UC Office of the President
Stanford Technical Reports

Title
Tests of Acquisition and Retention Axioms for Paired-Associate Learning

Permalink
bttgs:ggescholarshiQ.orgéucgitemﬂggOnldi
Authors

Atkinson, Richard C.
Crothers, Edward ).

Publication Date
1963-10-25

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/7qq0n1dj
https://escholarship.org
http://www.cdlib.org/

TESTS OF ACQUISITION AND RETENTION AXIOMS
FOR PAIRED-ASSOCIATE LEARNING
by

Richard C. Atkinson and Edward J. Crothers
TECHNICAL REPORT NO. 60
October 25, 1963

PSYCHOLOGY SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

INSTITUTE. 'FOR - MATHEMATICAL  STUDTES ' TN «THESOCTAL -SCIENCES
STANFORD UNIVERSITY

STANFORD, CALIFORNIA







TESTS OF ACQUISITION AND RETENTION AXTIOMS

FOR PATRED-ASSOCIATE LEARWING

Richard C. Atkinson and Edward J. Crothers

Stanford University

Abstract

Several alternative interpretations of all-or-none processes for
paired-associate learning and concept formation are examined. These
models, along with three lihear models, are applied to data from eight
paired-aseociate learning experiménts. The principal analyses involve
goodness~of-fit tests for observed response éequences and conditicnal
probabilities. The results favor a three-process model that postulates
a distinction between loﬁg—term and short-term retention and allows for

forgetting between successive presentations of the same stimulus item.







1. . Introduction
In recent articles Bower (1961; 1962), Crothers (1962), Estes

(1960; 1961), Suppes & Ginsberg (1963), and others have .examined a wide
~array of data on paired-associate learning and concept formation in
terms of an all-or-none process. The particular model they.consider
represents a special case of more general models of Stimulus Sampling
Theory, and hss been freéuently labeled as the one-element pattern
model. In a paired-associate experiment the single stimulus elgment
represents a stimulus item from a list of paired associates;._in a
concept formation experiment the stimulus element repregents a ccncept,
or some aspect of a concept. The two principal assumptions of the model
are as foilows: (1) Until the stimulus element is conditioned, there
is a constant probability g that the subject will‘respond_correctly
by guessing; (2) On each trial there is a probability c that the -
. single element will become conditioned to the correct response. Thus,
on trial n of an experiment the stimulus element can be regarded as
being in one of two conditioning states: in state C the element is
conditioned to the corféct response; in state C the element is
unconditioned. The element starts ocut in state .6 and subsequent

-moves to state € are specified by the transition matrix

C C
C 1 o
_ : (1)
C c i-c .

By and large, the results reported by Bower, Crothers, Estes,

_ and Suppes & Ginsberg indicate a remarkably close correspondence




2
between observed and predicted wvalues for the one-element model. The
agreement is particulasrly impressive when compared to goodness-of-fit
results obtained for other models. However, despite the excellent fits
of the one-element model, there is at least one aspect of the data that
is contradictory. As pointed ocut by Suppes & Ginsberg, when appropriate
statistical analyses are made cne can often demonstrate a non-staticnary
effect before the last error; i.e., there is a tendency for the prob-
apility of a correct responselto increase over trials prior to the last
error gnd nct simply remain a constznt g', és predicted by the théory.

To account for this non-stationary effect, Suppes &'Ginsberg pro-
pose a twowelement stimulus sampiing model. Roughly speaking, their

model is defined by three conditioning states: <C C, and C

0’71 2’

For state CO both elements are undonditioned and the probability cof

a correct response is g'; for state 'Cl one of the two elements is

conditioned and the probability of a correct response is g' ; for
state 02 both elements are conditioned and the probabllity of a
correct response is 1. Applying stimulus-sampling axibms, they derive

the transition matrix

C, cy Cq
¢, [1 0 0
¢, b 1-b o , (2)
¢y |0 a 1-a

and show that the probability of & correct response over trials before

the last error is an increasing function bounded between g and g
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In their view this twe-elemeni Dprocess represents a conceptual compro-
mise between incremental and all-or-none learning models. However,
_there‘are at least two reasons why the {wo-element model is unsatis-
factory for paired-associate learning. TFirst, while itfis reasonable
to equate the parameter g with the reciprocal of the number of response
alternatives, there seéms to be no convineing experimenial interpreta-
tion_of a value of g' estimated from data. Secondly, we shall see
that even when g' 1is estimated from data; certain prediqtiqns of the
two-element model are inaccurate.

The aim of this paper.is to develop a model that is conceptually
guite diffefent from the two-element model, but which predicts the
non-stationarity effect and is relatively more accurate otherwiéen
.We cite pasired-asscciate data using the anticipation method_in com—,
paring the goodness;of-fit of the proposed model with the fits of the
éne-element and the two-element models. Also, for purp05es.of com-~
pariéon, we examine several linear models.

Because of the particular data to be analyzed_here,-all of the
models will be Formulated for a task involving s fixed set of
response.alternatives; however, generalization of the model to un-
restricted response sets presenté nc new problems. Specifically we
shall consider a paired-assoclate task in which the subject is toid
the responses available to him; each regpcnse occurs eQually often as
the to-be-learned response, and so we assume that the probability of
8 correct response by guessing is % . 0On each trial the stimuli are

exhibited singly in a new random order. When a stimulus is presented
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the subject is.required tc make a response gnd is then informed of the
correct response.

To introduce the proposed model, let us sketch the main argument
that motivated us toward this approach. When a set of models.collectively
fails to provide accurate detailed predictions, a major reason would
seem to be that some peychological proeess not repregsented in the
models is influencing behavior. A prime candidate for such a process
would appear tc be the occurrence of Torgetting between succesgive
presentations of the same item; certainly, forgetting is as ﬁbiquitous
as ecquisition. Appreciabie forgetiing of individual consonant syllables
and paired—associates over short intervals of time has become an
established fact (Murdock, 1961; Peterson & Peterson, 1959). In these
-experiments, the subject counted backwards during the interval between
'the reinforced presentation and the test. (Of course, in conventional
palired-asscciate learning, the interpolated activity is the presentation
and testing of other stimulus-response peirs, Despite this procedural
difference, the notion that forgetting rlays an important role in
paired-associate list learning seemed worth exploring.

Moreover, forgetting has a natural Markovian interpretation as a
transition to a lower state of 1earning.' Since the subject eventually
learns to criterion, it seems iﬁportant to introduce the distinetiocn
between long-term retention and short-term retenticn. In the latter
state, forgetting can oecuf and corresponds to regressicn to a state
in which errors are poseitble. Beyoﬁd these general remarks, there

are a variety of ways in which one can pursue the mathematical




formulation of learning models that incorporate a forgetting process.
In the next gection we shall coﬁsider only the model that appears most
promising. After the data have been presented, it will be easier %o
see why certain alternative models embodying forgetting processes are
less satisfactory.

