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ABSTRACT OF THE DISSERTATION

Non-spatial hippocampal behavioral timescale synaptic plasticity during working memory

is gated by entorhinal inputs

by

Conor Cunningham Dorian

Doctor of Philosophy in Neuroscience

University of California, Los Angeles, 2025

Professor Peyman Golshani, Chair

Working memory is the ability to temporarily store and manipulate information. Many

brain regions have been implicated in sensory representations necessary for working memory,

but the hippocampus’s sequential activity and well-known role in many types of memory

provides a unique model to study the formation of neural ensemble representations. Most

hippocampal research has focused on its representations of visuospatial sensory information,

which leaves many unanswered questions about how representations of non-spatial and

internally generated temporal representations may differ. Therefore, this dissertation

focuses on non-spatial sensory and temporal encoding within hippocampal CA1 region,

and the hippocampus’s main input areas - lateral and medial entorhinal cortex (LEC and

MEC) - during an olfactory working memory task.

Chapter 1 will outline key evidence for the roles of entorhinal cortex and hippocampus

for working memory and sequential activity that encodes sensory and temporal information.

Chapter 2 will describe our recent finding that behavioral timescale synaptic plasticity

(BTSP) is a rapid form of plasticity that generalizes to non-spatial tasks with the rapid

formation of odor-selective responses in individual CA1 neurons during our olfactory

working memory task. Chapter 3 will describe our findings showing how sequential activity

in CA1 simultaneously encodes sensory working memory and temporal information in a
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novel rodent working memory implicit timing task. Chapter 4 will describe our findings

that LEC or MEC optogenetic inhibition does not impair learning or performance on

our olfactory working memory task even when we make the task dramatically more

difficult. Chapter 5 will describe our findings that the inhibitory opsin stGtACR2 can

lead to rapid kindling via light pulses that likely are excitatory on axon terminals in the

hippocampus when opsin expression was expected to be limited to somas in EC. Altogether,

this dissertation contributes to the field’s understanding of how LEC and MEC drive

non-spatial and temporal representations in the hippocampus during working memory.
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CHAPTER 1

Introduction

1.1 Memory

The brain is a complex organ, but its primary function is as an input/output system. It

must take in sensory inputs from the external world and guide motor outputs. However,

the timescale between an input and an output can vary from less than a second to many

years. Memory is the brain’s ability to bridge the gap between input and output by storing

information.

1.1.1 Patient H.M and Different Memory Systems

However, there are many different types of memory depending on the type of information

being stored and the length of time it must be stored. This was first most clearly

demonstrated by Dr. Brenda Milner and her patient H.M. (Henry Moliason), one of the

most famous neuroscience patients in history (Squire, 2009). Following a bike accident at

age 7, patient H.M. began having seizures in his childhood that worsened to the point of

being resistant to anticonvulsant medications. Patient H.M. was unable to lead a normal

life, so at the age of 27 in 1953 he chose to undergo an experimental procedure by Dr.

William Scoville to bilaterally resect large portions of the medial temporal lobe believed

to be driving the seizures. Although the surgery was successful in that patient H.M. never

suffered from seizures again, Dr. Brenda Milner noted an extreme memory impairment

(Milner et al., 1968). His intellect and cognition were largely unaltered, but he was unable

to form new long-term memories - anterograde amnesia. He could remember details of his
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childhood and events that preceded approximately three years before the surgery, yet no

new facts or events could be remembered. He no longer had the ability to encode semantic

or episodic memories in the long-term. He was able to hold conversations and appear

entirely normal for several minutes, but as soon his attention was redirected, he would

forget the entire previous interaction.

It was Dr. Milner’s careful studies and behavioral tests that first gave strong evidence

to the different memory systems based on the type of information being stored (Squire,

2009). For example, patient H.M could retain strings of numbers for 15 minutes but

nonverbal stimuli like faces and designs for less than a minute. Additionally, he could not

learn new facts, but he could learn new visuomotor skills. Despite claiming that he had

never seen the task before, patient H.M. could steadily improve at a difficult drawing over

days and weeks of practice. These findings were the first to suggest that some types of

memory are not reliant on the medial temporal lobe.

The other critical distinction between memory systems that Dr. Milner made was

between ‘immediate memory’ and long-term memory (Squire, 2009). Patient H.M.’s

memory impairment was characterized as an inability to convert immediate memory into

long-term memory. It was proposed that the medial temporal lobe is critical for this

conversion. Given patient H.M.’s intact immediate memory, it was believed to rely on

brain regions outside of the medial temporal lobe. Also given his ability to remember

events from before the surgery, it was believed that long-term memories are stored outside

the area too. These findings established a foundation that continues to guide memory

research today.

1.1.2 Working Memory

Some of the language has evolved since Dr. Milner’s first descriptions, and additional types

of memory have been classified. One such important type of short-term memory is called

working memory, which is the ability to temporarily store and manipulate information
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(Baddeley, 2012). Patient H.M.’s seemingly spared working memory allowed him to hold

a short conversation, store numbers for a short period, and think critically. Because the

ability to transiently store and use information is the basis of most cognitive functions,

working memory is critical for our intellect.

Although there are discrepancies on the exact timeframe of working memory, it is

generally considered on the timescale of several seconds (Baddeley, 2012). Human working

memory abilities vary based on the individual’s age, attentional state, and the type of

information. Visuospatial working memory is thought to be one of the longer lasting

types of up to 30 seconds (Posner and Konick, 1966), while auditory working memory is

thought to only last about two seconds (Baddeley et al., 1975). While there was been much

work characterizing the limits of human working memory and what factors contribute to

its difference from other types of memory, there is still a large gap of knowledge in the

neuroscience field as to how working memory is maintained within the brain. The first

question is what brain regions are involved?

1.2 The Hippocampal Formation

The human brain is a 3-pound organ with 100 billion neurons and 1 trillion other supporting

cells (Herculano-Houzel, 2009). Individual neurons communicate to each other through

electrical and chemical signals in the axon, and they receive inputs from other neurons in

their dendrites. These connections are made throughout and across the entire brain, but

scientists use terminology to divide the brain into different regions and subregions based

on physical architecture and function. When patient H.M. underwent his surgery, the

medial temporal lobe was understood to likely be important for causing his seizures, but

the precise functional divisions have since been further characterized. Starting in 1992, he

began having magnetic resonance imaging (MRI) tests to better understand the damage

that led to his memory deficits (Squire, 2009). These tests and post-mortem analysis

confirmed that the original surgery lesioned the medial temporal lobe and specifically the
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hippocampus, amygdala, entorhinal cortex (EC), perirhinal cortex, and parahippocampal

cortex (Squire and Zola-Morgan, 1991). While many of the original hypotheses focused

on the idea of the hippocampus’s role for memory, the discussion became focused on the

interaction of these many regions.

1.2.1 Hippocampal Structure

Firstly, at the architecture level, the hippocampus is named because its shape resembles

a seahorse, which is genus Hippocampus (Knierim, 2015). The hippocampus is further

divided into four subregions: dentate gyrus (DG), cornu ammonis 1 (CA1), CA2, and CA3.

While each of these four subregions have inputs from outside the hippocampus, the DG is

the one with the strongest inputs outside of the hippocampus. The DG sends projections to

CA3 via the mossy fibers (Knierim, 2015). CA3 projects to CA1 and also many collaterals

that connect to other CA3 neurons, which forms a strong recurrent network (Li et al.,

1994; Le Duigou et al., 2014). CA1 is the output region of the hippocampus as it projects

to the entorhinal cortex (EC) and many other cortical and subcortical regions across the

brain (Knierim, 2015).

1.2.2 Entorhinal Cortex Structure

The entorhinal cortex (EC) is the primary output of CA1 and the primary input to DG

(Canto et al., 2008). Like most cortical areas in the human brain, it consists of 6 layers

with distinct anatomical structure and function. Layer I is the most superficial, while layer

VI is the deepest and borders white matter tracts. Most neurons in layer I are inhibitory

and project to layer II and III to inhibit the excitatory cells there. Layers II and III

have the densest organization of excitatory neurons and these project to other layers of

EC and outside of EC. Layer II sends projections to DG and CA3, while layer III sends

projections directly to CA1. The pathway from EC to DG forms the perforant path, and

CA1’s projections back to EC complete the canonical trisynaptic loop. Meanwhile the
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direct projection from EC layer III to CA1 is called the temporammonic pathway. Layer

IV is very thin and only contains small amounts of inhibitory neurons. Layer V is another

dense layer of excitatory pyramidal neurons, and these project to superficial layers and

outside of the EC. Finally, layer VI contains excitatory neurons with projections to layer

V and VI and the subiculum.

This oversimplification of the hippocampal and EC circuit does not address the rich

diversity of many different types of excitatory and inhibitory neurons at each region,

subregion, and layer (Varga et al., 2010; Chamberland and Topolnik, 2012). While work

is still being conducted to classify all the different subtypes of neurons based on their

structure and morphology, most modern work is focused on understanding the functional

properties that define each area and cell type. Both the hippocampus and EC still hold

many mysteries to their function in various contexts.

1.2.3 Hippocampal and EC Function

In order to follow up on Dr. Brenda Milner’s conclusions about hippocampus from

patient H.M., the neuroscience community had to causally test its necessity for types of

memory. Fortunately, the structure and function of the hippocampus and EC are largely

evolutionarily conserved across mammalian species, which has allowed scientists to use

rodent models (Zemla and Basu, 2017). Early lesion studies supported Dr. Brenda Milner’s

conclusions that the hippocampus is necessary for encoding of long-term memories, but this

storage happens in cortical areas outside of the hippocampus (McKenzie and Eichenbaum,

2011). However, the story is more complicated with consideration of different contexts and

information types. Overall, the hippocampus has been shown to be important for learning

and memory of sensory, spatial, and temporal information over the timescale of seconds to

years (Zemla and Basu, 2017). The dynamics of neural activity and contributions of EC

heavily depend on the parameters of experience, modality, and timescale.
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1.2.3.1 Spatial Memory

One of the most well-known hippocampal and EC findings was the 1971 discovery of

‘place cells’ in the hippocampus (O’Keefe and Dostrovsky, 1971) and the 2005 discovery

of ‘grid cells’ in medial EC (Hafting et al., 2005). In 2014, the Nobel Prize in Physiology

or Medicine was awarded to John O’Keefe, May-Britt Moser, and Edvard I. Moser for

these discoveries that helped us understand the role of the hippocampus and EC in spatial

memory and navigation. In 1971, John O’Keefe and Jonathan Dostrovsky published their

finding that individual neurons in the CA1 region of hippocampus would fire at specific

positions within an environment as rats were recorded in-vivo (O’Keefe and Dostrovsky,

1971). These cells were called ‘place cells’ as they each had different ‘place fields’ that

filled the environment; together it is possible to determine the location of the animal based

on the activity of these groups of place cells. In 2005, research in the labs of May-Britt

Moser and Edvard I. Moser was published describing ‘grid cells’ in medial EC, which

are individual neurons that exhibit a grid-like pattern of many place fields instead of the

singular place field that O’Keefe’s place cells exhibited (Hafting et al., 2005). For the last

50 years, much research has been dedicated to understanding the interaction between the

hippocampus and EC in spatial memory and navigation. The discoveries of ‘head-direction

cells’ (Taube et al., 1990), ‘border cells’ (Lever et al., 2009), ‘speed cells’ (Kropff et al.,

2015), and others have clarified how individual neurons encode spatial information of the

environment. Some of these representations are necessary for behavior as there has been

extensive work evaluating the necessity of the hippocampus or EC for performance of

various spatial memory tasks (Eichenbaum, 2017).

Spatial tasks and contexts have proven convenient models for many other significant

discoveries regarding the hippocampus and learning. For example, at the molecular and

cellular level, discoveries of the roles of N -methyl-D-aspartate receptors (NMDAR) and

calcium-calmodulin-dependent kinase II (CaMKII) in synaptic plasticity and learning were

first demonstrated in spatial contexts (Morris et al., 1986; Silva et al., 1992; Nakazawa
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et al., 2004). However, not all memories are spatial. While focusing on one modality has

led to a wealth of knowledge for the field, it leaves questions for how these findings can be

generalized to other sensory modalities.

1.2.3.2 Non-spatial Memory

Early on the hippocampus’s role in memory was understood to be very multimodal, but

the focus on medial EC for its ‘grid cells’ drew attention to the functional division between

medial and lateral entorhinal cortices (MEC and LEC). The most common understanding

of the functional division classifies MEC as ‘where’ and LEC as ‘what’; MEC sends spatial

information to the hippocampus, while LEC sends non-spatial information. However, this

distinction is oversimplified and nuanced understandings are more appropriate (Knierim

et al., 2014; Save and Sargolini, 2017).

Within spatial tasks and environments, the simplified distinction seems appropriate.

For example, in rodent foraging tasks, MEC neurons will fire in grid like patterns while

LEC neurons will be contextually sensitive to wall colors (Lu et al., 2013) or the amount

of time that has elapsed (Tsao et al., 2018). However, in less space-centric tasks or ones

with less cognitive demand make the distinction less clear (Save and Sargolini, 2017). For

example, in object recognition tasks, LEC only becomes necessary when the cognitive

demand is high (Kuruvilla and Ainge, 2017; Ku et al., 2017). When cognitive demands

are low, both LEC and MEC encode similar features and may not be necessary for task

performance.

Taken together, this suggests that is most helpful to consider the distinction between

MEC and LEC in its relationship to the hippocampus. It is often difficult to disentangle

their relative contributions because of the substantial projections between the two regions

and back from the CA1 region of the hippocampus. Also given that functional differences

vary between tasks and environments, newer proposals frame LEC and MEC as ‘content’

and ‘context’ as opposed to ‘what’ and ‘where’ (Knierim et al., 2014). Together, MEC
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and LEC provide the content and contextual information for the hippocampus to form a

holistic representation of the external world. However, the content and context will vary

highly depending on what representation must be maintained. Chapter 4 will investigate

this question by evaluating working memory performance when LEC or MEC activity is

silenced during a olfactory working memory task.

