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The prominent pervasive 
oncogenic role and tissue specific 
permissiveness of RAS gene 
mutations
Ming Yi1, Daniel Soppet1, Frank McCormick1,2 & Dwight V. Nissley1

In cancer research, RAS biology has been focused on only a handful of tumor types. While RAS genes 
have long been suspected as common contributors to a wide spectrum of cancer types, robust evidence 
is required to firmly establish their critical oncogenic significance. We present a data mining study 
using DepMap genome-wide CRISPR screening data, which provide substantial evidence to support 
the prominent pervasive oncogenic role and tissue-specific permissiveness of RAS gene mutations. 
Differential analysis of CRISPR effect scores identifies K- or N-RAS genes as the most differential gene 
in contrasts of (K-, N-, combined) RAS mutant versus wild-type cell lines across multiple tissue types. 
The distinguished tissue-specific pattern of KRAS vs. NRAS as top differential genes in subsets of tissue 
types and evidence from genome data supported the idea of KRAS- and NRAS-engaged tissue types. 
To our knowledge, this is the first report of prominent pervasive oncogenic role of RAS mutations 
revealed by gene dependency data that is beyond the current understanding of the oncogenic role of 
RAS genes and their well-known involved tissue types. Our findings strongly support RAS mutations 
as primary oncogenic drivers beyond traditionally recognized cancer types and offer insights into their 
tissue-specific permissiveness.

The RAS genes (KRAS, NRAS, HRAS) hold significant historical importance as they were the first human 
oncogenes discovered in the field of cancer research. Moreover, they stand out as the most frequently mutated 
oncogenes in human cancers1–4. Notably, KRAS exhibits the highest frequency of mutations in Pancreatic 
Adenocarcinoma (PAAD), followed by Colon Adenocarcinoma (COAD) and Lung Adenocarcinoma (LUAD), 
which are also tumor types that garner considerable attention from the cancer research community1,4.

However, it is crucial to recognize that RAS gene mutations occur in numerous other cancer types and are 
believed to play a pivotal role in the oncogenesis of approximately 20% of human cancers1,2,4. This suggests that 
RAS gene mutations may have a more extensive impact as oncogenic drivers than our current research focus 
suggests. Despite our ongoing efforts to advance our understanding of RAS biology, with a better understanding 
of RAS-engaged cancer types2,5,6, computational studies have also revealed that RAS genes possess potential 
oncogenic driver properties in various tumor or tissue types7–9.

Over the past few years, the Cancer Dependency Map (DepMap) database has gained significant popularity as 
a valuable resource for data mining in cancer research fields10–13. Hosted primarily by the BROAD Institute and 
collaboratively supported by the Sanger Institute, the DepMap database serves as a comprehensive repository 
of genome-wide high-throughput genetic knockout screening data. It offers systematic means to assess genetic 
dependencies for genes of interest.

The DepMap database incorporates diverse genomic data collections, including gene expression and 
mutation data. It houses genome-wide CRISPR screening data for approximately 1000 Cancer Cell Line 
Encyclopedia (CCLE) cell lines, enabling the derivation of CRISPR effect scores that measure the dependency 
levels on individual genes within each cell line. Behind the scenes, intricate data processing procedures have 
been developed and continually improved over time to process, normalize, and integrate data from multiple 
resources. These efforts ensure that the DepMap data is both comparable and meaningful, aiming to create a 
comprehensive dependency map for available cell lines14,15.

Our initial study of working with expression data and the earlier version of DepMap data16, has investigated 
the so-called “oncogene addiction” phenomenon that cancer cells are often addicted to (i.e., physiologically 
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dependent on) the sustained activity of specific activated or overexpressed oncogenes for maintenance of their 
malignant phenotypes17. Along with findings from other researchers4,18,19, these studies have demonstrated the 
data mining potential of the DepMap database to explore and uncover biological themes underlying oncogene 
addiction and cancer dependency16.

Most studies evaluating the role of RAS genes in oncogenesis have focused on only a few specific RAS 
and RAS related genes or have been limited to the examination of a single tissue or tumor type1–6. Previous 
computational studies on oncogenic driver genes have predominantly relied on genomic mutation data7–9. The 
availability of datasets in DepMap database utilizing CRISPR effect scores to assess the cellular and growth 
impact of genetic disturbances on all individual genes across the genome provides a significant opportunity to 
obtain more systematic and direct evidence for the impact of RAS and RAS related genes in cell growth.

In contemporary cancer research, it has become increasingly common for researchers to present data mining 
outcomes derived from the DepMap database. This valuable resource contains CRISPR effect scores for genes of 
interest, which are often extracted for individual genes and then compared across tissue types or between mutant 
and wild-type (WT) cell lines. These scores are typically subjected to statistical analysis using native statistical 
methods such as t-tests.

The Limma method is a powerful and robust statistical approach that is specifically designed for high 
throughput data analysis20. Motivated by promising observations from comparisons of CRISPR effect scores 
for KRAS genes in RAS mutant and RAS WT lines, we utilized the Limma method to systematically analyze 
CRISPR effect score. To address the challenge of evaluating the prominent pervasive oncogenic role of RAS gene 
mutations across multiple tissue types within the context of genome-wide genes, we used Limma based methods 
on the DepMap dataset to enhance the statistical power.

In this report, we performed differential analysis of high-throughput CRISPR screening data by the limma 
method20. Our systematic analysis reveals essential genes for both RAS mutant and RAS WT lines across multiple 
tissue types from the DepMap database. We observed that RAS genes, specifically KRAS or NRAS, emerged 
as the most or nearly the most differential gene(s) between contrasts of RAS vs. WT lines in corresponding 
subsets of tissue types that we defined as KRAS- or NRAS-engaged tissue type also supported by other evidence 
from gene expression data and association analysis of gene mutation status and dependency data. Exhaustive 
computational screenings not only consolidated the observed results not likely occurring by random chances, 
but also provided additional insights for other oncogenic driver genes. To the best of our knowledge, this study 
represents the first instance of a data mining investigation utilizing high-throughput genome-wide dependency 
data, which provided substantiated evidence that mutated RAS genes serve as the prominent pervasive oncogenic 
drivers across a much broader spectrum of tumor types, extending beyond the traditionally recognized KRAS-
associated tumors. Furthermore, our results shed light on the concept of tissue-specific permissiveness in the 
context of mutant K- or N-RAS oncogenesis.

Methods
Data preparation
Pathway map of RAS pathway annotated by RAS Initiative was downloadable and internally maintained from 
RAS central (https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2015/ras-pathway-v2). The 
annotations of pathways and genesets were downloaded from MSigDB databases (https://www.gsea-msigdb.
org/gsea/msigdb/). The Biocarta pathway signature used the Biocarta pathway gene lists from MSigDB from the 
Broad Institute (https://www.software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CP:BIOCARTA) 
(note: the original Biocarta pathway collection database has been retired), which is licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/) as described (https://www.gsea-msigdb.org/gsea/msigdb_
license_terms.jsp). MSigDB gene sets derived from KEGG pathways are protected by copyright, (c) 1995–2017 
Kanehisa Laboratories, all rights reserved. They are provided for use in the MSigDB collection under license 
to the Broad Institute, Inc., with qualified permission to include in this release as described (https://www.gsea-
msigdb.org/gsea/msigdb_license_terms.jsp). Cell line meta data, CRISPR effect score data and genomic data of 
all available cell lines (RNAseq raw read count data from RSEM, mutation status data) for version 21Q1 (version 
23Q2 data was also downloaded to validate the results of version 21Q1) all were downloaded from Cancer 
Dependency Portal( https://depmap.org/portal/) based on initial publications10–12. The proteome data was 
downloaded from pan-cancer proteomic map (ProCan-DepMapSanger) as a comprehensive resource available 
at https://cellmodelpassports.sanger.ac.uk. Three sets of driver gene data files are obtained directly from email 
communications with the authors7,9 or through downloading from controlled access (after application was 
approved) of International Cancer Genome Consortium (ICGC) Data Portal (https://dcc.icgc.org/) for The 
Cancer Genome Atlas (TCGA) part or for public ICGC part directly from URL designed for PCAWG: https://
dcc.icgc.org/releases/PCAWG/driver_mutations referred by authors from previous study8.