© 2. A learning Model with Enceding and Forgetting Axioms

The model assumes four stages of learning: L, S8, F , and U.
Learning is postulated to consist of encoding the stimulus {Lawrence,
1963) followed by asscciating the encoded stimulus to the correct
regponse. Before encoding has occurred, the stimulus is said to be in
‘atate U (uneoded); in this state the subject is assumed to respond
by guessing randomly among the r aiternatives. After the stimulus
is encoded, it can become associated to the correct response. Once the
“assoclation forms the stimulus element is absorbed in state L {long-
term ﬁemory) and the subject makes no errors on subsequent presentations
of the item. Transitions between the intermediate states S and F
represent events assumed to intervene between the encoding and association
phases. State 8. is a short-term memory state, expressing the notion
that a temporary connection between the enccded stimulus and the response
may form prior to establishing the permanent association; while the
association is temporarily stored the correct respconse cccurs with
precbability 1. However, the temporary'connéction is susceptible to
forgetting, in Which case the stimulus element is =aid to paés_into
state F . Here, as in state U , the SUbject guesses randomly; however,

forgetting ie only partial, since the encoding is retained.
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Stated more precisely, encoding for a given stimulus item oecurs
at most on one trigl; the probability that encbding occurs on trial n
given that it has not occurred cn a previcus trial is ¢ . If an item
is presented that has already been encoded (either on the present
triel or on an earlier trial), then with probability a it goes into
state T and with probability "l=a it goes into state S . Thus,
after each presentation, an encoded item is in either state L or & ,
and if the item were to be presented again immediateiy the subject would
make the correct response with probability 1 . However, other events
intervene from one presentafion‘of an item to its next presentation,
and during this periocd we assume there is a probabiiity f that an item
in state S will move back to state F . We assume the value of f
~depends upen the number and type of intervening items; also, I depends
upoﬁ the exposure time of the given item, for this affects the repetition
rate and hence the slope of the forgetting function (Hellyer, 1962;
Peterson, Saltzman, Hillner, & Land, 1962).

Given the above assumptions, it can be shown that movgs among the
four states are described by the following transition matrix and

" response provability vecior:

L S F u Pr{correct)
L 1 0 0 0] N
s . (1-=a)(1-£)  (1-a)f 0 1
(3)
T a (1-2)(1-f) (1-2)f 0 g
U |eca c(1l-a){1-f) c(l-a)f 1-c] 8]



where g = % and will be used throughout the paper tc denote the
guessing probability. Before proceeding with the derivations, let us
mention a Tew features of this model. First, it is clear that the
predicted probability of a correct response can increase over trials
prior to the last ervcr. This is because errcrs later in learning are
more likely to have occurred in state F than are earlier -errors;
hence, the. leier errors would have been more frgquently preceded by
runs of errorless trials in state § . Another property which seems
desirgble is that the model is qualitatively in accord with overlearning
phenomena; posteriterion training trials produce transitions from S
to L , thereby increasing retention.
3. Linear Models

For convenience, we classify under this heading all learning models
. that assume at least one of the factors governing the trial by trial
change in response probability is a linear process. The simplest such
medel is the single-cgperator linear model (Bush&nMosteller, 1955;
Bush & Sternberg, 1959). This model assumes that the probabllity of

the reinforced response increases according to the equation

b, = (1-8)p_+ 0 S

n+
where p:L = % Modifications of the above axiom have frequently
been applied to probability discrimination learning as well as o
pairéd-associate learning.

Recently, the abllity of the single~operator model to account for

paired-associate learning has been questioned. The mcdel has been

compared unfavorably with the one-element model (Bower, 1961; Esteé,




1961; Estes, Hopkins, & Crothers, 1960), touching off a controversy
between proponents of all-ocr-none learning and incremental learning.
Our aim in this article is not to support either theoretical position.
Instead, we assess only the relative merits of the particular models
presented here.

In addition to the single-operator linear model, we shall examine
two other models which include linearity assumptions. Since these models
are more complex than the original linear model and contain two parameters,
fhey are especially useful in pfoviding comparisons with Markovian processes
having more than one parameter. The first linear model (Norman, 1963)
assumes a two-phase learning process. An event called "first-learning"”
is postulated that occurs on at most ome trial for any stimulus item;
" the pfobabiliﬁy that first-learning coccurs on trial k given fhat it
has not cccurred on a previous trial is ¢ . A subject's probability of
making a cofrect response depends on the trial of first-learning. Spe-
cifieally the probability of a correct response on trial n given that

first-learning occurred on trial k is
g ' , for ng<k:

)n—k

1 - (1-g)(1-8 y for nzk.

Thus, for k trials (where %k is geometrically distributed with
parameter ¢) no learning occurs, whereas after trial k a linear
learning process takes over of the form specified by Egq. 4. Note that
Norman's two-phase model reduces to the one-element model when o =1 ,

and to the simple linear model of Eq. L4 when ¢ = 1 . The reader is
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referred to Norman's paper for a fuller discussion of the properties and
interpretation of the model.

An glternative two-parameter model that incorporstes a linear
learning process also has been developed by Norman (1964). In this
model, the probability of a correct response on trial n+ 1 is given
by the following equation:

(1- 9)pn + 6 , with probability ¢

b= - (6)
P , with probability 1l-c

Thus on each trial exactly one of two events can occur. With probability

l=- ¢ no learning takes place, or with probability ¢ the response
probabllity receives an increment described by the linear transbrmation

given in Eg. 4. Once again, if _9=.l this process reduces to the one-

- element model, whereas if c¢=1 we have the simple linear model. Using

Norman's terminology, we shall refer to this combination of the all-or-
none and linear axioms as the randem~trial-incremental model; henceforth,

abbreviated as the RTT model.

4. Predictions for the Long-Short Model
We now derive a.few'basic predictions for the model described in
Sec. 2; henceforth, for simplieity we shall refer to this model as the
‘LS model, g designation that emphasigzes the role of the long-term and
short-term retention states. We present those prediciions that are
particularly helpful in making comparisons among the various models
digcugsed so far. The derivations are carried out for a single stimulus

item because later, when we analyze data, it is assumed that the stimulus .
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items are stochastically independent and identical. Throughout the paper
we let Un s Fn B Sn , and Ln denote the events of being in state U ,
F, S, and L respectively at the start of trial n ; also e and
¢, denote the occurrence of an error and of a correct response on trial

n . Further, u, s fn , and s, are used to denote the probabilities

of events Un 3 Fn , . and Srl ., respéctively.

4.1 Learning curve.

For brevity, let tn = fn + 8, - Then, from the matrix in Eq. 3
we obtain
' n-1
u = (1-c) (72)
s, = (1-a)(1 -f)tn_l +c{l-a)(1- f)un_l | (71)
£, = {1 -a)tn_l + ef(1- a_)un_l . , A{Te)

Adding Egs. Tb and 7c yilelds

T = (1= a)tn~l + c(l-—a.)(l-—'c)n“3L .

