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RESEARCH ARTICLE
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Abstract
The predictability of neurocognitive outcomes in patients with traumatic brain injury is not

straightforward. The extent and nature of recovery in patients with mild traumatic brain injury

(mTBI) are usually heterogeneous and not substantially explained by the commonly known

demographic and injury-related prognostic factors despite having sustained similar injuries

or injury severity. Hence, this study evaluated the effects and association of the Brain

Derived Neurotrophic Factor (BDNF)missense mutations in relation to neurocognitive per-

formance among patients with mTBI. 48 patients with mTBI were prospectively recruited

and MRI scans of the brain were performed within an average 10.1 (SD 4.2) hours post

trauma with assessment of their neuropsychological performance post full Glasgow Coma

Scale (GCS) recovery. Neurocognitive assessments were repeated again at 6 months fol-

low-up. The paired t-test, Cohen’s d effect size and repeated measure ANOVA were per-

formed to delineate statistically significant differences between the groups [wildtype G allele

(Val homozygotes) vs. minor A allele (Met carriers)] and their neuropsychological perfor-

mance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up). Minor

A allele carriers in this study generally performed more poorly on neuropsychological testing

in comparison wildtype G allele group at both time points. Significant mean differences

were observed among the wildtype group in the domains of memory (M = -11.44, SD =

10.0, p = .01, d = 1.22), executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05) and

overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39), while the minor A allele carriers
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showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p =

.00, d = .86) and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66).The

minor A allele carriers in comparison to the wildtype G allele group, showed considerably

lower scores at admission and remained impaired in most domains across the timepoints,

although delayed signs of recovery were noted to be significant in the domains attention

and overall cognition. In conclusion, the current study has demonstrated the role of the

BDNF rs6265 Val66Met polymorphism in influencing specific neurocognitive outcomes in

patients with mTBI. Findings were more detrimentally profound among Met allele carriers.

Introduction
Mild traumatic brain injury (mTBI) due to road traffic accident (RTA) is one of the most com-
mon forms of head injury, afflicting millions of people worldwide [1–3]. The complex patho-
physiology of mTBI and the biochemical responses that occurs thereafter frequently results in
cognitive, affective or behavioral deficits [4–6]. A wide variety of complaints and symptoms
have been reported [7–11]. The predictability of these deficits are however not straightforward
[12]. Crawford et al (2002) and Pruthi et al (2010) in their respective studies noted that the
extent and nature of recovery in patients with mTBI are usually heterogeneous and not sub-
stantially explained by the commonly known demographic and injury-related prognostic fac-
tors [5, 13], despite having sustained similar injuries or injury severity [12, 14–15].

While there are many factors that may contribute to the outcome variability observed in
mTBI, reliable genetic or imaging prognostic markers are sparse. In recent years, the expression
and modulation of neurotropic genes, both normal and mutated, have been postulated as
potential prognostic markers [16]. A wide range of aberrant genes including apolipoprotein E,
dopamine β hydroxylase (DBH), cathecol-O-methyltransferase (COMT), calcium channel sub-
unit gene (CACNA1A), interleukins α and β, dopamine D2 receptor (DA D2) and brain
derived neurotrophic factor (BDNF) has been implicated to modulate the extent of injury [12,
17–19], regulating the cascading neurochemical response to the sudden impact or trauma
[12,17, 20–27], altering the natural recovery pathways [12–13, 28–38], adversely affecting the
cognitive recovery processes [32, 39–46] and behavioral functions [17, 46–52]. BDNF has been
implicated in many of these repair processes. It is an abundantly available neurotrophin in the
brain that is activity dependent [53–55] with a widespread distribution in the cerebral cortex,
hippocampus, basal forebrain, striatum and septum areas [56].