1.3 Population Dynamics of Working Memory

With the advancement of technology, the field of neuroscience continues to evolve. Many

early studies relied on lesions to test causality of a brain region’s role in a particular task.

Early electrophysiological recordings could only record from a small population of cells,

so more analyses focused on understanding how individual cells represent information

of the external world. However, these approaches make it difficult to understand the

interaction between multiple regions. Additionally, what are the activity patterns at a

large population level that lead to behavior, and how does this change with experience?

1.3.1 Persistent Activity

In addition to the hippocampus and EC, early studies also focused on the prefrontal cortex

as an area important for working memory. Single cell electrophysiological recordings in

primate prefrontal cortex were the first to demonstrate neural activity capable of storing

information in the form of individual cell activity patterns (Fuster and Alexander, 1971;

Kubota and Niki, 1971). Compared to low firing rates in pretrial periods, individual cells

would maintain persistently high firing rates during the delay period. Later research would

also show that cells could have cue-specific firing; a cell would fire persistently during the

delay only following its preferred cue (Funahashi et al., 1989). This effectively stores the

identity of the first cue so that it can then be compared to another stimuli arriving after

the delay. Therefore, persistent activity became the first demonstrated ‘neural code’ for
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how the brain can maintain information across delays of several seconds. While much

research has continued to expand on our knowledge of persistent activity in the prefrontal

cortex and connect it to rodent and human research (Curtis and D’Esposito, 2003; Curtis

and Sprague, 2021), other brain regions do not use this same neural code.

1.3.2 Sequential Activity

The discovery of ‘time cells’ in hippocampal CA1 (Pastalkova et al., 2008; MacDonald

et al., 2011) provides an alternative neural code for working memory by also temporally

organizing the memories. In tasks that require information to be held across a delay period,

CA1 neurons have been shown to have peaks of activity at specific times in the delay.

Unlike prefrontal cortical cells that persistently fire throughout the entire delay, individual

CA1 ‘time cells’ each have a ‘time field’ - which is the timepoint at which they prefer

to be the most active. Together, many time cells can tile the entire delay period with

each one having a unique time field. This population dynamic is referred to as sequential

activity. Additionally, these sequences were demonstrated to be cue-specific, such that

distinct populations of cells would respond at specific timepoints in the delay only following

their preferred cue (MacDonald et al., 2013; Taxidis et al., 2020). Therefore, sequential

activity is an additional neural code for working memory. Other models have also been

shown in other areas such as ramping activity, which is when cells steadily increase of

decrease their firing across a delay period (Chafee and Goldman-Rakic, 1998; Barak et al.,

2010). Alternative ‘activity silent’ models have also been proposed that rely on temporary

synaptic plasticity to maintain information in the absence of neural activity (Stokes, 2015;

Masse et al., 2019). While both persistent and sequential activity exist in areas of the

brain, it is valuable to understand the environmental factors and circuit connections that

lead to preferring one or another. Persistent activity is likely robust, while sparser activity

patterns like ramping or sequential activity may be more energetically efficient.
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1.3.3 Multiplexing with Time

Critically, another feature of ramping and sequential activity is that these patterns not

only encode the previous stimuli, but also how much time has elapsed. In sequences, since

each neuron has a different preferred time field, it is possible to determine the timepoint

within the delay by evaluating which cells are currently active. With persistent activity,

this temporal information is not available because the population dynamics are stable

throughout the delay period. This has led scientists to ask if sequential activity can be a

shared neural mechanism for the encoding of working memory and timing information

(Zhou et al., 2023). It is hypothesized that persistent activity is more present when it is

not valuable to track time; for example, when delays lengths are random it is not possible

to predict when the delay may end. On the other hand, sequential activity may be more

present when it is valuable to track time. Even during a working memory task with no

explicit timing component, humans and animals show evidence of implicitly learning the

temporal structure of the task (Nobre and Van Ede, 2018; Zhou et al., 2023). Temporal

predictions help to build anticipation at the appropriate time so that the subject is

maximally prepared to respond behaviorally. However, this theory that sequential activity

multiplexes working memory and time has yet to be clearly demonstrated in neural data.

Chapter 3 will address this by examining our findings of CA1 sequential activity in a novel

rodent working memory task with an implicit timing component.

1.3.4 Sequential Activity in CA1 during olfactory working memory

The first step to understanding the role of sequential activity is to observe how sequences

vary between different contexts. Given the bias of hippocampal research to focus on

spatial information, most ‘time cells’ have been demonstrated in spatial tasks (Pastalkova

et al., 2008; MacDonald et al., 2011; Eichenbaum, 2014; Buzsáki and Tingley, 2018)

Often enclosed spaces with linear treadmills are used to disentangle space and movement

from elapsed time. However, relatively less research has evaluated temporal encoding
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during completely non-spatial tasks. Previous work within the Golshani lab addressed this

gap of knowledge (Taxidis et al., 2020). Additionally, taking advantage of technological

advancements, they recorded larger numbers of CA1 neurons by performing two-photon

calcium imaging. This provided unique advantages over the electrophysiological tetrode

recordings most of the previous spatial research relied on.

1.3.4.1 Calcium Imaging

With a sacrifice of temporal resolution of neural activity, calcium imaging has the main

advantages of ease of recording larger number of neurons in a cell-type specific manner

and the ability to record the exact same neurons for weeks or months (Grienberger and

Konnerth, 2012; Grienberger et al., 2022). When a neuron fires an action potential,

voltage-gated calcium ion channels open to allow the influx of calcium ions. Calcium binds

calmodulin as the start of mechanism to trigger synaptic vesicle release of neurotransmitters

into the synapse. Protein engineers have designed modified calcium sensors with calmodulin

components that fluoresce a specific color when calcium binds. With viral delivery of

these genetically engineered calcium indicators (GECI), researchers can visualize the

fluorescence intensity as a proxy for neural activity. This technique has revolutionized

systems neuroscience as we are able to record calcium signals from thousands of cells

simultaneously and track their activity as animals learn across days, weeks, or months.

Additionally, calcium imaging of dendrites or axons allows us to visualize the activity

being sent from one brain region to another.

In behavioral tasks with delay periods of several seconds, the lack of temporal resolution

to identify single action potentials is outweighed by the tremendous benefits of using

calcium imaging. This tool is ideal for asking questions about how neural dynamics of

specific neuron populations change across weeks of learning a working memory task.
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1.3.4.2 Major Previous Findings

In 2020, the Golshani lab published research showing how ‘odor cells’ and ‘time cells’

comprise odor-specific sequences in dorsal CA1 during an olfactory delayed non-match-to-

sample (DNMS) task (Taxidis et al., 2020). Each trial of the task consisted of two 1-second

odor presentations separated by a 5-second delay period. Either odor presentation could

be odor A or odor B. Mice were trained to refrain from licking after match trials and to

lick for a water reward after non-match trials. Using two-photon calcium imaging, the

activity of thousands of dorsal CA1 neurons was recorded during learning of the task.

Together the odor cells and time cells created sequences that tiled the entire 5-second

delay, and there was a distinct sequence following both odor A and odor B. One main

finding was that odor cells were more stable and robust as compared to time cells.

Additionally, the number of time cells increased with experience and better performance,

while the number of odor cells remained the same (Taxidis et al., 2020). This suggests that

sequential activity is dependent on familiarity of the context. Perhaps the ability to keep

track of time during the delay period becomes better as the sequence fills in additional

time cells. While chapter 3 will address how an increase in the number of time cells may

help to better encode temporal information at specific points in the delay period, another

major question is how the representations are formed. What brain regions are involved

in the formation of odor cells and time cells in this task? Given that LEC is known for

its role in olfaction encoding (Igarashi et al., 2014; Li et al., 2017; Woods et al., 2020;

Zhang et al., 2024), is LEC necessary for the formation of these odor-specific sequence

cells? Does MEC play a complementary role?

1.4 Representations Change with Learning and Experience

These large questions about how neural representations change across learning and expe-

rience extend beyond memory tasks, as they are major questions for the entire field of
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systems neuroscience. Therefore, it is important to consider how neurons change their

activity in response to their inputs. This ability to modify strengths of connections is

termed plasticity, and there are several different types and subtypes.

1.4.1 Hebbian Plasticity

The most famous and widely accepted of plasticity is Hebbian plasticity, named after

Donald Hebb published his book “The Organization of Behavior” in 1949 (Hebb, 2005).

Often summarized by the phrase “neurons that fire together, wire together”, he postulated

a theory that requires causality and repetition in order to increase synaptic strength

between two connected neurons. Presynaptic cells must causally drive the postsynaptic

cell to fire, and if this is done repeatedly, the strength of the connection will grow stronger.

This was first demonstrated in the hippocampus (Bliss and Lømo, 1973; Levy and Steward,

1983) and termed long-term potentiation (LTP). Specifically, it was demonstrated that the

presynaptic cell must fire just before the postsynaptic cell, and this must be repeat (Bliss

and Lømo, 1973; Levy and Steward, 1983). This idea of temporal precedence became

more clearly defined with the classification of spike-timing-dependent plasticity (STDP)

(Markram et al., 1997). Here, the amplitude of the strengthening is dependent on how

close in time the presynaptic spike and postsynaptic spike occurred. If the presynaptic

spike occurs after the postsynaptic spike, the connection is weakened as the presynaptic

cell could not have caused the postsynaptic spike. This is termed long-term depression

(LTD). Together LTP and LTD provide a mechanism for Hebb’s original theory. This

strengthening of efficient connections and weakening of inefficient connections is thought

to be the basis of learning and memory.

Lots of work has demonstrated how the strengthening and weakening of synapses occurs

at the molecular level with AMPA and NMDA receptors (Watt et al., 2000). Yet, making

the connection to behavior is difficult often because of the timescale required for STDP

and Hebbian forms of plasticity. If many repetitions are required for synapse strengthening,
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how is it that the brain can learn after single experiences? If the postsynaptic spike

must happen only milliseconds after the presynaptic spike, how is it that we can learn

associations between events that are separated by seconds?

1.4.2 Behavioral Timescale Synaptic Plasticity (BTSP)

The discovery of a new form of plasticity by the Magee lab provides a unique answer to

how the brain can learn on behavioral timescales. Behavioral timescale synaptic plasticity

(BTSP) does not require causality or repetition. It has been demonstrated as a robust

mechanism for the formation of ‘place cells’ in the hippocampus (Bittner et al., 2015, 2017;

Grienberger et al., 2017; Zhao et al., 2020; Magee and Grienberger, 2020; Milstein et al.,

2021; Grienberger and Magee, 2022; Xiao et al., 2023). During spatial learning tasks, a

single calcium plateau potential can serve as an induction event. When a CA1 neuron

has a plateau potential, it increases the synaptic strengths of connections that were active

in the seconds around the plateau. Inputs that occur up to 4 seconds before the plateau

potential are potentiated. Although it is asymmetric as only inputs that came within one

second after the plateau are potentiated. In linear track tasks, driving a single plateau

potential on one lap is enough to induce strong place cell firing at the place field on the

subsequent laps.

Work has shown that MEC inputs are critical for driving these plateaus in CA1

(Grienberger and Magee, 2022), yet it is unknown if this type of plasticity generalizes to

other contexts. Is BTSP a mechanism for the formation of non-spatial representations

like odor cells and time cells? Is the role of MEC and LEC in driving BTSP different in

non-spatial tasks? Chapter 2 addresses these questions.

1.4.3 Representational Drift

The existence of ‘place cells’, ‘grid cells’, ‘odor cells’, and ‘time cells’ tell the story of

individual neurons in the hippocampus and how these individuals contribute to the
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population dynamics. However, these representations are rarely stable. Throughout the

brain, it has been demonstrated that representations drift even when the environment and

behavior are entirely stable (Rule et al., 2019; Micou and O’Leary, 2023). Since calcium

imaging allows the tracking of neurons across days, place cells have been shown to emerge

and fade across multiple days (Ziv et al., 2013; Hainmueller and Bartos, 2018). Similar

has been shown with odor cells and time cells in the hippocampus as well (Taxidis et al.,

2020). It is believed that this drift allows the brain to continuously learn by being flexible

and plastic. However, it is still unknown how downstream regions continue to extract

stable information from highly dynamic neural patterns. It is also unknown what types of

plasticity contribute to the continuous turnover of cell representations. The final part of

chapter 2 will address this question.

1.5 Summary and Overview of Following Chapters

This chapter has summarized some of the relevant research on the hippocampus and

EC, working memory, and plasticity mechanisms that drive the formation of neural

representations. This chapter posed many questions and highlighted areas of future

research for the field to address. The following chapters will address a few of the questions

and gaps of knowledge mentioned here.

In chapter 2, we demonstrated that BTSP is a plasticity mechanism that generalizes

to non-spatial tasks with the formation of ‘odor cells’ in dorsal CA1 following large single

calcium plateaus. These BTSP events shared many characteristics with the ones previously

described in the spatial literature. They had asymmetric formation with MEC activity

playing a role in driving the plateaus. However, we also expanded on previous knowledge

by demonstrating LEC’s role in the formation of the odor cells. Additionally, we made

a connection to representational drift and proposed that BTSP may be underlying the

turnover of odor cells during expert performance of our olfactory DNMS task.

In chapter 3, we developed a novel rodent working memory implicit timing task that
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validated a behavioral effect seen in humans. We then showed that sequential activity in

CA1 during this task was modulated by temporal expectation. Importantly, the increase

in cells that fire during the delay demonstrated anticipation and learning of the implicit

timing component of the task.