The solution of this difference equation is (cf. Atkinson & Estes,

1963, p. 148)

n-2 1
£ = (1- a)n'ltl +e(1-a)"1 Z}: (1' C) i

l-g

Cr, since we assume tl =0,

e B

1=0
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.There are two cases to be distinguished:

t, = c(n-—l)(l-—a)n_l , for c=a {8a)
and

62828 @)™ @™ tercda. (3)
Then, *

£, = Tt = fﬁé%;gil L(l_ a)n-l - (1- C)n-i] (98)

s = (1-2)t_ = c(1- i)_(i ~a) [(1- a)™ - (2- c)n'l] (9b)
for ¢ #£a . When c¢ =a , the expressions for 'fn and s, are

obvious from Eg. Ba.
Since errors occur with probability 1l - g in either state U

or F , the probability of an error on trial n is

rPr(en) (l-—g)(un + fn)-

B

L2 ®(T) , expectedltotél errors per item.

| This'quantity ig the sum of fhe expected total errors in state U
and in state F , which we dencte as R(U) and E(F) , respectively.
It is well known that

l-g

5(U) = L

To find E(F) we begin by deriving the probability that the.subject
eventually enters state F . First, define p as the probebility of
eventually returning from state S +to state F ; it is easily shown

that
‘ . (1-a)F

Q= a+ (L-a)f



12
The probabllity that the subject eventually enters state F 1ig written
in terms of p and is simply
c(l-a)f + (1L-c)e(l=a)f + (1-c)2c(l- a)f + ...

+e(l-a)(1-fo + (L-cle(l-a)(1-t)p + (1- c)gc(l-a)(lf-f)p 4 ooes

= {(1-a)lf + (1-1)pl .
Given that the subject has entered state F , the equation for the
expected number of errors in state F has been Tound previously
(Crothers, 1963, p. 5) and is as follows:

(1-g)le + (1-8)f]

Hence

B(F) = (L=g)(1-a)[f ; (1-0ells + (1-a)f]

Combining these results we obtain

E(T) = B(U) + E(F)

H]

(11)

[

1 (1-a)f
(1- 8>[z * “"a‘_] :
Of course this expression could have been computed directly from Eg. 10;
however, the derivation was carried cut in this way because some of the

intermediate results will he needed later.

4.3 Distributions of the trial number of the last error.

Let v be the probability that the last error oeccurs on trizl n .
Further, let b, dencte the probability of the event "no further
errors after a response in state U", and likewise define bF for
state F . Then '

<
]

Pr(en(\Un)bU + Pr(en(]Fn)bF

(1 - g)[unbU + fan] .
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Further,

by =a -+ (1- a)(l—f)(l.—p+gpr) + gP(1- a_)bF .

This equation was obtained by considering all of the waye in which the
event "no further errors after a response in state F" can occur. For
example, the term (1- a)(l-fﬁgphF represents the probability of the
joint event "pass to state S , eventually return to state F , make

a correct response on the next trial, and mske no further errors.”

Algebraic operations yield:

W
by = (12)
where h
w=a + {1-a){1l-£)(1-p)
z=1-(1-a)p-pf+1f)g .
Likewise,
by = ca + c(l-a)(i- £)(1-p + gpr)
+ c(l-—a)gbe + g(l-—c)bU .
Simplifying -and substituting for bF from Eq. 12 yields
cW
by ZTT (- 9)el (13)

By using Egs. 12 and 13 in the above expression Tor vh' we obtain

C'[sl-n
Vn-‘:g ;l“ g)[r-g—(-rg)-[- fl’l}’ (l}-l-)

where u, and fn are given by Egs. 7a and 9a, respectively.
For the probability that the subject makes no errors, which is

dencted as v

o ¢ We have
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This completes the derivation.

4,4 The probability EE.EE error on trial n + 1 , conditional on an

error on trial n.

We begin by finding the probability of an error on both trial n

and n+1 ; namely,

__Pr(enfﬁen+l) = Pr(en(\en+1f\Un) * Pr(enrwen+l(1Fn)
“ . - (15)
= (1-—g)2 [e{1-a)f +1 - c]un + {1~ a)fn} .
Then, of course
| Pr{e lf\e }
Pr(en+1|en} T TIs EJ)r(un ffn) o (16)

To study the behavior of Pr(e -as n increases, we

n+ljeh)

substitute Eq. 15 into Eq. 16 and divide both numerator and denominstor

by Yy £
(l—g){dl—a)f%l~c]+ﬂl-a)&?)
pr(c_ le ) = - — . (17)
1+ G?
n

Regarded as a function of n , the above equation is dominated by the
T
ratio EE in the denominator, and from Egs.7s and 9a (for = # c)
n .
f

e

1l-a
1-c

n-i
We see that the guantity ( ) increases as n increases if, and

enly if, a is less than ¢ . Under this condition, therefore,

Pr(e decreases with increasing values of n .

n+1|en)

4.5 Probabilities of response sequences over trials n to n+3 .

In this section we present predictions for four-tuple response
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seguences; these quantities are particularly useful in making con-~
parisons among the varicus models described in this paper. TFor
simplicity we denote the 16 possible outccme seguences over trials n

to n+3 as follows:

1,n T SnCnt1%ne2®ne3 O9,n = 1 nee%ne3
O2,n = Cncn+lcn+2en+3 ‘ OlO,n - encn+lcn+2en+3
0 =c ¢ . .e_ .C 0 =ec e ¢

3,0 n ntl n+2 n+3 11,n nn+l 2 nd3
0 =cCc C e e 9] = e ¢ e e

L,n n n+l nt2 n+3 : “l2,n n n+l nt2 nt+3

(18)
OS,n - cnen+lcn+20n+3 ‘ ol3,n = enen+lcn+2cn+3
O6,n = Cn®na1%m2%ne3 Olh,n,: ®n®n+1%n42%n43
0, = ¢ g e c ' 0 =e e e c

T,n n n+l nt2 n+3 . 15,n n n+l n+2 n+3
O8,n = Cnen+len+2¢n43 016,n = enen+len+2en+3 .

These designations will be used  throughout this paper. Although this
usage may seem inconvenlent, 1t greatly reduces the comﬁlexity of
éubsequent expressions.

From the model one can dgfive expressions for .Pr(Oi,n)' and

from these an array of other quantities can be computed. For example,
Price ) = Pr(0, )+ Pr(Oh’n) + Pr(OT,n) + Pr(OSJn) )

Pr{e c .) = Pr(Og}nj + Pr(Oll’n? + Pr( } + Pr(0

n n+3 Ol3,n 15,n) ?
and sc forth.

We will not present the derivations for Pr(Oi’n) here, since
they are stralghtforward and involve only elementary probability theory.