BDNF is also known to play a key role in the survival, differentiation, synaptic plasticity and
outgrowth of peripheral and central neurons throughout adulthood [57–60]. Missense muta-
tions within this gene are also known to influence both axonal and dendritic morphology
where the ocular dominance column development [61–62] and initial dendritic outgrowth are
altered [63–64]. While there are over 1768 missense mutations reported in BDNF [65], only
two are known to influence the expression level of BDNF, rs6265 (c.196G>A, p.V66M,
NM_001143814.1) [58, 66] and a dinucleotide GT microsatellite repeat designated as BDNF-
linked complex polymorphic region (BDNF-LCPR) located at the 5’UTR [58]. The rs6265 var-
iant has been reported to affect the regulated secretion, neural activation, and neuroplastic
effect of BDNF as well as neurocognitive functions in humans [29, 66–67]. It has been associ-
ated with memory and learning [29, 68–74] and as well as with aspects of executive functioning
[66, 75–80], including response inhibition [75], decision making [77–78], task-switching [79],
attention shifting and sequencing [80]. Meanwhile, the BDNF-LCPR variants on the other
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hand have been associated with an increased risk for bipolar disorder [81]. The focus of our
study, however, was limited to the broad concepts of BDNF-specific phenotype-modulated
structural alteration influencing neuro-regenesis (repair and adaptive synaptic organization)
[12, 51] and neurogenesis (active production of neurons, astrocytes, glia and other neural line-
ages) [12, 52] and its relationship with neurocognition.

Six missense mutations in BDNF [82–84], namely the rs6265, rs1048218, rs1048220,
rs1048221, rs8192466 and rs139352447 were selected. The rs6265 variant has been well studied
for its involvement in modulating recovery from brain injury but has yet to be investigated in
the Malaysian population. The rs1048220 and rs1048221 are within the crucial protease cleav-
age site for proBDNF and are reported to impair proBDNF cleavage; and rs1048220 and
rs104218 have been associated with Alzheimer’s disease [85–89]. However, none of these mis-
sense mutations have been explored in brain injury with the exception of rs6265 (BDNF Val66-
Met) [18, 20, 32, 40, 46, 58, 66, 75]. Hence, the objective of our study was to assess the effects
and association of variations within BDNF in relation to neurocognitive performance among
patients with mTBI.

Materials and Methods
A total of 61 patients with mTBI who presented to the Emergency Department of University
Malaya Medical Center, Kuala Lumpur between April 1st, 2013 and August 31st, 2014 were
recruited prospectively. We defined mTBI as an acute head injury, consisting of non-penetrat-
ing head trauma resulting in one or more of the following: confusion/disorientation; loss of
consciousness (LOC) less than 30 minutes; posttraumatic amnesia (PTA—less than 24 hours
in duration); transient focal neurological signs or seizures; and Glasgow Coma Scale of 13 to 15
upon acute clinical evaluation. These patients were assessed with baseline computed tomogra-
phy (CT) scans of the brain in the emergency department using a Siemens Somatom Sensation
16 CT scanner (Siemens AG, Berlin, Germany). A neuroradiologist (NR) and a neurosurgeon
(VN) who were blinded to the clinical diagnosis independently evaluated the images for each
patient. Patients who met the study criteria were admitted to the observation ward for 24
hours. Informed consent was obtained upon explaining the objectives of the study and as well
as the research protocols/procedures as per the approved guidelines of our local Ethics Com-
mittee for the study (UM/EC/949.15). Thirteen patients were later dropped from this study as
some refused screening of their genetic profiles, while others were later lost to follow-up, leav-
ing the final sample of 48 patients with their DNA analyzed for genotyping.

Genotyping
DNA was obtained from leukocytes using the phenol-chloroform extraction method [90].
Details of the six SNPs that were examined in this study are in Fig 1. The SNPs were genotyped
using Taqman1 allelic discrimination assays and genotyping was carried out on a 7500 Fast
Real-Time PCR machine (Applied Biosystems) using standard protocols as recommended by
the manufacturer. Genotypes were confirmed by polymerase chain reaction (PCR) and Sanger
sequencing in a random subset of individuals to determine the error rate for each of the Taq-
man SNP assays (see Fig 2 for the primer sequences).

Neurocognitive assessment
The screening module of Neuropsychological Assessment Battery (S-NAB Form 1) was used to
assess the neurocognitive performance of the patients by a clinical neuropsychologist (VV).
The assessments were done once the patient had recovered to a GCS score of 15 and was not
under any trauma related physical or emotional distress. The S-NAB comprises a
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comprehensive set of neuropsychological tests (refer to Fig 3), with demographically corrected
norms for adults between the ages of 18 to 97 years. Five cognitive domains i.e attention, mem-
ory, language, visuospatial and executive functions are evaluated through this battery. This bat-
tery consists of 12 individual tests across the five domains aforementioned. A total of 16 T
scores are then derived, 14 of which contribute toward five separate Screening Index (domain-
specific) scores and one Total Screening Index score [91–92]. The S-NAB Form 2 was used to