Data analysis
Data manipulation and analysis mostly was done using customized R scripts or existing R packages (www.r-
project.org). CRISPR effect score data was assessed with utility functions of Bioconductor limma package for 
suitability of limma method20. Differential genes between RAS mutant vs. WT or KRAS mutant vs. WT cell 
lines were identified with topTable function after using lmFit function to set up the model with defined contrast 
matrix within the limma package20. Volcano plots and other assessment plots were made by either plot functions 
from limma package or by customized R codes. Differentially expressed genes from RNAseq data were identified 
using the Bioconductor packages DESeq221 and edgeR22 to evaluate robustness and consistency of results. Built-
in utility functions such as plotPCA or plotMDS were used to assess overall behaviors of the data. For DESeq2, 
except for that the read-count matrix was filtered using a customized minimal pre-filtering to keep only rows 
that have at least 10 reads total, follows all default settings and lfcShrink function was used for Log fold change 
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shrinkage of the DEGs lists. For edgeR, the read-count matrix was filtered using the filterByExpr function with 
default parameters and samples were normalized using calcNormFactors(method = ‘TMM’) from edgeR. 
Differentially expressed genes (DEGs) were extracted using cutoffs at log2(fold change) > 0.58 and adjusted P-
value < 0.05 (DESeq2) or FDR < 0.05 (edgeR).  The corresponding DEG gene lists were collected and applied to 
customized R scripts that implemented the in-house developed pathway pattern analysis method called PPEP, 
which was previously described23. Briefly, gene lists were subjected to Fisher’s exact test-based pathway or gene 
set enrichment analysis using annotated databases including Gene Ontology (www.geneontology.org/), KEGG 
pathways (www.genome.jp/kegg/pathway.html) and MSigDB (http://software.broadinstitute.org/gsea/msigdb/
index.jsp). The derived p-values were transformed by a formula of (-1)*log10(p-value) with all p-values less than 
0.05 and p-values with the number of “hit” genes from the gene list for the corresponding pathway/gene set less 
than 2 were all converted to 0. The transformed p-value data matrix was used to derive pathway-level heatmaps 
using either customized R scripts that used pheatmap or gplots R packages, or the TM4 MeV tool from TIGR 
(mev.tm4.org/). In this study, we only focused on mutations of genes as the most common genomic changes for 
oncogenesis, and also have only focused on mutations that occurred at the coding regions of a gene (excluding 
silent mutation type) for the reasons discussed in the Discussion section.

To test if the behaviors of KRAS or NRAS gene in the differential analysis can be achieved by random 
chances, exhaustive computational screenings is performed (top panel of Supplementary Fig. 10). Briefly, for any 
of the qualified genes: i.e., gene X with mutation(s) in cell lines and with sufficient numbers of mutant and WT 
lines from each tumor type (number of samples in each group > = 3) (ranged from about 400 to 8000 mutated 
genes varied in different tissue types out of total ~ 17k genome-wide genes in CRISPR screening data), limma 
analysis was performed to derive differential genes between gene X mutant lines vs. gene X WT lines for CRISPR 
effect score data. Statistical metrics were collected from the procedure, from which corresponding p-values or 
probability statistics were derived.

To test if the behaviors of RAS (K-, N- and H-) gene in the differential analysis can be achieved by random 
chances, exhaustive computational screenings is performed. Briefly, computational screening of unique 
trials (n = 10000) for randomly selected 3 mutated genes vs. corresponding WT lines in each tumor type for 
differential genes of CRISPR effect scores were performed to derive differential genes between the mutant lines 
vs. corresponding WT lines for CRISPR effect score data. Statistical metrics were collected from the procedure, 
from which corresponding p-values or probability statistics were derived.

Within the DepMap database a CRIPSR effect score of 0 denotes a gene that is not essential whereas a score 
of -1 corresponds to the median of all common essential genes after normalizing and standardizing the data. 
Based on this fact, for each of the seventeen thousand genes in the CRIPSR effect score dataset, it was determined 
whether there exist significant association of the presence of mutations of this gene with the dependency on this 
gene denoted by its corresponding CRISPR effect scores. Briefly, enrichment level of each gene was assessed by 
Fisher’s exact test on a typical 2 × 2 contingency table created for all cell lines on mutation status of a gene versus 
the dependency status (whether the gene has mutation(s) or not versus whether it has a CRISPR effect scores 
< (-1.0) or not in each cell line). For some tissue types with limited samples (e.g., pancreas with limited sample 
size of RAS WT lines), Barnard test, which is a more powerful alternative of Fisher’s exact test, was used on the 
same 2 × 2 contingency table. Wilcoxon rank sum test and t-test was also performed for purpose of comparison. 
Multiple testing with Benjamini-Hochberg method24 was performed on the derived p-values from enrichment 
analysis, and those from Wilcoxon rank sum test and t-test and corresponding adjusted p-values were derived. 
Analysis was done globally across cell lines of all tissue types or done specifically in cell lines of each tissue type.

Results
Data mining of CRISPR effect scores in DepMap showed prevalent difference in RAS genes 
between mutant lines vs. WT lines but also revealed drawbacks of individual assessment of 
genes of interest
RAS mutations are commonly considered as oncogenic drivers in Lung (LUAD), Colon (COAD), and Pancreas 
(PAAD) tumors, we are fascinated by the idea that very likely they may be critical oncogenic drivers in additional 
tumor types. To evaluate the potential oncogenic role of mutated KRAS in a much broader spectrum of tissue 
types we evaluated CRISPR effect scores from the DepMap database. The CRISPR effect scores within the 
DepMap database’s CRISPR screening data offer insights into the dependency levels on corresponding genes 
within cell lines.

RAS genes rarely exhibit the most negative CRISPR effect scores (data not shown). This finding is consistent 
with the fact that the CRISPR effect score primarily reflects a gene’s ability to impact cell survival and proliferation, 
rather than its presumed oncogenic role. However, considering the context of oncogenesis, it is the genomic 
changes, particularly mutations, occurring in oncogenic genes, distinguishing them from other essential genes 
without such functions.

If RAS mutations confer a survival and growth advantage in cell lines, indicative of their oncogenic addiction 
nature, we hypothesized that RAS mutant cell lines would exhibit a greater dependency on these RAS genes 
(more negative CRIPSR effect scores) compared to RAS wild-type (WT) lines. Consequently, our primary focus 
was to assess whether the KRAS gene consistently displayed more negative CRISPR effect scores in KRAS mutant 
lines, as compared to WT lines, across various tissue types, rather than emphasizing the absolute negativity of 
the CRISPR effect scores for KRAS genes in these cell lines.

We initially focused on analyzing the CRISPR effect scores of the KRAS gene. Encouragingly, we observed a 
clear negative shift in the CRISPR effect score distribution of KRAS mutants compared to WT lines. Furthermore, 
we identified a significant difference in scores between KRAS mutant and WT lines across all tissue types that 
had sufficient sample sizes (Supplementary Fig. 1). According to the DepMap database, a more negative value 
of the CRISPR effect score for a gene indicates a higher dependency of the cell line on that specific gene10–12. 
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Remarkably, our findings revealed that KRAS mutant lines displayed greater dependency on the KRAS gene 
than their wild-type counterparts across all tissue types. This dependency was evident not only in the tissue 
types conventionally associated with RAS genes, such as lung, colon, and pancreas, but also in numerous other 
tissue types examined.

We further extended our comparison to encompass all RAS mutant lines (including those with KRAS, NRAS, 
and HRAS mutations) versus WT lines, significantly broadening the tissue types included in the comparison. 
Interestingly, we consistently observed a negative shift in the distribution of KRAS CRISPR effect scores in RAS 
mutant lines compared to WT lines across many tissue types. However, we did observe instances in certain tissue 
types where the RAS mutant and WT lines exhibited little or no differences in the distribution of their KRAS 
scores (highlighted in red rectangles, Supplementary Fig. 2A). This observation was expected, particularly in 
tissue types like skin, where NRAS, not KRAS, is recognized as one of the main oncogenic players in skin cancer, 
such as melanoma, based on observed mutation patterns in cancer patients1.

Therefore, to better understand the role of RAS genes in these tissue types, we examined the CRISPR effect 
scores of the NRAS gene in comparison to RAS mutant versus WT lines within the same set of tissue types 
(Supplementary Fig. 2B). As anticipated, we observed a clear negative shift in the distribution of CRISPR effect 
scores of NRAS gene in RAS mutant lines compared to WT lines in tissue types that exhibited little or no 
differences in the KRAS scores (highlighted in red rectangles, Supplementary Fig. 2B). This finding indicated 
that in these tissue types, NRAS may compensate for the role of KRAS in oncogenesis, and NRAS, rather than 
KRAS, could play a major role in driving oncogenesis. These observations align with expectations based on the 
existing literature, which has reported the prevalence of RAS gene mutations in these tissue types1,2,7–9.

To evaluate statistical differences, we employed native t-tests, a commonly used method. For the KRAS gene, 
our analysis revealed that the majority of tissue types exhibiting dissimilar score distributions (Supplementary 
Fig. 2A) also demonstrated significant t-test p-values (red arrows, Supplementary Fig. 2A). Conversely, certain 
tumor types appeared visually distinct but did not yield significant t-test p-values (green arrows, Supplementary 
Fig. 2A). In contrast, when examining the NRAS gene (Supplementary Fig. 2B), we observed that numerous 
tumor types did not achieve significant t-test p-values (green arrows, Supplementary Fig. 2B), despite apparent 
trends.

These observations underscore an important consideration: the data analyzed in our study were generated 
using high-throughput technology. With the advancements in this field and the availability of specific statistical 
analysis methods tailored for high-throughput data, it becomes imperative to leverage the entire dataset 
rather than focusing solely on individual genes, as we did in this study. Employing a systematic approach that 
simultaneously analyzes all genes and data using statistically robust methods designed for high-throughput data 
is warranted. By adopting such an approach, we not only reduce the risk of overlooking relevant findings but also 
enhance the statistical power of our analysis. As described later in this manuscript, our efforts in this direction 
led to intriguing insights.

