
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Energy Efficient Sensing for Unsupervised Event Detection in Real-Time

Permalink
https://escholarship.org/uc/item/7qn095t0

Author
Bukhari, Abdulrahman Ismail I

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qn095t0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Energy Efficient Sensing for Unsupervised Event Detection in Real-Time

A Thesis submitted in partial satisfaction

of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Abdulrahman Bukhari

September 2019

Thesis Committee:

Dr. Hyoseung Kim, Chairperson

Dr. Amit K Roy Chowdhury

Dr. Shaolei Ren

Copyright by

Abdulrahman Bukhari

2019

The Thesis of Abdulrahman Bukhari is approved:

 Committee Chairperson

University of California, Riverside

iv

Acknowledgement

I would like to express my thanks to my thesis advisor, Professor Hyoseung Kim

of Electrical and Computer Engineering Department at University of California – Riverside

for his boundless guidance and support during all my research stages.

I would also like to thank my committee members Professor Amit K Roy

Chowdhury and Professor Shaolei Ren for their valuable discussion and suggestions that

provides guidance to my PhD research plan in the near future.

I also wish to thank the Electrical and Computer Engineering Graduate Students

Advisor for her guidance and kind encouragement. She relentlessly answers all my

questions and concerns throughout my degree.

I also thank my lab mates for their continues help: Yecheng Xiang, Yidi Wang,

Mehdi Hossseini, Hyunjong Choi, and especially Mohsen Karimi. I would also like to

thank my colleagues in the Electrical Engineering Department: Abdel-Rahman Al-

Makdah, Yahya Sattar, Rakib Hyder, Sudipta Paul and Akbar Razah,

I would like to express my gratitude to the Saudi government and Umm Al-Qura

University for sponsoring my Master of Science Degree in Electrical Engineering at

University of California – Riverside and funding me that allowed me to pursue my graduate

studies

Finally, I would like to express my warmest thanks and appreciation to my parents,

especially my mother, for providing me with endless support and encouragement

throughout my degree. I also thank my all my friends and family-in-law, especially my

v

parents-in-law for their kind-hearted support. I also want to thank my baby son, Aws, who

showed me that nothing is impossible. Lastly, I would like to give my heartiest thanks to

the special person that stands by me, supports me throughout my entire journey and never

failed to believe in me, my dearest wife, Aliyah.

vi

ABSTRACT OF THE THESIS

Energy Efficient Sensing for Unsupervised Event Detection in Real-Time

by

Abdulrahman Bukhari

Master of Science, Graduate Program in Electrical Engineering

University of California, Riverside, September 2019

Dr. Hyoseung Kim, Chairperson

General-purpose sensing offers a flexible usage and a wide range of Internet of

Things (IoT) applications deployment. In order to achieve a general-purpose sensing

system that is suitable for IoT applications, several design aspects such as performance,

efficiency and usability, must be taken into consideration. The work of this thesis is

focusing on implementing an energy efficient general-purpose sensing system that is based

on unsupervised learning techniques for events labeling and classification. The system

clusters raw data collected from a variety of events, like microwave, kettle and faucet

running, etc., for classification. During the training phase, the system computes sensing

polling periods, based on the rate of change in classes, that are then feed into a dynamic

scheduler implemented on the sensor board in order to reduce energy consumption. The

system is deployed in a one-bedroom apartment for raw data collection, and system

evaluation. The results show that the mean accuracy of event classification is 83%, and

sensor data polling is reduced in average by 95%, which translates to 90% energy saving,

compared to the fixed polling period in the state-of-art approach.

vii

Table of Contents

I. Introduction ... 1

II. Related Work ... 4

A. Sensing and Classification ... 4

B. Data Acquisition Scheduling .. 6

III. System Framework .. 8

A. Sensor Architecture .. 8

B. Data Acquisition ... 10

C. Signal Preprocessing .. 11

1. Filtering High-Frequency Signals: ... 11

2. Slicing Signals: ... 12

D. Feature Extraction .. 13

1. Features Based on FFT and PSD .. 13

2. Statistical Features .. 14

E. Clustering and Classification ... 15

1. Training Stage... 16

2. Deployment Stage... 17

IV. Dynamic Scheduling.. 17

A. Motivational Example .. 19

viii

B. Problem Statement and Solution .. 20

C. Proposed Algorithms .. 20

1. Minimum Event Time-Interval ... 21

2. WCCL Constrained Polling Period .. 23

V. Evaluation .. 24

A. Classification Accuracy.. 24

B. Dynamic Scheduler Polling Periods ... 26

C. Dynamic Scheduler Latency Evaluation .. 27

D. Dynamic Scheduler Energy Reduction .. 29

VI. Discussion .. 30

VII. Conclusion ... 33

References ... 34

ix

List of Figures

Figure 1: The framework architecture .. 9

Figure 2: High-pass filtering effeccts on senors signals ... 11

Figure 3: FFT of the microphone signal with and without applying a high-pass filter 12

Figure 4: PSD of microphone signals for different events ... 13

Figure 5: Static sensor scheduling and events frequency ... 18

Figure 6: Classification accuracy and confusion matrix ... 25

Figure 7: Experimenting Algorithm 2 with different ε values .. 26

Figure 8: Latency evaluation based on the dynamic scheduler .. 27

Figure 9: Power consumption evaluation ... 29

file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636369
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636370
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636371
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636372
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636373
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636374
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636375
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636376
file:///C:/Users/Bukhari/Desktop/Thesis/thesis_draft_1.docx%23_Toc18636377

1

I. Introduction

The Internet of Things (IoT) promises interaction of a variety of objects with each

other enabling remote monitoring and control. One of many of IoT’s essential aspects is

sensing, wherein detecting changes in environmental facets enable tracking of the states of

a certain event. For example, a change in light intensity in a room can determine the state

of lighting as turned on or off. In addition to that, one of the most significant design

considerations in IoT is energy consumption because most IoT devices are portable

embedded electronic hardware requiring a long-lasting battery life.