{Readers not familiar with the methods involved in such derivations can
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consult Atkinson and Estes, 1963.) Howeve_‘r, the derivations are -
lengthy and tediocus, and consequently it is of wvalue to present the
full array of predictions. They are as follows:

Pxf(ol;n) = (1- s, - T, -un) + (sn+gfn)(a+xAl) + gu.n[c(-a'+ xAl) + gBl]

Pr(Og,n) = (sn+ gfn)xAg + gun[chg +g3.1

2

Pr(03,n) = (sn+gfn)xA3 + gun[ch3 + g33]
'Pr(O}_bn) = (sn+ gf'n)xz’-\lL + gun[ch}_I_ + gBlL]

Pr(05}n) = (snf+gfn)yAl + gun{cyAl + (1- g)Bl]

Pr(0g ) = (s, +ef )vh, + guleya, + (1-8)B,]
.Pr(07}n) = (s, +ef Jyhy + gu [eyhy + (1- g)E]

Pr(Og o) = (s, +&f)vhy + gu [cyhy, + (1-g)B,]

(19}
Pr(og’n) = (l-g}fn({aﬂ' X-Al) + (l‘g)un[c(a-l'ﬂl) + gBl]

Pr(Olo,n) = (1-g)fngA2 + (1- g)un[ch2 + gI%]

;qPr(Oil,n) - (1-4g)fth + (1- g)u_[exA, + gB.]

3 3 3
P;(ole,n) = (1- g)fnxglF + (L-glu [exh) + gB,]

Pr(0C

I

13,n) = (1= @)E Ay + (1-g)u [eyh, + (1-g)B]

il

Pr(0y), ) = (1= )f,yh, + (1- g)u leyh, + (1- g)B,]

Pr{0y5 ) = (1- )T yAy + (1-glu [eyhy + (1- g)By]

1

Pr(01g o) = (1-@)fyh, + (1-g)u leyh, + (1- g)B,]
where

Cx = (l-a)(l-f4+fg) ,

oy =(1-8)(2- 2)f



X7
- And

o
1l

;= a+x(1-y), A =v(1-y)

Ay =xy A =7

jue]
il

L = (1-c)jac+ cx(l-y) + g(l-c)le(l-¥) + g(1- C)}} )

{we)
L}

=
]

o = (1m0 f ey + g(1- )1 -c(1-y) - g(1- )1},
|

j= (@m0 [orion) + (-@)(-e)lenv) + ali- o],

e
1l

(1-0) {o + (1-)(2-0)1 - e(1-3) - g(2- )1} .

In order to make predictions from Eq. 19, estimates of the param-
efers a , f, and ¢ are needed. There are many ways of making.these
estimates, but one simple methed is to mipimize the X2 associated.
with the O, events. To illustrate the method let Pr(Oi,n;a,f,c)
denote the pfobgbility of the evgnt Oi,n 3 whe#e a, f,and ¢ have
been listed to make explicit the fact that the expression is a function
of the tﬁree parametersur Fufther, let N(Oi,n) .denote the observed
fre@ueney of stimulus items that display outcome Oi‘ over trials n

to n+ 3, and let

T = N(Ol’n) + N(Og,n) +oee. N(Ol6,n)

Then we define the function

10, (ppr (0, ja,f,e) - MO, )12
XE(a £ C) = . i, 1,0 (20)
7= TPr (0, ja,f,c)
i,n
i=1 ?

and select cur estimates of a , f , and ¢ so that they jointly

minimize the X2 function. A number. of problems are involved in carrying
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out the minimization analytically, and conseguently we have programmed
& high-speed computer to systematically scan grids of possible parameter
values until estimates are obtained that are accurate to three decimal
places. 1If we assume that all the stimulus items are stochastically
independent and identical, then under the mull hypothesig 1t can be
ghown that this minimum Xe has the usual limiting distribution with
12 degrees of freedom. |

The minimum X2 has seyeral desirable properties as an estimation
procedure; the resulting estimates are consistent (as thé semplie size
increases the estimates converge stochastically to the parameter value),
and asjmptotically efficient (as the sample size increases the variance
of the estimates approach the minimai variance attainable for sny
consistent estimate of the parameter, aﬁd the distribution of the
estimate approaches normality). The minimum X2 also provides a

.measure of the adequacy of any single model and, if the degrees of
freedom are-equal, a methodrfor diréctly comparing the fit of several
ﬁodels. If several medels are being analyzed, each involving a different
number of free parameters, then the probability levels of the Xz's
msy be compared. The degrees of freedom associagted with a model that
requires "k parameters to be estimated from the data are

af =16 - k - 1 .
In the above equation one degree of freedom has been subtracted because

of the restriction that the 16 probabilities must sum to 1.

5. Data Analyses

5.1 Desgcriptions of experiments.
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In this section we analyze data from eight different paired-asscciate
learning experiments. - All of the studies use the experimental procedure
described by Bower (1961). At the start of an experiment the subject
iz told the responses eavallable to him; each alternative occurs equally
often as the to-be-learned response and hence the probability of a
correct response by guessing is roughly % (where r 1is the number
of alternative responses). A response is ébtained from the subject on
each presentation of an item and he is informed of the correct answer
following his respdnse,

Relevant details of each experiment are given in Table 1. Experi-
ments Ta and Ib were run with college students. For both experiments
the gtimuli were Greek letfers and the responses were the low associstion
trigrams RIX, FUB, and GED; thé experiments differed in that one used
a 9 item stimulus list and other an 18 item list. Experiment II was
also run with college students using 12 Greek letters as stimuli and the
numbers 4, 5, and 6 as responses. BExperiment ITII was run with 3rd and
Lth grade students using 12 Greek letiers as stimuli and the numbers
2, 3, 4, and 5 as responses. Hxperiment IV was run with college students
using double digit numbers as stimuli and the letters A, B, C, and D
as responseés. In Experiment V, a group of four and five year old children
learned a list of paired-associates each day for five consecutive days.
The lists were composed of double digit numbers as siimuli and letters
as responses but the stimuli and responses were different for each
list. To simplify the discussion, only results for days 1, 3, and 5

are.presented (labeled Experiments Va, Ve, and Ve respectively);



Table 1

Features of the Experimental Procedure

Experiment | Nuwber of | Number of Number of Pr(cB)
Stimuli Responses Subjects
Ia 9 3 26 | .95
Ib 18 3 16 .91
T 12 3 65 .83
II1 12 L 4o .75
IV 16 L 20 8L
Va 12 L L0 .60
Ve 12 L 40 71
Ve 12 b 40 .85

19a
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however, these data are representative of the results for the full ex-
periment. A complete description of the experiment and results is
available elsewhere (Hansen, 1963).

5.2 Anelysis of the four tuple data.

We now turn to an analysis of the response tuples described by
Eg. 18 for trials 2 to 5. TFor the experiments discussed in this paper,
“these statistics are of particular importance because a major portion
of the learning occurred during the first five trials. This fact is
indicated in the last column of Table 1 where Pr(c5) is presented;
in five of the eight experiments the subjects have reached a correct
response level of .83 or better by the start of trial 5.

