serotransferrin peptides and glycopeptides in the sera of CCA patients were analyzed
in accordance with clinicopathological data, including sex, age, histology type, survival rate, and
metastasis stage of patients. There was no correlation between any of the glycoform levels and the
clinical data, including sex, age, histology type, and metastasis stage of the patients, as shown in Tables
S3 and S4. High 6501 glycoform levels were significantly correlated with the tumor stage (p = 0.034), as
shown in Table S3. CCA patients with high expression of 2 or more of the glycoforms 6403, 6502, and
6501 showed a significant correlation with poor prognosis (p = 0.034) (Figure 3). 

3 

 
Figure 3. Survival curves calculated for levels of the 6503, 6502, and 6501 serotransferrin glycoforms in
CCA sera, according to Kaplan–Meier with a log-rank test. The solid line represents CCA patients with
high expression of 2 or more of the 3 glycoforms (n = 86). The dashed line represents CCA patients
with high expression of 1 or none of the 3 glycoforms (n = 14).

4. Discussion

Our study revealed that the serotransferrin protein levels of CCA patients were significantly lower
than that of the control and PDF groups. Serotransferrin is a negative acute-phase protein involved
with physiological changes responsible for various stimuli, including tissue injury, infection, and
immunological disorders, and it is also reduced in chronic inflammation and malignant growth [39,40].
Serum serotransferrin levels have been reported to decrease in ovarian and other gynecological cancer
patients [41,42] and during inflammation [43]. After chemotherapy, levels of serotransferrin increased
or remained constant in ovarian cancer patients [41]. Therefore, the decrease in serotransferrin in the
sera of CCA patients may be due to the physiological response of stress caused by CCA development.

Liver fluke infection is a major etiology of CCA in Thailand. This parasite infection induces chronic
inflammation and tissue injury, resulting in PDF formation and CCA development [3,4]. PDF was
also identified as a CCA risk factor in humans and can be detected by abdominal ultrasonography [5].
It was reported that anti-inflammatory and antioxidant agents, such as curcumin, anthocyanin,
and xanthohumol, can be used for protection of PDF formation and CCA development in animal
models [44–46]. Therefore, CCA can be prevented by not eating raw cyprinid fish and by treatment
with anthelmintics in case of parasitic infection to avoid PDF development. Once PDF does occur,
expert radiologists are required for diagnosis.

In the present study, dynamic MRM using a QqQ-MS instrument was applied to identify differential
glycosylation patterns of serotransferrin in the sera of CCA patients. Six glycoforms were shown to be
significantly increased in the sera of PDF subjects compared to control group. These were the 6503,



Biomolecules 2019, 9, 538 8 of 12

6502, 6511, and 6521 glycoforms at the Asn432 residue and the 5402, 5421, and 6501 glycoforms at the
Asn630 residue. Additionally, the 6503, 6511, 5422, 6502, and 6521 glycoforms at the Asn432 residue
and the 5402, 5412, 5421, and 6501 glycoforms at the Asn630 residue were significantly increased in
CCA patients compared to control subjects. Among them, the serum levels of four glycoforms (6503,
6502, 6501, and 5412) were significantly increased in CCA compared to PDF subjects and in PDF
compared to control subjects. Therefore, although the serum levels of serotransferrin protein itself are
reduced in CCA patients, the serum levels of particular serotransferrin glycoforms could be used as
PDF biomarkers and CCA risk biomarker.

Glycan composition and its relevance to the biological activities of human serotransferrin have
been extensively studied in relation to hepatocellular carcinoma (HCC), carbohydrate deficiency
syndrome type II, and pregnancy [47–49]. CCA and HCC are both liver cancers and share similar signs
and symptoms. An increase in the 5200, 7400, 6300, and 6310 serotransferrin glycoforms in the sera of
HCC was previously reported by Yamashita et al. [49]. These glycoforms lack sialic acid, therefore their
increase may be due to the decrease in sialytransferase activity or the increase in sialidase activity in
HCC. In contrast, in this study, the sialylated glycoforms (6503, 6502, 6501, and 5412) were significantly
increased in the sera of CCA patients compared to healthy subjects. Therefore, these serotransferrin
glycoforms may be used as biomarkers to differentiate between CCA and HCC patients.