In chapter 4, we followed up on a surprising result from chapter 2. Despite strong effects

of LEC or MEC inhibition on CA1 neural representations, we did not observe a behavioral

effect. Neither chemogenetic nor optogenetic inhibition led to behavior impairments. We

validated this finding by tuning many different parameters of the DNMS task and training

protocol, so that we are confident to conclude that LEC or MEC are not necessary for

learning or performance of the task.

Finally, in chapter 5, we tell a cautionary tale about the use of optogenetic tools. We

discuss the importance of understanding the complexities of the tools being used. We

demonstrate that the inhibitory optogenetic opsin stGtACR2 can be inhibitory at the

soma and excitatory at the axon terminals. While this had been shown previously in slices,

we found that this led to seizure-like activity in-vivo in a rapid kindling protocol.
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CHAPTER 2

Non-Spatial Hippocampal Behavioral Timescale

Synaptic Plasticity during Working Memory is Gated

by Entorhinal Inputs

2.1 Abstract

Behavioral timescale synaptic plasticity (BTSP) is a form of synaptic potentiation where

the occurrence of a single large plateau potential in CA1 hippocampal neurons leads to

the formation of reliable place fields during spatial learning tasks. We asked whether

BTSP could also be a plasticity mechanism for generation of non-spatial responses in the

hippocampus and what roles the medial and lateral entorhinal cortex (MEC and LEC) play

in driving non-spatial BTSP. By performing simultaneous calcium imaging of dorsal CA1

neurons and chemogenetic inhibition of LEC or MEC while mice performed an olfactory

working memory task, we discovered BTSP-like events which formed stable odor-specific

fields. Critically, the success rate of calcium events generating a significant odor-field

increased with event amplitude, and large events exhibited asymmetrical formation with

the newly formed odor-fields preceding the time at which the large induction event occurred.

We found that MEC and LEC play distinct roles in modulating BTSP: MEC inhibition

reduced the frequency of large calcium events, while LEC inhibition reduced the success

rate of odor-field generation. Using two-photon calcium imaging of LEC and MEC

temporammonic axons projecting to CA1, we found that LEC projections to CA1 were

strongly odor selective even early in task learning, while MEC projection odor-selectivity
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increased with task learning but remained weaker than LEC. Finally, we found that LEC

and MEC inhibition both slowed representational drift of odor representations in CA1

across 48 hours. Altogether, odor-specific information from LEC and strong odor-timed

activity from MEC are crucial for driving BTSP in CA1, which is a synaptic plasticity

mechanism for generation of both spatial and non-spatial responses in the hippocampus

that may play a role in explaining representational drift and one-shot learning of non-spatial

information.

2.2 Introduction

In many situations, learning is not a smooth or gradual process. In fact, our ability to make

associations after a single experience is critical for survival. While there have been dramatic

improvements in artificial intelligence and machine learning algorithms that implement

‘one-shot learning’ (Lake et al., 2015; Song et al., 2023), the neural underpinnings of this

abrupt form of learning have remained elusive. In the hippocampus, a region recognized

for its importance in learning and memory, behavioral timescale synaptic plasticity (BTSP)

has emerged as a robust mechanism for the rapid generation of spatial representations

(place fields) following the occurrence of plateau potentials (Bittner et al., 2015, 2017;

Grienberger et al., 2017; Zhao et al., 2020; Magee and Grienberger, 2020; Milstein et al.,

2021; Grienberger and Magee, 2022; Xiao et al., 2023). However, the hippocampus not

only represents the location of animals in space (O’Keefe and Dostrovsky, 1971; Wood

et al., 1999; Buzsáki and Tingley, 2018; Moser et al., 2017), but also non-spatial sensory

information (Hampson et al., 1999; Squire, 1992; Aronov et al., 2017; Taxidis et al.,

2020). The hippocampus dynamically links these sensory experiences across time through

sequential firing that tracks the passage of time after specific events (Buzsáki and Tingley,

2018; Taxidis et al., 2020; Pastalkova et al., 2008; MacDonald et al., 2011; Eichenbaum,

2014). It is unclear whether BTSP also drives the formation of non-spatial sensory-driven

or internally generated hippocampal representations, which can form the basis for ‘one-shot
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learning’.

Hebbian plasticity mechanisms such as spike-timing dependent plasticity require causal-

ity and repetition to potentiate synapses when presynaptic spikes precede postsynaptic

action potentials by a few milliseconds (Bliss and Lømo, 1973; Caporale and Dan, 2008;

Mayford et al., 2012; Feldman, 2012). While this mechanism may play a role in modulating

hippocampal responses, BTSP on the other hand, has many features which could make it a

more robust and rapid mechanism for the generation of non-spatial receptive fields. During

spatial learning tasks, a single calcium plateau potential can serve as the induction event,

asymmetrically boosting synaptic inputs that occur several seconds before the induction

event, leading to a membrane potential ramp and reliable spatial firing on subsequent

trials (Bittner et al., 2017; Magee and Grienberger, 2020; Milstein et al., 2021). Plateau

potentials occurring during non-spatial tasks could also boost synaptic inputs at specific

time points in the task leading to the rapid formation of stable representations of sensory

stimuli, time, and reward/outcome. Yet, whether these events occur during non-spatial

tasks, and whether they can rapidly induce stable task-related responses is not known.

The role of the entorhinal cortex (EC) in inducing BTSP events (Grienberger and

Magee, 2022) and relaying sensory information during non-spatial tasks (Aronov et al.,

2017; Deshmukh and Knierim, 2011; Knierim et al., 2014) is poorly understood. CA1

receives direct layer III EC input via the temporammonic (TA) pathway and indirect input

via the perforant path from layer II EC to dentate gyrus, which then projects to CA3,

which in turn projects to CA1 (Andersen et al., 2007; Van Strien et al., 2009). Lateral

and medial EC (LEC and MEC) have distinct inputs and behaviorally relevant response

properties: LEC robustly represents olfactory information (Igarashi et al., 2014; Li et al.,

2017; Woods et al., 2020; Zhang et al., 2024), while MEC is more recognized for its encoding

of visuo-spatial information (Fyhn et al., 2004; Hafting et al., 2005; Sargolini et al., 2006;

Cholvin et al., 2021). Furthermore, the MEC plays a major role in the induction of

plateau potential ‘teaching signals’ during BTSP induced during spatial learning tasks
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(Grienberger and Magee, 2022). Yet, whether MEC and LEC play a differential role in the

generation of BTSP during non-spatial tasks remains to be determined.

To address these questions, we investigated multimodal representations within CA1 and

EC during a non-spatial olfactory delayed non-match-to-sample (DNMS) working memory

task (Taxidis et al., 2020). We have previously shown that CA1 pyramidal neurons fire

sequentially in response to specific odors and across the 5-second delay period during

DNMS performance (Taxidis et al., 2020). We hypothesized that non-spatial BTSP can

generate odor representations in CA1 and that this process would be modulated by MEC

and LEC inputs. Using two-photon calcium imaging of dorsal CA1, we recorded non-spatial

BSTP-like events that formed odor-specific fields in CA1 during expert performance of

the DNMS task. Through simultaneous chemogenetic inhibition of LEC or MEC and

calcium imaging of CA1, we investigated the role of each EC region in driving odor-specific

BTSP-like events. We found that MEC inhibition decreased the frequency of large calcium

induction events, while LEC inhibition reduced the success rate of odor-field generation.

Additionally, we performed two-photon calcium imaging of LEC and MEC axons in the

TA pathway projecting onto dorsal CA1 during learning of the task to investigate how

EC inputs to CA1 change with experience and improved performance. Altogether, we

demonstrate that MEC’s strong firing to odor presentations drives large plateau-like

calcium events in CA1, and LEC’s odor-selectivity mediates plasticity in the formation of

odor-fields after the large calcium induction event.

2.3 Results

We used in-vivo two-photon calcium imaging to record the activity of neurons in the

pyramidal layer of dorsal CA1 while animals performed an olfactory delayed non-match-

to-sample (DNMS) working memory task (Figure 2.1 A-E). Adult male and female mice

(n=17) were injected with AAV1-Syn-jGCaMP8f into the right dorsal CA1 and implanted

with a 3mm diameter glass-bottomed titanium cannula above the intact alveus after
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aspiration of the overlying cortex and corpus callosum (Taxidis et al., 2020) (Figure 2.1

E). After one week of recovery, mice were water-restricted and trained on the olfactory

DNMS working memory task (Taxidis et al., 2020; Liu et al., 2014), while head-fixed on a

spherical treadmill (Figure 2.1 A-B). Each trial consisted of two 1-second odor presentations

separated by a 5-second delay period. One second after the offset of the 2nd odor there

was a 3-second reward period during which the choice of the animal was determined. Mice

were trained to lick the lickport to release water during this reward period if the two odors

did not match (correct ‘hit’). Mice learned to refrain from licking the lickport if the odors

matched (correct ‘rejection’), and overall performance was quantified as the percentage

of correct ‘hits’ and correct ‘rejections’ out of all trials (Figure 2.1 C). We considered

performance above 85% to be expert level. Each session of the DNMS task consisted of 5

blocks of 20 trials, with pseudorandomly distributed odor combinations (Figure 2.1 D).

Mice were recorded for 8 days during expert performance for a total of 136 recording

sessions yielding an average of 312 ± 125 (mean ± standard deviation) active neurons per

day. We successfully imaged the same field of view (FOV) for each of the 8 days for all

animals. Calcium signals were extracted and deconvolved using Suite2p (Pachitariu et al.,

2017) (see methods).

2.3.1 Non-spatial BTSP-like events in CA1 formed stable odor-specific fields

In our previous work, we found that a population of hippocampal neurons fired during

specific epochs of the DNMS task (Taxidis et al., 2020). CA1 pyramidal neurons fired

during the presentation of specific odors or at time points during the delay period after

presentation of specific odors (Taxidis et al., 2020). Here, we observed CA1 neurons with

activity patterns consistent with BTSP during expert DNMS performance (Figure 2.1

G-H and Figures 2.5-2.7). Namely, cells without a clear odor or time-field developed a

stable field after a single spontaneous large calcium event as the induction event (putative

plateau potential). To quantify these rare events, we developed strict criteria for a single
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calcium event to be considered an ‘induction event’ that could potentially generate an

odor-field (see methods).

With increasing ‘induction event’ amplitude, success rate for induction of an odor-

field increased (Figure 2.1 I), strongly suggesting a causal role for these induction events

in driving the formation of odor-fields. We also found that only events larger than 10

STD exhibited a significantly asymmetrical formation with the newly formed odor-fields

preceding the trial time at which the large induction event occurred, (Figure 2.1 K)

suggesting that these subset of induction events were true BTSP events. Based on these

findings, we set the criteria for an ‘induction event’ to be considered a ‘plateau-like event’

to be that the large calcium induction event must have an amplitude greater than 10 STD.

For these plateau-like events, nearly all of the successful induction events peaked during

the odor presentation or immediately after the offset, with the success rate reaching 15%

during the second half of the odor presentation period (Figure 2.1 J). We observed only 26

events (8% of the 323 successful events) yielding time-fields beyond 0.5 seconds after odor

offset, and only 24 events yielding reward-related fields in separate analysis (Figure 2.7).

The newly formed odor-specific fields peaked at 0.42 ± 0.14 seconds prior to the onset of

the putative plateau potential (n=323 successful ‘plateau-like’ events) (Figure 2.1 L). The

small events that represented the random chance of an event passing our strict criteria

only had a success rate that peaked at 0.6% during odor presentation and they did not

have a significant backward drift (Figure 2.8 A-B).

To determine if motor movements of the animal influenced non-spatial BTSP events,

we recorded the movements of the spherical Styrofoam treadmill during performance of

the task (Figure 2.8 C). Mice exhibited a range of movement patterns while performing

the task with some mice rarely moving on the treadmill and many mice primarily flinching

or twitching at the onset of odor presentations (Figure 2.8 C). However, nearly all mice

had bouts of running that we defined as periods of continuous locomotion for greater

than 2 seconds. As expected, the frequency of low amplitude calcium events was greater
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during periods of running (1.83 ± 0.21 small events per cell per minute during non-running

periods compared to 3.31 ± 0.68 small events per cell per minute during running bouts)

(Figure 2.8 F). Additionally, running increased the rate of ‘plateau-like’ events (0.012 ±

0.005 ‘plateau-like’ events per cell per minute during non-running periods compared to

0.028 ± 0.010 ‘plateau-like’ events per cell per minute during running bouts) (Figure 2.8

G). However, running during the ‘plateau-like’ event did not impact the success rate of

formation of an odor-field (2.07 ± 1.25 % success rate following ‘plateau-like event’ during

non-during periods compared to 2.00 ± 2.63 % success rate during running bouts) (Figure

2.8 H). Therefore, running increased the rate of ‘plateau-like’ events but not the formation

of odor-fields, which suggests that the ‘BTSP-like’ events we observed are non-spatial in

nature. Together these findings suggest that BTSP can generate non-spatial hippocampal

representations.
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Figure 2.1: Behavioral timescale synaptic plasticity (BTSP) events in a non-
spatial working memory task

A) Schematic of the olfactory delayed non-match-to-sample (DNMS) task. Water delivery
and licking behavior was assessed during the 3 second reward period. B) Mice were
head-fixed above a Styrofoam spherical ball to allow running. C) Behavioral performance
across 7 days of learning (n=33). Chance level performance was 50%, and we considered
85% to be ‘expert’ performance. D) Example block of perfect performance for 20 trials.
Dots indicate licks and dark blue bars indicate water delivery. E) Schematic of
two-photon imaging of dorsal CA1 pyramidal neurons. F) Example field of view of CA1
neurons expressing GCaMP8f. Scale bar is 100µm. G) Example trace of one neuron with
a BTSP event and odor-field formed. Colored bars indicate odor presentations. Black
trace is ∆F/F, and gray is z-scored deconvolved signal. H) Four examples of BTSP-like
events. White vertical lines indicate odor onset and offset, and white arrows point to
spontaneous induction ‘plateau-like’ events. I) Success rate of a calcium event generating
an odor-field increases with induction-event amplitude. Success rate is defined as
percentage of events that generate a significant odor-field. Standard error bars represent
the standard error of the mean across the 17 animals. Events above 10 STD are
considered ‘plateau-like’ events. J) Success rate is highest during odor presentation (for
only ‘plateau-like’ events). K) Asymmetrical field formation with trial time difference
between ‘plateau-like’ event peak and formed odor-field peak. This difference is only
significant for ‘plateau-like’ events. Thus, the ‘small events’ represent chance events that
passed our criteria and were likely not BTSP. L) Histogram showing asymmetrical
distribution for all 323 successful ‘plateau-like’ events.
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2.3.2 Chemogenetic inhibition of entorhinal cortex disrupted non-spatial

BTSP

Entorhinal inputs can drive BTSP induction events during spatial navigation (Grienberger

and Magee, 2022; Takahashi and Magee, 2009). To determine whether entorhinal inputs

may also play a role in the generation of ‘plateau-like’ events during non-spatial BTSP, we

used a chemogenetic strategy to inhibit lateral entorhinal cortex (LEC) or medial entorhinal

cortex (MEC), while imaging CA1 calcium activity during the working memory task.