Systematic analysis of high-throughput CRISPR effect data of DepMap revealed the 
prominent pervasive oncogenic role of RAS gene mutations and implication of tissue-specific 
permissiveness of mutant K- or N-RAS oncogenesis in a wide spectrum of tumor types
To perform a comprehensive analysis of the genome-wide (~ 17k genes) high-throughput CRISPR screening 
data from nearly 1000 cell lines, we opted to utilize the widely recognized linear model-based method called 
limma20. Limma, originally designed for high-throughput microarray data analysis, offers superior statistical 
power compared to the native t-test for high-throughput datasets by leveraging information from within-
group replicates and borrowing information across genes20. This ensures that limma can effectively identify 
more significant findings from the CRISPR effect scores of CRISPR screening data obtained from the DepMap 
database.

Before proceeding with the limma analysis, we conducted an initial data assessment to ensure the suitability 
of applying the limma method to the genome-wide CRISPR gene effect score data from the DepMap database 
(Supplementary Fig. 3). Based on the robustness and flexibility of data distribution and types that limma method 
can be applicable to, the assessment confirmed that the CRISPR effect scores from DepMap are appropriate for 
analysis using the limma method.

Utilizing the limma method, we conducted an initial investigation to examine the differences in CRIPSR 
effect scores of genome-wide genes between KRAS mutants and WT lines. The results were presented visually 
using volcano plots, which effectively illustrate gene-level statistics (Supplementary Figs. 4 and 5).

As expected, KRAS emerged as the most significant gene, displaying a substantial difference at the adjusted 
p-value level, obtained through multiple testing (Supplementary Fig. 4). Additionally, KRAS exhibited the most 
pronounced negative logFC in comparisons between KRAS mutants and WT lines originating from lung and 
pancreas tissues (Supplementary Fig. 4). Consistent patterns were observed across other tumor types, with KRAS 
consistently identified as the most differential gene and the only gene exhibiting significant adjusted p-values 
through multiple testing. The only exception was noted in the Haemato_and_lymph (haematopoietic_and_
lymphoid) category, where KRAS was identified as nearly the most differentially expressed gene (Supplementary 
Fig. 5). Overall, the limma analysis consistently ranked KRAS as one of the top one or two genes across almost 
all tumor types with sufficient samples (Supplementary Table 1).

To evaluate how other mutated genes behave in comparison to RAS genes, we did perform exhaustive 
computational screening for all qualified mutated genes, including commonly known oncogenic driver genes 
such as PIK3CA and BRAF as we did differential analysis for KRAS mutants vs. WT contrast, which confirmed 
that the results of KRAS mutant vs. WT contrasts were highly likely to be driven by the underlying RAS biology, 
not by random chance, and will be described in the next Results section.
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Furthermore, we observed instances where native t-test p-values were not significant, but the adjusted p-values 
using the limma method yielded significance. This observation further highlights the advantages of employing 
high-throughput data analysis methods. Similar cases were also encountered during the comparison of RAS 
mutant and WT lines, as described in the subsequent analysis. This underscores the robustness and reliability 
of the limma method in detecting meaningful differences and potential insights that might be overlooked by 
traditional statistical approaches.

After obtaining highly significant results in the KRAS mutant versus WT contrast, we proceeded to investigate 
whether these observations would also hold for the RAS mutant versus WT contrast. RAS mutants encompassed 
all KRAS, NRAS, and HRAS mutant lines. Interestingly, in a similar analysis comparing RAS mutants to WT 
lines, the KRAS gene once again emerged as the most significantly differential gene in lung, colon, and pancreas 
(panel A of Fig. 1), which is consistent with the well-established role of KRAS as an oncogenic driver in these 
tissue types. With lung as an example (top left in panel A of Fig. 1), we observed that KRAS gene exhibited the 
most negative logFC and achieved the most significant adjusted p-values (< 0.05), suggesting that KRAS likely 
acts as an essential gene for RAS mutant lung cell lines (addicted to or dependent on as oncogenic addiction). 
Additionally, two other genes, PTPN11 and GRB2, were identified as significantly differential genes (adjusted 
p-values < 0.05) with positive logFC in the volcano plot, indicating their potential essentiality for RAS WT lung 
cell lines (top left in Panel A, Fig. 1). Notably, KRAS and these two genes are well-known critical components of 
the RAS pathway, as annotated by the RAS Initiative25 (Supplementary Fig. 6). These observations suggest that 
both RAS mutant and WT lines depend on RAS pathway genes as essential components.

However, what truly piqued our interest was the revelation that in numerous other tissue types, KRAS was 
also identified as the most or nearly the most significantly differential gene (adjusted p-values < 0.05) (Panel A, 
Fig. 1) beyond the main tissue types such as lung, colon and pancreas that RAS biology researchers commonly 
focus on. Intriguingly, for another distinct subset of tissue types, NRAS emerged as the most or nearly the most 
significantly differential gene (adjusted p-values < 0.05) (Panel B, Fig. 1).

Upon closer examination of the RAS mutation status in those tissues where NRAS was identified as the 
top differential gene, it became evident that most RAS mutant lines in these tissue types were, indeed, NRAS 
mutants. To corroborate these findings, we conducted differential gene analyses by directly comparing NRAS 
mutant versus wild-type (WT) lines across all examined tissue types, which yielded consistent results (see 
Supplementary Fig. 7). Taken together, these observations further support the prominent pervasive oncogenic 
role of RAS mutations.

Notably, in contrasts of NRAS vs. WT lines, lung tissue also featured NRAS as the most differential gene 
(Supplementary Fig. 7), despite the contrasts of KRAS mutant versus WT and RAS mutant versus WT lines 
consistently highlighting KRAS as the most differential gene in lung tissue (Supplementary Fig. 4 and Fig. 1). 
We also observed similar behavior from haematopoietic_and_lymphoid tissue type in that NRAS was derived as 
top differential gene in contrasts of NRAS versus WT (Supplementary Fig. 7) and RAS mutant versus WT lines 
(Fig. 1B), whereas KRAS as top differential gene in contrast of KRAS vs. WT lines (Supplementary Fig. 5). Given 
the fact that both lung and haematopoietic_and_lymphoid tissue types have sufficient numbers of mutated cell 
lines of either KRAS or NRAS, this suggested that there exists tissue-preference dependent mutation rate for 
KRAS or NRAS gene.

Inspired by the aforementioned differential gene analysis and the remarkable prominence of KRAS or NRAS 
as the top differential genes in subsets of tissue types, we classified tissue types into KRAS- or NRAS-engaged 
categories accordingly dependent upon whether KRAS or NRAS was derived as the top differential gene in 
corresponding tissue type. Subsequently, we conducted a direct assessment of the relationship between CRISPR 
effect scores for KRAS and NRAS within the context of KRAS- and NRAS-engaged tissue types and RAS 
mutation statuses. This analysis aimed to provide insights into the potential tissue-specific oncogenic capabilities 
of KRAS and NRAS mutations (Supplementary Fig. 8). A robust negative correlation was observed between 
the CRISPR effect scores of the KRAS gene and those of the NRAS gene, particularly under the context of RAS 
mutant cell lines either within KRAS and NRAS-engaged tissue types (top panel, Supplementary Fig.  8) or 
within all cell lines (data not shown; note: there are some tissue types in database that were not classified for 
their RAS engagement due to limited numbers of RAS mutant lines) when comparing to RAS wild-type (WT) 
cell lines. This behavior appeared to be attributed to the tissue type-specific deviation of CRISPR effect scores of 
mutated KRAS or NRAS genes from the WT lines in corresponding KRAS or NRAS-engaged tissue types (top 
panel, Supplementary Fig. 8A). Majority of NRAS and KRAS mutant lines formed two distinguished clusters 
separated from the main cluster of WT lines, which are consistent with their CRISPR effect scores of NRAS or 
KRAS gene tending to be more negative than those of WT lines (bottom panel, Supplementary Fig. 8A). This is 
consistent with the expectation that generally KRAS- or NRAS-engaged tissue types preferentially confer KRAS 
or NRAS-dependency of RAS mutants presumably through fostering their tissue-type specific mutation rates of 
KRAS or NRAS gene, respectively.

