
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Energy Efficient Sensing for Unsupervised Event Detection in Real-Time

Permalink
https://escholarship.org/uc/item/7qn095t0

Author
Bukhari, Abdulrahman Ismail I

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qn095t0
https://escholarship.org
http://www.cdlib.org/


 

 

 

 

UNIVERSITY OF CALIFORNIA 

RIVERSIDE 

 

 

 

 

Energy Efficient Sensing for Unsupervised Event Detection in Real-Time 

 

 

A Thesis submitted in partial satisfaction 

of the requirements for the degree of 

 

 

Master of Science 

 

in 

 

Electrical Engineering 

  

by 

 

Abdulrahman Bukhari 

 

 

September 2019 

 

 

 

 

 

 

Thesis Committee: 

Dr. Hyoseung Kim, Chairperson 

Dr. Amit K Roy Chowdhury 

Dr. Shaolei Ren 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Abdulrahman Bukhari 

2019 

  



 

 

The Thesis of Abdulrahman Bukhari is approved: 

 

 

            

 

 

            

         

 

            

           Committee Chairperson 

 

 

 

 

 

 

University of California, Riverside 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgement 

I would like to express my thanks to my thesis advisor, Professor Hyoseung Kim 

of Electrical and Computer Engineering Department at University of California – Riverside 

for his boundless guidance and support during all my research stages.  

I would also like to thank my committee members Professor Amit K Roy 

Chowdhury and Professor Shaolei Ren for their valuable discussion and suggestions that 

provides guidance to my PhD research plan in the near future. 

I also wish to thank the Electrical and Computer Engineering Graduate Students 

Advisor for her guidance and kind encouragement. She relentlessly answers all my 

questions and concerns throughout my degree. 

I also thank my lab mates for their continues help: Yecheng Xiang, Yidi Wang, 

Mehdi Hossseini, Hyunjong Choi, and especially Mohsen Karimi. I would also like to 

thank my colleagues in the Electrical Engineering Department: Abdel-Rahman Al-

Makdah, Yahya Sattar, Rakib Hyder, Sudipta Paul and Akbar Razah,  

I would like to express my gratitude to the Saudi government and Umm Al-Qura 

University for sponsoring my Master of Science Degree in Electrical Engineering at 

University of California – Riverside and funding me that allowed me to pursue my graduate 

studies 

Finally, I would like to express my warmest thanks and appreciation to my parents, 

especially my mother, for providing me with endless support and encouragement 

throughout my degree. I also thank my all my friends and family-in-law, especially my 



v 

 

parents-in-law for their kind-hearted support. I also want to thank my baby son, Aws, who 

showed me that nothing is impossible. Lastly, I would like to give my heartiest thanks to 

the special person that stands by me, supports me throughout my entire journey and never 

failed to believe in me, my dearest wife, Aliyah. 

  



vi 

 

 

ABSTRACT OF THE THESIS 

 
 

Energy Efficient Sensing for Unsupervised Event Detection in Real-Time 

 

by 
 

 

Abdulrahman Bukhari 

 

Master of Science, Graduate Program in Electrical Engineering 

University of California, Riverside, September 2019 

Dr. Hyoseung Kim, Chairperson 

 

 

General-purpose sensing offers a flexible usage and a wide range of Internet of 

Things (IoT) applications deployment. In order to achieve a general-purpose sensing 

system that is suitable for IoT applications, several design aspects such as performance, 

efficiency and usability, must be taken into consideration. The work of this thesis is 

focusing on implementing an energy efficient general-purpose sensing system that is based 

on unsupervised learning techniques for events labeling and classification. The system 

clusters raw data collected from a variety of events, like microwave, kettle and faucet 

running, etc., for classification. During the training phase, the system computes sensing 

polling periods, based on the rate of change in classes, that are then feed into a dynamic 

scheduler implemented on the sensor board in order to reduce energy consumption. The 

system is deployed in a one-bedroom apartment for raw data collection, and system 

evaluation. The results show that the mean accuracy of event classification is 83%, and 

sensor data polling is reduced in average by 95%, which translates to 90% energy saving, 

compared to the fixed polling period in the state-of-art approach. 
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I. Introduction 

The Internet of Things (IoT) promises interaction of a variety of objects with each 

other enabling remote monitoring and control. One of many of IoT’s essential aspects is 

sensing, wherein detecting changes in environmental facets enable tracking of the states of 

a certain event. For example, a change in light intensity in a room can determine the state 

of lighting as turned on or off. In addition to that, one of the most significant design 

considerations in IoT is energy consumption because most IoT devices are portable 

embedded electronic hardware requiring a long-lasting battery life. 

In order to achieve sensing of various elements within an environment, several 

approaches have been studied. One approach is using single sensor for each sensing 

element. This approach can be robust in application with single objective such as detecting 

the state of lighting. However, in higher dimension applications that require sensing 

multiple facets, using single sensor approach is a complex and costly due to the fact that 

several sensors must be installed and integrated together to sense all the elements in the 

environment. Another alternative is using a single sensor for multiple events detection. 

This technique, however, requires that all events must be detected using one facet by 

wearing a sensor [2], or install it on a fixed place in a closed environment [3]. 