In order to achieve sensing of various elements within an environment, several

approaches have been studied. One approach is using single sensor for each sensing

element. This approach can be robust in application with single objective such as detecting

the state of lighting. However, in higher dimension applications that require sensing

multiple facets, using single sensor approach is a complex and costly due to the fact that

several sensors must be installed and integrated together to sense all the elements in the

environment. Another alternative is using a single sensor for multiple events detection.

This technique, however, requires that all events must be detected using one facet by

wearing a sensor [2], or install it on a fixed place in a closed environment [3].

Similarly, a network of the same sensor can be installed around an environment to

recognize activities related to one sensing element [4]. Although these approaches enable

detecting a variety of events, they can be only deployed in single element sensing

applications. Meaning, these techniques cannot be implemented in an environment that

2

different events are represented by different sensing facets. General-Purpose sensing

approach can be considered as the most effective approach for detecting states of different

events that are sensed through different facets. An example of general-purpose sensing is

a sensor board packed with various sensors that capture many sensing elements as raw data

and then classify them into different categories [1].

As for power consumption reduction, two approaches can be considered. The first

approach is by using a prediction model that can estimate sensor values, and the system

uses these values instead of inquiring new readings periodically [5, 6]. As a result, the

system will only request reading when there is a significant change in its value leading to

lesser energy consumption. This approach can be only sufficient in case sensors values in

a batch from a sensor network are correlated both temporally and spatially. The second

approach is by changing sensor polling periods dynamically. In order to do so, the

framework can maximize the polling period [7], or find an optimized period [8], for the

scheduler without affecting the quality of the data. This approach is efficient when data

changes periodically.

The thesis interduces an energy efficient sensing for event recognition using

unsupervised learning techniques for labeling and classification. The design of the

proposed framework mainly consists of two parts. First, the sensing part, motivated by the

work done by Gierad et al. [1], wherein the sensor board collects raw data of three different

environmental facets, instead of sensing twelve facets as purposed by [1], through a

combination of three sensors. The raw data is then preprocessed and prepared for feature

3

extractions. These features are fed into K-Means clustering algorithm [9] for labeling,

analysis and event classification.

The second part of the system, which is the focus of this thesis, is reducing the

energy consumption of the system by designing a new scheduler, motivated by

Seonyeong’s and his colleagues’ work [8], that computes a dynamic polling periods for the

sensor board. The scheduler assigns a different period for each event based on the rate of

change in classes during the training phase. In case an event is detected, the system will

enter idle mood for the duration of the assigned period since the recognized event is

expected to remain unchanged until the period is expired. Therefore, the system will be in

idle mood more frequently during events classification leading to reduction of the overall

power consumption of the system.

The contributions of the thesis are:

• Implementation of a new dynamic scheduler based on the rate of change in classes

for real-time event detection

• Two algorithms proposed to compute the polling period of the dynamic scheduler

with latency guarantee

• Using unsupervised technique simplifies the labeling of raw data into labels without

significant classification accuracy loss

The thesis has seven sections. The next section will review recent literatures related to

the proposed framework, focusing on events sensing and sensors scheduling approaches.

In section III and IV, the system framework is introduced and discussed thoroughly,

specifically data acquisition, data preprocessing, feature extraction and classification, in

4

addition to, the algorithms to find appropriate polling period for dynamic scheduler. Both

classifier and scheduler are evaluated in section V. In the later section, discussion of

findings, challenges and possible future work is presented, and then conclude.

II. Related Work

The work in this thesis combines two areas of research, sensing and energy

consumption. These areas of research have been widely explored previously. Thus, the

following subsections will discuss recent literatures on activity sensing and data acquisition

scheduling.

A. Sensing and Classification

There have been many significant works done related to activity recognition based

on different sensing approaches. One approach is using a single sensor is to detect several

events. For example, an accelerometer has been used to recognize body activities, such as

standing, walking and running [2]. This work is based on meta-level classifier, which is

then compared to other base-level classifiers’ performance. The meta-level classifier

achieves high accuracy on average. However, inconsistent results showed across different

experimentation set-ups, and some activities were hard to recognized and confused with

other ones. This could be related the features selection, where only statistical features, such

as mean, standard deviation, energy, etc., are used. Using advanced signal analysis tools,

like the Fast Fourier Transform (FFT) could provide richer signal information improving

the classification accuracy.

5

Similarly, the work done by Chen et al. [3] uses the sound detected by using a

microphone to detect activities in the bathroom. Targeted activities include showering,

toilet flushing, teeth brushing and hand washing. The system also provides additional

information such as the date and time of use and the duration of each activities. The system

evaluated in continuous real-time and achieved an average accuracy of 83%. The paper

only considered Mel-Frequency Cepstral Coefficient (MFCC) method for features

extraction and Hidden Markov Model (HMM) for classification, whereas there may exist

better approaches, such as Support Vector Machine (SVM) as in [1] to achieve higher

accuracy for supervised learning approach.

Another work that based on a single environmental facet sensing is ElectriSense [4]

that can detect and classify the usage of electronic devices, which uses switch mode power

supplies (SMPS), to analyze the electromagnetic interference (EMI) signals. By observing

a power line, a new device operation will interduce a new EMI signal, and by subtracting

the new signal with the baseline noise, features are extracted. Features are then fed into a

K-Nearest Neighbor classifier for event detection. ElctriSense is able to classify the usage

of electrical devices with an average accuracy of 93.82% from a single point at home. The

single point application gives the user the freedom to place the sensor anywhere and still

able to detect the usage of electrical devices across home. Although single sensor approach

as in [2,3,4] achieves the application requirement, none qualifies as a general-purpose

sensor because all events detected can be sense with a shared sensing element.

The sensor tag proposed in [1] achieves general-purpose sensing by combining nine

different sensors that sense 12 environmental facets into a sensor tag. The collected raw

6

data are classified into a wide range of events. The system framework extract features on

board, leading to extensive computational cost, using FFT for high sampling rate sensors,

such as the accelerometer, and statistical features for the low sampling rate ones, like

temperature. The features are then sent to a server for more processing and assembling

feature vector, which is fed into a machine learning model (SVM) for training and

classification. The system supports two learning modules, manual learning (supervised

learning) and automatic learning (unsupervised learning).