Table 2 presents the obsgrved frequencies of the ‘01,2 events for
each study. Experimeht Ta has 26 subjects each run on a list of 9
stimulus items, and hence there are 26 i 9 = 234 item-response sequences.
As indicated in the tabie, for 123 seguences no errors occurred on
trials 2, 3, 4, and 5;. 3 sequences dispiayed no eérrors on trials 2, 3,
and 4 but an error on trial 5, and so on.

The XE minimization procedure described by Eq. 20 was applied
to the data given iﬁ Table 2 for each of the paired-associzte models.
Table 3 presents the parameter estimateé associated with the minimum
X7 wvalues. TFor the LS model the minimization was carried out for the
general case {where the three parameters a, I, and c were estimated
gimultaneously), and also for the special case where ¢ = 1 ; hence-
forth, we shall refer to the first case as the LS-32 model and the second
case g8 the LS-2 model (the 3 and 2 dgsignate the number of free param-

eters to be estimated). In five of the elght experiments the estimate






Table 2

Observed Ffequencies Tor the Oi 5 Events
>
Experiment
Te | Ib | IT | TIT IV | Va Ve Ve
W0y ,y |123 | 125 | 303 | 160 | 117 82 | 1k | 216
2 .
N(OE,E)' 3 3 1 13 3 {11 18 4
(o, ) 6 10 19 16 | 10 | 14 23 17
3,2 _
N(Ou’g) 1 Y 12 11 113 Q. 6
No. L) 16 | 21 54 2l 15 | 22 28 34
5,2
N(O6,2)' 3 ol 17 6 3|21 1h 16
N(o. .) 5 61 32 i8 9| 20 12 12
7,2 .
'N(OS’E? 2 3 18 7 6 | 31 13 12
wo.,.) |43 | 55| 125 | 57| sk |58 | 62} 66
9,2 _
'N(olo,g) 1 5 15 9 7113 14 4
;\1(011,2) 7| 104 25| 27 9 | 34| 25| 17
N(Ole,e) 2 2| i 1& 10|18 | 1k 7
N(ol3’2) 15 30 61 33 34| 34 28 29
'Nmolh,e) 0 1 19 25 81 21 20 8
N(Ol5}2) 6 6 30 2L 22 | 26 21 19
N(016’2) 1 7 19 36 12 | 62 35 13
T 234 | 288 | 780 | 480 | 320 [480 | 480 | 480
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Table 3

Parameter Estimates for the Various Mcdels

20/

Experiment
 Model Parameter
Ia Ib IT | III | IV Va | Ve | Ve
One-element c .383 | .328 | .273 | .203 | .281| .125| .172] .289
Linear 9 1k | .328 | 289 | .258 | .297| .164| .250| .336
c 563 | L484 | .352 1 .359 | .398] .227| 406 euea-
Two-phase _
6 664 | .633 | 695 | .563 | .648] .500| 77| .656
c 531 | 461 | .34 | o328 | .367| .219| .359| .L438
i 9, .820 | 805 | .867 [ 797 | .859| .727| .711]| .789
a .352 | .305 | .250 | .188 | .266] .109| .156| .258
be-s £ 719 | .805 | .805 | .789 | .836] .Bhi| .727) 680
a 2367 | .352 | .250 | .188 | .289| .109]| .156} .266
15-3 £ 648 | 375 | .805 | .789 | .789| .8u4| .727| .688
¢ .8k | .500 [1.000 {1.000 | .789}1.000{1.000} .992
g’ 883 | .852 | .922 | .891 | .922| .797{ .B59) .84k
'?gémt b -391 | .398¢) .227 | .O78 | .195| .133] .016| .227
a 539 | 477 | o3k | o320 | .359] .219( 352} 477
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of ¢ for the LS-3 model was virtually equal to 1; hence, in these
instances the LS-3 model reduced to the two parameter version.

Onefproperty'of parameter esﬁimates that appears desirable is

‘monptonicity over the three sets of Experiment V data. This require-
ment seems reasonable since the subjects and frocedures were the same,
and the overall proporition of errors decreased gteadily over the five
experimental sessions. However, Table 3 reveals monotonicity only
for the parameter estimates associated with the L3-3 and L3-2 models
(and, of course, for the one-parameter models).

For each of the models, the ranks of the magnitude of the parameter
estimstes were cpnsistent over ﬂhe eight experifierits. For the tﬁo-
phase model and the RTT model the estiméte of ¢ was consistently
less than that of © ; for the LS model, Q < ? < 2 ;3 and for the
two-element model %'<'g { Q- . It is interesting to note that in the
RTT model g > 0.71, and in the two-eleméent model g‘ = 0.79 . These
high estimates imply that for both models the first stepwlse increment
in response probability is rather large.

As indicated earlier, Experiments Is and 1Ib are comparable except
that the former siudy used a list of 9 items and the latter an 18-item
list. 1In regard to the LS-3 model, it 1s interesting ‘o note that
the conditioning parameter a is about the same for both list lengths.
However, the list-length wvarizble is clearly reflected in the estimates
of f and c.

Table 4 presents the minimum x& values; i.e., the values

obtained by using the parsmeter estimates listed in Table 3. The _X2




Table k4

21z

Minimun X2 Values
Experiment | One- Linear Two- RTT 1s-2 LS-3 Two-
elenment model phase element
Ig 30.30 50.92 17.51% 9. Th* 6.75% 5.67% 9.30%
Ib 39.31 95.86 | 18.25* | 13.09% 19.69% 12.hox* 12.7h*
11 62.13 251030 54,78 29.11 3.73% 3.73%| 28,46
IIT 150.66 | 296.30 95. bk 51.12 33.02 33.02 47.13
jay M 48 | 146.95 22.39%|  10.66%| 12.32%]  10.77%|  10.32%
Va 102.02 .201§98 59.20 40.17 oh.hax|  2hbax|  39.47
Ve oL6. 96 236015 99.97 hé,h3 o7.12%) 27.12 34.75
Ve 161.03 262.56 126.05 84,07 20.12% 20.12% 77-39
Total X° 836.89 | 1542.02 k93,59 28k4.39 147.16 137.26 259,56
af 1 14 13 13 13 12 12

* Not significant at .0l level.
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.Values needed for significance &t the .01 level are 26.22, 27.69, and
29.14 for 12, 13, and 14 degrees of freedom, respectively. To indicate
the magritude of digcrepancy that produces a particular value of X2 5
Table 5 gives the observed and predicted response sequence probabilities
for Exﬁeriment IT. (We chose to display data for this experiment since
it inciuded the largest number of observations.)

Tables 4 and 5 demonstrate that certain models perform markedly
better than do oﬁherso Neither the one-element nor the simple linear
medel yieids accurate predictions. The scurces of the disparity for
these two models are about the same in all sets of data, and are
indicated by Table 5. Especially prominent is the tendency for the
linear model to predict too few sequences of all correct responses.