Similarly, a network of the same sensor can be installed around an environment to 

recognize activities related to one sensing element [4]. Although these approaches enable 

detecting a variety of events, they can be only deployed in single element sensing 

applications. Meaning, these techniques cannot be implemented in an environment that 
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different events are represented by different sensing facets. General-Purpose sensing 

approach can be considered as the most effective approach for detecting states of different 

events that are sensed through different facets. An example of general-purpose sensing is 

a sensor board packed with various sensors that capture many sensing elements as raw data 

and then classify them into different categories [1].  

As for power consumption reduction, two approaches can be considered. The first 

approach is by using a prediction model that can estimate sensor values, and the system 

uses these values instead of inquiring new readings periodically [5, 6]. As a result, the 

system will only request reading when there is a significant change in its value leading to 

lesser energy consumption. This approach can be only sufficient in case sensors values in 

a batch from a sensor network are correlated both temporally and spatially. The second 

approach is by changing sensor polling periods dynamically. In order to do so, the 

framework can maximize the polling period [7], or find an optimized period [8], for the 

scheduler without affecting the quality of the data. This approach is efficient when data 

changes periodically.  

The thesis interduces an energy efficient sensing for event recognition using 

unsupervised learning techniques for labeling and classification. The design of the 

proposed framework mainly consists of two parts. First, the sensing part, motivated by the 

work done by Gierad et al. [1], wherein the sensor board collects raw data of three different 

environmental facets, instead of sensing twelve facets as purposed by [1], through a 

combination of three sensors. The raw data is then preprocessed and prepared for feature 
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extractions. These features are fed into K-Means clustering algorithm [9] for labeling, 

analysis and event classification.  

The second part of the system, which is the focus of this thesis, is reducing the 

energy consumption of the system by designing a new scheduler, motivated by 

Seonyeong’s and his colleagues’ work [8], that computes a dynamic polling periods for the 

sensor board. The scheduler assigns a different period for each event based on the rate of 

change in classes during the training phase. In case an event is detected, the system will 

enter idle mood for the duration of the assigned period since the recognized event is 

expected to remain unchanged until the period is expired. Therefore, the system will be in 

idle mood more frequently during events classification leading to reduction of the overall 

power consumption of the system.  

The contributions of the thesis are: 

• Implementation of a new dynamic scheduler based on the rate of change in classes 

for real-time event detection  

• Two algorithms proposed to compute the polling period of the dynamic scheduler 

with latency guarantee 

• Using unsupervised technique simplifies the labeling of raw data into labels without 

significant classification accuracy loss 

The thesis has seven sections. The next section will review recent literatures related to 

the proposed framework, focusing on events sensing and sensors scheduling approaches. 

In section III and IV, the system framework is introduced and discussed thoroughly, 

specifically data acquisition, data preprocessing, feature extraction and classification, in 
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addition to, the algorithms to find appropriate polling period for dynamic scheduler. Both 

classifier and scheduler are evaluated in section V. In the later section, discussion of 

findings, challenges and possible future work is presented, and then conclude. 

II. Related Work 

The work in this thesis combines two areas of research, sensing and energy 

consumption. These areas of research have been widely explored previously. Thus, the 

following subsections will discuss recent literatures on activity sensing and data acquisition 

scheduling. 

A. Sensing and Classification 

There have been many significant works done related to activity recognition based 

on different sensing approaches. One approach is using a single sensor is to detect several 

events. For example, an accelerometer has been used to recognize body activities, such as 

standing, walking and running [2]. This work is based on meta-level classifier, which is 

then compared to other base-level classifiers’ performance. The meta-level classifier 

achieves high accuracy on average. However, inconsistent results showed across different 

experimentation set-ups, and some activities were hard to recognized and confused with 

other ones. This could be related the features selection, where only statistical features, such 

as mean, standard deviation, energy, etc., are used. Using advanced signal analysis tools, 

like the Fast Fourier Transform (FFT) could provide richer signal information improving 

the classification accuracy. 
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Similarly, the work done by Chen et al. [3] uses the sound detected by using a 

microphone to detect activities in the bathroom. Targeted activities include showering, 

toilet flushing, teeth brushing and hand washing. The system also provides additional 

information such as the date and time of use and the duration of each activities. The system 

evaluated in continuous real-time and achieved an average accuracy of 83%.  The paper 

only considered Mel-Frequency Cepstral Coefficient (MFCC) method for features 

extraction and Hidden Markov Model (HMM) for classification, whereas there may exist 

better approaches, such as Support Vector Machine (SVM) as in [1] to achieve higher 

accuracy for supervised learning approach.  

Another work that based on a single environmental facet sensing is ElectriSense [4] 

that can detect and classify the usage of electronic devices, which uses switch mode power 

supplies (SMPS), to analyze the electromagnetic interference (EMI) signals. By observing 

a power line, a new device operation will interduce a new EMI signal, and by subtracting 

the new signal with the baseline noise, features are extracted. Features are then fed into a 

K-Nearest Neighbor classifier for event detection. ElctriSense is able to classify the usage 

of electrical devices with an average accuracy of 93.82% from a single point at home. The 

single point application gives the user the freedom to place the sensor anywhere and still 

able to detect the usage of electrical devices across home. Although single sensor approach 

as in [2,3,4] achieves the application requirement, none qualifies as a general-purpose 

sensor because all events detected can be sense with a shared sensing element. 