Mice were injected with AAV1-Syn-jGCaMP8f in the dorsal CA1 and were subsequently

implanted with an optical canula over CA1 as in the previous section. These mice also

underwent injection of AAV5-CaMKII-PSAM4 into either LEC (n=6 mice) or MEC

(n=5 mice) to express the potent chemogenetic inhibitor PSAM4 (Magnus et al., 2019) in

excitatory neurons of either structure. Control mice underwent injections of AAV5-CaMKII-

mCherry into either LEC (n=3 mice) or MEC (n=3 mice). Animals were water-restricted,

trained on the task, and imaged 3 weeks after viral expression. Each animal was recorded

for 8 days after reaching expert level performance. Between 10-20 minutes before two-

photon calcium imaging began each day, mice received an intraperitoneal (IP) injection of

saline or uPSEM (the effector molecule for PSAM4). Saline and uPSEM injections were

alternated daily and animals were counter-balanced such that half of the mice received

injections of uPSEM on the first day and the other half of mice received injections of

saline. We compared the activity of matched neurons over 4 pairs of days, where animals

received saline on one day and uPSEM on the other day.

Despite a lack of a behavioral effect with LEC or MEC inhibition (Figure 2.9), both

strongly affected non-spatial BTSP-like events. MEC inhibition significantly reduced the

number of ‘plateau-like’ events from 1.91 ± 0.95 per cell per day to 1.60 ± 1.09 per cell per

day (Figure 2.2 B). In contrast, LEC did not affect the number of ‘plateau-like’ events, but

dramatically reduced the success rate of ‘plateau-like’ events in inducing a new odor-field

from 2.13 ± 2.44% to 0.89 ± 1.32%, while MEC inhibition did not significantly alter
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the success-rate (Figure 2.2 C). Importantly, neither LEC nor MEC inhibition affected

locomotion or the percentage of time spent running, so these effects could not be explained

by differences in animal movement (Figure 2.9 B-C). Together, these findings suggest

that MEC affects the generation of large ‘plateau-like’ events in CA1, while LEC activity

increases the likelihood that these events result in successful field generation.

2.3.3 LEC inhibition reduced strength of odor representations in dorsal CA1,

while MEC inhibition increased strength

Given that LEC inputs have been previously shown to encode odor-related information

(Igarashi et al., 2014; Li et al., 2017; Woods et al., 2020; Zhang et al., 2024), we hypothesized

that they could convey odor-related information to CA1 in our DNMS task. If so, we would

expect inhibition of LEC but not MEC to decrease odor selectivity in CA1, potentially

driving the decrease in success rate of ‘plateau-like’ events in generating odor-fields.

Indeed, LEC chemogenetic inhibition significantly decreased odor selectivity values and

the percentage of odor selective cells (Figure 2.2 D and Figure 2.10 A). None of the 6

mCherry controls animals showed a shift in odor selectivity (Wilcoxon signed-rank test

pairing all cells, p > 0.05 for each animal). First and second odor selectivity were similarly

modulated (Figure 2.10 B). The proportion of significantly odor-selective neurons (based

on comparisons with shuffled controls; see methods) was 24.5 ± 10.7% on saline control

days and only 16.2 ± 10.9% on uPSEM inhibition days in LEC experimental PSAM4

animals. In contrast, MEC inhibition showed a slight trend in the opposite direction with

20.7 ± 5.8% of neurons being odor selective on saline control days and 21.8 ± 5.5% on

uPSEM inhibition days in MEC experimental PSAM4 animals. Therefore, LEC inhibition

weakened CA1 neuron odor selectivity.

To further confirm this effect, we performed binary support vector machine (SVM)

decoding training and testing on the same day to evaluate the relative strength of odor

encoding on saline days compared to uPSEM days. Overall, LEC inhibition significantly
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decreased odor decoding accuracy, while MEC inhibition significantly improved odor

decoding (Figure 2.2 E-F). During the odor presentation period (subsampling only 100

neurons), the decoding accuracy in LEC experimental PSAM4 animals was 76.4 ± 11.0%

on saline control days and decreased to 66.7 ± 13.9% on uPSEM inhibition days. In

contrast, MEC experimental PSAM4 mice had decoding accuracy of 79.0 ± 5.8% on saline

control days, which increased to 82.5 ± 5.5% on uPSEM inhibition days. Odor decoding

of control animals expressing mCherry was unaffected by uPSEM administration (Figure

2.10 A-B). MEC inhibition only increased decoding accuracy during odor presentation,

while LEC inhibition decreased odor decoding accuracy during the earlier part of the delay

period as well (Figure 2.2 E). Increasing the number of subsampled cells for decoding

led to improvements in odor decoding, but in general differences between MEC and LEC

inhibition were observed for a large range of neuron numbers subsampled for decoding

analysis (Figure 2.10 D).

Collectively, LEC inhibition strongly decreased whereas MEC inhibition modestly

increased odor selectivity and decodability in CA1. LEC’s effect may have driven the

reduction in the success rate of ‘plateau-like’ events in generating odor-fields.
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Figure 2.2: LEC and MEC inhibition differentially modulated BTSP, and LEC
inhibition weakened odor selectivity in CA1
A) Injections of virus to drive the expression of mCherry or PSAM4 were delivered to
either LEC or MEC. Images showing LEC are from coronal sections, while MEC are from
sagittal sections. For both LEC and MEC, the larger image on the left has a 500µm scale
bar and the right image is a zoom of the white outline with a 200µm scale bar. B)
Number of events greater than 10 STD per cell per day. Paired dots represent the pairs of
imaging days (4 per animal). Statistics are two-way ANOVA (animal and pair) with
repeated measures on the saline/uPSEM condition. C) Success rate of ‘plateau-like’
events generating an odor-field. D) Percentage of cells that had a selectivity value above
95th percentile of shuffle. Statistics are also two-way ANOVA (animal and pair) with
repeated measures on the saline/uPSEM condition. E) Binary support vector machine
(SVM) decoding of first and second odor across the trial structure with 0.5 second bins for
experimental animal groups (repetitive subsampling of 100 neurons for each recording
session). Thinner gray bars indicate odor presentation and wider bar from seconds 8-11 is
the reward period. Statistics are the same, and asterisks indicate bins with p < 0.05
(corrected for multiple comparisons using the Benjamini-Hochberg procedure). F) Odor
decoding performance only during the odor presentation period.
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2.3.4 Two-photon calcium imaging of entorhinal cortical axons in dorsal CA1

revealed differential sequential activity in LEC and MEC inputs

The EC is the primary cortical input to the hippocampus; CA1 receives direct layer III

EC input via the temporammonic (TA) pathway and indirect input via the perforant path

from layer II EC to dentate gyrus, which then projects to CA3, which in turn projects to

CA1 (Andersen et al., 2007; Van Strien et al., 2009). Given the contribution of MEC in

driving ‘plateau-like’ events, we asked if there are differences in timing of LEC and MEC

TA inputs. Also, given the strong differences in odor decodability observed in dorsal CA1

with LEC versus MEC inhibition, we asked whether TA inputs from LEC and MEC differ

in the sensory and task-related information they convey to CA1. Do LEC and MEC TA

inputs change as mice learn the task?

To address these questions, we performed two-photon calcium imaging of LEC or

MEC TA axons in dorsal CA1 as mice learned the DNMS task. Adult male and female

mice were injected with AAV1-CaMKII-Cre and AAV1-CAG-FLEX-jGCaMP7s in either

LEC (n=8) or MEC (n=8) (Figure 2.3 A and C). Mice were implanted with hippocampal

windows as in the previous experiments. After 3 weeks of expression, confocal imaging

demonstrated extensive GCaMP7s axonal expression of TA inputs within the stratum

lacunosum-moleculare (SLM) layer, as well as layer II EC perforant path axons ramifying

deeper within the stratum moleculare (MOL) layer of the dentate gyrus. In-vivo, we could

selectively image TA EC axons 300 and 400µm beneath the alveus. Post-hoc histology after

two-photon imaging experiments also confirmed that all mice had extensive expression

of GCaMP7s in axons within the SLM layer of hippocampus and somatic expression

restricted to either LEC or MEC. In these experiments, imaging experiments began on the

first day of training when mice are presented with matched pairs and began learning to

refrain from licking on these trials (see methods). Recordings were processed with Suite2p

(Pachitariu et al., 2017) using parameters optimized for axonal imaging, followed by post

hoc fusion of axon segments with highly correlated activity which were branches of the
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same axon (see methods) (Figure 2.3 B and D).

In trained animals, a proportion of LEC and MEC TA axons responded reliably to

different task variables. Some axons had responses which had significant peaks during the

odor presentation, some during odor offset, and others during the delay period (Figure

2.3 E and F). Altogether, the LEC or MEC axonal populations had sequential activity

that tiled the entire first odor presentation and delay period. However, these sequences

differed drastically between LEC and MEC; a much higher proportion of MEC axons had

significant peaks during odor presentations compared to LEC axons (Figure 2.3 G-J).

To investigate how LEC and MEC inputs to CA1 change with learning, we first

visualized the sequential firing of significantly modulated neurons (see methods) during

expert performance and below expert performance (Figure 2.3 G). We noticed stark

differences in the proportion of axons with peak activity during the odor compared to

during the delay between LEC and MEC. There were also clear differences in these

proportions when comparing poor performance to expert performance. During days of

expert performance, MEC had more axons with peak firing during odor presentation

compared to LEC (26.9 ± 8.7% compared to 10.1 ± 7.2%, ANOVA p < 0.001), while LEC

had more axons with peak firing during the delay period compared to MEC (5.9 ± 1.9%

compared to 2.5 ± 1.1%, ANOVA p < 0.001) (Figure 2.3 I). As a result, MEC axons also

showed greater trial reliability as compared to LEC (Figure 2.11 C). The percentage of

MEC axons with peak firing during odor presentation increased across learning (Pearson’s

r = 0.311), while those with peak firing during the delay period decreased (Pearson’s r =

-0.433). Meanwhile, the proportion of LEC axons with peak firing during odor and delay

periods remained stable with learning (Pearson’s r = 0.082 and 0.074).

In summary, timing of LEC inputs to CA1 were stable with learning, while MEC inputs

became more tuned to the odor presentation period. Given that MEC inhibition reduced

the rate of ‘plateau-like’ events in CA1, we hypothesize that this strong MEC input timed

to the odor presentation is likely key for driving ‘plateau-like’ events.
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2.3.5 LEC odor representations were stable during learning, while MEC

tuned firing to odor presentation and odor selectivity emerged

Although a higher proportion of MEC axons were tuned to firing during the odor presenta-

tion, examination of sequential firing patterns suggested that these axons were firing with

less odor-specificity (Figure 2.3 G-H and Figure 2.11 A-B). To quantify odor information

carried by EC axons, we calculated odor selectivity and odor decoding accuracy. Despite

the increased number of MEC axons with peak firing during the odor presentation, LEC

had a greater proportion of significantly odor-selective axons (14.3 ± 6.8% in LEC and

10.3 ± 4.6% in MEC, ANOVA p < 0.001) (Figure 2.3 K). This effect was strongest early in

learning, as MEC odor selectivity increased with DNMS performance (Pearson’s r = 0.373).

The larger number of odor selective axons in LEC resulted in better odor decoding during

odor presentation when repetitively subsampling only 100 axons from each recording

session (for all recordings LEC decoding accuracy is 57.0 ± 4.2% and MEC accuracy is

53.5 ± 2.2%, ANOVA p < 0.001; for only expert sessions LEC accuracy is 57.0 ± 4.3%

and MEC accuracy is 54.4 ± 2.1%, ANOVA p = 0.032) (Figure 2.3 L-M). Again, decoding

accuracy for LEC was stable across days and performance levels (Pearson’s r = 0.093),

but dramatically improved for MEC (Pearson’s r = 0.539) (Figure 2.3 N). While odor

decoding was worse during the delay period than during the odor presentation, decoding

accuracy during the delay period remained significantly greater for LEC compared to

MEC (for all recordings LEC accuracy was 54.8 ± 3.8% and MEC accuracy was 51.7 ±

1.5%, ANOVA p < 0.001; for only expert sessions LEC accuracy was 54.5 ± 4.1% and

MEC accuracy was 52.0 ± 1.7%, ANOVA p = 0.030) (Figure 2.3 L-M and Figure 2.11

H). Increasing the number of subsampled axons for decoding led to improvements in odor

decoding, but in general differences between LEC and MEC were similar across a large

range of axon numbers subsampled for decoding analysis (Figure 2.11 I-J).

