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Abstract

An intelligent agent acting in a complex and unpre-
dictable world must be able to both plan ahead and re-
act quickly to changes in its surroundings. In particu-
lar, such an agent must be able to react quickly when
faced with unexpected opportunities to fulfill its goals.
We consider the issue of how an agent should respond
to perceived opportunities, and we describe a method
for determining quickly whether it is rational to seize
an opportunity or whether a more detailed analysis is
required. Our system uses a set of heuristics based on
reference features to identify situations and objects
that characteristically involve problematic patterns of
interaction. We discuss the recognition of reference
features, and their use in focusing the system’s reason-
ing onto potentially adverse interactions between its
ongoing plans and the current opportunity.

1. Introduction

An intelligent agent acting in a complex and unpre-
dictable world must be able to both plan ahead and re-
act quickly to changes in its surroundings. In Al, agent
models have generally exhibited one or the other, but
not both, of these capabilities. In particular, two op-
posing schools of thought have arisen: classical plan-
ning, in which a sequence of actions that the agent in-
tends to execute is produced ahead of time (e.g.
Newell & Simon 1963, Fikes & Nilsson 1971, Sacer-
doti 1977, Tate 1977, Wilkins 1988), and reactive
planning, in which the agent simply responds to its
surroundings at any given moment, instead of follow-
ing an explicit plan' (e.g. Brooks 1986, Agre &
Chapman 1987, Beer et al 1990, Kaelbling & Rosen-
schein 1990). It seems clear that a competent agent
model must combine elements of both approaches (c.f.
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"There are obvious similarities o behaviorism (Skinner 1974),
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Georgeff & Lansky 1987, Firby 1989, Hammond e! al
1990, Simmons 1990, McDermott 1991).

Classical planning has principally concerned itself
with the construction of models that are complete and
sound (e.g. Chapman 1987, McAllester & Rosenblitt
1991), but proofs of these formal properties depend on
unrealistic assumptions. For example, it must be as-
sumed that the agent has full knowledge of the condi-
tions in which the plan will be executed, that all ac-
tions have perfectly predictable results, and that no un-
predictable changes will occur through causes other
than the agent’s actions. Such an approach leads natu-
rally to models in which issues of plan execution arc
ignored, since without unpredictability nothing can
happen that has not been foreseen, and plan execution
will simply consist of performing the preordained
steps. The assumption of perfect foresight severely re-
duces the practicality of classical planners.

Reactive systems tend to the opposile extreme, per-
forming no lookahead, and concomitantly constructing
no plans. A reactive system is instead directed by a set
of rules that specify how to react in any given situa-
tion, and its competence thus depends entirely upon
the extent to which its rules are ablc to specify the pre-
cise action to take in the particular situation in which it
finds itself. This approach leads to models in which
projection is ignored, as a reactive system is incapable
of making use of a predictive model of its world; it
does not use projection to determine whether a con-
templated action is in fact a good one to take.

A competent agent should fall somewhere between
the extremes of classical and reactive planning, making
use of projection where possible, yet being able to re-
act with minimal forethought when necessary. In par-
ticular, such an agent must be able to react quickly in
the face of unexpected opportunities to fulfill its
goals?, even in situations in which it lacks the time or
the information necessary to construct a detailed plan
before proceeding (e.g. Bimbaum 1986, Hammond e
al 1988, Brand & Bimbaum 1990). The issue of engi-
neering a compromise between classical and reactive
planning thus comes down to the problem of respond-
ing to opportunities: when an opportunity arises, the

20r 1o unexpected threats against its goals, but for our purposes
these can be regarded as being the same thing.
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agent should put only as much effort as is rationally
justified into projecting the consequences of pursuing
that opportunity. In this paper, we shall concentrate on
the issue of how an agent should respond to perceived
opportunities, and we shall introduce a method for de-
termining quickly whether it is rational to seize an op-
portunity without first acquiring more information,

2. Effective independence

We are building a system, PARETO?, that operates a
simulated robot delivery truck in the TRUCKWORLD
domain® of Firby and Hanks (1987). PARETO can, for
example, recognize that a sack of cement mix sitting
by the side of the road presents an opportunity to
achieve the goal of satisfying a customer who has
asked for cement, and can reason about whether this
particular opportunity should be pursued. PARETO
might choose not to take advantage of an opportunity
if doing so would be detrimental to other goals it is
currently pursuing. For example, it might not want to
pick up a sack of cement that it has come across if it is
low on fuel, or if it is late in making another delivery.