The sensor tag accuracy was evaluated based on 38 different events for seven days

by collecting data on one day and test the classifier on the other. The average accuracy for

supervised learning model was 96% while ranging from 88% to 30% for unsupervised

learning. Synthetic Sensors shows promising results toward achieving general-purpose

sensing with the ability to recognize a variety of events accurately. However, power

consumption has not been studied in this work, nor other related sensing designs previously

discussed, which motivated the sensor proposed in this thesis to explore energy efficient

general-purpose sensing framework.

B. Data Acquisition Scheduling

Scheduling data aqusition in order to lower power consumption has been broadly

discussed in IoT and real-time frameworks. Gedik et la. [5] introduced a dynamical data

collection approach in a sensor network. By setting a subset of sensors as sampler for data

collection where the values of the other subset of sensors (non-sampler) are predicted using

probabilistic models. This way, the energy consumption in the sensor network is reduced

and the quality of the data collection can remain high. Another proposed approach is

7

integrating an adaptive enable/disable prediction method to reduce the energy consumption

of sensor networks [6]. The framework can use several advanced features such sleep/awake

scheduling. These two approaches are based on the predicting the value of the sensor using

probability models. In other words, they require the data to be spatially and temporally

correlated, which is not the case when in a sensing system that has few sensors or a single

sensor.

The work by Han and his colleagues [7] suggests a new adaptive data collection

method for different sensor networks models. Changing the state of the sensor from sleep

mode to active requires more energy. So, changing the state rapidly consumes excessive

energy in addition to unnecessary delay. Therefore, the transition time between states must

be selected such that energy consumption and latency are optimized. This approach

motivates the algorithm proposed to find an appropriate polling period such that the

classification latency is limited.

The framework proposed in [8] analyses the sensor values, conditions and

constraints to find a flexible polling interval for each sensor to achieve efficient sensing.

One of the RT-IFTTT component is the sensor polling scheduler, which calculate the

polling period for each sensor. It changes the period based on the rate of change in data

and the probability of whether a triggering condition will occur soon or not. However, this

framework is inefficient with events sensing applications because environmental facets of

interest in this work changes slowly, e.g., temperature, humidity, etc., compared to

vibration and sound captured by an accelerometer and a microphone running at high

frequencies.

8

III. System Framework

The high-level architecture of the sensing system consists of two stages; data

acquisition, and classification. There are sub-processes within these two stages and a data

transfer medium in between. This section will interduce the system framework in details,

followed by the data acquisition stage and the communication protocol. The server side

will then be explored in depth, where raw data are prepared for classification. The proposed

scheduler computes the dynamic polling periods based on the speed of change in classes.

A. Sensor Architecture

The system framework consists of a sensor board and server with a Bluetooth Low

Energy (BLE) layer in between as shown in figure 1. The main microcontroller of the

sensor board is from Texas Instrument, the CC2640R2 LAUNCHXL Board [10], that is

packed with an ARM Cortex-M3 CPU supporting up to 48MHz. The MCU features a low-

power sensor controller, which support off-board data acquisition reducing the load on the

main CPU. It is also BLE 4.2 [11] compatible supporting one of the design considerations

in achieving lower energy consumption.

There are two digital sensing components attached to the MCU and an analog one.

The digital sensors, a 3-axis accelerometer and an illumination sensor, are connected

through I2C protocol at 400KHz, while the analog sensor, the microphone, is connected to

9

the sensor controller that support different sampling rates. Raw data are collected in the

sensor board and are sent periodically to the server for further processing.

The server side is based on a Raspberry Pi 3 – model B featuring with a quad-core

64-bit ARM Cortex A53 1.2 GHz providing adequate computational power and portability

for IoT application, in addition to, supporting BLE 4.2 communication protocol. It

preprocesses the raw data received at high sampling rate from the accelerometer and the

microphone, before feature extraction. The extracted features are fed into a K-means model

for clustering, during training phase, and classification, during employment phase. During

the training stage, the duration of each event is used to select the polling periods for each

class.

Figure 1: The sensing architecture consists of the sensor board for data acquisition and the server for

featurization and classification

ARM Cortex-M3

Sensor

Controller

 Data

Preprocessing

Feature

Extraction

Event

Classification

Dynamic

Scheduler

Raw Data over BLE

4.2

Updated Polling

Period

MPU 9250

Accelerometer

TCS 34725

Illumination

Sensor

ADMP401

Microphone

I2C

ADC

Sensor Board Server

Raspberry Pi 3 – Model B

LAUNCHXL – CC2640R2

10

B. Data Acquisition

In this framework, there are a total of three different sensors with different sampling

rate. Both the accelerometer and the microphone are sampled at high frequencies, 4kHz

and 5.8 kHz respectively, to capture a wide range of vibration and sound spectrums, while

illumination sensor is sampled at 10Hz since the change in this element is considerably

slow. In order to achieve high sampling rate, the accelerometer data are buffered in a 512

bytes buffer supported in the MPU9250 chip [12] before the MCU reading. As the buffer

approaches overflowing, the MCU reads it and store the data in an array. A Mean-Moving-

Window (MMW) is passed on the accelerometer signal to reduce the noise and the packet

size, by using fewer number of data points, to meet the limitation of BLE bandwidth. The

microphone is connected the Sensor Controller [10] through an Analog-to-Digital

Converter (ADC), which is also support the sound signal buffering. MMW is applied to

the microphone signal to reduce the overhead of data transferring as well.

Overall, the sensor board send eleven packets per second to the server over BLE,

transferring a total of 512 data points the accelerometer, 704 data points for the

microphone, and a total of 10 data points for the illumination sensor.