The sensor tag proposed in [1] achieves general-purpose sensing by combining nine 

different sensors that sense 12 environmental facets into a sensor tag. The collected raw 
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data are classified into a wide range of events. The system framework extract features on 

board, leading to extensive computational cost, using FFT for high sampling rate sensors, 

such as the accelerometer, and statistical features for the low sampling rate ones, like 

temperature. The features are then sent to a server for more processing and assembling 

feature vector, which is fed into a machine learning model (SVM) for training and 

classification. The system supports two learning modules, manual learning (supervised 

learning) and automatic learning (unsupervised learning). 

The sensor tag accuracy was evaluated based on 38 different events for seven days 

by collecting data on one day and test the classifier on the other. The average accuracy for 

supervised learning model was 96% while ranging from 88% to 30% for unsupervised 

learning. Synthetic Sensors shows promising results toward achieving general-purpose 

sensing with the ability to recognize a variety of events accurately. However, power 

consumption has not been studied in this work, nor other related sensing designs previously 

discussed, which motivated the sensor proposed in this thesis to explore energy efficient 

general-purpose sensing framework. 

B. Data Acquisition Scheduling 

Scheduling data aqusition in order to lower power consumption has been broadly 

discussed in IoT and real-time frameworks. Gedik et la. [5] introduced a dynamical data 

collection approach in a sensor network. By setting a subset of sensors as sampler for data 

collection where the values of the other subset of sensors (non-sampler) are predicted using 

probabilistic models. This way, the energy consumption in the sensor network is reduced 

and the quality of the data collection can remain high. Another proposed approach is 
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integrating an adaptive enable/disable prediction method to reduce the energy consumption 

of sensor networks [6]. The framework can use several advanced features such sleep/awake 

scheduling. These two approaches are based on the predicting the value of the sensor using 

probability models. In other words, they require the data to be spatially and temporally 

correlated, which is not the case when in a sensing system that has few sensors or a single 

sensor. 

The work by Han and his colleagues [7] suggests a new adaptive data collection 

method for different sensor networks models. Changing the state of the sensor from sleep 

mode to active requires more energy. So, changing the state rapidly consumes excessive 

energy in addition to unnecessary delay. Therefore, the transition time between states must 

be selected such that energy consumption and latency are optimized. This approach 

motivates the algorithm proposed to find an appropriate polling period such that the 

classification latency is limited.  

The framework proposed in [8] analyses the sensor values, conditions and 

constraints to find a flexible polling interval for each sensor to achieve efficient sensing. 

One of the RT-IFTTT component is the sensor polling scheduler, which calculate the 

polling period for each sensor. It changes the period based on the rate of change in data 

and the probability of whether a triggering condition will occur soon or not. However, this 

framework is inefficient with events sensing applications because environmental facets of 

interest in this work changes slowly, e.g., temperature, humidity, etc., compared to 

vibration and sound captured by an accelerometer and a microphone running at high 

frequencies.  
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III. System Framework 

The high-level architecture of the sensing system consists of two stages; data 

acquisition, and classification. There are sub-processes within these two stages and a data 

transfer medium in between. This section will interduce the system framework in details, 

followed by the data acquisition stage and the communication protocol. The server side 

will then be explored in depth, where raw data are prepared for classification. The proposed 

scheduler computes the dynamic polling periods based on the speed of change in classes. 

A. Sensor Architecture 

The system framework consists of a sensor board and server with a Bluetooth Low 

Energy (BLE) layer in between as shown in figure 1. The main microcontroller of the 

sensor board is from Texas Instrument, the CC2640R2 LAUNCHXL Board [10], that is 

packed with an ARM Cortex-M3 CPU supporting up to 48MHz. The MCU features a low-

power sensor controller, which support off-board data acquisition reducing the load on the 

main CPU. It is also BLE 4.2 [11] compatible supporting one of the design considerations 

in achieving lower energy consumption.  

There are two digital sensing components attached to the MCU and an analog one. 

The digital sensors, a 3-axis accelerometer and an illumination sensor, are connected 

through I2C protocol at 400KHz, while the analog sensor, the microphone, is connected to 
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the sensor controller that support different sampling rates. Raw data are collected in the 

sensor board and are sent periodically to the server for further processing.  

The server side is based on a Raspberry Pi 3 – model B featuring with a quad-core 

64-bit ARM Cortex A53 1.2 GHz providing adequate computational power and portability 

for IoT application, in addition to, supporting BLE 4.2 communication protocol. It 

preprocesses the raw data received at high sampling rate from the accelerometer and the 

microphone, before feature extraction. The extracted features are fed into a K-means model 

for clustering, during training phase, and classification, during employment phase. During 

the training stage, the duration of each event is used to select the polling periods for each 

class. 