To understand if LEC and MEC encode other task relevant representations in our

working memory task, we asked whether EC axons can encode whether the two odors
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matched or did not match. Both MEC and LEC axons showed an increase in SVM decoding

accuracy of match versus non-match trials with increasing performance (LEC Pearson’s r

= 0.382 and MEC Pearson’s r = 0.746); however, MEC accuracy was dramatically higher

even during the 2nd odor which is one second before the start of the reward period (67.0 ±

7.4% for MEC, and 57.6 ± 6.2% for LEC, ANOVA p < 0.001). During poor performance

sessions (<85% performance), match versus non-match trial decoding accuracy peaked

during the middle of the reward period as the outcome was encoded, and MEC decoding

accuracy was significantly higher than LEC (Figure 2.12 D). Interestingly, once mice

reached expert performance, decoding accuracy of match versus non-match trials peaked

during the 2nd odor for MEC, but still peaked during the reward period for LEC (Figure

2.12 E).

Altogether, these findings suggest that LEC temporammonic axonal odor representa-

tions were strong in novice animals and did not improve with performance, while MEC

axonal firing became strongly tuned to firing at odor presentations during learning but had

relatively weaker odor selectivity. Meanwhile MEC but not LEC axons showed emergence

of robust working memory representations related to reward, choice, or trial types.
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Figure 2.3: Two-photon calcium imaging of entorhinal cortical axons in dorsal
CA1 revealed differential sequential activity in LEC and MEC inputs

A) Coronal sections showing GCaMP7s expression LEC (left panel, scale bar = 500µm)
and in dorsal hippocampus (right panel, scale bar = 250µm). Blue is DAPI. Imaging
plane is at the superficial part of the SLM layer, which is the first layer of axons visible
when lowering into the tissue roughly 300-400µm beneath the coverglass. ALV = alveus,
SO = stratum oriens, PYR = stratum pyramidale, SR = stratum radiatum, SLM =
stratum lacunosum-moleculare, MOL = stratum moleculare, GRA = stratum granulare.
B) Field of view from the same animal (scale bar = 50µm), with 5 example masks and
their corresponding fluorescence traces. Gray is z-scored deconvolved signal. Black
horizontal scale bar = 10 seconds. Black vertical scale bar = 5% ∆F/F. Gray vertical
scale bar = 10 STD normalized deconvolved signal. C-D) Same as (A-B) but for MEC
and showing sagittal sections. All scale bars are the same. E) Two example axon
segments showing odor-specific firing. The left axon had its peak during the odor
presentation, while the right one had its peak during the delay period. Heatmaps show
deconvolved signal on each trial that was grouped into trial type. Average traces at
bottom show difference in average firing rate split by trials that started with Odor A and
those that started with Odor B. F) Same as (E) but for two representative MEC axon
segments with less odor-selectivity. The right axon had its peak following the offset of the
odor presentation. G) Sequential activity of only axon segments that had a significant
peak during the first odor presentation or delay period from recording sessions with
performance less than 85%. Each row is the average trace of trials with the preferred or
nonpreferred first odor (normalized to peak). Blue lines indicate odor onset and offset. H)
Same as (G) but when performance was at least 85%. I) Percentage of axons with a
significant peak during the first odor presentation period. Statistics for left panel are
two-sample t-tests and p-values were corrected for multiple comparisons using the
Benjamini-Hochberg procedure. Statistics for right panel are Pearsons’ R correlation with
performance. J) Same as (I) but percentage of axons with a significant peak during the
delay period. K) Percentage of axons that had a selectivity value above 95th percentile of
shuffle. L) Binary SVM decoding of first odor across the trial structure with 0.5 second
bins (repetitive subsampling 100 axons for each recording session), only on recordings
sessions with behavior performance less than 85%. Statistics are two-way ANOVA
(animal and day), and asterisks indicate bins with p < 0.05 (corrected for multiple
comparisons using the Benjamini-Hochberg procedure). M) Same as (L) but when
performance was at least 85%. N) Binary SVM odor decoding only during the odor
presentation period (repetitive subsampling 100 axons for each recording session).
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2.3.6 LEC and MEC inhibition slow representational drift of odor represen-

tations in dorsal CA1

Despite the similarity of LEC TA axon population dynamics across days, our previous

work revealed that CA1 odor representations drift over days (Taxidis et al., 2020) with

new cells forming sensory relevant fields and other cells losing their responsiveness or

selectivity. Given that non-spatial BTSP can result in rapid generation of odor-selective

responses, we hypothesized that it could play a role in representational drift. Since MEC

inhibition reduces the frequency of ‘plateau-like’ events and LEC inhibition reduces the

success rate of odor-field formation, we hypothesized that the reduction of BTSP events

through EC inhibition may result in increased stability of representations. To address this

hypothesis and compare representations over days, we matched dorsal CA1 neurons across

8 days of alternating saline and uPSEM administrations (Figure 2.4 A). While some BTSP

events formed odor-fields that fade within the recording session (Figure 2.1 H and Figures

2.5-2.6), others formed fields that lasted for several days (Figure 2.4 A-B). We used binary

SVM decoders trained on the activity of 100 randomly chosen neurons on the day before

EC inhibition (Saline Day X) and tested on the same neurons the day after EC inhibition

(48 hours later on Saline Day X+2). We compared these results to same-day decoding

on Saline Day X. The higher the success rate of the decoder for across-day decoding, the

more stable the representation.

In control mice expressing mCherry, decoder accuracy declined quickly (77.0 ± 6.4%

for same-day decoding (Saline Day X) to 58.2 ± 9.7% for across-day decoding two days

later (Saline Day X+2) (Figure 2.4 B-C)), suggesting substantial representational drift. In

experimental mice expressing PSAM4, decoder accuracy dropped substantially less for

LEC (76.4 ± 11.0% for same-day decoding to 65.1 ± 10.1% for across-day decoding two

days later) and MEC (79.0 ± 5.8% for same-day decoding to 65.0 ± 4.6% for across-day

decoding two days later). In addition, the percentage of Saline Day X neurons that remain

significantly odor-selective on Saline Day X+2 was higher in LEC experimental PSAM4
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animals (45.4 ± 10.9%) than in control mCherry animals (36.3 ± 9.9%) (Figure 2.4 E).

This indicates that PSAM4 inhibition of both LEC or MEC decreased representational

drift across a 48-hour period.

In summary, MEC inhibition reduced large calcium events in CA1, LEC inhibition

decreased success rate of these ‘plateau-like’ events, and inhibition of either LEC or MEC

slowed representational drift of odor in CA1. These findings suggest that drift of CA1

olfactory representations is modulated by EC inputs, potentially from decreased non-spatial

BTSP.
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Figure 2.4: LEC and MEC inhibition both slow representational drift of odor
representations in dorsal CA1
A) Example CA1 neuron across 8 days of expert performance. The 4 FOV images show
the masks used for each ‘pair’ (see methods), and neurons were aligned across pairs with
CellReg (Sheintuch et al., 2017). Green masks are cells that overlap in all 4 pairs; blue
masks do not overlap in all 4 pairs, and the single red mask is the example neuron with
activity below. Heatmaps show deconvolved signal on each trial with trials grouped
according to DNMS odor combinations. Average traces at bottom show average firing
rates for trials that started with Odor A (orange) or with Odor B (green). B)
Visualization of BTSP event in Day 3 from (A) that is likely reinforced by several strong
‘plateau-like’ events. The white arrow points to the same induction ‘plateau-like’ event as
the white arrow in (A). C) Binary SVM decoding of odor (only during odor presentation
periods) after training on saline day X (repetitive random subsampling of 100 neurons for
each recording session). D) Highlighting the effect in (C) on saline day X+2 with each
circle representing a recording session. Black bars represent mean and standard error of
the mean (SEM). Statistics are two-way ANOVA (animal and pair). E) Percentage of
cells that have odor selectivity values that remained above 90th percentile of shuffle for
their preferred odor.
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2.4 Discussion

Using two-photon calcium imaging of dorsal CA1 pyramidal neurons during an olfactory

working memory task, we find that non-spatial sensory representations can form on single

trials following large calcium events. These events have characteristics of BTSP reported

previously during spatial tasks (Bittner et al., 2015, 2017; Grienberger et al., 2017; Zhao

et al., 2020; Magee and Grienberger, 2020; Milstein et al., 2021; Grienberger and Magee,

2022; Xiao et al., 2023), suggesting that BTSP may be a general plasticity mechanism for

formation of hippocampal representations during both spatial and non-spatial cognition.

Additionally, MEC and LEC inhibition differentially modulate non-spatial BTSP during

working memory performance. MEC inhibition decreases the frequency of large ‘plateau-

like’ calcium events, while LEC inhibition reduces the success rate of these ‘plateau-

like’ events generating an odor-field. LEC inputs are critical for generation of odor

representations in CA1, with LEC inhibition dramatically weakening CA1 odor selectivity

and odor encoding. This may contribute to their modulation of BTSP success rate in

generating odor-selective responses. By performing two-photon calcium imaging of LEC

or MEC temporammonic pathway axons to CA1, we show that LEC relays stronger odor-

specific information to CA1 that is invariant in learning and expert stages, while MEC

axonal activity shows greater plasticity with learning, increasing odor and match/non-

match selectivity and tuning to more reliably fire during the odor presentations. Finally,

inhibition of both LEC or MEC leads to reduced representational drift of CA1 odor

representations, suggesting that BTSP (or another EC-dependent plasticity process) can

modulate representational drift.

This is to our knowledge the first description of behavioral timescale synaptic plasticity

(BTSP) occurring in a non-spatial context. Non-spatial BTSP described in this paper and

spatial BTSP described in spatial contexts (Bittner et al., 2015, 2017; Grienberger et al.,

2017; Zhao et al., 2020; Magee and Grienberger, 2020; Milstein et al., 2021; Grienberger

and Magee, 2022; Xiao et al., 2023) share many attributes. First, they are both induced
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by large calcium events. Second, like spatial BTSP, odor-responsive fields typically form

around 0.5 seconds before the time of onset of the ‘plateau-like’ event. This temporally

asymmetric induction of fields is characteristic of BTSP in CA1. Membrane potential (Vm)

recordings in CA1 during spatial BTSP demonstrate potentiation causing the induction of

an asymmetric Vm ramp extending back nearly 4 seconds from the timepoint of induction.

Voltage recordings would be required to determine whether a Vm ramp extending several

seconds is also induced by non-spatial BTSP. There are notable differences between spatial

and non-spatial BTSP, however. While spatial BTSP can induce place fields anywhere in

the virtual track, during our non-spatial BTSP, 86% of successful fields were formed during

or immediately after the odor presentations, with few fields formed during the delay and

reward periods. It is possible that this occurs because subthreshold inputs potentiated by

BTSP in the delay period fail to reach action potential threshold. This could be explained

by the fewer EC inputs activated during the delay period as LEC has nearly twice as many

axons and MEC nearly 10 times as many axons with peak firing during the odor period

compared to the delay period. Recordings of Vm during the task would be necessary

to find whether the magnitude of synaptic potentiation is similar during the different

phases of the task. It also remains to be determined whether TA inputs, CA3 inputs,

or both are potentiated during non-spatial BTSP. Finally, while inhibitory interneuron

subtypes have been characterized by their roles in gating spatial EC and CA3 inputs to

CA1 (Klausberger and Somogyi, 2008; Kepecs and Fishell, 2014; Milstein et al., 2015;

Basu et al., 2016), it remains unclear how the different interneuron subtypes within the

different layers of CA1 contribute to BTSP and gate non-spatial sensory inputs. Future

recordings and manipulations of the activity of these neurons will further elucidate the

complex mechanisms underlying non-spatial BTSP in CA1.

We find that inhibition of LEC and MEC have distinct effects on non-spatial BTSP.

While MEC inhibition reduces the frequency of large calcium events, LEC inhibition

has no impact on the frequency or amplitude of these events but reduces their success

rate in generating odor-fields. Therefore, while it is clear that MEC plays a major role
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in generating the plateau potential teaching signal with most of its activity timed to

stimulus presentations, the exact mechanism through which LEC regulates the success

of BTSP events is less clear. There are several possibilities. It is possible that BTSP

potentiates the LEC inputs on the distal dendrites of CA1 pyramidal neuron which aids

in generating odor-selective responses. Alternatively, it is possible that LEC inhibition

reduces odor-selectivity and the amplitude of odor responses in dentate gyrus granule cells

or in CA3, which in turn reduces the potentiation of CA3 inputs to CA1. Our results are

in line with studies which have shown the importance of MEC inputs for generation of

teaching signals to drive BTSP during spatial navigation (Magee and Grienberger, 2020;

Grienberger and Magee, 2022), but our results describe the further complexity given the

distinct roles of LEC and MEC.

We found that CA1 population odor representations were more stable the day after

MEC or LEC inhibition, suggesting that EC inhibition slows representational drift. This

reduction can potentially occur through a reduction in frequency or success rate of BTSP

events, as shown in our work, or may occur through a different plasticity mechanism

governed by EC activation (Rule et al., 2019; Driscoll et al., 2022; Micou and O’Leary,

2023). While BTSP can clearly explain the appearance of a new field, the mechanism for

erasure of existing fields remains less clear. One possibility is that decreases in synaptic

weights can occur following mistimed plateau potentials, given that spatial BTSP has

been shown to increase synaptic weights of inputs within 2 seconds of a plateau and

decrease synaptic weights of inputs between 2 and 5 seconds of the plateau (Milstein et al.,

2021). However, a continuing challenge for the field will be to understand the complex

interplay of other plasticity mechanisms implicated in representational drift that operate

on different and longer timescales, such as Hebbian spike timing-dependent plasticity that

includes long-term potentiation (LTP) and long-term depression (LTD) (Kappel et al.,

2015; Aitchison et al., 2021; Qin et al., 2023) or dendritic spine turnover (Yasumatsu et al.,

2008; Minerbi et al., 2009; Attardo et al., 2015). There is some evidence that there are

distinct pools of CA1 neurons with short or long place field lifetimes, which may be related
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to BTSP success rate (Vaidya et al., 2023). Whether similar pools exist for non-spatial

representation remains to be determined.