11

C. Signal Preprocessing

Since the data from Accelerometer and Microphone are collected at high sampling

rate, it requires more processing than the ones from the illumination sensor. Therefore, a

high-pass filter is applied first to remove the effects of the DC components. Signals from

all sensors are sliced into different sized windows to prepare them for feature extraction.

The following sub-sections will discuss these steps in details.

1. Filtering High-Frequency Signals:

The data collected from the accelerometer and the microphone contains noise and

other factors, such as the DC components, that affect feature extraction. Therefore, filtering

is a necessary step in order to reduce these effects before extracting features. In this case,

an MMW filter is applied to both the Accelerometer and Microphone signals in the sensor

board to reduce the noise before sending the data. After that, a high-pass filter is applied to

cut low frequencies that will remove the DC gain effect.

Figure 2: The microphone signal and Z-axis signal of the accelerometer before and after applying the high-

pass filter

12

It is clear from figure 2 that both signals have the same amplitudes and shifted to

zero. This is because the DC components from both signals are removed. This is important

in feature extraction because DC component has a very high amplitude and will take most

of the energy after applying Fast Fourier Transform (FFT) [13] or Power Spectrum Density

(PSD) [14] analysis on the signals. Figure 3 demonstrates the necessity of applying a high-

band pass filter on the accelerometer and microphone signals.

2. Slicing Signals:

Signals collected for training from all sensors are continuous and need to be sliced

into fixed windows. In high level, this is needed to make the signal periodic, especially in

the case of applying FFT since it assumes that the periodic signals. Different window sizes

are applied to each sensor based on the sampling frequency.

Signals coming from the accelerometer and microphone are sliced into 512-points

and 704-points windows, respectively, with 25% overlap. Each window passes through a

hanning function to avoid leakage that may be caused after applying FFT. Signals from

Figure 3: (a) shows the FFT of the microphone signal without any filter, while (b) is the same signal after

applying a high-pass filter which improve peaks detection

13

illumination sensors are slices into a 10-points windows with 25% overlap. After signals

have been filtered and sliced into windows, there are ready for feature extraction.

D. Feature Extraction

Since sensors data have different sampling frequencies, two feature extraction

approaches have been used. For signals with high sampling rate from the accelerometer

and the microphone, FFT and PSD tools are used to extract features, while statistical

information, the mean, variance and range, are used as features for the illumination sensor

signal. Both methods will be discussed in the coming subsections.

1. Features Based on FFT and PSD

FFT and PSD are very important tools to analyze signals, especially these with high

frequency. Both techniques transform signals into frequency domain for better analysis.

Figure 4: PSD of microphone signals for different events comparing their peaks

14

FFT is used to compute the Discrete Fourier Transform (DFT) but with lower

computational cost. The signal is characterized by its magnitude and phase, instead of

amplitude and time. As a result, it is more efficient to recognize events by their frequency

and magnitude. PSD is similar to FFT but distribute the signal’s magnitudes into frequency

bins instead of distributing them over all frequencies. Using these two powerful signal

processing tools, the system can find the peaks in the frequency response and use these

peaks as features as shown in figure 4.

In order to extract features from accelerometer and microphone signals, FFT and

PSD are applied on the windows extracted from previous preprocessing stage and the peaks

with highest magnitudes will be used as features, where for each peak only the frequency

is selected due to the fact that the magnitude value changes depending on position of the

sensor board. The code to extract these peaks is based on the repository provided by [15].

In this framework, the highest five peaks are chosen as features from each window. Since

each feature consist of 1-point, each window will produce 10 feature points, 5 peaks from

each FFT and PSD. Therefore, the dimension of the feature matrix of accelerometer and

the microphone, in the training phase, will be of the number of windows by 10 features.

During testing and deployment, the server will compute a 10-element feature vector for

each sensor.

2. Statistical Features

Three statistical features, the mean, variance and range are selected for the

illumination sensor. Each of these is extracted on a single window which consist of ten

points. Therefore, the size of the feature matrix extracted from the illumination sensor is

15

the number windows by three during training, and a 3-elements feature vector during

deployment stage.

All collected features are normalized in a range between (0-100) since K-means

algorithm is based on the Euclidian distance. If features are not normalized, those with

large values will cause cluster centers draw to them, which will decrease the classification

performance and interduces labeling errors. After all features are normalized, the feature

vector is created by concatenating all the features. The feature vector, which contains 23

features is analyzed by an unsupervised learning technique, namely K-means, to cluster the

data for labeling and classification.

E. Clustering and Classification

Collecting raw data from different sensors for a variety of events and manually

label each event is a time-consuming procedure. Therefore, the framework is based on

unsupervised learning techniques which reduces the complexity of the sensing problem by

labeling clustered data as events, then using the same trained model to verify the

correctness of the classes.

The procedure of data cluttering, events labeling during training phase, verification

of classes, and system deployment is performed by two different systems. The training part

is done on a personal computer featuring an i7 Core CPU and the deployment stage is

performed on the server, the Raspberry Pi 3 model-B. Both systems support Python and

sci-kit learning package [16], and they use the same signal preprocessing, feature extraction

and K-means model. The following sections will explore both stages in details.

16

1. Training Stage

It is more efficient to use a PC since the training stage is offline and requires deep

analysis dealing with large data sets. After collecting the training data on the system, these

data sets are transferred to the PC for analysis. As described previously, the raw data are

preprocessed for feature extraction. After the feature matrix is created, the K-means model

implemented in sci-kit learn package is used to cluster features into different classes. The

training data set is collected in the presence of five kitchen events; microwave, faucet,

kettle, waste disposal, cooking vent, for 15 minutes for each event. The state of each event

is whether it is running (on) or unused (off). During unused (off) state, the scheduler

considers it as a no event period. Notice that each event affects different environmental

facets. For example, a kettle running produces vibration and ambient sound, while the

cooking vent change the light intensity since its lamps is turned on while being used. So,

during K-means clustering, the expected number of clusters is six.