The decision to pursue an opportunity depends on an
analysis of the costs and benefits of doing so. PARETO
must therefore have a way of determining what the
costs and benefits are, and how they compare. For op-
portunities, the benefits can be measured in terms of
goal achievement and beneficial side effects on other
goals, and costs in terms of forgoing other opportuni-
ties and harmful side effects on other goals. A theory
of expected utility can be used to compare the results
of taking the different courses of action that are avail-
able to the agent (Von Neumann & Morgenstern 1944,
Feldman & Sproull 1977). There is a well-defined the-
ory of how to arrive at the expected utilities, given cer-
tain information; in particular, the agent requires the
prior and conditional probabilities from which it can
calculate the probabilities of the various outcomes, and
the utility values of the outcomes. Unfortunately, pre-
cise values are often not available, and indeed in most
real-world situations the planner only has access to at
most crude approximations of the necessary probabili-
ties and utilities (Haddawy & Hanks 1990).

Even if the necessary information were available, the
calculations of the expected utilities for all possible
courses of action and all possible outcomes would in
general be extremely complex and time-consuming
(Hanks 1990). For decisions about whether to take ad-
vantage of an opportunity, aspects that might be rele-
vant include anything that might bear on how the pur-
suit of an opportunity will interact with ongoing plans

3Planning and Acting in Realistic Environments by Thinking about
Opponunities.

*“TRUCKWORLD simulates a world in which items can react in a rich
variety of ways and can change state with the passing of time. The
actions performed by the truck can fail for a variety of reasons,
including chance, and other random events can occur.
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that are iniended to achieve other goals. This covers a
great deal of territory. For example, the decision of
whether to pick up a sack of cement might depend on
whether there is a gas station nearby, in the case where
the truck is low on gas; it might depend on whether
there is a bridge with a low weight limit on the route
that the truck plans to take, if the load is a heavy one;
it might depend on whether cement thieves have been
reported in the vicinity recently; and so on. If a system
considers all the information that could potentially be
relevant to a decision, it will be unlikely to complete
the reasoning in time for it to be of any use: there are
simply too many ways in which plans can interact with
each other. The calculation of expected utility is thus
not by itself an adequate theory of how an intelligent
agent should react to opportunities. Intelligent agents
must have a quick and easy way to decide whether the
detailed reasoning will be worthwhile.

What is needed is focus: in addition to determining
whether the pursuit of an opportunity is likely to inter-
act significantly with ongoing plans, the system must
identify the areas in which such interactions are likely
to occur. These decisions must often be made rapidly if
an opportunity is to be seized in a timely fashion. Be-
cause of this it is impractical to attempt to make such a
determination analytically; instead, the system must
reason heuristically. A major simplification that would
significantly reduce the complexity of the reasoning
required would be to assume that the agent’s various
goals are independent, i.e. the pursuit of one goal does
not in any way interact with the pursuit of any other
goals. Unfortunately, this assumption would deny the
possibility of recognizing those circumstances in
which the likelihood of adverse interactions should
suggest that the opportunity not be pursued.

PARETO therefore uses a weaker version of the inde-
pendence assumption. It assumes that its various goals
are effectively independent of each other, i.e. that there
are no significant interactions between them, unless it
can infer otherwise (Pryor & Collins 1991). So, in our
example, in the absence of evidence to the contrary the
system would assume that picking up the cement
would have no adverse effects on any other deliveries
the truck might be making. If it is valid to assume ef-
fective independence of the agent’s goals, the decision
about whether to pursue an opportunity becomes much
simpler, since all insignificant interactions with other
goals can simply be ignored. However, if this assump-
tion is to be used we need Lo be able Lo recognize po-
tential violations of effective independence quickly and
easily. PARETO uses heuristics that indicate potential
violations to focus its attention on those aspects of the
decision that are likely to repay more detailed analysis.

PARETO pursues plans’ in order 1o achieve its deliv-
ery goals, and while pursuing them may notice oppor-

SPARETO is based on Firby's (1990) RAPs system, and thus uses a
hierarchy of sketchy plans. At any time one of these plans is active,
and others are dormant, awaiting execution.



Figure 1: The truck has an opportunity to pick up
some cinder blocks

tunities to achieve currently dormant goals. When an
opportunity is recognized, a two-stage process is em-
ployed to determine whether or not that opportunity
should be pursued. The first stage of the process in-
volves the use of heuristics which flag potential viola-
tions of effective independence. If there are potential
violations, PARETO moves on to the second stage and
performs a more detailed analysis of the adverse inter-
actions indicated by the heuristics.