Notably, the “conversion” behaviors of four converted lines that shifted from the clusters of their original 
KRAS-engaged tissue types to those of NRAS-engaged tissue types (cell lines in blue triangles indicated by blue 
arrows at bottom panel, Supplementary Fig.  8A), were coincident with their acquired NRAS mutations that 
differ from the expected KRAS mutations that their original KRAS-engaged tissue types would favorably foster 
(Supplementary Fig. 8B). Similarly, the “conversion” behaviors of seven converted lines that shifted from the 
clusters of their original NRAS-engaged tissue types to those of KRAS-engaged tissue types (cell lines in red 
circles indicated by red arrows at bottom panel, Supplementary Fig. 8A), were coincident with their acquired 
KRAS mutations that differ from the expected NRAS mutations that their original NRAS-engaged tissue types 
would favorably foster (Supplementary Fig. 8C). In addition, the deviation of some HRAS mutant lines from the 
WT lines were also coincident with their HRAS mutation driven negative CRISPR effect scores of their HRAS 
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Figure 1. KRAS or NRAS was derived as the most or most nearly significantly differential gene for CRISPR 
gene effect at adjusted p-value < 0.05 with the most or nearly most negative dependency difference between 
RAS mutant vs. WT lines from corresponding subsets of tissue types. Volcano plots of all genes for CRISPR 
effect score data of DepMap showed KRAS as the most significantly or nearly the most significantly differential 
gene between RAS mutant vs. WT lines from a subset of tissue types including lung, colon, breast, pancreas, 
ovary, biliary tract (A) or NRAS as the most significantly or nearly the most significantly differential gene 
between RAS mutant vs. WT lines from another subset of tissue types including Autonomic Ganglia, Liver, 
CNS, Skin, Soft Tissue, and Haemato_Lymph (abbreviation for HAEMATOPOIETIC_AND_LYMPHOID_
TISSUE) (B). Green data points: genes with significant adjusted p-value (< 0.05) for multiple testing and 
logFC < 0; orange data points: genes with significant adjusted p-value (< 0.05) for multiple testing and 
logFC > = 0; red data points: genes with significant raw p-value (< 0.05); black data points: genes without 
statistical significance. The parentheses after “Mut” or “WT” indicate number of mutant lines or number of 
WT lines, respectively. Note: limma model is set up on the whole dataset including all tumor types, and so 
all data is under the same roof of the limma model, by which power of the analysis was essentially increased 
as described earlier20. X-axis logFC: log2 fold change as for the actual difference of the CRISPR effect scores 
between RAS mutant vs. WT lines in volcano plots, since the values of CRISPR effect scores inherently in 
logarithm transformed scale were used directly in limma; y-axis –log10(p.Value): (-1)*log10 of raw p-value of 
limma analysis. Colon: LARGE_INTESTINE.
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gene, suggesting the likely role of HRAS like KRAS or NRAS once mutated despite of their very limited number 
of incidences in DepMap dataset (Supplementary Fig. 8D and 8E).

These compelling observations revealed that although endowed KRAS-engaged or NRAS-engaged tissue 
types would preferentially foster KRAS or NRAS mutations, respectively (Supplementary Fig. 8A), the bona fide 
acquired KRAS or NRAS mutations in those converted lines (Supplementary Fig. 8B and 8C) would override 
their original tissue type predisposition. Those findings not only supported the prominent pervasive oncogenic 
power of RAS gene mutations from another perspective, but also offered insights into the tissue-type specific 
permissiveness of mutant K- or N-RAS oncogenesis across a diverse spectrum of tumor types.

In summary, the limma analysis consistently revealed that across multiple tissue types with sufficient 
samples (Table 1), either KRAS or NRAS emerged frequently as the top and uniformly as one of the top 4 genes, 
reinforcing their significance in the context of RAS mutant versus WT lines. Even in tissue types where RAS genes 
were not ranked as the top differential genes, the top genes were still found to be RAS-related genes (Table 1). 
Furthermore, as highlighted in red in the summary table (Table  1), like the contrast of KRAS mutant lines 
versus WT lines described earlier, we observed more cases where the native t-test p-value was not significant, 
but the adjusted p-value using the limma method was significant for many tissue types. This finding suggests 
that the limma model can significantly improve statistical power and provide substantial benefits compared to 
commonly used cherry-picking analysis of individual genes within the DepMap database, underscoring the 
importance of systematically assessing high-throughput data. In fact, the limma results on high-throughput 
CRISPR screening data of DepMap not only consolidated all significant native t-test results but also redeemed 
many cases that were originally not deemed significant by native t-tests (Fig. 2).

Interestingly, for the cases of stomach and urinary tract tissue types, although limma-derived raw p-values 
without multiple testing were significant, limma did not classify RAS genes as significantly differential genes at 
the level of adjusted p-values within these tumor types. However, both KRAS and NRAS were still identified 
as the top differential genes at the raw p-value level (top, Supplementary Fig. 9). Additionally, in the dataset 
of urinary tract, the contrast of NRAS mutant versus WT lines did yield NRAS the statistical significance of 
multiple tests with an adjusted p-value < 0.05 (bottom-right, Supplementary Fig. 9). Similar observation was 
made in dataset of stomach in contrast of KRA mutant versus WT lines ((bottom-left, Supplementary Fig. 9). 
Collectively, this indicates the putative prominent pervasive role of RAS mutations in the oncogenesis of a very 
wide spectrum of tumor types.

To gain a deeper understanding of the differential gene analysis results across all examined tissue types, we 
conducted a thorough examination of the significantly differential genes based on CRISPR effect scores between 
RAS mutant versus WT lines. We classified these differential genes as potentially essential genes for RAS mutant 
lines (2nd column of Supplementary Table 2) or as essential genes for WT lines (3rd column of Supplementary 
Table 2), depending on whether they exhibited more negative scores in RAS mutant lines or in WT lines, 
respectively. As anticipated, many of these genes are well-known oncogenic genes from the RAS pathway, as 

TumorTypes Limma_TopGenes Limma_Statistics adjusted.P-Val t-test_P-Values Note

AUTONOMIC_GANGLIA NRAS Top 2 but most 
negative/adjp 0.005 0.176677483

BILIARY_TRACT KRAS Top 1/adjP 2.61E-14 6.40E-07 only one gene with adj.p < 0.05

BREAST KRAS Top 1/adjP 0.001 0.038945017

CENTRAL_NERVOUS_SYSTEM NRAS Top 1/adjP 9.73E-05 0.05326553

ENDOMETRIUM HCFC1R1(HPIP) Top 1/adjP 0.025 0.004017588 Ras-related gene: Sci Rep.,2015,5:9429.

HAEMATOPOIETIC_AND_LYMPHOID NRAS Top 1/adjP 2.11E-28 2.85E-06

LARGE_INTESTINE (Colon) KRAS Top 1/adjP 7.73E-14 1.68E-08 only one gene with adj.p < 0.05

LIVER NRAS Top 4 but most 
negative/adjP 0.036 0.331654472

LUNG KRAS Top 1/adjP 6.68E-19 7.05E-11

OESOPHAGUS FANCI Top 2/adjP 0.003 0.022969151 Ras-related gene: Onco Targets Ther. 
2020, 13:451

OVARY KRAS Top 1/adjP 1.03E-08 0.00107161

PANCREAS KRAS Top 1/adjP 0.015 0.041467891

SKIN NRAS Top 4 with RAF1 and 
BRAF on top/adjP 4.17E-09 0.022067713

SOFT_TISSUE NRAS Top 3/adjP 3.28E-04 0.115914845

STOMACH KRAS Top 1/P.Value 0.077 0.01543102 Top1 DEGs at P-val = 5.24E-06 with 
nonsignificant adjusted.P-Val = 0.077

UPPER_AERODIGESTIVE_TRACT RASSF8 Top 3/adjP 0.028 0.078226384 Ras-related gene: annotated in RAS 
pathway of RAS program

URINARY_TRACT NRAS Top 2/P.Value 0.144 0.085928442
Top2 DEGs at P-val = 1.63E-05 with 
nonsignificant adjusted.P-Val = 0.144; 
Top 1/adj.P.Val in NRAS mutant vs. 
WT

Table 1. Summary of limma results including top differential genes and top genes’ statistics between RAS 
mutant vs. WT lines from various tissue types from DepMap database.
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annotated by the RAS Initiative (Supplementary Tables 2 and Supplementary Fig. 6). In addition to KRAS and 
NRAS, several other genes were identified as essential for RAS mutant lines in multiple tissue types, such as 
RAF1 and SHOC2, particularly in lymph/blood and skin tissues. Conversely, other genes like BRAF, SOS1, 
MAPK1, and GRB2 were essential for WT lines, with PTPN11 (i.e., SHP2) previously described as essential for 
WT lines in both lung and lymph/blood tissues (Supplementary Tables 2 and Supplementary Fig. 6).

Exhaustive computational screening demonstrated the observation of KRAS, NRAS, or RAS 
gene as the top gene in differential analysis not possibly occurring by random chances
Our differential gene analysis of CRISPR effect data in contrasts of KRAS vs. WT lines consistently identified 
the KRAS gene as the top differential gene across numerous tissue types, extending beyond the three main 
tissue types (i.e., lung, colon, pancreas) traditionally associated with KRAS-driven oncogenesis. To assess the 
possibility of these occurrences being random chances for any qualified mutated genes with sufficient cell lines 
harboring mutations of the corresponding gene in each tissue type that we analyzed KRAS gene in differential 
analysis, we conducted exhaustive computational screening of all qualified mutated genes, following the 
procedure described in the methods section and outlined (Supplementary Fig. 10A). The statistical results of our 
screening are summarized (Supplementary Fig. 10). The main theme of the findings indicated that the observed 
significance of KRAS cannot be attributed to random chances for any other existing mutated genes in the tissue 
types that we analyzed KRAS in differential analysis (Supplementary Fig. 10B). This strongly suggests that the 
observed results are most likely driven by the underlying RAS biology.