After the clustering is performed, the model is verified on a different data set

collected before deploying the model to the server for real-time testing. To verify the

model, different data sets are collected for each event. Features are extracted from each

date set after being preprocessed and these features are fed into the trained model for

labeling. The model is expected to classify each data set with a distinct label. It is expected

to see a no-event label within each set.

The system is re-trained after verification but with adding the verification dataset

and additional analysis is performed for the dynamic scheduling which will be further

discussed in a later section in the thesis.

17

2. Deployment Stage

The model is transferred to the server for testing and deployment after verifying

that each event is classified correctly. During this stage, the server will run in real-time

unlike the offline training phase. The sensor board send raw data as described in the data

acquisition section periodically every second to server. The server waits for all the packets

to be received and buffer different signals into separate windows as expressed earlier.

After all packets are received and the windows are ready, accelerometer and

microphone signals are filtered using a high-band filter then passed through FFT and PSD

to find the highest five peak frequencies, and statistical features are extracted from the

signal of the light sensor. After that, these features are concatenated to create a feature

vector that is classified by the K-mean trained model. The accuracy of the classifier is

evaluated at this stage without the proposed dynamic scheduler. More details are provided

regarding this in the evaluation section.

IV. Dynamic Scheduling

In this work, the main objective of the system design is reducing energy

consumption. This design consideration is important because the system can be deployed

on a battery as a power source, which allow placing the sensor at a location close to the

environmental facets of interest. There are three main components in the sensor board that

consume energy, the CPU, the BLE, and the attached sensors. The best approach would be

putting all these components to sleep when there is no change in classification. However,

18

Figure 5: Sensor static scheduling and events operating frequencies

19

scheduling data transition through BLE is sufficient to illustrate this paper approach

efficiency for energy reduction since the BLE consume a significant amount of current

estimated at 120µA/Byte when transmitting, while approximated only 1µA in standby [17,

18].

A. Motivational Example

In sensors design, data acquisition scheduling is one of the most common research

approaches as in [5-8]. Instead of inquiring sensor reading continuously at a high sampling

rate, the sensor will only transmit data when needed. Determining the demand for new data

depends on the type of application. In event detection application, using probabilities to

predict the value of the sensor, like in [5, 6] is not viable because the data of different

events are not temporally correlated, as events can occur at any time instance. Conversely,

finding the appropriate polling period for the sensor based on the rate of change in event

state is feasible.

As shown in figure 5 (b-f), each type of event runs for different time intervals. The

sensor data will not change significantly during this time period since the event classified

is still running. Hence, the sensor can be idle as it is not required to transmit data over this

period. However, this period is not constant for each event, e.g., the microwave could run

for 10, 30, 60, 120 seconds or more based on personal usage, while kettle could run for

longer time based on the water level inside it. Therefore, it is necessary to determine a

suitable idle sensor period, polling period, for each classified event.

20

B. Problem Statement and Solution

To meet the design requirement of reducing energy consumption, the framework

must support a scheduler such that the sensor will be idle for longest possible period. The

sensor will not transmit data during the polling period, which will lead to energy saving.

Another important factor in choosing polling periods is worst-case classification latency.

This latency occurs when the sensor is idle and the actual classified event changes during

this period. Thus, the problem of this thesis can be expressed as.

Problem Statement: the problem is to find a polling period for each classified event such

that the following condition is met.

Condition: the polling period of each event must not exceed the worst-case classification

latency (WCCL) defined by the user.

𝑁 × 𝑇𝑝𝑝 − 𝑇𝑒 ≤ 𝑊𝐶𝐶𝐿

where Tpp is the polling period assigned by the scheduler for each event, Te is the time

when the event actually ends, and N is the number of times the polling period is repeated

until the classifier recognize a new event. In order to solve this problem, a dynamic

scheduler based on the rate of change in classified events is implemented in the framework.

The scheduler will assign different polling period for each event, such that the sensor will

be idle for that period.

C. Proposed Algorithms

To determine the polling periods, this work proposes two algorithms, the first one

is simply choosing the minimum event time-interval as a polling period for each event, and

21

the second algorithm is finding a base-period, such that the time between the actual end of

an event and the classification changes is within the WCCL.

1. Minimum Event Time-Interval

As shown in Alg.1 pseudo-code, this algorithm simply chooses the minimum

period of an event among all other periods found based on the classifier results. Although

this approach may not satisfy the condition in the problem statement, its contribution to

energy reduction is significant. Different events run for various time intervals, and each

event has different rate of changes depending on personal usage.

As can be seen in figure 5 (b-f), for the events {microwave, kettle, waste disposer,

faucet, vent fan, no event} the shortest running periods based on the training data are {30,

46, 24, 59, 67,24} seconds. The no event class is when the classifier does not detect any

activity. The purpose of adding no event class period in the scheduler is to avoid excessive

data transmission by fixing the polling period at one second. Accordingly, Alg.1 uses these

shortest periods for each class as the sensor polling periods. Based on the event detected

by the classifier, the server will request the sensor to halt transmission and enter idle mode

for the period corresponds to the detected event.

The power saving due to this approach can be significant, as will be discussed in

the evaluation section, since the sensor will be on idle mode for periods of 24 to 67 seconds

22

each cycle. In contrast, frameworks with static scheduling, as in [1], runs continuously at

high sampling rate leading to excessive usage of energy. Of course, this algorithm will

compromise WCCL, whereas it only considers the smallest period that is not necessarily

an integer multiple for other periods of the same event. To clarify this with an example, if

the polling period chosen is based on the pervious Alg.1, and the system detected that the

microwave is running. The sensor will be idle for 30 seconds. Assuming that the

microwave was running for 50 seconds, the sensor will be idle for additional 10 seconds

23

before the system recognize that the current event ended. Consequently, a different

algorithm is introduced that solves the stated problem while meeting the WCCL condition.