Serotransferrin glycoforms have been reported to induce anti-apoptotic properties on
hematopoietic cells and lymphocytes [50]. Notably, CCA patients with high expression of two
or more of three (6503, 6502, and 6501) glycoforms had a higher likelihood of a poor prognosis and
CCA patients with high expression of the 6501 glycoform had a higher likelihood of a high tumor stage.
These three glycoforms are sialylated glycans without fucosylation. Sialylated N-glycans generally play
essential roles in cancer cell survival, drug resistance, and cancer cell metastasis [51]. Moreover, the
total sialic acid in the sera of CCA patients was significantly higher compared to patients with benign
hepatobiliary diseases and healthy subjects [52]. The increase in total sialic acid in the sera of CCA was
significantly correlated with the clinical data, including serum MUC5AC mucin, alkaline phosphatase,
and CA19-9, and the proportions of white blood cells and neutrophils [53]. Sialyltransferases were
found to be up-regulated and induced tumor progression in many cancer types [54]. In conclusion,
sialytransferases may be up-regulated or sialidase may be down-regulated in CCA and the increase
in sialylated serotransferrin glycoforms may play a critical role in carcinogenesis, leading to tumor
promotion and progression with worse clinical outcomes, such as poor prognosis.

5. Conclusions

The present study indicated that alterations of serotransferrin glycoforms could be used as
potential risk biomarkers and diagnostic or prognostic biomarkers in CCA. Since serotransferrin is
an abundant glycoprotein in human serum, analysis of its glycoforms could increase sensitivity and
specificity in CCA risk group identification. Additional studies regarding the serotransferrin protein
and its site-specific glycosylation profiles could allow further elaboration on the characteristics of
biological functionality and causality of altered glycosylation in CCA. Further development of a specific
detection system for the altered glycoforms should be explored.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/10/538/s1.
Table S1: Dynamic MRM transitions used to monitor glycopeptides; Table S2: Degree of glycosylation (mean ±
SD) of the altered glycoforms in control, PDF and CCA; Table S3: Association between levels of serotransferrin
peptides and glycopeptides in the sera of CCA patients and clinicopathological data; Table S4: Association between
levels of 6503, 6502, and 6501 serotransferrin glycopeptides in the sera of CCA patients and clinicopathological
data; Figure S1.:Total MRM chromatogram of serotransferrin standard and its glycopeptides; Figure S2: ROC
curve analysis of the Hex6HexNAc5NeuAc3 (6503) glycoform in the sera of control (n = 100), PDF (n = 50), and
CCA (n = 100) subjects; Figure S3: ROC curve analysis of the Hex5HexNAc4Fuc2NeuAc2 (5422) glycoform in
the sera of control (n = 100), PDF (n = 50), and CCA (n = 100) subjects; Figure S4: ROC curve analysis of the
Hex6HexNAc5NeuAc2 (6502) glycoform in the sera of control (n = 100), PDF (n = 50), and CCA (n = 100) subjects;
Figure S5: ROC curve analysis of the Hex6HexNAc5Fuc1NeuAc1 (6511) glycoform in the sera of control (n = 100),
PDF (n = 50), and CCA (n = 100) subjects; Figure S6: ROC curve analysis of the Hex6HexNAc5Fuc2NeuAc1

http://www.mdpi.com/2218-273X/9/10/538/s1
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(6521) glycoform in the sera of control (n = 100), PDF (n = 50), and CCA (n = 100) subjects; Figure S7: ROC
curve analysis of the Hex5HexNAc4NeuAc2 (5402) glycoform in the sera of control (n = 100), PDF (n = 50), and
CCA (n = 100) subjects; Figure S8: ROC curve analysis of the Hex5HexNAc4Fuc1NeuAc2 (5412) glycoform in
the sera of control (n = 100), PDF (n = 50), and CCA (n = 100) subjects; Figure S9: ROC curve analysis of the
Hex5HexNAc4Fuc2NeuAc1 (5421) glycoform in the sera of control (n = 100), PDF (n = 50), and CCA (n = 100)
subjects; Figure S10: ROC curve analysis of the Hex6HexNAc5NeuAc1 (6501) glycoform in the sera of control
(n = 100), PDF (n = 50), and CCA (n = 100) subjects.
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