Fig 1. List of BDNF SNPs studied, chromosome position, minor allele frequencies and genotyping quality control values of study healthy
subjects, patients with mTBI and comparative haplotype groups. Abbreviation: MAF, Minor Allele Frequency; HapMap, Haplotype Map; CHB/HCB,
Han Chinese of Beijing; CHD, Han Chinese of Denver, JPT, Japanese of Tokyo; CEU,Northern andWestern European Ancestry, Utah; ESP-Cohort,
Exome Sequencing Project Cohort. 1 Reference minor allele frequency as reported in http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6265. 2

Reference minor allele frequency as reported in http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1048218. 3 Reference minor allele frequency as
reported in http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1048220. 4 Reference minor allele frequency as reported in http://www.ncbi.nlm.nih.
gov/projects/SNP/snp_ref.cgi?rs=1048221. 5 Reference minor allele frequency as reported in http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=
8192466. 6 Reference minor allele frequency as reported in http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=139352447.

doi:10.1371/journal.pone.0158838.g001

Fig 2. The primer sequences of 6 SNPs of BDNF studied.

doi:10.1371/journal.pone.0158838.g002
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repeat the same subtests in the screening module at 6 months by the same neuropsychologist
to assess the neurocognitive performance longitudinally.

Fig 3. List S-NABmodule subtests and areas of cognitive domains assessed, standard score range of
individual domains in S-NAB, and clinical interpretation of the scores.

doi:10.1371/journal.pone.0158838.g003
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Statistical analysis
All data management and analyses were performed using the SPSS statistical software (Version
22.0). Independent t-test was used to establish the differences in demographic features of the
sample, if any, based on their BDNF SNPs and allele status. The mean differences of the stan-
dard score (SS) across the time points against the allele carrier status [wildtype G allele (Val
homozygotes) vs. minor A allele (Met carriers)] were then analyzed using the paired t-test for
both categories. The Cohen’s d effect size (ES) was also used to measure the magnitude of the
differences and a comparison of the ES was done. Repeated measure ANOVA was then per-
formed to delineate statistically significant differences between the groups and their neuropsy-
chological performance across the time point (T0 = baseline/ admission vs. T1 = 6th month
follow-up), The Bonferroni post hoc correction for both multiple comparison and confidence
interval adjustment were administered. Any statistically significant (p< 0.05) major effects and
interaction were then noted. To assess the association between the allele carrier status and neu-
rocognitive performance, the Spearman correlation coefficient test was also used.

Results

Demographic Characteristics
The demographic characteristics of the study patients are presented in Fig 4. The study patients
were predominantly young males (87.5%), within the age range of 18 to 53 (75.0%) with a
mean age of 27.4 (SD 8.9). These patients had an average of 11.4 (SD 2.0) years of formal edu-
cation. The baseline (T1) neuropsychological assessment was conducted after the full GCS
recovery of the patients with an average turnaround time of 4.8 hours (SD 7.9) post trauma,
while the repeat neuropsychological assessment was done at an average of 6.1 (SD 0.1) months.
In order to look at clinically meaningful markers influenced by specific genotypes, we stratified
the group according to the SNPs (involving only rs6265 and rs1048218 as the rest of the SNPs
were monomorphic as discussed below) and their allele status. No statistically significant dif-
ferences were observed within the groups except in the presence of LOC (t = -2.026, df = 46,
p = 0.049), with a higher incidence among the A minor allele carriers.

Genetic results and correlation with neurocognitive performance
Genotype distribution and minor allele frequency. Six BDNF mutations were examined,

of which four (rs1048220, rs1048221, rs8192466, rs139352447) were found to be monomor-
phic. Only rs6265 and rs1048218 were found to be polymorphic in our population (refer to Fig
1). Both the controls and patients conformed to the Hardy-Weinberg equilibrium for rs6265
and rs1048218. The minor allele frequency for rs6265 was 46.7% in controls compared to the
patients (43.6%), but this was not significantly different (p = .380). The high MAF values is
comparable to what has been reported previously [93–97] and as annotated for East Asians in
the HapMap (41.8%) and 1000genomes (48.8%).