Importantly, through these exhaustive screenings, we identified several interesting, mutated genes (column 
Top2Genes in the table of Supplementary Fig. 10B) that exhibited similar behavior to KRAS. When comparing 
KRAS mutant lines with WT lines for these genes, the limma method used in the computational screening also 
ranked these corresponding genes as the top differential genes. Interestingly, many of these genes are already well-
known in the field, such as BRAF, PIK3CA, TP53, and CTNNB1, which are established oncogenic driver genes 
or tumor suppressor genes, as identified by recent computational studies on oncogenic driver genes7–9. Some of 
these genes, such as BRAF, PIK3CA, and CTNNB1, appeared across multiple tissue types (column Top2Genes 

Figure 2. Largely improved statistical power and benefit using limma model comparing to commonly seen 
cherry-picking type of analysis of individual gene within the DepMap database. Comparison of CRIPSR 
effect scores in boxplots of KRAS (left) or NRAS (right) between RAS mutant vs. wild type (WT) lines from 
various tissue types in DepMap. Only tumor types from DepMap with at least 3 samples in both RAS (K-, 
N-, H-) mutant and WT lines would be used for comparison. This is similar to Supplementary Fig. 2 but here 
as highlighted by the additional red circles to show that the high throughput limma results of significant p-
values with multiple testing essentially not only consolidate all native t-test results that are significant, but also 
make up many cases that were not significant by native t-test indicated by the green arrows. Also, in the cases 
of tissue types indicated by the yellow circles for stomach and urinary tract, where only limma raw p-value 
without multiple testing are significant. As shown in the volcano plots in Supplementary Fig. 9, although these 
two tumor types seem not calling RAS genes as significantly differential genes at level of adjusted p-value, 
however, as indicated by the red arrows in plots, KRAS or NRAS is still derived as the top differential gene at 
raw p-value level for stomach or for urinary tract respectively. Red arrow: native t-test p-value is significant; 
Green arrow: native t-test p-value is not significant. Note: CRISPR effect scores of each gene reflects the 
dependency level on the corresponding gene in the cell line, where the more negative the value of the CRISPR 
effect score is, the more likely this cell line is more dependent on this gene.
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in the table of Supplementary Fig. 10B). These findings suggest that amongst the top differential genes identified 
in these exhaustive screenings, even those that may not be familiar to us, but exhibit similar behaviors to KRAS 
and other well-known oncogenes, are likely to be novel oncogenic driver genes with biological relevance that 
was previously unknown. However, it is important to emphasize that in terms of their prevalence across tissue 
types, these mutated genes do not appear to be nearly as prominent and pervasive as the KRAS gene, which is 
consistently ranked as the top differential gene in not just one or two, but nearly all tissue types. This distinction 
sets the KRAS gene apart from the other top genes identified in the exhaustive computational screening.

For similar purpose, to test if the behaviors of NRAS gene as the top gene in the differential analysis can 
be achieved by random chances, similar exhaustive computational screenings were performed to assess the 
possibility of these occurrences being random chances for any qualified mutated genes in each tissue type that 
we analyzed NRAS gene in differential analysis. The statistical results of our screening (Supplementary Fig. 10C) 
are indicative of a similar theme of the findings that the observed significance of NRAS cannot be attributed 
to random chances for any other existing mutated genes in each tissue type that we analyzed NRAS gene in 
differential analysis, which again suggests our observed results are most likely driven by the underlying RAS 
biology.

Like the results obtained from the KRAS or NRAS mutant vs. WT contrast, the findings from the RAS 
mutant vs. WT contrast revealed even more pronounced observations, with RAS genes (i.e., KRAS or NRAS) 
consistently emerging as the top differential genes across a broader range of tissue types. To evaluate the possibility 
of achieving these results by random chances for any combination of three qualified genes with sufficient 
numbers of mutant cell lines, we conducted a similar computational screening procedure. In this procedure, we 
performed 10,000 trials of randomly selected combinations of three qualified mutated genes (ensuring sufficient 
sample sizes in each group of contrast) for each tissue type, resembling the three mutated RAS genes (K-, N-, H-) 
used in the RAS mutant vs. WT contrasts. The obtained statistics, summarized in Supplementary Tables 3 and 4 
for two independent sets of unique trials for each tissue type, consistently indicated that the observed results for 
RAS mutants could not have occurred by random chances for any combination of three mutated genes within 
the DepMap database. This further supports the notion that the findings obtained from RAS mutant vs. WT 
contrasts are highly likely to be driven by the underlying RAS biology.

Furthermore, we also identified several mutated genes (column Top4Genes in Supplementary Tables 3 
and 4) that exhibited behavior like RAS genes in one or up to three tissue types. Among the identified genes, 
several well-known oncogenic driver genes such as ALK, BRAF, PIK3CA, PIK3R1 (components of PI3 kinase), 
and CTNNB1 were recognized, aligning with recent computational studies on oncogenic driver genes7–9. 
Additionally, certain genes, including BRAF and PIK3CA, emerged in both sets of unique trials, not only in a 
single tissue type but across multiple tissue types, providing further support for their potential oncogenic roles. 
Similarly, less commonly known genes like WRN were also identified in both independent sets of unique trials 
(Supplementary Tables 3 and 4), consistently appearing in the same tissue types (i.e., colon, ovary, and stomach), 
with multiple occurrences in most cases, except for the first set of unique trials for the stomach (Supplementary 
Table 3). These findings collectively underscore the potential significance of these identified genes as novel 
oncogenic drivers, deserving further investigation and exploration.

To evaluate the biological significance of the differential genes obtained from the unique trials of the 
computational screenings, we assessed the enrichment levels of oncogenic driver genes within these genes. 
Specifically, we examined the enrichment of well-annotated driver genes, either defined by tumor type (green 
rows in Supplementary Table 5) or not defined by tumor types (green rows in Supplementary Table 6), in the 
differential gene lists derived from the unique trials (n = 10,000) of the computational screenings.

Remarkably, we observed significant enrichment of these well-annotated driver genes in most tissue types 
that had at least two differential genes identified from the unique trials. This finding is particularly encouraging, 
considering that the annotated driver genes were primarily derived from pioneering computational studies in 
the field7–9. Furthermore, we noted the presence of noticeable driver genes even in tissue types with only two 
differential genes (Supplementary Tables 5 and 6), further emphasizing the biological relevance and potential 
significance of these genes. Overall, the enrichment analysis provides compelling evidence supporting the notion 
that the identified differential genes from the unique trials of the computational screenings are biologically 
meaningful and potentially represent novel oncogenic drivers.

However, as described above, although many other oncogenic driver genes were revealed from these 
computational screening analyses, there is no single mutated gene that demonstrated the strength and breadth 
impact across multiple tissues as KRAS and NRAS. Once mutated, they behaved not nearly close to what mutant 
KRAS or NRAS behaved in each tissue type and consistently across tissue types. Only KRAS or NRAS was 
revealed as top differential genes consistently across multiple feasible tissue types with sufficient numbers of 
samples, whereas any other mutated genes only can do the same in one or two tissue types at the best they can do, 
as evident from the exhaustive computational screening results. These observations provide substantial support 
from another perspective for the prominent pervasive oncogenic role of RAS gene mutations.

Enrichment and association analysis demonstrated oncogenic driver genes including RAS 
genes as the top genes out of genome-wide genes with the most significant association 
between the presence of mutations in a gene and dependency on this corresponding gene
According to the DepMap database portal (https://depmap.org/portal/), a CRISPR effect score of 0 indicates 
a non-essential gene, while a score of -1 corresponds to the median of all common essential genes, after data 
normalization and standardization. We conducted a comprehensive evaluation of over 17 thousand genes in 
the effect score dataset, assessing the significant association between the presence of mutations in each mutated 
gene and its corresponding dependency, denoted by CRISPR effect scores, within nearly 1000 cell lines from 
the DepMap database. The enrichment level of each gene was assessed using Fisher’s exact test on a typical 2 × 2 
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contingency table, as described in the methods section in more detail. Notably, KRAS and NRAS emerged as 
the top 1 and 2 gene respectively, along with other well-known oncogenic driver genes, within the list of genes 
exhibiting the most significant association. These findings were corroborated by the results of Wilcoxon rank 
sum test and t-test (Supplementary Table 7).

Remarkably, many of the top genes with significant Enrichment.Adjusted.p.Val were annotated as oncogenic 
driver genes in the literature (Supplementary Table 7), although many oncogenic driver genes in the top list 
did display significant enrichment levels when assessing individual genes and strikingly only a handful of 
oncogenic driver genes had the significant enrichment after multiple testing-correction. The significance levels 
of Enrichment.Adjusted.p.Val for KRAS and NRAS also displayed quite a dominance over any other oncogenic 
driver genes including BRAF and PIK3CA in the top list. Interestingly, the vast majority of significant oncogenic 
driver genes on the top list are exclusively from the RAS signaling pathway (except for CTNNB1). This suggests 
that RAS signaling may be a special case with RAS genes as the top genes having the prominent and pervasive 
effect on reprogramming cells to become dependent on the oncogenic changes. On the other hand, these 
observations are consistent very well with, if do not directly support, the unique and exceptional behaviors of 
RAS (K- or N-RAS) genes over any other oncogenic driver genes in the findings that RAS genes were revealed 
as the only genes with prominent and pervasive oncogenic roles from the exhaustive computational screening 
analysis results (Supplementary Fig. 10, Supplementary Tables 3 and 4).