Our findings support the structural and functional connectivity of LEC and the

hippocampus in olfactory based tasks (Igarashi et al., 2014; Li et al., 2017; Woods et al.,

2020; Zhang et al., 2024), but further experiments with other modalities would be valuable

in establishing LEC and MEC’s unique roles in driving plateau potentials and forming

non-spatial representational fields. CA1 is also well known for its internal representations

(Pastalkova et al., 2008; MacDonald et al., 2011; Eichenbaum, 2014). Although we observed

some BTSP events that form odor-specific fields during the delay period, future recordings

should investigate if LEC and MEC inputs coincide with the output from recurrent CA3

networks capable of generated temporal codes (Liu and Buonomano, 2009; Holtmaat and

Caroni, 2016; Salz et al., 2016) to drive BTSP for internally generated representations.

2.5 Method Details

Animals

All of the experiments were conducted according to the National Institute of Health (NIH)

guidelines and with the approval of the Chancellor’s Animal Research Committee of the

University of California, Los Angeles. A total of 9 adult male and 8 female mice (8-16

weeks old) were used for in-vivo calcium CA1 neuron imaging experiments, and a total

of 7 adult male and 9 female mice (8-16 weeks old) were used for in-vivo calcium EC

axon imaging experiments. CA1 imaging mice are divided into 4 groups: LEC mCherry

n=3, MEC mCherry n=3, LEC PSAM4 n=6, MEC PSAM4 n=5. Axon imaging mice are

divided into 2 groups: LEC n=8, MEC n=8. All were C57BL/6J (Jackson Laboratory,

000664), experimentally naïve, and housed in the vivarium under a 12-hour light/dark

cycle. All mice were group housed (2-4 per cage) with the exception of 2 that had to be

separated following surgery because of fighting.
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Surgical Procedures

Mice (8-12 weeks old) were subcutaneously administered pre-operative drugs (carprofen 5

mg/kg, dexamethasone 0.2 mg/kg, lidocaine 5 mg/kg) 30 minutes before surgery. Mice

were anaesthetized with isoflurane (5% induction, 1-2% for maintenance), and anesthesia

was continuously monitored and adjusted as necessary. The scalp was shaved, and mice

were placed into a stereotactic frame (David Kopf Instruments, Tujunga, CA) on a

feedback-controlled heating pad (Harvard Apparatus) set to maintain body temperature

at 37°C. Eyes were protected from desiccation using artificial tear ointment. The surgical

incision site was cleaned three times with 10% povidone-iodine and 70% ethanol. Fascia

was removed by applying hydrogen peroxide, connective tissue was cleared from the skull,

and the skull was scored to facilitate effective bonding with adhesives at the end of surgery.

After stereotactically aligning the skull, a single or several burr holes were made depending

on the experiment performed and virus was injected.

CA1 calcium imaging experiments: Control virus (500 nL of 1:5 saline dilution of

pAAV1-CaMKIIa-mCherry into all 4 sites) or experimental virus (500 nL of 1:5 saline

dilution of AAV5-CaMKII-PSAM4-GlyR-IRES-EGFP into all 4 sites) was injected into

LEC (bilaterally 3.4 and 3.9 mm posterior, 4.35 mm lateral, and 4.3 ventral from bregma)

or MEC (bilaterally 4.7 mm posterior, 3.35 mm lateral, and 3.8 and 3.0 mm ventral from

bregma). Additionally, pGP-AAV1-syn-jGCaMP8f-WPRE (1000nL of 1:5 saline dilution)

was injected into the right dorsal CA1 (2.0 mm posterior from bregma, 1.8 lateral from

bregma, and 1.3 ventral from dura).

EC axon calcium imaging experiments: pENN.AAV1.CaMKII.0.4.Cre.SV40 and pGP-

AAV1-CAG-FLEX-jGCaMP7f-WPRE were mixed immediately before the injection (500

nL of 1:1 mix) into right LEC (3.5 mm posterior, 4.35 mm lateral, and 4.3 ventral from

bregma) or right MEC (4.7 mm posterior, 3.35 mm lateral, and 3.5 mm ventral from

bregma). All viruses were injected using a Nanoject II microinjector (Drummond Scientific)

at 60nL per minute.
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For mice in all experiments, following virus injection, a circular craniotomy (3 mm

diameter) was made centered around a point made 2.0 mm posterior and 1.8 lateral to

bregma. Dura beneath the craniotomy was removed and cortical tissue above dorsal CA1

was carefully aspirated using a 27-gauge blunt needle. Corpus callosum was spread to

the sides of the craniotomy to expose the alveus. Cortex buffer (NaCl = 7.88g/L, KCl =

0.372g/L, HEPES = 1.192g/L, CaCl2 = 0.264g/L, MgCl2 = 0.204g/L, at a pH of 7.4) was

continuously flushed during aspiration and until bleeding stopped. A titanium ring with a

3 mm diameter circular thin #0 coverglass attached to its bottom was implanted into the

aspirated craniotomy and the overhanging flange was secured to the skull with vetbond

(3M). A custom-made lightweight stainless-steel headbar was attached to posterior skull

and secured with cyanoacrylate glue. Dental cement (Ortho-Jet, Lang Dental) was applied

to seal and cover any remaining skull, and to form a small well around the titanium ring for

holding immersion water for the objective during imaging. Following surgery, all animals

were given post-operative care (carprofen 5 mg/kg and dexamethasone 0.2 mg/kg for 48

hours after surgery) and provided amoxicillin-treated water at 0.5 mg/mL for 7 days. All

mice recovered for 7-14 days before experiments began.

Experimental setup

The entire behavioral setup is as described in Taxidis et al. (Taxidis et al., 2020). Mice

were head-fixed above an 8-inch spherical Styrofoam ball (Graham Sweet) which can rotate

about one axis for 1D locomotion that was recorded with a sensor (Avago ADNS-9500).

A continuous stream of clean air (∼1 L/min) was delivered toward the animal’s nose via

Tygon PVC clear tubing and a custom-made port that held the air tube and water port.

At the onset of the odor presentation period, a dual synchronous 3-way valve (NResearch)

switched to the odorized one for 1 second. Odorized air was created by using a 4-ports

olfactometer (Rev. 7c; Biology Electronics, Caltech) supplying air to either of two glass

vials containing odor A (70% isoamyl acetate basis, FCC; Sigma Aldrich) or odor B
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((-)-a-Pinene ≥ 97%, FCC; Sigma Aldrich), which were both diluted in mineral oil at

5% concentration. Water droplets (∼10µl) were released by a 3-way solenoid valve (Lee

Company), and licks were detected by using a custom battery-operated circuit board

with one end of the circuit connected to the headbar and the other to the lickport. The

behavioral rig was controlled with custom written software (MATLAB) and through a

data acquisition board (USB-6341: National Instruments).

Behavioral training

After 7-14 days recovering from surgery, mice were handled and began water-restriction

to 85% of their original weight before water-restriction. After one day of handling, mice

were habituated to being head-fixed above the spherical treadmill (can rotate about one

metal axis for 1D locomotion that is recorded) for two days. On the 4th day of training,

mice began learning to lick from the lickport as water was automatically delivered at

the beginning of the reward period following only non-matched odor trials (AB or BA,

with water delivery at time point of 8 seconds). Trials were delivered in blocks of 20

trials. This phase was always 2 days except for the rare mouse that needed one extra

day to reach motivation level and lick water from port for at least 50 trials. In the next

phase, water was only delivered if the mouse licked during the response period, and mice

learned to reliably lick in anticipation of the reward following the 2nd odor. This phase

was also 2 or 3 days, dependent on the mouse licking during the response period of at

least 50 trials. The final phase was the full delayed non-match-to-sample (DNMS) task in

which matched odor trials (AA and BB) were introduced and mice learned to refrain from

licking the port following these trials. There was no punishment or timeout following an

incorrect lick; the water was simply not delivered. The first day of this final full DNMS

task was considered ‘Day 1’ in the axon imaging experiments (6-8 days from the start

of water-restriction). A total of 100 trials delivered in five blocks of 20 trials were given

each day, and we considered ‘expert performance’ to be any day with performance greater
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than or equal to 85%. In the CA1 imaging experiments, two-photon calcium imaging only

began after the mouse had 2 consecutive days of ‘expert performance’. Mice underwent

5-7 days of learning the full DNMS task before recording began.

In-vivo two-photon imaging

All two-photon calcium imaging was conducted using a resonant scanning two-photon

microscope (Scientifica) fitted with a 16x 0.80 NA objective (Nikon) to record 512x512

pixel frames at 30.9 Hz. CA1 imaging fields of view were 500x500 µm and axonal imaging

fields were 250x250 µm. Excitation light was delivered with a Ti:sapphire excitation laser

(Chameleon Ultra II, Coherent), operated at 920 nm. GCaMP8f and GCaMP7s fluorescence

was recorded with a green channel gallium arsenide photomultiplier tube (GaAsP PMT;

Hamamatsu). Microscope control and image acquisition were performed using LabView-

based software (SciScan). Imaging and behavioral data were synchronized by recording

TTL pulses generated at the onset of each imaging frame and olfactory stimulation digital

signals at 1 kHz, using WinEDR software (Strathclyde Electrophysiology Software).

For CA1 imaging experiments, a single field of view (FOV) was imaged for 8 consecutive

days of expert performance. Careful attention was given to aligning the FOV to the

previous day’s as perfectly as possible, and animals were not included in analysis if

successful alignment was not possible. We used rotating stages, a motor for adjusting

mouse head angle, and a tiltable objective attachment with two degrees of freedom to

fine-tune the alignment. For axonal imaging experiments, the same alignment was always

attempted for 7 consecutive days of learning, but the extra difficulty of alignment made it

not always possible. Therefore, axon segments were not registered between days; however,

FOVs were typically very similar. Laser power and PMT settings were kept consistent

between days, except for rare occasions when it was necessary to keep similar signal-to-

noise. Out of the 16 axonal imaging animals included in analysis (each recorded for 7

days), 7 recording sessions were not included because of poor signal-to-noise.
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For each day of recording, imaging was halted between each of the 5 blocks of 20 trials.

This allowed fine-tuning of alignment, and it also prevented brain heating or photo-toxicity.

Laser power was kept as minimal as possible (60-80mW for CA1, and 100-200mW for

EC axons) without sacrificing signal-to-noise ratio, and only mild photo-bleaching was

observed in some axonal imaging animals.

Chemogenetic inhibition

All CA1 imaging animals received subcutaneous injections of saline for at least 5 days prior

to imaging to habituate them to the injection prior to being head-fixed. For the 8 days of

imaging, mice received alternating injections of saline and uPSEM (ultrapotent PSEM 792

hydrochloride binds to PSAM4 to cause strong inhibition). Half of the mice started with

saline, and the other half started with uPSEM on the first day of imaging. The uPSEM

powder was dissolved into saline at a concentration of 0.3 mg/mL, and injections were

administered to achieve 3 mg/kg. After weighing the mouse to calculate the appropriate

volume of saline or uPSEM, the mouse was injected intraperitoneally and head-fixed under

the microscope. 10-20 minutes elapsed between the injection and the start of behavior.

Histology

Following all experiments, mice were deeply anaesthetized under isoflurane and transcar-

dially perfused with 30 mL 1x PBS followed by 30 mL 4% paraformaldehyde in 1x PBS at a

rate of approximately 4 mL/min. After perfusion, the brains were extracted and post-fixed

in 4% paraformaldehyde. Sections of 80 µm were collected using a vibratome, 24-48 hours

after perfusion. For animals with LEC viral expression, coronal sections were taken, while

sagittal sections were taken from animals with MEC viral expression. The sections were

mounted onto glass slides and cover-slipped with DAPI mounting medium. Images were

acquired on an Apotome2 microscope (Zeiss; 5x, 10x, 20x objectives) to confirm proper

expression and location of viral expression. For CA1 imaging experiments, GCaMP8f was
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confirmed to be in dorsal CA1, and sufficient PSAM4 or mCherry expression was found

restricted to either LEC or MEC. In axonal imaging experiments, somatic GCaMP7s was

confirmed to be restricted to only LEC or MEC, and axonal expression was found in the

SLM layer of dorsal hippocampus. Mice with insufficient PSAM4/mCherry expression or

PSAM4/mCherry/GCaMP7s that spread to outside of their desired target were excluded

from analysis.

2.6 Quantification and Statistical Analysis

Calcium imaging data pre-processing

For CA1 imaging experiments, the 8 days of recordings were divided into 4 pairs of days,

so that each pair consisted of one saline day and one uPSEM day. Both recordings from a

single pair were concatenated before processing so that the same neurons could be detected

within the pair of imaging days. Concatenated movies were processed using the Python

implementation of Suite2P 0.9.2 (Pachitariu et al., 2017) to perform non-rigid motion

registration, neuron segmentation, extraction of fluorescence signals, and deconvolution

with parameters optimized to our GCaMP8f CA1 recordings. We used the default classifier

and an ‘iscell’ threshold of 0.1 to only include masks that were likely neurons. Neuron

masks were then aligned across the 4 pairs of days using CellReg (Sheintuch et al., 2017).

Because FOVs themselves were more helpful than the cell masks alone, we modified the

CellReg code to do alignment based on the Suite2P registered mean image of the FOV.

This yielded excellent registration for all animals with the maximal centroid distance set

to 5 µm.

For axonal imaging experiments, the 7 days of recordings were all processed separately.