Figure 1: The sensing architecture consists of the sensor board for data acquisition and the server for 

featurization and classification 
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B. Data Acquisition 

In this framework, there are a total of three different sensors with different sampling 

rate. Both the accelerometer and the microphone are sampled at high frequencies, 4kHz 

and 5.8 kHz respectively, to capture a wide range of vibration and sound spectrums, while 

illumination sensor is sampled at 10Hz since the change in this element is considerably 

slow.  In order to achieve high sampling rate, the accelerometer data are buffered in a 512 

bytes buffer supported in the MPU9250 chip [12] before the MCU reading. As the buffer 

approaches overflowing, the MCU reads it and store the data in an array. A Mean-Moving-

Window (MMW) is passed on the accelerometer signal to reduce the noise and the packet 

size, by using fewer number of data points, to meet the limitation of BLE bandwidth. The 

microphone is connected the Sensor Controller [10] through an Analog-to-Digital 

Converter (ADC), which is also support the sound signal buffering. MMW is applied to 

the microphone signal to reduce the overhead of data transferring as well.  

Overall, the sensor board send eleven packets per second to the server over BLE, 

transferring a total of 512 data points the accelerometer, 704 data points for the 

microphone, and a total of 10 data points for the illumination sensor. 



11 

 

C. Signal Preprocessing 

Since the data from Accelerometer and Microphone are collected at high sampling 

rate, it requires more processing than the ones from the illumination sensor. Therefore, a 

high-pass filter is applied first to remove the effects of the DC components.  Signals from 

all sensors are sliced into different sized windows to prepare them for feature extraction. 

The following sub-sections will discuss these steps in details. 

1. Filtering High-Frequency Signals: 

The data collected from the accelerometer and the microphone contains noise and 

other factors, such as the DC components, that affect feature extraction. Therefore, filtering 

is a necessary step in order to reduce these effects before extracting features. In this case, 

an MMW filter is applied to both the Accelerometer and Microphone signals in the sensor 

board to reduce the noise before sending the data. After that, a high-pass filter is applied to 

cut low frequencies that will remove the DC gain effect.  

Figure 2: The microphone signal and Z-axis signal of the accelerometer before and after applying the high-

pass filter 
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It is clear from figure 2 that both signals have the same amplitudes and shifted to 

zero. This is because the DC components from both signals are removed. This is important 

in feature extraction because DC component has a very high amplitude and will take most 

of the energy after applying Fast Fourier Transform (FFT) [13] or Power Spectrum Density 

(PSD) [14] analysis on the signals. Figure 3 demonstrates the necessity of applying a high-

band pass filter on the accelerometer and microphone signals. 

2. Slicing Signals: 

Signals collected for training from all sensors are continuous and need to be sliced 

into fixed windows. In high level, this is needed to make the signal periodic, especially in 

the case of applying FFT since it assumes that the periodic signals. Different window sizes 

are applied to each sensor based on the sampling frequency. 

Signals coming from the accelerometer and microphone are sliced into 512-points 

and 704-points windows, respectively, with 25% overlap. Each window passes through a 

hanning function to avoid leakage that may be caused after applying FFT. Signals from 

Figure 3: (a) shows the FFT of the microphone signal without any filter, while (b) is the same signal after 

applying a high-pass filter which improve peaks detection 
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illumination sensors are slices into a 10-points windows with 25% overlap. After signals 

have been filtered and sliced into windows, there are ready for feature extraction. 

D. Feature Extraction 

Since sensors data have different sampling frequencies, two feature extraction 

approaches have been used. For signals with high sampling rate from the accelerometer 

and the microphone, FFT and PSD tools are used to extract features, while statistical 

information, the mean, variance and range, are used as features for the illumination sensor 

signal. Both methods will be discussed in the coming subsections. 

1. Features Based on FFT and PSD 

FFT and PSD are very important tools to analyze signals, especially these with high 

frequency. Both techniques transform signals into frequency domain for better analysis. 

Figure 4: PSD of microphone signals for different events comparing their peaks  
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FFT is used to compute the Discrete Fourier Transform (DFT) but with lower 

computational cost.  The signal is characterized by its magnitude and phase, instead of 

amplitude and time. As a result, it is more efficient to recognize events by their frequency 

and magnitude. PSD is similar to FFT but distribute the signal’s magnitudes into frequency 

bins instead of distributing them over all frequencies. Using these two powerful signal 

processing tools, the system can find the peaks in the frequency response and use these 

peaks as features as shown in figure 4. 

In order to extract features from accelerometer and microphone signals, FFT and 

PSD are applied on the windows extracted from previous preprocessing stage and the peaks 

with highest magnitudes will be used as features, where for each peak only the frequency 

is selected due to the fact that the magnitude value changes depending on position of the 

sensor board. The code to extract these peaks is based on the repository provided by [15]. 

In this framework, the highest five peaks are chosen as features from each window. Since 

each feature consist of 1-point, each window will produce 10 feature points, 5 peaks from 

each FFT and PSD. Therefore, the dimension of the feature matrix of accelerometer and 

the microphone, in the training phase, will be of the number of windows by 10 features. 

During testing and deployment, the server will compute a 10-element feature vector for 

each sensor. 

2. Statistical Features 

Three statistical features, the mean, variance and range are selected for the 

illumination sensor. Each of these is extracted on a single window which consist of ten 

points. Therefore, the size of the feature matrix extracted from the illumination sensor is 
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the number windows by three during training, and a 3-elements feature vector during 

deployment stage. 