These results suggest that KRAS exhibits the most significant association between the presence of its mutations 
and its dependency across all tissue types. Moreover, we sought to verify if this observation holds true for each 
specific tissue type. As expected, the results for colon and lung consistently identified KRAS as the top gene with 
the most significant enrichment and association (top and middle tables in Supplementary Fig. 11). Although 
pancreas did not yield a significant enrichment result, likely due to the limited sample size of RAS WT lines, both 
Wilcoxon and t-test revealed significant association with KRAS (circled in red, bottom table in Supplementary 
Fig. 11). Additionally, the more powerful Barnard test, an alternative to Fisher’s exact test, indicated a significant 
p-value of 0.03 for KRAS in pancreas (data not shown).

Interestingly, we also observed significant enrichment and associations for NRAS or KRAS within tumor 
types such as blood, lymphoid, and ovary (Supplementary Fig. 12). In other tissue types, while not significant 
at multiple test levels, KRAS and PIK3CA consistently appeared as the top genes with the most significant 
enrichment and association at the raw p-value level (Supplementary Fig. 12). Similarly, in several other tissue 
types, NRAS consistently emerged as the top gene with the most significant association, either at the multiple 
test level in green rows or at the raw p-value level (Supplementary Fig. 13). These findings not only support the 
prominent pervasive oncogenic role of RAS mutations, but also are in line with the concept of KRAS or NRAS 
engaged tissue types derived from differential gene analysis of CRISPR data described earlier.

Other genomic data supports the findings from differential gene analysis of CRISPR 
screening data
We identified numerous oncogenic driver genes from the analysis of CRISPR screening data of DepMap. To 
reinforce these results, we extensively searched for supporting evidence from other genomic data of DepMap, 
including the mutation status of the cell lines. Among the identified essential genes, we focused on BRAF as a 
proof of concept. BRAF was identified as the top differential gene for CRISPR effect scores between RAS mutant 
and WT lines, and as an essential gene for WT lines from skin origin (Supplementary Table 2).

Further assessment and exploration of mutually exclusive mutated genes with RAS genes in skin cell lines 
revealed that BRAF was the top gene exhibiting a mutual exclusive mutated pattern with RAS genes (Fig. 3). As 
BRAF is a well-known oncogenic driver gene for skin cancer (e.g., SKCM) like RAS genes, these findings from 
the mutation data strongly supported our observation that BRAF is one of the essential genes in RAS WT skin 
cell lines, as identified through differential gene analysis from CRISPR effect scores. Similarly, in colon cell lines, 
the assessment and search for mutually exclusive mutated genes with RAS genes also highlighted BRAF as the 
top gene exhibiting a mutual exclusive mutated pattern with RAS genes (Supplementary Fig. 14), consistent 
with earlier reports26,27. While the differential gene analysis of CRISPR effect score data did not detect BRAF as 
a significant gene at the level of adjusted p-value in colon, it was detected at the level of raw p-value as 0.0047 
through limma analysis in colon (Supplementary Fig. 14, Supplementary Table 2, detailed result for BRAF in 
colon not shown). Together, these lines of evidence reinforce the notion that RAS WT lines also rely on the RAS 
pathway or RAS-related oncogenic genes such as BRAF.

In addition to CRISPR screening data, DepMap provides gene expression data or RNAseq data for the cell 
lines and we did obtain proteome data outside DepMap database for those CCLE cell lines. We investigated both 
RNAseq and proteome data at high-level using technique of dimensional reduction including MDS and PCA 
that would represent the main trend of expression data (Supplementary Fig. 15). Both RNAseq and proteome 
data revealed overall difference in transcriptional profiles between cell lines from KRAS-engaged tissue types 
highlighted in a large red circle versus NRAS-engaged tissue types highlighted in a large blue circle (left panels 
of A and B, Supplementary Fig. 15), which supported the idea of KRAS- or NRAS-engaged tissue types that 
inferred from the differential analysis of DepMap CRISPR effect data.

However, both RNAseq and proteome data suggest that the impact of RAS mutations on the difference 
between (K- or N-) RAS mutant vs. WT lines could be weaker comparing to the tissue-specific expression 
profiles, or such impact would confer through other mechanisms such as signaling or post-transcriptional 
modifications that may be explored using other omics data. (Supplementary Fig. 15). In addition, even for those 
from the same tissue origins, there are large variations amongst the transcriptional profiles of those converted 
lines (with labels in plots, described in Supplementary Fig. 8B, 8 C) with acquired KRAS or NRAS mutations that 
are different from what their original RAS engaged tissue types would foster. These observations suggested that 
there is also a possibility that other mechanisms such as signaling at protein levels rather than transcriptional 
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changes would also likely be involved. Unfortunately, we do not have post-transcriptional modifications data for 
these CCLE cell lines available from DepMap database to address this possibility.

Observing a large difference in transcriptional profiles between tissue types, we extracted the differentially 
expressed genes between RAS mutant lines and WT lines in each individual tissue type that had matched samples 
with CRISPR screening data. Subsequently, we utilized an in-house pathway pattern extraction pipeline (PPEP) 
to assess pathway enrichment in these differential gene lists across multiple tissue types (Fig. 4). As expected, 
our analysis revealed widespread enrichment of the KRAS signaling and PI3K signaling pathways across many 
tissue types (Fig. 4). This strongly suggests that the expression profiles of these RAS mutant cell lines may have 
undergone rewiring, likely triggered by the RAS mutations as corresponding genetic alterations, and adapted to 
promote the fitness of RAS mutants, thereby potentially conferring the oncogenic benefits associated with RAS 
gene mutations for oncogenesis.

Robustness of the findings was supported by a more recent DepMap dataset and data 
mining of computational studies on cancer driver genes
An important factor to consider is the periodic updates made to the DepMap database, which occur on a quarterly 
basis. Given the significant time interval between our initial analysis and the submission of this manuscript, we 
made the deliberate choice to utilize the most current version available at that time, specifically version 23Q2, 
to consolidate our results derived from the older version 21Q1 of the DepMap data. Employing this updated 
dataset, we conducted a comprehensive limma analysis aimed at identifying differential genes for CRISPR effect 
score data between RAS mutant and WT lines (as illustrated in Supplementary Figs. 16 and 17). Notably, our 
findings remained remarkably consistent with our earlier results, providing further validation of the robustness 
and confidence in our observations.

Numerous studies have explored cancer driver genes using mutation data from diverse tumor types7–9. 
Although these studies do not specifically focus on RAS genes but generally on any generic oncogenic driver 
genes, the detailed data mining of the resulting oncogenic driver genes from these studies revealed that RAS 
genes were computationally predicted to be oncogenic driver genes across many tumor types (Supplementary 
Fig.  18). However, their findings neither have revealed RAS genes as the prominent or pervasive oncogenic 
driver gene distinct from other oncogenic genes (data not shown) due to the nature of their study and data 
sources and differences in methodology, whereas our study consistently showed in multiple threads of evidence 
for the prominent pervasive behavior of RAS genes in a diverse range of tissue types. In addition, our study 
extends beyond this by providing more precise and delineated insights into the oncogenic roles of RAS genes, 
specifically KRAS or NRAS, as the prominent oncogenic drivers within specific subsets of tissue types. This 
highlights the tissue-specific permissiveness and preference of mutant K- or N-RAS oncogenesis. Likely, these 
studies7–9 were limited by using only mutation data and protein structure information to make inferences. In 
contrast, our study distinguishes itself as the first to unveil insights derived from the analysis of genomic data 

Figure 3. BRAF was revealed as an essential gene for RAS WT lines with the most significant mutual exclusive 
mutations between RAS genes in skin cell lines. Left panel: Top list of genes with mutual exclusion mutations 
with RAS genes in skin cell lines. Right panel: heatmap of mutation status from Top list of genes with mutual 
exclusion mutations with RAS genes in skin cell lines. Mutual exclusion mutation assessment was done by 
Fisher’s exact test with 2 × 2 contingency table created for all cell lines (whether a cell line has a mutation of 
this corresponding gene or not versus whether it has RAS mutation(s) or not), which was used to assess the 
significance of mutual exclusion.
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and high-throughput gene dependency data of DepMap, which is more relevant in the context of this study. This 
distinction adds substantial confidence in terms of the data types and resources used, differentiating it from 
these primarily mutation data-based computational studies7–9.

Discussion
Despite the high frequency of observed KRAS gene mutations, primarily in pancreas, lung, and colon cancer, RAS 
(K-, N-, H-) gene mutations are also widely prevalent in many other cancer types, which led to the notion that 
they contribute to oncogenesis in approximately 20% of human cancers. While the NCI RAS Initiative has made 
significant strides as a community-supported national effort, there remains a critical need to gather compelling 
evidence to substantiate the long-held notion that RAS gene mutations play a critical role as oncogenic drivers, 
influencing a much wider spectrum of cancer types beyond the main ones currently under the focus of RAS 
researchers.