2.1 Anexample

The types of decisions that PARETO faces when decid-
ing whether to take advantage of an opportunity are
illustrated in the following example. Suppose that the
robot delivery truck is in the process of delivering
some rolls of insulating material, the plan for which
requires the truck to cross a bridge. Suppose further
that there are some cinder blocks near the truck (figure
1), and that the truck has a currently inactive goal to
deliver cinder blocks to a customer. The presence of
the cinder blocks thus represents an opportunity to pur-
sue an existing goal, and the agent must determine
whether to pursue that opportunity.

In deciding whether or not to pursue the opportunity,
the agent might in principle consider any number of
possible interactions between its existing plans and the
pursuit of the opportunity. The truck would have to
stop by the side of the road to pick the cinder blocks
up which might involve problems with passing traffic;
the other objects by the side of the road might obstruct
the truck during the loading process; cinder blocks are
heavy, and the load might exceed the truck’s weight
capacity, they take up space in the truck, which might
not be available; they are both hard and abrasive, and
might damage other objects in the truck’s load; other
objects such as acid or iron beams might damage the
cinder blocks; if they are not securely fastened to a
pallet, they will be difficult to handle; loose cinder
blocks might get damaged in transit; the time taken to
pick them up might cause other delivery deadlines to
be missed; picking them up might use more fuel than
the truck has available; their weight might affect the
fuel consumption and speed of the truck, and hence the
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truck’s ability to make other deliveries; and so on. The
number of possible interactions is enormous.

Unfortunately, any one of these interactions could
actually constitute a serious threat. For example, let us
suppose that in the situation depicted above the com-
bined weight of the truck and the cinder blocks is
greater than the bridge can bear. The problem con-
fronting the agent is how to spot this problematic in-
teraction without considering all the possible interac-
tions in detail.

3. Reference features

An agent operating on the assumption that its various
goals are effectively independent must be able to rec-
ognize when this assumption is inappropriate. This in-
volves the ability to pick out the few genuinely prob-
lematic interactions from the potentially enormous
number of harmless interactions in a given situation,
and doing so quickly enough that the opportunity is not
lost before the computation is complete. As the exam-
ple above makes clear, this is by no means a trivial
task. One approach is to tag elements of situations that
are frequently involved in problematic interactions,
and then to concentrate resources on detecting interac-
tions involving the tagged elements.

This strategy can be seen as a simple application of
common sense. For example, we might expect a nurs-
ery school teacher to take note of a child who is often
involved in fights and disagreements, and to mark this
child as a potential troublemaker to be watched closely
in the future. In a similar way, our agent can tag po-
tentially problematic elements in its planning environ-
ments, and use these labels to help it spot potential
problems. By using different labels to designate differ-
ent types of potential problems, the agent can in addi-
tion use these tags to focus subsequent analysis aimed
at determining whether the problem will actually arise
in the current situation. For instance, if objects made of
a certain substance frequently break when they are in-
volved in impacts with other objects, the agent can
take note of that fact and mark such objects as fragile.
When handling fragile objects, the agent should recog-
nize that breakages are likely. Similarly, heavy objects
often cause supporting structures to collapse, and bulky
objects fill large volumes of space.

Objects are not the only elements of situations that
can lead to unwanted interactions. For instance, when
it is important that a goal be achieved within a short
time period, there are often time conflicts with other
tasks. By marking such goals as urgent, the agent can
use that knowledge to avoid undertaking tasks that will
interfere with their timely achievement.

We use the term reference features 1o denote tags
such as disruptive, fragile, and urgent that help to direct
an agent’s attention to interesting functional aspects of
the situation. In this paper we are primarily concerned
with their use in indicating problematic intcractions,



Obiject Description Reference Feamres
insmat-2 insulating-material | bulky
cblocks-6 cinder-block heavy
rough -

bridge-23 rickety
customer-A impatient
road-57 bumpy

Figure 2: Some reference features

but they also facilitate detecting a specified object, and

can be used in planning to achieve goals.

PARETO uses heuristics based on reference features
to indicate potentially problematic interactions in-
volved in the pursuit of opportunities. There are sev-
eral requirements that must be met in order for this
strategy to be effective:

« The reference features must be easily recognizable.

» The agent must be able to determine quickly which
elements of the situation may have reference features
that indicate potentially adverse interactions.

» The agent must be able to use the reference features
to indicate the type of the potentially problematic
interaction.

There are many ways of meeting these requirements.

In the current implementation of PARETO we are ex-

perimenting with a simple algorithm that looks for ref-

erence features indicating similar interaction types.