The rs1048218 variant had a low MAF in our population (2% in controls) that is also similar
to what has been reported previously and in HapMap and 1000genomes. As the variant was
present at a similar frequency in both the patients and controls, no further correlation analysis
was performed with this variant.

BDNF rs6265 vs. neurocognitive performance. Individuals with the A minor allele (cor-
responding to Met carriers–Met homozygotes/ Met heterozygotes) generally performed more
poorly on neuropsychological testing in comparison to those with the wildtype G allele (corre-
sponding to the Val homozygotes) at both time points. Fig 5 presents the significant mean dif-
ferences as observed among the group wildtype G allele in the domains of memory (M =
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-11.44, SD 10.0, p = .01, d = 1.22), executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05)
and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39), while the group with the
minor A allele showed significant mean differences in the domains of attention (M = -11.0,
SD = 13.1, p = .00, d = .86) and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d =
.66).

Further comparison of the effect size by the measurement (i.e. domain-specific SS) demon-
strated that the patients with wildtype G allele were 5.86 times more likely to perform better in
the domains of attention, 1.8 times in memory, 2.82 times in executive function and 2.1 times
higher in overall cognition (total index score) in comparison to the A minor allele over time.
Individuals with the minor allele showed considerably lower scores at admission and remained
impaired in most domains across the time points, although delayed signs of recovery were
noted to be significant in the domains attention and overall cognition.

ANOVA tests revealed that the different time points (T1 = admission and T2 = 6 month fol-
low-up) produced a significant main effect on neuropsychological SS [F (6,22) = 5.786,
p< 0.001, ηp

2 = .616], which was largely influenced by allele status [F(6,22) = 1.997, p = 0.110,

Fig 4. Mean of demographic details and stratified allele status specific clinical measures (in percentage).

doi:10.1371/journal.pone.0158838.g004
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ηp
2 = .353] based on the ηp

2 value (Eta-squared effect size: 0.02 = small, 0.13 = moderate
and 0.3 = large). Some interactions were seen in the neurocognitive domains of attention
[F (1,27) = 1.103, p = 0.303], language, F (1,27) = 1.159, p = 0.291, visuospatial, F (1,27) =
0.935, p = 0.342 and executive function [F (1,27) = 0.820, p = 0.373] [as seen in estimated mar-
ginal means (EMM) plot in Fig 6A, 6B, 6D and 6E]. However, only memory [Fig 6C] had a sta-
tistically significant interaction with the allele status [F (1,27) = 6.476, p = 0.02]. The overall
performance showed no interaction [F (1,27) = 0.305, p = 0.585] [see Fig 6F] across the time
points and allele status.

No statistically significant associations were observed across the neurocognitive domains
and specific allele status with the exception of the memory SS score at 6 months (r = -0.412,
p = 0.05). The memory scores of patients with the A allele were observed to be significantly
lower at six months follow-up.

Discussion
We explored the prevalence and possible association of six BDNFmutations with specific neu-
rocognitive functions in patients with mTBI over time. We observed a possible protective effect
of the G allele in rs6265, with better performance in the domains of attention, executive func-
tion, memory, and overall cognition among patients with mTBI. The “finer” performance by
those patients with the wildtype G allele in both neurocognitive and neurobehavioral measures,
have been consistently reported by other studies involving other CNS pathologies as well [32,
88, 98–99].

For example, McAllister et al (2012) demonstrated that patients with mTBI reported better
performance on measures of processing speed longitudinally among the G allele homozygotes
as opposed to those who were homozygote for the A allele [32]. Similarly, Chao, Kao and

Fig 5. Paired-sample t-test, Cohen’s d effect size (ES) calculation, and the comparison of ES by the measurement of the domain specific standard
scores (SS) across the time points (admission vs. 6 month follow up) based on the BDNF rs6265 allele status.

doi:10.1371/journal.pone.0158838.g005
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Porton (2008) reported that the age of schizophrenia onset in a group of non-related African
American patients (n = 42) was significantly later in G allele homozygotes [88]. Moreover, Perko-
vic et al (2014) showed that patients with schizophrenia who were G allele homozygotes were
better responders to pharmacotherapeutic treatment and demonstrated significant improvement
of clinical symptoms, including lesser conceptual disorganization and delusions [99].