Figure 4. Hallmark KRAS signaling and PI3K signaling pathways were preferentially enriched in differentially 
expressed genes between RAS mutant vs. WT lines across multiple tissue types derived from RNAseq data 
of DepMap database. After derived the differentially expressed genes between RAS mutant lines vs. WT 
lines in various tumor types that have matched samples with CRISPR screening data using two RNAseq 
analysis methods (edgeR and DESeq2), the in-house PPEP23 analysis was performed to assess how pathways 
are enriched in these differential gene lists across multiple tissue types. KRAS signaling and PI3K signaling 
pathways from various sources of pathway/geneset annotations from MSigDB database enriched widely across 
differential gene lists were indicated by green and pink arrows, respectively. Types: tissue types; Two methods 
used for deriving DEGs: e: edgeR; d: DESeq2; Annotations of RAS_Engaged_TissueTypes are based on the top 
differential gene as KRAS, NRAS, or genes of RAS pathway between the contrasts of KRAS, NRAS and RAS 
mutant vs. WT lines in each respective tissue type for differential analysis of CRISPR effect score data.
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In this report, we conducted a comprehensive and systematic differential analysis of high-throughput 
CRISPR screening data using the limma method. This rigorous approach led us to reveal RAS genes (KRAS 
and NRAS) as the most significantly differential genes between the (K-, N-, combined) RAS mutant versus WT 
lines across a wide spectrum of tissue types within the entire genome-wide dataset. Notably, our discoveries 
extended beyond the traditionally studied tissue types associated with RAS genes in oncogenesis, encompassing 
lung, colon, pancreas, and skin. Such behaviors of RAS genes are exactly the nature of oncogenic driver genes: 
once mutated, the cells become more dependent or more addicted to the mutated gene reflected by their 
CRISPR effect scores, which is in line with the proposed notion of oncogene addiction17. More importantly, our 
exhaustive computational analysis of mutated genes pointed out the prominent perversive oncogenic role of RAS 
gene mutations to a level that other oncogenic driver genes do not achieve. Our observations from differential 
gene analysis supports the prominent and pervasive oncogenic role for RAS gene: prominent in a way that RAS 
gene is the top gene in individual tissue type, and pervasive in a way that RAS gene is the only top gene common 
across multiple tissue types.

Moreover, our study provided intriguing insights into the potential distinct oncogenic roles of KRAS and 
NRAS in specific, corresponding subsets of tissue types. These observations suggest that either mutant KRAS 
or mutant NRAS could act as the primary oncogenic driver genes in distinct subsets of tissue types, which we 
denoted as KRAS-engaged or NRAS-engaged tissue types, respectively. Interestingly, mutant KRAS or mutant 
NRAS may also exert oncogenic influence within the same tissue types, such as lung. These findings offer 
compelling evidence pointing towards the potential tissue-specific preference and permissiveness of mutant 
K- or N-RAS oncogenesis and suggested that the (K- or N-) RAS gene mutations that may determine the tissue 
type-specific oncogenic capacity although preferentially cooperating with the revealed KRAS- or NRAS-engaged 
tissue types (Supplementary Fig. 8). However, it is crucial to acknowledge that our analysis was not able to fully 
assess the oncogenic role of HRAS as we did for KRAS or NRAS, mainly attributable to the constraints imposed 
by the limited availability of HRAS mutant cell lines representing specific tissue types within the DepMap 
datasets. Nevertheless, we think it is still reasonable to anticipate a similar behavior of HRAS as K- or N-RAS, 
given the observed similar trend for HRAS in Supplementary Fig. 8D and the common notion on how close 
HRAS is related to KRAS and NRAS as one of RAS gene isoforms.

Remarkably, our analysis consistently identified RAS genes as the top differential genes in CRISPR effect 
scores when comparing RAS mutant vs. WT lines across the majority, if not all, tissue types. In contrast, other 
oncogenic driver genes only appeared as top differential genes in one or a few tissue types when comparing their 
mutations to WT lines. The exhaustive computational screening and validation tests revealed that many of the 
oncogenic driver genes we identified were limited to one or two tissue types, in stark contrast to the pervasive 
behavior of RAS genes.

Furthermore, despite the potential differences in genetic background, metabolism, and epigenetic regulation 
between RAS mutant and WT cell lines, we consistently observed RAS genes occupying the top positions among 
the differential genes across various tissue types. The use of the limma method, specifically designed for high-
throughput data, and the comprehensive analysis of the vast DepMap dataset, consisting of 17 thousand genes 
and nearly 1000 cell lines, made our findings highly unlikely to occur by chance. These consistent observations 
suggest that RAS gene mutations play a prominent pervasive oncogenic role, regardless of the tissue type.

It is worth noting that while RAS gene mutations may be prevalent in a wide variety of tissue types, there are 
other commonly mutated genes, such as TTN, with much higher mutation frequencies than RAS genes in many 
tissues (data not shown). However, these genes did not exhibit the same consistent and widespread oncogenic 
behavior as RAS genes in our study; instead, they appeared to function more as potential biomarkers for tumor 
mutation burden28. It is also worth noting that it is unknown whether the mutations present in the mutant cell 
lines that were included in this study have a biological effect on given genes carrying these mutations, although 
we did not use any tools to evaluate the biological impacts of the mutations as well as whether the mutation 
frequencies would be significantly above background. One reason is that current mutation impact assessment 
tools are still not at optimum and the tools assessing whether the mutation frequencies were significantly above 
background for a given gene would still have debatable uncertainty of association with oncogenesis. On the other 
hand, these tools may reduce the number of tissue types with feasible mutated genes that were needed to run 
much global analysis with more tissue types and more mutated genes as we wish for the exhaustive computational 
screenings. Consequently, we had chosen a more liberal route to account for all potential mutations at gene 
coding regions (excluding silent mutation type) to perform the exhaustive computational screenings. Such a 
choice was intended to be beneficial for computational screenings as well as the needed consistency with other 
analyses performed in this study.

Survey studies on RAS mutations have also emphasized the remarkable potential of RAS genes as oncogenic 
drivers in various tumor types1,2,4. However, our study provides robust evidence derived from experimentally 
measured genetic dependency data, directly capturing the cellular response and consequences of treated cells. 
Such data carry greater biological relevance than static mutation data alone7–9. While considerable efforts 
have focused on exploring the phenomenon of “oncogene addiction”, wherein tumors heavily rely on the 
sustained expression and activity of a single aberrantly activated oncogene, and appear to depend on epithelial 
differentiation status16,29, our current report elevates this notion to the next level. We propose that RAS genes 
play a prominent pervasive role in oncogenesis beyond merely being associated with “oncogene addiction”. 
While numerous oncogenes could participate in so-called “oncogene addiction”, in one or two tissue types or 
limited cellular contexts, our findings strongly suggest that only RAS genes hold this prominent and universal 
position in a wide range of tumor types examined.

The study mainly focused on gene mutations for their impacts on the dependency of RAS genes as well 
as other genes; However, it was known that gene mutation is not the only genomic change that would lead to 
oncogene addiction. Other genomic changes such as copy number alterations (CNAs) although much rare in 
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general compared to gene mutations, would have similar impacts as mutations. However, due to limited cell lines 
and much lower occurrence of other genomic changes in the DepMap datasets as well as the potential to make 
the data interpretation more complicated, we focused on gene mutations in this study but did not rule out the 
potentials of other genomic changes that would similarly impact on RAS genes.

To the best of our knowledge, this is the first report of a comprehensive study focusing on RAS biology by 
examining high-throughput dependency and genomic datasets across such a diverse range of tumor types. Our 
findings shed light on the pivotal prominent pervasive role of RAS genes in oncogenesis and tissue-specific 
permissiveness of mutant K- or N-RAS oncogenesis. Collectively, our study provides compelling evidence from 
high-throughput CRISPR and genomics data, not only supporting the commonly-held critical oncogenic role of 
RAS genes, but also elevating our understanding of RAS biology by delineating in more refined knowledge and 
insights for the prominent pervasive oncogenic role and tissue-specific permissiveness of RAS gene mutation, 
which we hope to open new venues beyond current focus of RAS biology that warrant further investigation. 
This would benefit both clinical applications and basic research by promoting the awareness of RAS genes as 
the best candidates as oncogenic drivers amongst other oncogenes way beyond the current knowledge of RAS 
genes as the main driver gene for only 20-30% cancer types occurred in human beings clinical-wise or just 
the main focused tissue types including lung, colon, pancreas basic-research-wise. Practically, being aware of 
their prominent pervasive roles, we would be more concerned about the involvement of RAS genes in studying 
oncogenesis of tumors derived from a wider range of tissue types in wet lab research, and put RAS genes into 
priority of focus for treatment options in clinical setting. Furthermore, our results underscore the imperative 
for additional research endeavors aimed at elucidating the underlying molecular mechanisms and therapeutic 
ramifications of RAS genes in a myriad of cancer contexts.