2. WCCL Constrained Polling Period

As stated in the previous scenario, the additional idle period that causes

classification latency can be guaranteed if the multiple of the polling period (Tpp) does not

exceed the event classifier-based periods by ε (WCCL), which is defined by the user. A

naïve approach would be using Greatest Common Factor (GCD) of all occurrence intervals

of an event, which would result in one second as polling period for most cases. Thus, a new

algorithm is proposed that approximate the largest factor of all periods and guarantees the

WCCL condition. Looking back at the microwave example, if the polling period was 8

seconds instead of 30 seconds with WCCL of 4 seconds, the sensor will be idle for 4

seconds after 9 cycles compares to 10 seconds.

The algorithm proposed is an exhaustive search-based algorithm that will select the

polling period found by the alg.1 as a base period. This period is compared to all other

event occurrences periods such that the difference after N cycles does not exceed the

WCCL condition. If Tpp failed the test, it will be decremented by one, and the search will

be repeated until the polling period is found. In case Tpp reaches 2 seconds, it will be

selected since the sensor will be idle for half the total operation time in worst-case,

assuming the user will select ε greater than one. The user has the freedom to choose a

consistent ε for all events or specify a unique one for different events based on the

importance and tolerated latency.

24

V. Evaluation

To show that the framework meets the design consideration, classification accuracy

and energy efficiency, four experiments are performed. The purpose of the first experiment

is to evaluate the accuracy of the classifier based on K-means, an unsupervised learning

technique, without the dynamic scheduler. The second part of the evolution is finding the

effects of ε on the polling periods based on Alg.2 and selecting Tpp randomly. These

selected polling periods, in addition to the ones computed by Alg.1, are used in the next

experiment to explore the latency introduced by the dynamic scheduler and compared it to

the static scheduler, similar to previous sensing work [1-4]. Lastly, the power consumption

is studied, which shows significant energy reduction compared to [8]

A. Classification Accuracy

To evaluate the performance of the classifier, the trained model is deployed to the

server, the Raspberry Pi 3 – model B, which is connected to the sensor tag, based on the

CC2640R2 LAUNCHXL Board, via BLE transition medium. In this experiment, the

dynamic scheduler is not integrated into the system, since the main objective is to evaluate

the accuracy of the classifier. The system is deployed to the same location, a kitchen in a

one-bedroom apartment, where training data has been collected with similar conditions.

Events occurred at different time instances, and the classes is decided based on the detected

event every second.

25

For each class, the test is repeated ten times, one minute for each event, and the

classification is recorded every second. If the classification matches the actual event, it will

be considered as correctly classified. Otherwise, it is a misclassification. The total number

of correct classifications is divided by the 60 for each test per minute. The results are

averaged as shown in figure 6, whereas kettle and vent fan events are detected with a 100%

accuracy. The microwave event accuracy comes next at 83.3%, while faucet and waste

disposer events are classified with relatively low accuracy at 68.3% and 63%, respectively.

The confusion matrix shows 14 false negatives and 19 false positives between the

microwave and the faucet. This miss classification is because these two classes shares

common frequencies as shown in the FFT and PSD analysis previously discussed. The

waste disposer is confused with the kettle with 14 false positives as both emits similar

vibration that is captured by the accelerometer. The overall Miss Rate = 0.20 which is

computed by dividing the total number of false detections by the number of classifications.

Figure 6: Classification accuracy and confusion matrix based on the result of 5 different classes deployed at

real-time experiments

26

B. Dynamic Scheduler Polling Periods

The objective of this experiment is to test a range of ε, from 1 to 15 as the worst-

case classification latencies, and explore its effects on Tpp. Obviously, Tpp increases as the

user chooses larger values ε but the change is not linear for all events, e.g., the polling

periods of the kettle and vent fan reaches 25 seconds when ε is 13 and 14 seconds,

respectively.

As for the next two experimentations, the polling periods of each class is selected

randomly with different ε values to study the classification latency and energy

consumption. The highest polling periods of 25 seconds is chosen for kettle and vent fan

classes with WCCL of 13 and 14 seconds, respectively. For microwave, waste disposer,

faucet and no events, the polling periods selected are 16, 14, 20 and 15 seconds with ε of

9, 7, 13 and 11 seconds, respectively. These periods are relatively lower than the ones

Figure 7: Experimenting Alg.2with different ε values and explore its effects on Tpp

27

selected by Alg.1, as shown in the Algorithms subsection. All selected Tpp are feed into the

implemented dynamic scheduler to simulate real-time deployment.

C. Dynamic Scheduler Latency Evaluation

The dynamic scheduler is deployed with the selected polling periods for each class

from the previous experiment based on Alg.2 and Alg.1. The test is simulated three times,

where the first one the framework runs with static scheduler, at a fixed polling period of 1

second, to recognize events at real-time. The duration of each event, randomly performed,

is captured using a timer in order to repeat the exact pattern of events for the experiments

with the scheduler.

Figure 8: Latency evaluation based on the dynamic scheduler against the state-of-art approach

28

The scheduler based on the WCCL constrained polling periods algorithm latency

performance significantly exceeds the minimum event time-interval algorithm. Alg.2

scheduler closely matches the static scheduler pattern with a slight delay at detecting the

first event as clearly seen in figure 8 (a). However, since the polling periods are marginally

large for both algorithms, there is a two event state changes missed by the minimum event

time-interval algorithm after faucet detection, while one change is missed by the WCCL

constrained polling periods based scheduler as the actual time between no event and waste

disposer event was only 9 seconds.

It is evident that the state-of-art, with static scheduler, has a superior performance

when it comes to latency since event classification occurs continuously meeting real-time

applications requirement with almost zero latency. Still, many applications are latency

tolerant, such as sensing home appliances states which does not result in unwanted

consequences when the latency is constrained. According to figure 7 (b), the dynamic

scheduler with Tpp based on Alg.2 has an overall cumulative latency of 80 seconds over a

deployment of one thousand seconds (8%), while Alg.1 based Tpp has 140 seconds overall

latency over the same span, making it 175% more than WCCL constrained polling periods

approach.