Movies were also processed using Suite2P but with parameters optimized to our GCaMP7s

axonal recordings. An additional step of axon merging was taken to decrease the number

of duplicates (as an axon could appear as multiple segments within the FOV); this also
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increased signal-to-noise by increasing the number of pixels for a single mask. By visualizing

axon correlation values and their fluorescence traces within the Suite2P, we chose axon

segments to merge based on correlation values and footprint distributions. Using custom

Python code with functions from Suite2P’s source code, we ‘merged’ axons by generating

new ROIs with these new pixels. The old axon segments were then eliminated from

analysis and deconvolution was run on the new axon masks.

For all experiments, deconvolved signals were taken as the selected output from Suite2P

and taken to MATLAB 2021a for further processing. Deconvolved signals were smoothed

by a rolling mean of 10 frames (0.32 seconds), then z-scored, and finally values below 2

were set to zero. The resulting signal was what was used for all analysis and referred to

as ‘firing rate (STD)’ as a proxy for spiking activity. Signals were aligned to the trial

structure (odor presentations, reward period, lick timing) and the recorded locomotion as

mice ran on the spherical ball.

BTSP event detection and analysis

First, 6-second periods were extracted for each odor presentation period (2 seconds before

odor and 3 seconds after) and divided for Odor A and Odor B regardless of whether it was

the first or second odor presented in the trial. Since each recording had 5 blocks of 20 trials,

we have 100 odor presentations of each odor per cell per day. Next, we identified each

‘event’; which we define as a group of consecutive timepoints with a non-zero deconvolved

signal. The size and timing of that event is counted as the peak value within the event

and that timepoint’s time relative to the odor, respectively.

Next, we identified which events satisfied criteria to be considered as a possible induction

event. This detection was performed separately for Odor A and Odor B presentations.

Events in the first 10 or last 10 odor presentations were not considered for analysis because

we needed enough odor presentations before and after the event to detect BTSP events.

There were two criteria for an event to be considered a possible induction event: during
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the previous 3 odor presentations the cell must show no activity within 2 seconds before

or after the event in question and there must not be a significant peak firing field. To

determine the significance of a firing field, we took 6-second periods of all previous odor

presentations and found the peak of the average activity. We then circularly shuffled each

odor presentation and found the peak of the average activity from this shuffle data. This

was repeated 2000 times to generate 2000 peak values from shuffle data. For a possible

induction event, the real peak of average activity must not have been greater than the

90th percentile of the shuffle.

If an event passed criteria to be considered as a possible induction event, we analyzed

if it is successful in forming a field. There were four criteria for a successful field formation:

1. The resulting field must have been significant above the 95th percentile of the shuffle; 2.

The resulting field occurred within 2 seconds of the peak of the induction event; 3. The cell

must have fired (have value above 2 STD) within 0.5 seconds of the resulting field for the

next 3 odor presentations; 4. The cell must have fired within 0.5 seconds of the resulting

field for at least 7 out of the next 10 odor presentations. All these criteria were decided

by visually inspecting all successful events and improving based on our expectations of

how BTSP events would look in our task. The strict criteria for activity in the previous 3,

following 3, and following 10 odor presentations improves the likelihood that the event in

question does induce the resulting field. The ± 2 second window for the difference between

the event peak and field peak allowed us to look for backward drift without any bias. The

lack of any criteria regarding the amplitude of the induction event allowed us to probe

the relationship of amplitude to success rate and backward drift. Success rate increases

continuously with amplitude (Figure 2.1 I), but only events with amplitude above 10 STD

had statistically significant backward drift. Therefore, we considered any event above 10

STD to be ‘plateau-like’, and successful ‘plateau-like’ events are what we considered to be

BTSP events. We considered any event between 2 and 10 STD to be a ‘small event’.
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Locomotion analysis

1D locomotion that was recorded with a sensor (Avago ADNS-9500) at 1kHz was binned

to match the frame rate of calcium imaging. Binned signals were smoothed by a rolling

mean of 10 frames (0.32 seconds), then z-scored, and finally values below 1 were set to zero.

These binned signals are displayed as ‘locomotion (a.u.)’. Since most of the locomotion

was small movements around the onset and offset of odors, in other analysis we binarized

locomotion into ‘not running’ and ‘running’ bouts. A bout of running must have been at

least 2 seconds of locomotion values above 1; and all other periods were considered to be

‘not running’.

Selectivity analysis

We calculated the odor selectivity index value for each ROI as: SI = (Ra - Rb) / (Ra + Rb);

where Ra is the firing rate at a given bin for Odor A trials and Rb is the same for Odor B

trials. The same approach was taken for selectivity of match trials versus non-match trials.

Bin sizes were always 0.5 seconds, and performance was never considered so all trials are

included. For each ROI, a distribution of 2000 shuffled index values were also calculated

by randomly shuffling the trial type assignment 2000 times for each bin. The maximal

absolute value index is chosen from all the bins (for the real ROI and all 2000 shuffles),

and the bin is noted. ROI’s with an absolute value index value above the 95th percentile

of absolute value shuffled index values are considered to be ‘significantly selective’.

Support vector machine decoding

Binary support vector machine (SVM) decoding was performed in MATLAB 2021a (default

parameters) using bin sizes of 0.5 seconds (averaging the deconvolved signal for those

frames within the bin). Unless otherwise noted, the number of ROIs was controlled by

randomly subsampling 100 ROIs out of all possible ROIs. This 100 was chosen as it is the
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largest multiple of 50 that is smaller than the number of ROIs in each recording (CA1 and

EC axons). In all cases, the result of 20 subsamples of ROIs were averaged for each data

point. For each bin and subsample, 80% of trials were used for training the decoder, and

the remaining 20% were used for testing. This was repeated 4 more times so that each

block of 20 trials was used as the 20% for testing. For each training of the decoder, another

training was done with a shuffled assignment of trial type to confirm a shuffle comparison

of data yields decoder accuracy of ∼50%. For odor decoding, the trials were broken down

into odor presentations (same as in BTSP detection analysis) to evaluate odor decoder

accuracy regardless of the order of the odors. When specific timepoints were mentioned,

such as ‘during odor presentation’ or ‘during delay period’, the average accuracies of the

0.5 second bins were averaged and not trained/tested with larger bins.

To evaluate the relationship of the number of subsampled ROIs and decoder accuracy,

all the previous steps were repeated using different numbers of subsampled ROIs. Again

20 subsamples for each were used. If a recording session had fewer than the chosen number

of ROIs, all ROIs were used. For axonal decoding in Figure 2.11 I-J we pooled axons

from the different days of the same animal only in panels showing ‘number of subsampled

axons’ on the x-axis. This was done simply to illustrate improved decoder performance

with many more ROIs, but all other decoding figure panels were done by subsampling 100

axons and treating each recording session separately. For CA1 decoding in Figure 2.11 D,

most recording sessions had more than 300 neurons, so no pooling of days was necessary.

Sequence-axon detection and analysis

To evaluate peak firing timing in EC axons, we performed sequence-axon detection similar

to the previously described approach in CA1 neurons in our DNMS task, Taxidis et al.

(Taxidis et al., 2020). First, trials that begin with Odor A and those that begin with Odor

B are separated, and the one with a larger peak of the average activity was considered

further. Additionally, only the 6-second period including first odor presentation and the

52



delay period was considered. In the same way as described in BTSP-event detection, the

peak of average activity within this period and a given trial type was determined to be

significant if the peak was greater than the 95th percentile of 2000 circular shuffles. The

cell must also have had a trial reliability of at least 20% and have fired above 2 STD for

20% of the preferred trials within 0.5 seconds of the peak frame found in the previous

step. If an ROI passed both criteria, it was considered to be a ‘sequence-axon’ regardless

of its odor selectivity, as that was a separate analysis. An ROI was considered to have a

peak during the odor presentation if the peak was within the odor presentation period.

An ROI was considered to have a peak during the odor offset (sometimes referred to as

immediately after the odor) if the peak was in the first second of the delay period. An ROI

was considered to have a peak during the delay period only if the peak was during the last

4 seconds of the seconds of the delay. This was done to not include the large population

of ROIs that fired to the offset of the odor (likely the auditory cue of the clicking of the

valve).

Analysis across days

For CA1 imaging, CellReg output registration maps were used to align cells across pairs.

Within each pair saline and uPSEM days had the exact same cell indices. For decoding

across days (Figure 2.4 C-D), the same binary SVM decoding was performed on subsamples

of 100 neurons that overlap between the 2 days in question. Binning and all parameters

were identical, with the exception that 100% of trials from the training day were used

for training the decoding and 100% of trials from testing day were used for testing the

decoder. To evaluate the percentage of overlapping neurons that remained odor selective

(Figure 2.4 E), we used a threshold of the 90th percentile for odor selectivity. If a neuron

was found to have had a selectivity value above the 90th percentile and preferred the same

odor in both days in question, then it was considered to ‘remain odor selective’. All axonal

analysis was performed separately for each recording session as alignment across days was
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difficult to achieve for each animal.

Statistical analysis

For CA1 imaging figures that show paired points, a single line connects the two days within

a pair, so there are 4 times as many lines as animals. However, all statistics were performed

as a Two-Way ANOVA (animal x pair) with repeated measures on the saline-uPSEM

condition (using ‘fitrm’ and ‘ranova’ functions in MATLAB 2021), so as not to treat each

pair as entirely independent. For non-paired points (Figure 2.4 D-E), Two-Way ANOVA

(animal x pair) were performed. For when CA1 imaging groups were not compared (Figure

2.1 I-L), all 17 animals were treated independently, and statistics were one-sample t-tests

(Figure 2.1 K). The Wilcoxon signed rank test was conducted using pairings of all cells in

CA1 recordings to evaluate the change of the distribution of selectivity values.

For axonal imaging figures, significance was determined on each day by two-sample

t-tests for each day. ANOVA p-values are reported in the text as the overall significance

using a Two-Way ANOVA (animal and day). For correlations with performance, Pearson’s

R was calculated with its corresponding p-value.

For all figures, no asterisks were shown if p ≥ 0.05, 1 asterisk if p < 0.05, 2 asterisks

if p < 0.01, 3 asterisks if p < 0.001. If the p ≥ 0.1, ‘n.s.’ is displayed, but if p < 0.05

the p-value was typically displayed in the figure. On occasions when single asterisks were

displayed above a curve or trace, p-values were corrected for multiple comparisons using

the false discovery rate Benjamini-Hochberg procedure. In all cases in the text, values

were written in the format ‘mean ± standard deviation’ (STD), while error bars in all

figures show the mean and standard error of the mean (SEM). No statistical methods were

used to determine appropriate sample sizes but were chosen as being comparable to sizes

used in similar publications.

54



2.7 Supplemental Figures
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Figure 2.5: Additional examples of BTSP-like events
Supplementing Figure 2.1 H. A) 15 more example neurons showing BTSP-like events.
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Figure 2.6: More unique examples of BTSP-like events
Supplementing Figure 2.1 H. A) 3 examples of an odor-selective cell becoming
non-selective because the new BTSP induced field. B) 3 examples of cells that formed an
odor-field after a ‘plateau-like’ event, but the field faded quickly. C) 6 examples of cells
with multiple ‘plateau-like’ events that seem to reinforce the odor-field. D) 3 examples of
failed ‘plateau-like’ events followed by successful ones.
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Figure 2.7: Examples of BTSP-like events that formed reward encoding fields
Supplementing Figure 2.1 H. A) 4 examples of ‘plateau-like’ events forming
representations following the 2nd odor and selective to non-match trials.
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Figure 2.8: Small events were not BTSP, and locomotion drove ‘plateau-like’
events but not successful field generation
Supplementing Figure 2.1 I-L. A) Supplementing Figure 2.1 J showing success rate was
very low for small events. These represent randomness of non-BTSP events passing
criteria for BTSP. B) Supplementing Figure 2.1 L showing that small events did not have
backward drift that was seen for ‘plateau-like’ events. C) Average locomotion for all 17
CA1 animals. Locomotion was normalized voltage signal from sensor (arbitrary units).
D) Locomotion values during odor presentations split by when there is no calcium event,
a small event, and ‘plateau-like’ event (data points are each animal, averaging all cells).
E) Same as (D) but split by when a ‘plateau-like’ event failed or succeeded in generating
a field (paired t-tests). F) Comparing small event rate, after binarizing locomotion values
to find 2 second bouts of ‘running’ (paired t-tests). G) Same as (F) but for ‘plateau-like’
event rate. H) Similar to (F) and (G) but for success rate of ‘plateau-like’ events forming
an odor-field.
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Figure 2.9: LEC or MEC inhibition had no effect on behavioral performance,
locomotion, or running
Supplementing Figure 2.2 B-C. A) Average behavioral performance was unaffected by
uPSEM. B) Locomotion was also largely unaffected by uPSEM for all groups of animals.
There were some minor significant bins, but these were random and cannot explain any
other findings.
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Figure 2.10: uPSEM inhibition does not affect odor decoding of mCherry
controls or match versus nonmatch trial decoding for any groups
Supplementing Figure 2.2. A) Cumulative distributions of odor selectivity values for all 4
groups of animals compared to shuffle distributions. Statistics are Wilcoxon signed-rank
test for all neurons. B) Same as Figure 2.2 D but split between first odor and second
odor (cells could belong in both groups of significant neurons). C) Panels complementing
those in Figure 2.2 E, but for mCherry control animals. D) Odor decoding performance
increased with the number of neurons subsampled. The number of 100 neurons was
chosen for all main figures because all recordings have at least 100 neurons or axons.
Statistics are the same as (C). E) SVM decoding of match trials versus non-match trials
was unaffected by uPSEM inhibition.
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Figure 2.11: LEC and MEC sequences; odor axon reliability greater for MEC
Supplementing Figure 2.3. A) LEC and MEC sequences for expert performance split by
Odor A and Odor B to show the similarities and highlight odor specificity differences. B)
Even/odd trial validation for LEC and MEC preferred odor sequences. C) Percentage of
axons with a significant peak during the first odor ‘offset’ (first second of delay period).
D-F) Trial reliability (percentage of trials with a calcium event at its field on the
preferred odor trials) for axons that peak during the first odor, first odor offset, or delay
period. G) Cumulative distributions of odor selectivity values during sub-expert and
expert performance. Statistics are two-sample Kolmogorov-Smirnov test for all axons. H)
Binary SVM odor decoding only during the delay period. I) Odor decoding (during odor
presentation period) accuracy increased with more axons subsampled (similar to Figure
2.10 D. To achieve larger number of axons, axons were pooled for each animal. J) Same
as I, but only decoding during the delay period.
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Figure 2.12: MEC encodes match vs nonmatch trial more strongly even before
the reward period
Supplementing Figure 2.3. A) Cumulative distributions of match/non-match selectivity
during sub-expert performance. B) Same as (A) but during expert performance. C)
Percentage of axons with a match/non-match selectivity value above 95th percentile of
shuffle, split by day and correlation with performance. D) SVM decoding of match trials
versus non-match trials was greater in MEC later in the reward period during sub-expert
performance (likely encoding outcome of receiving reward or not). E) Decoding of match
trials versus non-match trials increased and peaked before reward period during expert
performance. F) Decoding of match trials versus non-match trials during the 2nd odor
period increased more rapidly for MEC. G) Same decoding but during expert
performance as number of subsampled axons increased.
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CHAPTER 3