According to Table k4, the RTI model is consistently more accurate
than the other two models which inglude linearity assumptions. Since
the additional analyses %o be reported corroborated this finding, we
- conclude that the simple linear and two-phase linear models (as well
aé the one-element model) are relatively inadequatef Hereafter, we
shall restriet our attention chiefly to the remsining models.

0f the three—paramefer models, the two-element model is less
sccurate than the LS-3 model in seven of the eight experiments. Both
the.LS—3 and L8-2 models do reasonably well. As Table 4 indicates,
the ﬁumber of data sets with significant X2's ig less for these models
than for any others. Alsc the wvalues of X2 sumamed over data sets
are lowest for the long-short models (see Table 4). The addition of the

¢ yparameter tc the long-short formulation created only 1ittle




Observed and Predicted Response Séquence

Proportions for Experiment IT

Table 5

228

Cutcomes Observed | One- Linear ‘I‘wow. RTT Long- Two-
- Proportion| element model phase Short | element

0 .389 . 362 .220 .328 - 354 -390 - 357
0, .018 . 007 . 045 . 008 . 017 . 017 018
Oq . 024 .015 . 069 .022 .028 .029 .029
Qy 015 .01k 014 010 .01 .020 011
Oc =069 .ol7 +112 . 066 .063 .06k . 062
O .022 01k . 023 .012 .013 .Géo .013
d,_{, LOb1 .029 035 .028 .026 .03l .26
Og . 023 .028 . 007 .021 .020 .023 . 020
09 161 .178 . 198 .210 -.189 . 164 .188
0y .019 .01h Nelh} oL .018 . 020 .018
0,1 .032 .029 . 062 .035 . 034 . 034 .03k
0, .022 . 028 .013 . 021 . 020 ,023 . 020
015 .079 .093 .101 . 102 . 092 074 .091
Gy, - 0RY .028 021 . 02h . 024 .023 .02k
P .038 .059 .032 . 055 . 051 .039 . 050
Ol¢ 024 .055 . 007 Ol2 .clo . 026 . 039
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improvement in the fitsf This Tinding reflects the fact, mentioned
earlier, that the estimate.of ¢ was usually close to 1.

To summarize Table 4, the long-short models are superior in
predicting response sequence frequencies; ‘of the remainipg models,
the RTT variant is most accurate. In the sequel, we shall be primarily
concerned with testing these three models against other statistics.

One factbr that explains why the long-short models do better than
the RIT mcedel on. the X2 measure. becomes obvious Whenran inspection
is made of the learning curves (Eg. 10) associated with the parameter
estimates given in Table 3. A1l three models accurately predict the
Pr(en)' over trials except that the RIT model does rather poorly for
trial 2. Table 6 presents the observed and predicted proportions
correct on trial 2. TFor each of the eight sets of data, the discrepancy
is greater for the RTI model than for the long-short models. The mean
deviation between cobserved and predicted proportions is .07 for the
RTT model against .01 for the long~short model.

5.3 Error rate conditionalized on previous errors.

We now consider Pr(e the probability of an error on

n+l|en) ?

trial n + 1 conditional on an error on txial n . It will be seen
that this statistic, although not independent of those discussed in
Sec., 5.2, ls quite useful in discriminating ameong various models.

For example, in the one-element model Pr(en+llen) = (1-g)(1-¢) ,

which ig constant over trials; whereas, for the simple linear model
n - :
)" and decreases-as n increases.

Pr(e I%J ={(1-g)(1-0

n+1

According to the RTT model, Pr(en+l|en) must decrease as n

increases. As indicated in Eg. 7, for the long-short formulation the




Observed and Predicted Proporiions

Table 6

Correct on Trial 2

. Experiment| Observed| RIT 18-3 LS-2
Ta 679 62k .665 .689
Ib | ..597 .581 .586 627
iI .601 .532 598 .598
IIT .531 ©oJhhe 519 .519
w 513 . 487 .510 540
Va 6 369 435 435
Ve <Shl Lo .538 .538
Ve .660 .509 .618 622

23a




24
trend of this conditional probability depends on the parameter values.
When we plot the observed values of Pr(en+l|en) as a functipn of n
Tor each of our eight experiments the results are fairly‘decisive, For

six of the eight curves, Pr(e clearly decreases as n Iincreases.

n+l|en)
The exceptions are Experiments Va and Ve; in both of these cases the
'observed funetions aﬁpear to be reascnably constant over triéls. Also,
Williams (1962) found that the probgbility of an error, conditionalized
on no prior correct responses to that paired-associate item, decreased
over trials. Using the parameter estimates given in Table 3, we find

that the RTI model and the LS-3 model fit our observed Pr(e len) curves

n+i
about equally well. If we compute the sum over trials of the absolute
difference between predicted and cbserved values, then for Experiments
11T, IV, and Ve.the RTI model ylelds a smaller sum than the LS-3 model,
whereas the bpposite 1s true for the other five experiments. Hence,
our basis for preferring the long-short model is its superiority in
predicting the respeonse sequence data as well as its explicit ineclusion
of encoding and forgeiting mechanisms.

A strong prediction pf the long-short formulation when ¢ =1 1is

that Pr(e is constant over.trials; i.e.,

n+1|en)
pr(e . le ) = (1-a)(1-g)f

.Bince this prediction was borne out in only two of the eight experiments,

we are inclined to reject the LS-2 model as an adequate theory of

baired-associate learning. However, in this regard it is interesting

tc necte that the Vincent curve method medified by Suppes & Ginsberg

(1963) to test the stationarity prediction of the one-element model gives
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rise to ambigucus results when applied to the LS-2 model. TFor the
L3-2 medel we have stationarity after trial 1 and before the laét
errcr, but 1t i1s confounded by the probability of a correct response
on trial 1. Specifically, if Pr(c_le!) is the probability of a
‘correct response on trial n , givenrthat the last error occurs on

trial m- (m > n) , then for the LS-2 model

, forn=1
Pr(cn|e$) = -
1-f(1l-g), forn>1.
This result implies that a Vincent curve constructed by the methods
prescribed by Suppes & Ginsberg will not be constant under the assump-
tioné of the LS-2 model. Instead, it will exhibit an increase from
the first part to later parts.
In the LS-3.moael, thé relation ¢ < 1 changes the second
equality in the above equation to an inequality; i.e.,
Pr(cnleﬁ) <1- f(1-g),
for m>n . This inequality follows from the fact that the subject
can be in state U on trial n . After substituting g = % for
Experiments Ia, Ib, and IT and g = % for Experiments III, IV,and
V and using the estimstes of T from Table-3 we see that the predicted
upper bounds on Pr(cn|e£) are surpriéingly low. The theoretical
proportiops in gquestion range from 0.37 to 0.75 with a median of 0.46.
" To test whether the data satisfied the‘above inequality, we used‘the
observed proportion correct on the trial immediately preceéding the
last pre-criterion error as an approximation to the observed maximum
of Pr(cnfeé) . Except fof Experiments IIT and Ve, the relevant

observed proportion was quite near or below the predicted upper bound.
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In both of these date sets, the cbserved proporiion exceeded that pre-
dlcted by approximately 0.07. The import of this discrepancy is hard
to ascertain. Considering the low predicted wvalueg, 1t is gratifying
that the observed quantities did not further overshoot the predicted
upper bounds. However, the errcor appears ftoo large to be attributable
to sampling fluctustions. Perhaps g decline in f after trial 5
contribﬁtes to the error in predictions for Experiments III and Ve.