All collected features are normalized in a range between (0-100) since K-means 

algorithm is based on the Euclidian distance. If features are not normalized, those with 

large values will cause cluster centers draw to them, which will decrease the classification 

performance and interduces labeling errors. After all features are normalized, the feature 

vector is created by concatenating all the features. The feature vector, which contains 23 

features is analyzed by an unsupervised learning technique, namely K-means, to cluster the 

data for labeling and classification. 

 

E. Clustering and Classification 

Collecting raw data from different sensors for a variety of events and manually 

label each event is a time-consuming procedure. Therefore, the framework is based on 

unsupervised learning techniques which reduces the complexity of the sensing problem by 

labeling clustered data as events, then using the same trained model to verify the 

correctness of the classes. 

The procedure of data cluttering, events labeling during training phase, verification 

of classes, and system deployment is performed by two different systems. The training part 

is done on a personal computer featuring an i7 Core CPU and the deployment stage is 

performed on the server, the Raspberry Pi 3 model-B. Both systems support Python and 

sci-kit learning package [16], and they use the same signal preprocessing, feature extraction 

and K-means model. The following sections will explore both stages in details. 
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1. Training Stage 

It is more efficient to use a PC since the training stage is offline and requires deep 

analysis dealing with large data sets. After collecting the training data on the system, these 

data sets are transferred to the PC for analysis. As described previously, the raw data are 

preprocessed for feature extraction. After the feature matrix is created, the K-means model 

implemented in sci-kit learn package is used to cluster features into different classes. The 

training data set is collected in the presence of five kitchen events; microwave, faucet, 

kettle, waste disposal, cooking vent, for 15 minutes for each event. The state of each event 

is whether it is running (on) or unused (off). During unused (off) state, the scheduler 

considers it as a no event period. Notice that each event affects different environmental 

facets. For example, a kettle running produces vibration and ambient sound, while the 

cooking vent change the light intensity since its lamps is turned on while being used. So, 

during K-means clustering, the expected number of clusters is six. 

After the clustering is performed, the model is verified on a different data set 

collected before deploying the model to the server for real-time testing. To verify the 

model, different data sets are collected for each event. Features are extracted from each 

date set after being preprocessed and these features are fed into the trained model for 

labeling. The model is expected to classify each data set with a distinct label. It is expected 

to see a no-event label within each set.  

The system is re-trained after verification but with adding the verification dataset 

and additional analysis is performed for the dynamic scheduling which will be further 

discussed in a later section in the thesis. 
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2. Deployment Stage 

The model is transferred to the server for testing and deployment after verifying 

that each event is classified correctly. During this stage, the server will run in real-time 

unlike the offline training phase. The sensor board send raw data as described in the data 

acquisition section periodically every second to server. The server waits for all the packets 

to be received and buffer different signals into separate windows as expressed earlier.  

After all packets are received and the windows are ready, accelerometer and 

microphone signals are filtered using a high-band filter then passed through FFT and PSD 

to find the highest five peak frequencies, and statistical features are extracted from the 

signal of the light sensor. After that, these features are concatenated to create a feature 

vector that is classified by the K-mean trained model. The accuracy of the classifier is 

evaluated at this stage without the proposed dynamic scheduler. More details are provided 

regarding this in the evaluation section.  

IV. Dynamic Scheduling 

In this work, the main objective of the system design is reducing energy 

consumption. This design consideration is important because the system can be deployed 

on a battery as a power source, which allow placing the sensor at a location close to the 

environmental facets of interest. There are three main components in the sensor board that 

consume energy, the CPU, the BLE, and the attached sensors. The best approach would be 

putting all these components to sleep when there is no change in classification. However, 
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Figure 5: Sensor static scheduling and events operating frequencies 
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scheduling data transition through BLE is sufficient to illustrate this paper approach 

efficiency for energy reduction since the BLE consume a significant amount of current 

estimated at 120µA/Byte when transmitting, while approximated only 1µA in standby [17, 

18].  

A. Motivational Example 

In sensors design, data acquisition scheduling is one of the most common research 

approaches as in [5-8]. Instead of inquiring sensor reading continuously at a high sampling 

rate, the sensor will only transmit data when needed. Determining the demand for new data 

depends on the type of application. In event detection application, using probabilities to 

predict the value of the sensor, like in [5, 6] is not viable because the data of different 

events are not temporally correlated, as events can occur at any time instance. Conversely, 

finding the appropriate polling period for the sensor based on the rate of change in event 

state is feasible.  

As shown in figure 5 (b-f), each type of event runs for different time intervals. The 

sensor data will not change significantly during this time period since the event classified 

is still running. Hence, the sensor can be idle as it is not required to transmit data over this 

period. However, this period is not constant for each event, e.g., the microwave could run 

for 10, 30, 60, 120 seconds or more based on personal usage, while kettle could run for 

longer time based on the water level inside it. Therefore, it is necessary to determine a 

suitable idle sensor period, polling period, for each classified event. 
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B. Problem Statement and Solution 

To meet the design requirement of reducing energy consumption, the framework 

must support a scheduler such that the sensor will be idle for longest possible period. The 

sensor will not transmit data during the polling period, which will lead to energy saving. 

Another important factor in choosing polling periods is worst-case classification latency. 