3.1 Availability

Reference features are useful only insofar as they pro-
vide cheap heuristics that indicate the desirability of
more detailed reasoning. Reference features must
therefore be easily inferable in most situations in
which they are applicable, and must be inferable in
few of the situations in which they are not. PARETO
can link reference features to individual objects (it may
know, for example, that a specific bridge is rickety), to
descriptions that may apply to objects (the description
cinder-block has the reference feature heavy attached
to it), to sketchy plans and actions (which may be, for
example, lengthy), and to goals (e.g. urgent). In
TRUCKWORLD it is easy® to observe, for example,
that an object is a stack of cinder blocks: the fact that
the object has the reference feature heavy can then be
inferred. Figure 2 shows some of the reference features
in our example.

3.2 Situation elements

Since reference features are associated with elements
of the situation in which PARETO finds itself, PARETO
must be able to determine which elements of the situa-

GP:meptim in TRUCKWORLD grounds out at the level of object de-
scriptions, and thus ignores the many important problems of object
recognition.
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Goal (deliver ?item 7dest) | (travel-to ?dest)
Plan steps (travel-to 7item-loc) | (traverse ?road1)
(load ?item) (traverse 7road2)
(travel-to ?dest) (traverse ?road3)
(unload ?item)
Current plan | (?item insmat-2) (?destination cust-A)
Variables (?destination cust-A) | (7road1 road-42)
(?road?2 bridge-23)
(?road3 road-31)
Opportunity | (?item cblocks-6) (?destination cust-B)
Variables (?destination cust-B) | (?road1 road-45)
(?road2 road-57)
(?road3 road-76)
Figure 3: Sketchy plans

tion are relevant. PARETQ uses sketchy plans (Firby
1989) that comprise, among other things, a list of
actions to be executed and the goal that the plan
serves. Action descriptions consist of an action
predicate applied to a set of objects (see figure 3). The
set of situational elements associated with a given plan
thus consists of all the objects that play a role in any
primitive action, the actions themselves, and the goal
that the plan serves.

When PARETO is considering whether to pursue an
opportunity, it examines both the plan it is currently
executing and the plan that would be used to pursue
the opportunity, collecting the relevant situational el-
ements from each. It then checks to see whether any of
these elements is associated with a reference feature,
and, if so, it flags that element.

In our example, PARETQ’s current plan is to deliver
some insulating material to customer-A. An outline of
the sketchy plan for this task is shown in figure 3. The
sketchy plan (travel-to cust-A), for example, consists of
the three steps: (traverse road-42), (traverse bridge-23)
and (traverse road-31). Similarly, the plan for pursuing
the opportunity , involving the goal (deliver cblocks-6
cust-B), is a different instantiation of the same sketchy
plan. The reference features of bridge-23 (rickety) and
cblocks-6 (heavy, rough) are therefore among those
that are relevant to the decision of whether to pursue
the opportunity to deliver the cinder blocks.

3.3 Focusing reasoning

In addition to flagging potential violations of effective
independence, reference feawres play a role in fo-
cusing the agent’s reasoning onto the particular aspects
of the situation that should be considered in determin-
ing whether the violation will actually occur. In the
example described above, for instance, there is a po-
tentially problematic interaction involving the rickety
bridge and the heavy cinder blocks. PARETO’s analy-
sis should concentrate on the question of whether the
bridge is likely to collapse under the weight of the
blocks.

The knowledge that PARETO needs in order to guide
the analysis process is associated with reference fea-



REFERENCE FEATURES | INTERACTION ROLE OF TASK || REFERENCE FEATURES | INTERACTION ROLE OF OBJECT
OF TASKS TYPE OF OBJECTS TYPE
lengthy time consumer I bulky volume-capacity | consumer

fuel consumer explosive fire igniter
urgent time requirer flammable fire burner
REFERENCE FEATURES INTERACTION ROLE OF TERRAIN || fragile impact hit
OF TERRAINS TYPE time consumer
bumpy impact cause hard impact hitter
narrow volume-capacity | limiter ll heavy fuel consumer
rickety load-bearing base load-bearing load

u rough surface-damage | abrader

Figure 4: Reference features and interactions

tures themselves. Each reference feature predicts a
particular type of problematic interaction (see figure
4), which is represented by an interaction description
consisting of three items: the configuration that is re-
quired in order for the interaction associated with the
feature to occur, the potentially problematic outcome
of the interaction, and a list of variables designating
the elements that play a role in the interaction (see fig-
ure 5). When a situational element is flagged with a
reference feature, PARETO must determine whether the
interaction description associated with that feature ap-
plies to that element in the current situation.