5.4 Trial-dependent forgetiing process.

More generally, .any Markov model with only one error state and
constant transition.and guessing probabllities predicts the stationarity

of Pr{e For example, consider a model developéd by Crothers

n+llen)
(1963) that distinguishes between three states of learning; a suessing
state (E) , & weak state of conditioning in which forgetting can occur

{8) , and a strong state of conditicning (L) . The general formulation

of his modél is in terms of the following matrix and response probability

vector:
L S [l Pr{correct)
L 1 0 G 1
S 8, l-a-b b 1
3 ¢ l-c-d 4 g

This model predicts a non-stationary Vincent curve, but (like the LS-2

model) it also predicts that Pr{e -|en) is constant over trisls. In

n+l
fact, our LS-2 model ig a special case of the Crothers model. For
when ¢ =1 it is no longer necessary to distinguish between states

U and F in the matrix of Eg. 3, and therefore the process can be
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degcribed as foliows:

L S ¢ Pr{correct)
L 1 0 o |- "1 WI
S a (1-a)(1-7%) (l-a)f 1 (21)
C a (l1-a)(2-f) (r1-a)f gJ .

Despite an unrealistic prediction (i.e., that Pr(en+l{en) is
constant over trials), the LS-2 model describes many aspects of_the
eight data sets remarkably well, as indicated by the results in Tables

4 and 5. Hence, for the moment it seems werthwhile to retaiﬁ the bhasgic
structure of the LS3-2 model and determine what can be gained by.pursuing

a generalization of the forgetting process that would permiﬁ Pr(en+l|eﬁ)
to decrease over trials. We now examine one such generalization as
-an alternative to the IS5-3 and RTI models.

Under the assumptionsAof the 15-2 model, if item i is reinforced
it passes into state L with probability a or into state £ with
probability l-a . Once in I 1%t is trapped there; but if in S
it may move back to. € . That is, other stimuli intervene from one
‘presentation of item i tq its next presentation and during this
period there is probability T that forgetting will take place (i.e.s
item 1 will pass from state S8 +to E){ Thus the forgetting process
depends only on the number of intgrvening stimuli and isg independent of
the stage of learning. One obviéus generglirgtion is to assume that the
likelihood cf forgetting is not simply a function of the number of
inéervening iteﬁs, bﬁt depends on the humber of intervening items that

have nct already been learned. With this modification the transition

probabilities become functions of the trial number, and the matrix
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in Eq. 21 is rewritien as

L S C
L 1 0 0
S a (1-2)(1-F,) (1-a)F,
_ . (22)
C a (l-a)(l—Fn) (1- a)Fn' s

where Fn is & function of the number of unlearned items that inter-
vene from the nth presentation of item i %o 1ts =n +ist presentaticn.
Iet us assume that each unlearned stimulus givés rise to complete for-
getting of 1tem 1 with probability f' . Thus, if there are k
unlearned stimuli presented between the nth and n+ lst presentation
of item 1 , then

Fo=1- (1-t0)%F .
By an unlearned stimulus item, we mean an item not already in state L .
Further, for a 1list length of X + 1 items the expecited number Qf
unlearned items that intervene between the nth and =n +1st presenta-
tion of & particular item is simply

X(1-a)" .

Using this expected value as an approximation to the actual number of

unlearned items that intervene from the nth to the n+ lst presenta-

tion of & given stimulus item we can write

Fo=1- (1- )X~ a)” |

Finzlly, to attain more generslity, let us assume that forgetting also
cah occur durling the intertrisl interval with probability f . Including

this factor in the forgetting process yields the fellowing expression:

X(l-g)n

Fo=1-(1-£)(1-1£") (e3)
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The model described by Egs. 22 and 23 has three parameters: f , f',
and a . Also, the model takes explicit account of the list length
variable and the intertrial interval.
Henceforth, this model will e referred to as the trial-dependent-

forgetting process (TDF model). Of course, for the TDF model, Pr(en+l|en)

is a decreasing function of the trial number; 1i.e.,

Pr(e . le,) = (1-g}(1- a)F .

When f' = 0 , the model reduces to the I8-2 proceséu

Using FEgs. 22 and 23, we generated expressions (comparable to those
giveﬁ by Eg. 19) for four-tuple response sequences.' Minimum Xg‘s
were then computed for the data repcrted in Table 2; in carrying out
the minimizations account was taken of the list length variable X+1
as givén in Tgble 1. Two sets 6f minimizations were run: one inveolved
- estimating the three parsmeters a , f , and f; ; the 6ther involved
estimating only a and f' (under the assumption that £ = 0). The
resulting X2 values and associated parameter estimates are given in
Table 7. The two-parameter case yields a total X2 value of 205.92,
which compares favorably with the total Xe's . for the other two-param-
eter models (see Table 4). The three parameter case yields a total
X2 of 137.55 which ig virtually identical to the total Xe value for
the LS-3 model. Thus, in terms of these analyses it 1s difficult to
choose between the 18-3 model {which postulates a constant forgetting
process and a coding operation), and the three parameter version of the

TIF model {which does not postulate a coding operation but makes the

forgetting process time dependent). EHowever, the fact that the TIF



Parameter Estimates and Minimum X2

Table 7T

for the TIF Model

Values

208

Three parameter case

Two parameter cese

Experiment X2 a il £ XE a £
. Ta 5“18% .328 Nl .391 6. 4L .289 L1k
Ib 15.07* ,281' .086 . 266 15.36% .266 .102
1I 3. 71% .2h2 016 .766' 15.55% .219 156
III 33.02 .188 0 . 789 Lh 4o <164 <141
IV 8.92% . 250 Nelelll .398 9.80% 2he .133
Va ok L% .109 .016 .836 28.92 .102 1k
e 27.12 256 | o 727 39.24 k| .320
Ve 20.12% .258 0 680 || 1621 211 | .281
Total X°  |137.55 205.92
*Wot significant at .01 level.




30
Vmodel 1s non-Markovian greatly enhanées the difficulty of performing
derivations (e.g. of distributions and expectations} for an infinite
sequehce of trials. Alsé, other ways of introducing procesges with
trial-dependent parameters can be suggested that are a priorl about as
plausible as the approach outlines; Thege reasons lead us to doubt
that the TDF model is among the more promising conceptualizations.