This latency occurs when the sensor is idle and the actual classified event changes during 

this period. Thus, the problem of this thesis can be expressed as. 

Problem Statement: the problem is to find a polling period for each classified event such 

that the following condition is met. 

Condition: the polling period of each event must not exceed the worst-case classification 

latency (WCCL) defined by the user. 

𝑁 × 𝑇𝑝𝑝  −  𝑇𝑒  ≤ 𝑊𝐶𝐶𝐿 

where Tpp is the polling period assigned by the scheduler for each event, Te is the time 

when the event actually ends, and N is the number of times the polling period is repeated 

until the classifier recognize a new event. In order to solve this problem, a dynamic 

scheduler based on the rate of change in classified events is implemented in the framework. 

The scheduler will assign different polling period for each event, such that the sensor will 

be idle for that period.  

C. Proposed Algorithms 

To determine the polling periods, this work proposes two algorithms, the first one 

is simply choosing the minimum event time-interval as a polling period for each event, and 
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the second algorithm is finding a base-period, such that the time between the actual end of 

an event and the classification changes is within the WCCL. 

1. Minimum Event Time-Interval 

As shown in Alg.1 pseudo-code, this algorithm simply chooses the minimum 

period of an event among all other periods found based on the classifier results. Although 

this approach may not satisfy the condition in the problem statement, its contribution to 

energy reduction is significant. Different events run for various time intervals, and each 

event has different rate of changes depending on personal usage. 

As can be seen in figure 5 (b-f), for the events {microwave, kettle, waste disposer, 

faucet, vent fan, no event} the shortest running periods based on the training data are {30, 

46, 24, 59, 67,24} seconds. The no event class is when the classifier does not detect any 

activity. The purpose of adding no event class period in the scheduler is to avoid excessive 

data transmission by fixing the polling period at one second. Accordingly, Alg.1 uses these 

shortest periods for each class as the sensor polling periods. Based on the event detected 

by the classifier, the server will request the sensor to halt transmission and enter idle mode 

for the period corresponds to the detected event.  

The power saving due to this approach can be significant, as will be discussed in 

the evaluation section, since the sensor will be on idle mode for periods of 24 to 67 seconds 
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each cycle. In contrast, frameworks with static scheduling, as in [1], runs continuously at 

high sampling rate leading to excessive usage of energy. Of course, this algorithm will 

compromise WCCL, whereas it only considers the smallest period that is not necessarily 

an integer multiple for other periods of the same event. To clarify this with an example, if 

the polling period chosen is based on the pervious Alg.1, and the system detected that the 

microwave is running. The sensor will be idle for 30 seconds. Assuming that the 

microwave was running for 50 seconds, the sensor will be idle for additional 10 seconds 
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before the system recognize that the current event ended. Consequently, a different 

algorithm is introduced that solves the stated problem while meeting the WCCL condition. 

2. WCCL Constrained Polling Period 

As stated in the previous scenario, the additional idle period that causes 

classification latency can be guaranteed if the multiple of the polling period (Tpp) does not 

exceed the event classifier-based periods by ε (WCCL), which is defined by the user. A 

naïve approach would be using Greatest Common Factor (GCD) of all occurrence intervals 

of an event, which would result in one second as polling period for most cases. Thus, a new 

algorithm is proposed that approximate the largest factor of all periods and guarantees the 

WCCL condition. Looking back at the microwave example, if the polling period was 8 

seconds instead of 30 seconds with WCCL of 4 seconds, the sensor will be idle for 4 

seconds after 9 cycles compares to 10 seconds.  

The algorithm proposed is an exhaustive search-based algorithm that will select the 

polling period found by the alg.1 as a base period. This period is compared to all other 

event occurrences periods such that the difference after N cycles does not exceed the 

WCCL condition. If Tpp failed the test, it will be decremented by one, and the search will 

be repeated until the polling period is found. In case Tpp reaches 2 seconds, it will be 

selected since the sensor will be idle for half the total operation time in worst-case, 

assuming the user will select ε greater than one. The user has the freedom to choose a 

consistent ε for all events or specify a unique one for different events based on the 

importance and tolerated latency. 
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V. Evaluation 

To show that the framework meets the design consideration, classification accuracy 

and energy efficiency, four experiments are performed. The purpose of the first experiment 

is to evaluate the accuracy of the classifier based on K-means, an unsupervised learning 

technique, without the dynamic scheduler. The second part of the evolution is finding the 

effects of ε on the polling periods based on Alg.2 and selecting Tpp randomly. These 

selected polling periods, in addition to the ones computed by Alg.1, are used in the next 

experiment to explore the latency introduced by the dynamic scheduler and compared it to 

the static scheduler, similar to previous sensing work [1-4]. Lastly, the power consumption 

is studied, which shows significant energy reduction compared to [8] 

A. Classification Accuracy 

To evaluate the performance of the classifier, the trained model is deployed to the 

server, the Raspberry Pi 3 – model B, which is connected to the sensor tag, based on the 

CC2640R2 LAUNCHXL Board, via BLE transition medium. In this experiment, the 

dynamic scheduler is not integrated into the system, since the main objective is to evaluate 

the accuracy of the classifier. The system is deployed to the same location, a kitchen in a 

one-bedroom apartment, where training data has been collected with similar conditions. 