The differential gene analysis of CRISPR screening data has also revealed significant insights into the potential 
other essential genes for RAS mutant and wild-type (WT) lines. Among the crucial findings, KRAS and NRAS, 
along with other oncogenic genes like RAF1 and SHOC2, were identified as potentially essential genes for RAS 
mutant lines. On the other hand, genes such as BRAF, SOS1, MAPK1, GRB2, and PTPN11 (i.e., SHP2) were 
found to be potentially essential for WT lines. SHOC2 forms a stable ternary signaling complex with MRAS and 
PP1C, leading to enhanced RAS-MAPK signaling in RASopathy Noonan syndrome30. Our study aligns with 
this observation, suggesting that SHOC2 plays a vital role in the survival advantage of RAS mutants in multiple 
tumor types (Skin, Haemato-lymphoid) by working with mutated RAS.

Many of the identified essential genes are also part of the common oncogenic RAS pathway annotated by the 
RAS Initiative25. Notably, they not only interact with RAS genes but also collaborate with each other in various 
cellular and genetic contexts. A notable example is PTPN11 (SHP2), which we found to be essential for WT lines 
from both lung and lymph/blood origin. SHP2 is a non-receptor protein-tyrosine phosphatase downstream of 
almost all RTKs, necessary for RTK-evoked RAS activation31. SHP2 inhibitors have demonstrated effectiveness 
in cancer models bearing RAS-GTP-dependent oncogenic BRAF, indicating its potential as a therapeutic target32. 
Furthermore, SHP2/MEK inhibitor combinations have shown promise in preventing adaptive resistance in 
various cancer models expressing mutant and wild-type KRAS33. These studies support the findings of our study 
in that SHP2, along with BRAF and SOS1, may work with or complement RAS gene in wild-type cell lines for 
oncogenesis, as they were identified as essential genes in our differential gene analysis of CRISPR effect score 
data.

The exhaustive computational screenings, involving large combinatorial trials of validation tests, served 
two essential purposes in our study. Firstly, they provided strong confirmation that the observed results from 
the differential analysis of CRISPR screening data between RAS mutant and WT lines were not occurring by 
random chances, thus solidifying the significant impact of RAS gene mutations. Secondly, these comprehensive 
screenings unexpectedly revealed many potential oncogenic driver genes, albeit to a lesser extent compared 
to RAS genes, but in a more tissue-specific manner. Among the identified genes were ALK, BRAF, PIK3CA, 
PIK3R1 (components of PI3 kinase), and CTNNB1, which are well-known oncogenic driver genes.

Furthermore, the computational screening results also shed light on seemingly less commonly known genes, 
such as WRN, which appeared in both independent sets of unique trials and multiple times in certain tissue 
types like colon, ovary, and stomach. Intriguingly, a smaller-scale CRISPR screening dataset al.so identified 
a biomarker-type dependency on WRN in colorectal and ovarian cell lines with MSI, suggesting its potential 
as a new synthetic lethal target in MSI tumors34,35. Moreover, WRN is critical for Werner syndrome and is 
associated with various mutations in cancer types such as peritoneal, colon, and stomach cancer36. The fact 
that the top differential genes derived from our exhaustive computational screenings were enriched with 
well-annotated oncogenic driver genes from prestigious computational studies on oncogenic driver genes7–9 
further supports the oncogenic nature of these genes. Collectively, these observations suggest that the listed top 
differential genes derived from our analysis, like RAS genes and other well-known oncogenes, could potentially 
be putative oncogenic driver genes with previously unexplored biological relevance. Consequently, they merit 
further investigation to understand their presumed oncogenic roles and their cellular and genetic interactions 
with RAS genes.

Moreover, we initially observed a mutual exclusion mutation pattern between RAS genes and BRAF in 
various tumor types, such as Pancreas and Colon26,27, which is consistent with findings from the RAS Initiative’s 
RAS Dialogue37. Our study further strengthens this observation by identifying BRAF as a top gene with mutual 
exclusive mutation pattern with RAS genes in skin and colon cell lines from the DepMap database. This reinforces 
the essential role of BRAF in RAS wild type skin cell lines as identified through the differential gene analysis of 
CRISPR effect scores.

Our study unveiled that while tissue types naturally primed for KRAS or NRAS engagement tend to foster 
respective mutations, acquired KRAS or NRAS mutations take precedence over the initial tissue predisposition. 
These observations underscore the potent oncogenic influence of RAS gene mutations from an alternative 
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perspective. A previous study demonstrated that distinct tissue-specific co-mutation networks are associated 
with each KRAS allele, leading to tissue-specific genetic dependencies linked to specific mutant KRAS alleles4. 
The impact of tissue-specificity on the oncogenic capacity of KRAS, concerning tissue permissiveness, was 
extensively discussed in a recent RAS Dialogue by the RAS Initiative38. One noteworthy finding from the authors 
of this RAS Dialogue is the observation that the KRAS tissue permissiveness pattern observed in mice closely 
resembles the cancer-type specific KRAS mutation frequency observed in patients. However, our current study 
pointed out that in those KRAS non-permissive tissue types, NRAS may be more likely to act as the oncogenic 
driver if conditions allowed. This inference is drawn from our discovery of KRAS- and NRAS-engaged tissue 
types, where the top differential genes in CRISPR effect scores between RAS mutant vs. WT and between NRAS 
vs. WT lines predominantly were revealed as NRAS rather than KRAS in a subset of NRAS-engaged tissue types 
(Fig.  1 and Supplementary Fig.  7). Our denoted NRAS-engaged tissue types seem coincident with many of 
the transformation-failed tissue-types that were mentioned in the RAS Dialogue article38 and cited references. 
Although the behaviors of converted lines observed in our study suggested that RAS gene mutations would 
be sufficient for conversion of either KRAS or NRAS dependency in cell lines, whether RAS gene mutations 
alone would be sufficient for oncogenic permissive for histological changes in non-permissive tissue types of 
the animal experiments is still a question to be further investigated. Nevertheless, our findings underscore 
the intriguing necessity of incorporating mutant NRAS or even HRAS alongside KRAS in the experiments to 
explore the tissue permissiveness of mutant RAS oncogenesis in those non-permissive tissue types, which were 
originally tested with KRAS alone.

Taken together, we proposed the concept of tissue-specific permissiveness of RAS gene mutations based 
on findings from DepMap data analysis in our study that were further inspired by the observed coincidence 
between KRAS or NRAS-engaged tissue types as identified from our study and the tissue-specific responses for 
their permissiveness to be transformed discussed in the RAS Dialogue38. Although we currently lack an in-depth 
mechanistic explanation or comprehensive understanding of the newly proposed tissue-specific permissiveness 
of RAS gene mutations, its implications for the long-standing puzzle that this RAS Dialogue discussed have 
inspired us to invite the community to undertake the unprecedented experimental efforts that would potentially 
find a way to transform the KRAS non-permissive tissue types that may help uncover the underlying oncogenic 
mechanisms for tissue-specific permissiveness and transformation capacity of mutated RAS genes.

While revealing the potential tissue-specific permissiveness, some converted cell lines were uncovered that 
can change the gene dependency behaviors of their RAS genes as opposed to their expected KRAS- or NRAS-
engaged tissue types. Some of them appeared to resemble NRAS-dependent lines from NRAS-engaged tissue 
types although originally from KRAS-engaged tissue types presumably due to their acquired NRAS mutations, 
whereas others appear to resemble KRAS-dependent lines although originally from NRAS-engaged tissue 
types presumably due to their acquired KRAS mutations. Such “converted” changes may be attributed to the 
involvement of lineage plasticity or lost lineage fidelity as studied by others39. However, the initial analysis of 
transcriptome or proteome data from this study did not show obvious signs of lineage plasticity or lost lineage 
fidelity. One possibility is that the transcriptome or proteome data of DepMap we used are from original CCLE 
cell lines, but not those with loss of genes such as SMARCB1 related to lineage factor independence as described 
in another study39. As a result, we can not directly evaluate the lineage factor-related aspects on transcriptome 
and proteome of current DepMap data as in specifically designed experiments performed in the other study39. In 
addition, one study1 from our colleagues in the RAS program did show there are such RAS “converted” tumors 
in humans. A more detailed study on these converted lines is ongoing but beyond the scope of this study.

Moreover, our earlier research revealed that RAS gene expression is influenced by their mutational status, 
as well as by upstream and downstream genes40. Building on these insights, our current study utilized genomic 
data, including mutation status, gene expression from the same set of cell lines, providing robust support and 
consistency for the findings derived from both the differential gene analysis of CRISPR effect scores and the 
exhaustive computational screening analysis. Collectively, our observations strongly support the novel findings 
that RAS genes would act as the prominent pervasive oncogenic drivers across a wide range of tissue types. 
Oncogenic driver genes may interact with various other oncogenic driver genes that differ based on tissue origin, 
potentially acting as partners with RAS genes upon RAS mutation or even compensating for RAS genes in RAS 
wild type contexts, all of which contribute to oncogenesis. Our study thus further solidifies the pivotal role of 
RAS genes in cancer development and highlights their intricate interplay with other oncogenic drivers in a 
tissue-specific manner.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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