While some studies have reported increased neurocognitive vulnerability in G allele homo-
zygotes [69, 100–102], we believe that the superior neurocognitive performance we observed in
our study may be due to the possibility that the G homozygous allele is associated with
increased activity dependent secretion of BDNF, increased synaptic plasticity, and better hip-
pocampus dependent memory and cognitive performance [99]. These mechanistic processes
have been well explicated in the works of Egan et al (2003) and Kauppi et al (2013) [29, 72].
The divergent influence of haplotype specific variants cannot be overlooked as well.

On the other hand, patients with the A allele in our study revealed mostly non-significant
trends of impaired neurocognitive performance with some interactions seen across the time
points in the domains of executive function and overall cognition. Additionally, the memory
domain saw statistically significant interaction over time and was also negatively associated

Fig 6. Estimated marginal mean of patients with mTBI, stratified according to their genetic allele status and their domain specific
neuropsychological test standard scores across timepoints. (A) Non-significant changes in the attention domain standard score (SS)
overtime, with Met carrier performing poorly in the acute stage. (B) Non-significant changes in the language domain standard score (SS) overtime,
with the Met carriers, performing poorly acutely, and remaining so overtime. (C) Significant interaction between the allele carrier status and
change in memory SS over time with the Met allele carriers showing signs of deterioration at 6 months post trauma. (D) Non- significant changes
in the visuospatial SS, intact in both allele groups. (E) Non-significant interactions between allele carrier status and neurocognitive performance
within the domains of executive function, with the SS recovery rate being slower in the Met allele carriers. (F) Non-significant changes in the
overall index SS, with the Met allele carriers remaining impaired over time.

doi:10.1371/journal.pone.0158838.g006
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with allele status, with evidence of regressing memory function at 6 months among the patients
with the G allele. Kauppi et al (2013) noted that this preferential effect on memory is in line
with the role of BDNF in the molecular processes underlying memory acquisition. Mechanisti-
cally, hippocampal or para-hippocampal BDNF is secreted during neural activation [72]. The
increased postsynaptic level of BDNF is known to influence the formation of new synapses in
the late phase long term potentiation (LTP), a process that is crucial for the acquisition and
storage of long term memories. A successful completion of this crucial molecular process is
however impeded when the activity dependent secretion and intracellular trafficking of BDNF
is reduced in the protein [29, 72].

Taken together, findings of the current study are the following: (1) only two non-synonymous
alterations of the amino acid were present in our study population (rs6265/Val66Met and rs
1048218) and the rest of the remaining variants were monomorphic in nature; (2) mTBI patients
with BDNF rs6265 Val homozygous allele showed significant differences in their neurocognitive
performance and were more likely to perform better than the Met carriers in the domains of
attention, memory, executive function and overall performance, both acutely and over time; (3)
the Met allele carriers of BDNF rs6265 had considerably low standard scores in most neurocogni-
tive domains observed longitudinally; (4) there was a significant main effect of the time points,
and the influence of specific allele status on neurocognitive performance observed; and (5) longi-
tudinal change in memory performance with evidence of deteriorating performance among the
A minor allele group (Met carriers) was observed. Strengths of the study include a relatively well
characterized homogeneous group of patients in terms of injury type or severity, a short time
frame from the time of injury to neurocognitive testing, detection of early neuropsychological
deficits in the acute stage, and a consistent reassessment interval at 6 months post trauma. How-
ever, there are certain limitations in our study that are worth noting. First, the method of dichoto-
mizing the patients’ allele carrier status category (wildtype G allele vs. A minor allele, both the
homozygous and heterozygotes) may have unequally diminished the dual allele effect of the A
minor allele homozygous vs. heterozygotes (Met/Met vs. Val/Met) on the neurocognitive perfor-
mance. Additionally, the sample size representing each arms of the rs6265 polymorphism was
rather small and should be increased in future longitudinal studies.

Conclusion
In conclusion, the current study has demonstrated the role of the BDNF rs6265 Val66Met
polymorphism in influencing specific neurocognitive outcomes in patients with mTBI. Find-
ings were more detrimentally profound among Met allele carriers. Our results strongly suggest
that the role of the Val66Met polymorphism in influencing neurostructural alterations and
cognitive and behavioral changes post-mTBI should be further explored. Such investigation in
future studies may have significant influence over the ways in which mTBI patients are cur-
rently managed and their outcomes predicted.
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