The maximum classification latency due the WCCL constrained polling periods-

based scheduler is 13 seconds, the minimum is 5 seconds, and the average latency is 9.25

seconds. On the other hand, the minimum event time-interval based approach has a

significantly high delay reaching 35 seconds, while the least latency captured was 7

29

seconds. The average latency in this case is 17.87 seconds, which is almost double the

average latency compared when the scheduler is based on Alg.2

D. Dynamic Scheduler Energy Reduction

The most advantage of integrating a dynamic scheduler in a sensing framework is

to reduce the number of data polling requests, leading to more idle (inactive) time on the

main sensor which signify the average current reduction. This experiment is based on this

the simulation results from the previous section, which indicates remarkable efficiency.

Figure 9 (a) compares the number of BLE transmissions based on a dynamic scheduler

compared to the static scheduling approach. The transmitted BLE packets using WCCL

constrained polling periods-based scheduler is approximately 6% of the total number of

transmissions made by the static approach, and 3% for minimum event time-interval based

scheduler. With respect to the latency performance achieved by Alg.2 as discussed

previously, 3% polling requests more compared to Alg.1 is relatively neglectable.

To approximate the power consumption, according to [17], each transmitted byte

leads to a 120µA consumption. However, another important factor in power consumption

Figure 9: Power consumption evaluation based on the number of data polling request and the average

current of the BLE packet transmission

30

is the BLE connection interval and based on the energy calculator tool provided by Texas

Instruments [18], the active current of the sensor is approximated to 603.9 µA. Therefore,

the average current can be computes as follows.

𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐼𝑎𝑐𝑡𝑖𝑣𝑒 𝑥 (𝑇𝑖𝑚𝑒𝑎𝑐𝑡𝑖𝑣𝑒/𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙)

Figure 9 (b) demonstrates a significantly low average current for dynamic scheduler

approaches, and a high linear one for the static scheduler mechanism. The state-of-art

shows a significant active current 600 µA that is 33× and 17× more than dynamic

scheduling with minimum event time-interval and WCCL constrained polling periods,

respectively. Although the Alg.1 achieves notable energy reduction, its latency

performance limits its benefits. Subsequently, a dynamic scheduler based on Alg.2 is a

potential approach for realizing energy efficient sensing framework.

VI. Discussion

The framework passed through several development stages to complete, from

designing and implementation to experimentation and deployment. During these stages

several findings and challenges were recorded. This section will focus on these that are

mainly related to the thesis work, namely: classification accuracy, environmental facets,

and dynamic scheduling algorithms, in addition to, possible future work.

Improving the classification accuracy requires deep understand of the design

limits. The factors that lead to the classifier error rate can be grouped into three

categories. Firstly, FFT and PSD peaks contribute to this loss because some events share

common frequency peaks as shown in figure 4. Although these peaks have different

31

amplitude, the features are selected based on the frequency value of these peaks. Thus,

to avoid classification confusion, the amplitude values could be used as features, but this

will limit the deployment location of the sensor as it will become sensitive to amplitude

changes.

Additionally, both signals proceed using similar tools to avoid additional

computational cost on the server. So, different signal processing tools can be used for

accelerometer and microphone signals, e.g., using MFCC for microphone signals similar

to [3]. Furthermore, the accelerometer was expected to be more sensitive when running

at 4kHz according to [1, 19] but only the kettle and waste disposer events vibration were

captured. One explanation to this is due to the weight of the sensor, where the breakout

board of each sensor are used on the tag, leading to heavier weight and lesser vibration

sensitivity. The weight can be reduced in future work by designing a custom circuit board

using the required sensors only.

Second potential improvement can made on data transmission medium. Since

BLE has limitations on its actual bandwidth, signals have been averaged before

transmission to reduce the overhead resulting in a decreased data quality. However, BLE

was used in this framework since it provides the system with lower energy consumption

compared to other mediums. Hence, by using another communication alternative in

future design, such as Wi-Fi which has greater power consumption, the quality of the raw

data can be improved allowing more accurate analysis and features extraction.

There are many environmental facets that can be used for activity recognition. In

early framework developing stages, additional sensors were used, like temperature,

32

pressure, humidity, and gas. Due to the fact that the rate of change in these elements are

slow compared to the accelerometer and microphone, they were removed from the sensor

tag. However, these sensors, and others, are useful when trying to detect appliances such

as oven and stove, or in applications similar to [8]. So, the framework has the capability

to be deployed to different environment, which can be tested in the future.

As for the dynamic scheduling, based on both algorithms, it showed exceptional

reduction in the total number of data transited when implemented compared to the static

scheduling approach. However, only Alg.2 performed with constraint latency most of the

time. The miss classification due to the latency, as shown in figure 8, was because the

period of "no event" was less than the polling period assigned by the scheduler. This can

be relatively avoided by using different polling periods selection mechanism, instead of

using the proposed method in the evaluation section. For example, selecting WCCL

polling periods smaller than the one found for "no event". This way, the possibility of

missing a change in class state is reduced.

The sensor scheduling can be improved in the future by extending it to change the

sampling rate of each sensors. E.g., sounds that can be detected by lower frequency, the

microphone can run at lower sampling rate leading to further energy reduction. It is also

possible that multiple sensors are deployed in an open space environment to enable event

detection in a wider range. However, a potential challenge can be imposed by this.

Extending the dynamic scheduler to multiple sensor requires deep synchronization

analysis since these sensors can detect the same event, or each one detects different

events.

33

VII. Conclusion

The framework proposed in this thesis, to the author knowledge, is the first that

combine unsupervised learning technique for labeling and real-time classification with a

dynamic scheduler to achieve an energy efficient sensor. The sensor collects and sends raw

data of three environmental facets to the server for preprocessing, feature extraction and

classification using K-mean algorithm. The polling periods of the dynamic scheduler is

selecting based on two proposed algorithms. The classifier is deployed in a kitchen of a

one-bedroom apartment for performance evaluation, where the simulation shows

promising results for the WCCL constrained polling periods based dynamic scheduler.

Overall, the system shows promising classification accuracy for an unsupervised classifier,

and a potential dynamic scheduling mechanism for energy efficient IoT sensing

application.