In order to determine whether an interaction descrip-
tion applies, PARETO must first determine which other
elements of the situation could be involved in such an
interaction with the flagged element. For instance, the
pile of cinder blocks in the example creates the poten-
tial for an interaction in which an object supporting the
blocks collapses, but this does not tell us which, if any,
specific objects are in danger of collapsing. One ap-
proach might be to examine every element of the sit-
uation to determine if any are likely to be involved in
this interaction; in effect, this would be like asking, for
every element, whether it is ever likely to support the
cinder blocks, and, if so, whether it can bear their
weight. While this is possible, it involves a somewhat
unfocused search.

A more focused solution is based on the observation
that different reference features may be used to desig-
nate objects that play different roles in the same type
of interaction. For example, heavy means that an ob-
ject is likely to make the object that supports it col-
lapse, while rickety means that an object is likely to
collapse under an object it is supporting. The features
heavy and rickety thus form a natural pair. This knowl-
edge can be used to focus the analysis by considering
interactions only when at least one object has been

Interaction type: | load-bearing surface-damage
Roles: ?base ?load ?abrader ?hurt
Configuration: | (bears ?base ?load) | (rubs ?abrader
?hurt)
Qutcome: (collapse 7base) (scratched 7hurt)
Figure 5: Interactions
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flagged for each role in the interaction. In our example,
PARETO considers the possibility that something will
collapse only when it recognizes that both a heavy ob-
ject—the blocks—and a rickety object—the bridge—
have been flagged.

Once PARETO knows the type of problematic inter-
action it is looking for, and the elements that are in-
volved in that interaction, it must determine whether
the interaction will actually occur. This involves two
steps: determining whether the configuration de-
scribed in the interaction description will arise, and de-
termining whether the problematic outcome will result
if it does. PARETO must therefore be able to perform
inference over the causal theory of the planning envi-
ronment, which must include a theory of action projec-
tion in addition to the causal relationships among the
objects in the world. We are assuming that this infer-
ence is performed by a general purpose query system
since we have not yet addressed the problem of a a
more specialized system for plan projection.

In our example, then, PARETO should query whether,
if the opportunity is pursued, the cinder blocks will at
some stage be supported by the bridge. In this case it
will discover that this configuration condition will in-
deed occur. PARETO must therefore decide whether
the pursuit of the opportunity would result in the
problematic outcome of the interaction, or if that
outcome can be avoided.

In order to answer this query, PARETO applies infer-
ence rules describing the causality of the domain, for
example that the bridge will collapse if the total load
on the bridge is greater than its weight limit. In order
to use this particular rule, PARETO will need to know
the weight limit on the bridge, and the weight of the
total load on the bridge at the time when the configura-
tion conditions are met. Further inference rules will
enable it to recognize that the total load on the bridge
will consist of the truck, its current contents, and the
cinder blocks, whose weights must be added together.
These individual weights are therefore pieces of infor-
mation that will be useful to PARETO in making the
decision. However, there may be costs involved in ac-
quiring this information (for further discussion of this
point see Pryor & Collins 1992). PARETO must there-



fore consider the value and acquisition costs of each
piece of information. For example, if the weight limit
on the bridge is very high compared to the weight of
any load the truck would carry, information about the
weight of the truck’s load would not change the deci-
sion as to whether to pick up the cinder blocks, and so
is not worth acquiring.

4. Discussion

We have described the design of a system, PARETO,
that reasons efficiently about whether to pursue an op-
portunity. The keys to PARETO’s approach are, first,
that it assumes that its various goals are effectively in-
dependent of each other, and, second, that it uses refer-
ence features to flag situations in which this assump-
tion of effective independence is likely to be violated.
By using reference features to indicate potentially ad-
verse interactions between an opportunity and its cur-
rent plans, PARETO is able to ignore the many in-
significant interactions that may be present.

It is important to note that reference features are not
infallible: clearly there may be a problematic interac-
tion that is not indicated by any reference features. As
a result, PARETO will occasionally produce incorrect
plans. We believe that such an outcome is unavoidable
for any planner that is intended to operate in a com-
plex, and unpredictable environment. the upshot of this
is that such a system must be able to recover from er-
rors and unforeseen failures, and to learn from its mis-
takes. One way in which such a system might be ex-
pected to learn from mistakes is by positing new refer-
ence features indicating problematic interactions that
the system has observed. Reference features thus form
a natural basis for a theory of learning to plan. We will
pursue this issue further in future work.

Acknowledgments: Thanks to Larry Bimbaum, Matt
Brand, Will Fitzgerald, Mike Freed, and Bruce
Krulwich for many useful discussions.
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