Events occurred at different time instances, and the classes is decided based on the detected 

event every second. 
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For each class, the test is repeated ten times, one minute for each event, and the 

classification is recorded every second. If the classification matches the actual event, it will 

be considered as correctly classified. Otherwise, it is a misclassification. The total number 

of correct classifications is divided by the 60 for each test per minute. The results are 

averaged as shown in figure 6, whereas kettle and vent fan events are detected with a 100% 

accuracy. The microwave event accuracy comes next at 83.3%, while faucet and waste 

disposer events are classified with relatively low accuracy at 68.3% and 63%, respectively.  

The confusion matrix shows 14 false negatives and 19 false positives between the 

microwave and the faucet. This miss classification is because these two classes shares 

common frequencies as shown in the FFT and PSD analysis previously discussed. The 

waste disposer is confused with the kettle with 14 false positives as both emits similar 

vibration that is captured by the accelerometer. The overall Miss Rate = 0.20 which is 

computed by dividing the total number of false detections by the number of classifications. 

Figure 6: Classification accuracy and confusion matrix based on the result of 5 different classes deployed at 

real-time experiments 
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B. Dynamic Scheduler Polling Periods 

The objective of this experiment is to test a range of ε, from 1 to 15 as the worst-

case classification latencies, and explore its effects on Tpp. Obviously, Tpp increases as the 

user chooses larger values ε but the change is not linear for all events, e.g., the polling 

periods of the kettle and vent fan reaches 25 seconds when ε is 13 and 14 seconds, 

respectively.  

As for the next two experimentations, the polling periods of each class is selected 

randomly with different ε values to study the classification latency and energy 

consumption. The highest polling periods of 25 seconds is chosen for kettle and vent fan 

classes with WCCL of 13 and 14 seconds, respectively. For microwave, waste disposer, 

faucet and no events, the polling periods selected are 16, 14, 20 and 15 seconds with ε of 

9, 7, 13 and 11 seconds, respectively. These periods are relatively lower than the ones 

Figure 7: Experimenting Alg.2with different ε values and explore its effects on Tpp 
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selected by Alg.1, as shown in the Algorithms subsection. All selected Tpp are feed into the 

implemented dynamic scheduler to simulate real-time deployment. 

C. Dynamic Scheduler Latency Evaluation 

The dynamic scheduler is deployed with the selected polling periods for each class 

from the previous experiment based on Alg.2 and Alg.1. The test is simulated three times, 

where the first one the framework runs with static scheduler, at a fixed polling period of 1 

second, to recognize events at real-time. The duration of each event, randomly performed, 

is captured using a timer in order to repeat the exact pattern of events for the experiments 

with the scheduler.  

Figure 8: Latency evaluation based on the dynamic scheduler against the state-of-art approach 
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The scheduler based on the WCCL constrained polling periods algorithm latency 

performance significantly exceeds the minimum event time-interval algorithm. Alg.2 

scheduler closely matches the static scheduler pattern with a slight delay at detecting the 

first event as clearly seen in figure 8 (a). However, since the polling periods are marginally 

large for both algorithms, there is a two event state changes missed by the minimum event 

time-interval algorithm after faucet detection, while one change is missed by the WCCL 

constrained polling periods based scheduler as the actual time between no event and waste 

disposer event was only 9 seconds. 

It is evident that the state-of-art, with static scheduler, has a superior performance 

when it comes to latency since event classification occurs continuously meeting real-time 

applications requirement with almost zero latency. Still, many applications are latency 

tolerant, such as sensing home appliances states which does not result in unwanted 

consequences when the latency is constrained. According to figure 7 (b), the dynamic 

scheduler with Tpp based on Alg.2 has an overall cumulative latency of 80 seconds over a 

deployment of one thousand seconds (8%), while Alg.1 based Tpp has 140 seconds overall 

latency over the same span, making it 175% more than WCCL constrained polling periods 

approach. 

The maximum classification latency due the WCCL constrained polling periods-

based scheduler is 13 seconds, the minimum is 5 seconds, and the average latency is 9.25 

seconds. On the other hand, the minimum event time-interval based approach has a 

significantly high delay reaching 35 seconds, while the least latency captured was 7 



29 

 

seconds. The average latency in this case is 17.87 seconds, which is almost double the 

average latency compared when the scheduler is based on Alg.2 

D. Dynamic Scheduler Energy Reduction 

The most advantage of integrating a dynamic scheduler in a sensing framework is 

to reduce the number of data polling requests, leading to more idle (inactive) time on the 

main sensor which signify the average current reduction. This experiment is based on this 

the simulation results from the previous section, which indicates remarkable efficiency. 

Figure 9 (a) compares the number of BLE transmissions based on a dynamic scheduler 

compared to the static scheduling approach. The transmitted BLE packets using WCCL 

constrained polling periods-based scheduler is approximately 6% of the total number of 

transmissions made by the static approach, and 3% for minimum event time-interval based 

scheduler. With respect to the latency performance achieved by Alg.2 as discussed 

previously, 3% polling requests more compared to Alg.1 is relatively neglectable. 