34

References

1. Gierad Laput, Yang Zhang, and Chris Harrison, “Synthetic Sensors: Towards General-

Purpose Sensing,” in Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems (CHI '17), ACM, New York, NY, USA, 3986-3999. DOI:

https://doi.org/10.1145/3025453.3025773

2. Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L. Littman, “Activity

recognition from accelerometer data,” in Proceedings of the 17th conference on

Innovative applications of artificial intelligence - Volume 3 (IAAI’05), AAAI Press,

1541–1546. DOI: https://doi.org/10.5555/1620092.1620107

3. Jianfeng Chen, Alvin Harvey Kam, Jianmin Zhang, Ning Liu, and Louis Shue,

“Bathroom activity monitoring based on sound,” in Proceedings of the Third

international conference on Pervasive Computing (PERVASIVE’05), Springer-Verlag,

Berlin, Heidelberg, 47–61. DOI: https://doi.org/10.1007/11428572_4

4. Sidhant Gupta, Matthew S. Reynolds, and Shwetak N. Patel, “ElectriSense: single-

point sensing using EMI for electrical event detection and classification in the home,”

in Proceedings of the 12th ACM international conference on Ubiquitous computing

(UbiComp ’10), Association for Computing Machinery, New York, NY, USA, 139–

148. DOI: https://doi.org/10.1145/1864349.1864375

5. B. Gedik, L. Liu and P. S. Yu, "ASAP: An Adaptive Sampling Approach to Data

Collection in Sensor Networks," in IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 12, pp. 1766-1783, Dec. 2007.

DOI: https://doi.org/10.1109/TPDS.2007.1110

6. H. Jiang, S. Jin and C. Wang, "Prediction or Not? An Energy-Efficient Framework for

Clustering-Based Data Collection in Wireless Sensor Networks," in IEEE Transactions

on Parallel and Distributed Systems, vol. 22, no. 6, pp. 1064-1071, June 2011. DOI:

https://doi.org/10.1109/TPDS.2010.174

7. Qi Han, Sharad Mehrotra, and Nalini Venkatasubramanian, “Energy Efficient Data

Collection in Distributed Sensor Environments,” in Proceedings of the 24th

International Conference on Distributed Computing Systems (ICDCS'04)

(ICDCS ’04), IEEE Computer Society, USA, 590–597. DOI:

https://doi.org/10.5555/977400.978037

https://doi.org/10.1145/3025453.3025773
https://doi.org/10.5555/1620092.1620107
https://doi.org/10.1007/11428572_4
https://doi.org/10.1145/1864349.1864375
https://doi.org/10.1109/TPDS.2007.1110
https://doi.org/10.1109/TPDS.2010.174
https://doi.org/10.5555/977400.978037

35

8. S. Heo, S. Song, J. Kim and H. Kim, "RT-IFTTT: Real-Time IoT Framework with

Trigger Condition-Aware Flexible Polling Intervals," 2017 IEEE Real-Time Systems

Symposium (RTSS), Paris, 2017, pp. 266-276.

DOI: https://doi.org/10.1109/RTSS.2017.00032

9. S. Lloyd, "Least squares quantization in PCM," in IEEE Transactions on Information

Theory, vol. 28, no. 2, pp. 129-137, March 1982.

DOI: https://doi.org/10.1109/TIT.1982.1056489

10. Texas Instruments, “CC2640R2F SimpleLink™ Bluetooth® low energy Wireless

MCU Datasheet Rev. A,” SWRS204A –December 2016–Revised January 2017.

http://www.ti.com/lit/gpn/cc2640r2f

11. Bluetooth Technology Website, “Bluetooth Low Energy,” March 10, 2017.

https://web.archive.org/web/20170310111443/https://www.bluetooth.com/what-is-

bluetooth-technology/how-it-works/low-energy.

12. InvenSense, Inc., “MPU-9250 Product Specification Revision 1.1,” June 20, 2016.

http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-

v1.1.pdf

13. E. O. Brigham and R. E. Morrow, "The fast Fourier transform," in IEEE Spectrum, vol.

4, no. 12, pp. 63-70, Dec. 1967.

DOI: https://doi.org/10.1109/MSPEC.1967.5217220

14. Stoica, Petre, and Randolph L. Moses, "Spectral analysis of signals," Pearson/Prentice

Hall, 2005.

15. Ahmet Taspinar, “Machine Learning with Signal Processing Techniques,” April 4,

2018, GitHub repository, https://github.com/taspinar/siml

16. Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and

Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and

Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and

Duchesnay, E., “Scikit-learn: Machine Learning in Python,” Journal of Machine

Learning Research, Vol. 12, November 2011, 2825-2830.

17. Texas Instruments, “Measuring CC13xx and CC26xx current consumption Rev. D,”

Application Report, SWRA478D–February 2015–Revised January 2019.

http://www.ti.com/lit/pdf/swra478

18. Texas Instruments, “Bluetooth Power Calculator Tool,” Version 3.0.0, July 2019.

http://www.ti.com/tool/BT-POWER-CALC

https://doi.org/10.1109/RTSS.2017.00032
https://doi.org/10.1109/TIT.1982.1056489
http://www.ti.com/lit/gpn/cc2640r2f
https://web.archive.org/web/20170310111443/https:/www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
https://web.archive.org/web/20170310111443/https:/www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://doi.org/10.1109/MSPEC.1967.5217220
https://github.com/taspinar/siml
http://www.ti.com/lit/pdf/swra478
http://www.ti.com/tool/BT-POWER-CALC

36

19. Gierad Laput, Robert Xiao, and Chris Harrison, “ViBand: High-Fidelity Bio Acoustic

Sensing Using Commodity Smartwatch Accelerometers,” In Proceedings of the 29th

Annual Symposium on User Interface Software and Technology (UIST '16), ACM,

New York, NY, USA, 321-333.

DOI: https://doi.org/10.1145/2984511.2984582

https://doi.org/10.1145/2984511.2984582