2.5 Trial number of the last error and total errors.

Our final test of the LS-3 model consisted in predicting the éx-
pected total errors per subject-item, and the distribution and expecta-
tiocn of the friel numbef of the last errcr. The theoretiéal values
for Experiments Ia and Ib were obtained by substituting the parameter
estimates<gifen in Table 3 into Egs. 11 and 1%; the predicted expected
trial of last error was approximated by direct computation based on the
Tirst eleven terms of the theoretical probability distribution which
summed to approximately 0?99°

As one would expect, there ig good agreement between the obserﬁed
and predicted mean trial number of last errcr. The one sericus dis-
crepancy disclosed by Table 8 is that the first two terms of the
probability distribution of k (the trial number of last error) are
inadequately ﬁredicted in Experiment Ia. -According to the model, the
distripvuticn should be peaked at k = 1 , whereas the cbserved propor-
tions attain a maximum at Xk = 0 and decrease monotonically cver k .
There is also a slight tendency tc underestimate the peaking at k = 1
in Experiment Tb.

Further work is required to determine the source of the discrepancy

in the initial terms of this distribution. At present, it is uncertain




Table 8

Observed and Predicted (IS-3 Model)} Values for

Experiments Ta and Ib

Exp. Ta Exp. Ib

Obs. Pred. CObs. Pred.

Expected total errors - 1.52 1.5h 1.65 1.79

Expected trial of last error 1.76 2.05 2.08 2.45
Probability of last error

on trial k

k = O .27 .17 .16 L1k

k=1 .24 .34 .é6 .27

k =2 .19 .19 .19 .19

k=3 .13 .11 A7 .13

k =L .10 .07 11 .09

k =5 .0k .05 .07 .06

k =6 .02 .03 .02 Ol

k = 7 .01 .02 .00 .03

30a
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to what extent the deviation indicates an actual departure from the
assumed learning mechanism. An alternative explanation is that the
learning parameters increzse {or the forgetting parameter decreases)
over trieis. If this were the case, the estimstes baged on trials

2=5 would predict slewer learning than that observed.

6. Discussion

"The resulis of our analyses indicate that five of the seven models
tested yield relatively unsatlsfactory predictions for paired-associate
learning under the experimental conditions described. One immediate
quéstion is Why'the one-eliement model was consisténtly inaccurateu.
At first glance, the reply might be that we estimated.parameters and
tested predictions in & different fashion than did Bower (1961).
Howevér, the model fails in Experiment Ia wﬁere well over 95% of the

.,

errors are included in the four-tuple analysié; further, for our

experiments the Pr(en+l|en)

curves do not exhibit the stationarity
predicted by the one~element mcdel. 'Therefore, it seems more likely
that differences in experimental method are responsible for the inadeguate
performance of this model. The most important procedural difference
appears to be that the number of response aliernatives was two in Bower's
study and three or four in the experiments reported here.

The L5-3 and the RIT mecdels seem to warrant first consideration
‘for future experimental tests and theoretical development. The findings
in favor of the former model are not conclusive, but its parameters

have been identified more cliosely with psychological processes. Such

_interpretatioﬁs are helpful in suggesting how the parameter estimates
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should change under variocus experimental manipulations. Experiments
Ia and Ib provide evidence on this point for the list léngth variable.
As ancther example, it would be of interest to see if the probablility
of forgetting (i.e., the parameter f) is invariant when the type of
paired-associate stimulus is changed.from one group of subjects to
another. Also, perhaps rehearsal of irrelevant material during the
intertrial . interval would affect only the forgetting parameter.

Another direction for further work involves improving the minimum
X2 technique of parameter estimation, especially when the data in
question display a high proporticn of errors after trial 5. We can
write equations for seven-tuples (trials 2-8) without much difficulty.
The derivation depends upbn finding the stete probabilities of trial 5
conditional on a particular sequence on trials 2-4, and then using
Eg. 19. Beyond seven—tpples, however, the derivations become quite
cumbersome. - Farther, it is pertinent to kﬁow how parameter estimates
obtained from fits to other observed quantities (e.g., mean ﬁétal exrrors
and mean trial of last errcr) agree with estimates found by the method
ﬁe have used. |

Now let us ask to what extent the ILS-3 model can be altered without
" reducing the accuraéy of’ ite predictions. Other remarks on this issue
were made in Sec. 5.3 and 5.4. In developing the long-short model it
gseemed natural to view forgetting as an event that influenced response
provabllity by changing the learning state. ¢n the other hand, forgetting
can be interpreted as affecting the response probability directly,
without producing a state transition. That is, the IS-3 model can be

rewritten by ccllapsing states S anrnd F and meking the response
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probability in the single intermediate state (let us call this state
SF) a function of the forgetting parameter. For the transition matrix

and response probability vector we have

L SF U Pr(c_orrect)
L 1 0 -0 1
SF a 1-a | 0 1-f4fg (2h)
U ca | c(l~a)r l-c 2

This representatiocn of theFLS—3 model is algebraically identical to
the original formulation given in Eg. 3. Hence both formalizations
yield identipal predictions for response events and any preference for
cne over the other would seem to derive from their respective heuristic
merits. For example, one way oi treating response latency within the
framework of the L5-3 model is to postulate a latency distribution
associated with each of the lesrning states. For some data we hawve
seen, there is reason to believe that 1t would be necessary to postulste
four such distributions o give an accurate account of latency measures.
Hence, 1T one were to take this approach to the analysis of latency
data, then the formalization given by Eg. 3 would be more natural than
that of Eg. 2L4.

The three-state representation of the LS-3 model suggests a closely
related model in which passage into state T occurs with probability
a on any trial, regardless of whether the current state is U or B8F .

In this version of the LS-B-modei the trensition matrix and response




Total X

Toble 9
' Parameter Dstimates and Minimum X° Values
for the Revised LS-3 Model
. Experiment ety X2
: 8 T ¢
Ia .336 677 761 6.15
Ib 227 . 365 475 13.50
1T 250 .898 .99k 3.78
III .188 781 950 32.92
IV 23k | .5k 455 8.34
- Va .109 . 8hl .993 24, L3

Ve 156 729 .980 27.06
Ve . 266 688 -995 20.36
2 136.54
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protability vector are as follows:

L . BF U Pr(correct)
L [ 0 0 1]
SF a 1l-a 0 1-f+Tg (25)
U a c-a l-c g
where ¢ 2 a . This model ﬁas applied to the four-tuple response data

in the manner described in Sec. 4.4. The parsmeter estimstes and
assoclated X2 values are shown in Table 9. Note that this model

is as asccurate as the original T.S-3 model.

Our purpose in citing the formulation of the LS-3 model given in

'Eq; 25 is to stress the difficulty of discriminating betyeen models
th&tvh#ve similar structure. Consequently, the psychological interpreta-
tion imposed on a particular mathematical repreéentation can he unigquely
suppbrted oniy to a degree. The reader ig referred to an article by
Sternberg (1963) for additional'commentS'on-the problem of decisively

discriminating smong models.
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