To approximate the power consumption, according to [17], each transmitted byte 

leads to a 120µA consumption. However, another important factor in power consumption 

Figure 9: Power consumption evaluation based on the number of data polling request and the average 

current of the BLE packet transmission 
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is the BLE connection interval and based on the energy calculator tool provided by Texas 

Instruments [18], the active current of the sensor is approximated to 603.9 µA. Therefore, 

the average current can be computes as follows. 

𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  𝐼𝑎𝑐𝑡𝑖𝑣𝑒 𝑥 (𝑇𝑖𝑚𝑒𝑎𝑐𝑡𝑖𝑣𝑒/𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙) 

Figure 9 (b) demonstrates a significantly low average current for dynamic scheduler 

approaches, and a high linear one for the static scheduler mechanism. The state-of-art 

shows a significant active current 600 µA that is 33× and 17× more than dynamic 

scheduling with minimum event time-interval and WCCL constrained polling periods, 

respectively. Although the Alg.1 achieves notable energy reduction, its latency 

performance limits its benefits. Subsequently, a dynamic scheduler based on Alg.2 is a 

potential approach for realizing energy efficient sensing framework.  

VI. Discussion 

The framework passed through several development stages to complete, from 

designing and implementation to experimentation and deployment. During these stages 

several findings and challenges were recorded. This section will focus on these that are 

mainly related to the thesis work, namely: classification accuracy, environmental facets, 

and dynamic scheduling algorithms, in addition to, possible future work.  

Improving the classification accuracy requires deep understand of the design 

limits. The factors that lead to the classifier error rate can be grouped into three 

categories. Firstly, FFT and PSD peaks contribute to this loss because some events share 

common frequency peaks as shown in figure 4. Although these peaks have different 
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amplitude, the features are selected based on the frequency value of these peaks. Thus, 

to avoid classification confusion, the amplitude values could be used as features, but this 

will limit the deployment location of the sensor as it will become sensitive to amplitude 

changes.  

Additionally, both signals proceed using similar tools to avoid additional 

computational cost on the server. So, different signal processing tools can be used for 

accelerometer and microphone signals, e.g., using MFCC for microphone signals similar 

to [3]. Furthermore, the accelerometer was expected to be more sensitive when running 

at 4kHz according to [1, 19] but only the kettle and waste disposer events vibration were 

captured. One explanation to this is due to the weight of the sensor, where the breakout 

board of each sensor are used on the tag, leading to heavier weight and lesser vibration 

sensitivity. The weight can be reduced in future work by designing a custom circuit board 

using the required sensors only.  

Second potential improvement can made on data transmission medium. Since 

BLE has limitations on its actual bandwidth, signals have been averaged before 

transmission to reduce the overhead resulting in a decreased data quality. However, BLE 

was used in this framework since it provides the system with lower energy consumption 

compared to other mediums. Hence, by using another communication alternative in 

future design, such as Wi-Fi which has greater power consumption, the quality of the raw 

data can be improved allowing more accurate analysis and features extraction.  

There are many environmental facets that can be used for activity recognition. In 

early framework developing stages, additional sensors were used, like temperature, 
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pressure, humidity, and gas. Due to the fact that the rate of change in these elements are 

slow compared to the accelerometer and microphone, they were removed from the sensor 

tag. However, these sensors, and others, are useful when trying to detect appliances such 

as oven and stove, or in applications similar to [8]. So, the framework has the capability 

to be deployed to different environment, which can be tested in the future. 

As for the dynamic scheduling, based on both algorithms, it showed exceptional 

reduction in the total number of data transited when implemented compared to the static 

scheduling approach. However, only Alg.2 performed with constraint latency most of the 

time. The miss classification due to the latency, as shown in figure 8, was because the 

period of "no event" was less than the polling period assigned by the scheduler. This can 

be relatively avoided by using different polling periods selection mechanism, instead of 

using the proposed method in the evaluation section. For example, selecting WCCL 

polling periods smaller than the one found for "no event". This way, the possibility of 

missing a change in class state is reduced. 

The sensor scheduling can be improved in the future by extending it to change the 

sampling rate of each sensors. E.g., sounds that can be detected by lower frequency, the 

microphone can run at lower sampling rate leading to further energy reduction. It is also 

possible that multiple sensors are deployed in an open space environment to enable event 

detection in a wider range. However, a potential challenge can be imposed by this. 

Extending the dynamic scheduler to multiple sensor requires deep synchronization 

analysis since these sensors can detect the same event, or each one detects different 

events.   
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VII. Conclusion 
 

The framework proposed in this thesis, to the author knowledge, is the first that 

combine unsupervised learning technique for labeling and real-time classification with a 

dynamic scheduler to achieve an energy efficient sensor. The sensor collects and sends raw 

data of three environmental facets to the server for preprocessing, feature extraction and 

classification using K-mean algorithm. The polling periods of the dynamic scheduler is 

selecting based on two proposed algorithms. The classifier is deployed in a kitchen of a 

one-bedroom apartment for performance evaluation, where the simulation shows 

promising results for the WCCL constrained polling periods based dynamic scheduler. 

Overall, the system shows promising classification accuracy for an unsupervised classifier, 

and a potential dynamic scheduling mechanism for energy efficient IoT sensing 

application. 
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