Sequential CA1 Activity Represents Working Memory

and Time during a Novel Differential-Delay

Non-Match-to-Sample (dDNMS) Task

3.1 Abstract

Working memory (WM) and timing are considered distinct cognitive functions, yet the

neural signatures underlying both are similar. Recent proposals have suggested that neural

sequential activity is a possible shared mechanism of WM and timing. To answer if WM

and timing rely on a shared neural signature, we developed a novel rodent differential-

delayed nonmatch-to-sample (dDNMS) task, in which the identity of the first odor stimulus

predicts the delay duration. The cued-differential delays are irrelevant to the WM task,

yet we found that WM performance decreased if delay expectations were violated with

reversed delay lengths. By performing calcium imaging of dorsal CA1 neurons, we found

odor-specific sequential activity tiling the short and long delays. While encoding the

identity of the first odor, the trajectories and shapes of the sequences also reflected an

expectation or anticipation of the timing of the 2nd odor. Together, our findings suggest

that working memory and implicit timing representations are multiplexed in dorsal CA1.
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3.2 Introduction

Working memory (WM) is the ability to temporarily store and manipulate information, and

it is essential for cognition (Baddeley, 1992, 2012). In many cases, reading out the WM trace

requires appropriate timing such that the additional stimuli are appropriately anticipated,

and the behavioral response is made at the right time. WM and timing are often studied

separately because they are thought to have distinct neural mechanisms in different brain

regions. However, many similar features of WM and timing suggest that they could have

shared neural mechanisms. Both working memory and timing are functions that operate on

the scale of seconds and require information to be transiently stored. In traditional delay

WM tasks, WM during the delay period is necessary to maintain retrospective information

and prepare for potential prospective information. Timing also keeps track of the time

elapsed since the first stimulus was delivered (retrospective information) and how much

time needs to elapse until a second stimulus arrives (prospective information). Recent

computational research also has suggested that WM and timing could be implemented

by the same circuit mechanism (Rajan et al., 2016; Cueva et al., 2020; Zhou et al., 2023).

However, in-vivo evidence of a shared mechanism for both working memory and timing

has yet to be demonstrated in a behavioral task with both WM and timing components.

Early pioneering studies of WM suggested that steady-state persistent activity is the

dominant neural mechanism for how the brain maintains information across a delay period

(Fuster and Alexander, 1971; Kubota and Niki, 1971; Funahashi et al., 1989). Since then,

however, other WM mechanisms have been reported: sequential activity (Pastalkova et al.,

2008; Rajan et al., 2016; Taxidis et al., 2020) and ramping activity (Inagaki et al., 2018,

2019; Cueva et al., 2020). Critically, these same time-varying patterns of neural activity

have also been reported for the encoding of time (Narayanan, 2016; Zhou et al., 2020;

Cueva et al., 2020; Ma et al., 2024).

However, it has been difficult to link the mechanisms of WM and timing because neural

dynamics have been recorded in distinct tasks designed to elucidate mechanisms of either

65



WM or timing. To make this link, a WM task is needed that allows the researcher to

probe if subjects are learning the temporal structure of the task itself (Cueva et al., 2020).

While most timing research has focused on explicit timing tasks where subjects must keep

track of time correctly to perform the task; subjects can also perform implicit timing

where they learn the task-irrelevant temporal structure of the task. This implicit timing

can be learned during WM tasks with fixed delay lengths, during which subjects can

learn to predict when the delay is ending and another stimulus is arriving. Recent human

research has shown that WM performance can be impaired when temporal expectations

are violated (Cravo et al., 2011; Vangkilde et al., 2013; Zhou et al., 2023). This suggests

an interaction between WM and implicit timing. Importantly, computational studies

have demonstrated how time-varying neural trajectories can encode both WM and timing

information (Liu and Buonomano, 2009; Murray and Escola, 2017; Zhou et al., 2023); yet

direct experimental neural evidence for a shared mechanism for WM and timing has been

lacking.

To find a shared neural mechanism of WM and timing, we developed a novel olfactory

WM and implicit timing task for rodents. This modification of a rodent olfactory working

memory task (Taxidis et al., 2020) allowed us to observe behavioral deficits in WM

when implicit timing expectations were violated, replicating a previously found human

behavioral result (Zhou et al., 2023). We have previously found that during performance

of an olfactory delayed non-match-to-sample (DNMS) WM task, CA1 pyramidal neurons

fire sequentially across a fixed 5-second delay following specific odors (Taxidis et al., 2020).

We hypothesized that these sequences would be modulated by temporal expectation in

our novel differential delayed non-match-to-sample (dDNMS) WM task where each odor

is followed by a delay period of distinct duration (2.5 or 5.0 seconds). We performed

two-photon calcium imaging of CA1 pyramidal neurons as mice performed the task. We

found that CA1 odor-specific sequential activity is shaped differently when animals are

expecting different delay lengths with an over-representation of CA1 neuronal activity prior

to the expected arrival of the 2nd odor, suggesting that implicit timing is encoded within
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these sequences. Neural trajectories sped up in anticipation of the 2nd odor following

a short delay, and this corresponded with better time encoding on short delay trials.

Altogether, we demonstrate that sequential activity in CA1 is a shared mechanism of

working memory and implicit timing within a novel task that shows how implicit timing

violations can impair working memory performance.

3.3 Results

We developed a novel working memory and implicit timing task for rodents, by modifying

a standard olfactory DNMS working memory task (Taxidis et al., 2020; Liu et al., 2014).

In this dDNMS task, either odor A or odor B is presented for 1 second followed by a delay

period whose duration depends on the identity of the first odor. If the first odor presented

is odor A, the reward period is 2.5 seconds. If the first odor presented is odor B, the reward

period is 5 seconds. After the delay period, either odor A or B is presented as the second

odor. If the odors delivered before and after the delay are the same, the animal learns

to refrain from licking. If the odors do not match, the animal learns to lick the reward

port for a water reward. Adult male and female mice (n = 23) were water-restricted and

trained to perform the dDNMS task (Figure 3.1 A). After the animals learned the task to

criterion (see Methods), we introduced ‘reverse’ trials in which the cue-delay contingency

was reversed for 20% of all trials (Figure 3.1 A-B) to investigate whether mice implicitly

learned the temporal structure of the task and whether unexpected delay lengths would

alter WM performance. Animals performed the task with reverse trials for 2 days, and each

day consisted of 7 blocks of 20 trials with pseudorandomly distributed odor combinations.
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3.3.1 Novel rodent dDNMS working memory task showed behavioral evidence

of implicit timing

To investigate whether mice showed behavioral evidence of learning the implicit temporal

structure of the dDNMS task, we compared performance accuracy and lick latency between

standard and reverse trials on the first 2 days that reverse trials were introduced. Mice

showed decreased performance accuracy on reverse trials (87.00 ± 10.42 % on standard

trials and 83.77 ± 12.10 % on reverse trials, p = 0.0039, Figure 3.1 C). However, this

effect was driven entirely by reverse long trials (86.49 ± 9.47 % on standard long trials

and 80.75 ± 14.19 % on reverse long cued-short trials, p = 0.0009), as the reverse short

trials showed no effect on performance accuracy (87.50 ± 11.88 % on standard short trials

and 86.80 ± 12.25 % on reverse short cued-long trials, p = 0.70). Therefore, performance

accuracy was only impaired when mice expected a short delay and had to maintain the

memory of the first odor for longer than anticipated. Additionally, by measuring the lick

latency on each trial when mice made a choice to lick, we found that mice took a longer

time to respond on reverse trials (563 ± 243 milliseconds on standard trials and 584 ± 252

milliseconds on reverse trials, p = 0.037, Figure 3.1 D). However, this effect was driven

equally strongly by both the reverse short and reverse long trials. Together, the results

suggest that mice learned the temporal structure of the differential delays. Violating their

temporal expectations with reverse trials demonstrated behavioral results similar to those

obtained in humans performing a comparable task (Zhou et al., 2023).
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Figure 3.1: Novel rodent dDNMS working memory task showed behavioral
evidence of implicit timing
A) Schematic of the olfactory differentially delayed non-match-to-sample (DNMS) task.
Water delivery and licking behavior was assessed during a 3 second reward period starting
at 2nd odor onset. Mice were head-fixed above a Styrofoam spherical ball to allow
running. B) Example block of perfect performance for 20 trials. S and R letters on the
left indicate standard or reverse trials. Dots indicate licks and dark blue bars indicate
water delivery. C) Behavioral performance accuracy calculated as percentage of trials
correct. Large dots represent the mean, and error bars indicate standard error of mean
(SEM). All statistics are paired t-tests. The left panel data was split by delay length for
the right panel and difference between standard and reverse trials is displayed. The
asterisk above long delay in right panel indicates significance (p = 0.0009). D) Same as
(C), but for median lick latency after onset of the 2nd odor.

69



3.3.2 Differential sequential activity in CA1 reflects implicit timing during

delay period

To determine if there were shared neural mechanisms of WM and implicit timing represen-

tations, we performed in-vivo two-photon calcium imaging of the dorsal CA1 region of

the hippocampus as mice performed the dDNMS task (Figure 3.2 A-B). In our previous

work using a standard olfactory DNMS task with fixed 5 second delays, we found that a

population of dorsal CA1 neurons fired during specific epochs of the task (Taxidis et al.,

2020). While some cells fired during the presentation of specific odors, others fired during

specific points during the delay period following a specific odor yielding odor-specific

sequential activity tiling the entire delay period (Taxidis et al., 2020). Here, we recorded

dorsal CA1 neural activity to investigate how differential temporal expectations influence

hippocampal sequential activity.

Adult male and female mice (n=11) were injected with AAV1-Syn-jGCaMP8f or

jGCaMP7f into the right dorsal CA1 and implanted with a 3mm diameter glass-bottomed

titanium cannula above the intact alveus after aspiration of the overlying cortex and

corpus callosum (Taxidis et al., 2020). Neural activity was recorded for each mouse on its

last two days of receiving only standard trials and the first two days with the inclusion of

reverse trials, yielding 44 recording sessions with an average of 405 ± 187 active neurons

per day (Figure 3.2 A-B). A proportion of CA1 neurons responded reliably during different

epochs of the trial. Some had responses with significant activity peaks during the odor

presentation, while others had peaks during the delay period (Figure 3.2 C). Altogether, the

population of CA1 neurons formed sequential activity that tiled the first odor presentation

and delay period. One group of neurons with significant activity peaks during or after

Odor A formed the short-trial sequence, while another group with peaks during or after

Odor B formed the long-trial sequence. Out of the total population of active neurons, 13.9

± 12.1 % had significant peaks and were assigned short trial (odor A) or long trial (odor

B) sequences.
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To visualize the sequential activity, we pooled all neurons with significant peaks during

the first two days with reverse trials. After grouping short trial neurons and long trial

neurons separately and then sorting them based on the peak firing, we observed that

cells tiled the entire delay period (left panels of Figure 3.2 D). These sequences were

strongly odor-selective, as most cells were quiet during or after the presentation of their

non-preferred odors (middle panels of Figure 3.2 D). On reverse trials, the long trial

sequence was cut short, while the short-trial sequence failed to reach the second odor

(right panels of Figure 3.2 D).

Visually, we noticed an over-representation of neurons with peak firing at the end of

the short delay, and a modest over-representation at the end of the long delay. To quantify

if differences in expected delay duration influenced the shape of sequential activity, we

compared the shapes of the standard short trial sequence and standard long trial sequence

only during the first 3.5 seconds of the trials (first odor and short delay length). This

allowed a fair comparison of equivalent time lengths to determine if the hippocampus

allocates additional resources to the anticipation of the second odor arrival in the short

trial sequence. The distribution of these pooled significant neurons was different between

the short and long trial sequences (Kolmogorov-Smirnov test p = 4x10-6). This effect was

driven by the large over-representation in the last 0.5 seconds of the short delay period

(3.0 to 3.5 seconds trial time) for the short trial sequence neurons, with 13.9 ± 12.1 %

of short trial neurons with a peak during the last 0.5 seconds compared to only 13.9 ±

12.1 % for long trial sequence neurons (out of only neurons with a peak during the first

3.5 second period, n = 11, paired t-test p = 0.0315). Together, these findings suggest

that odor-specific sequential activity in CA1 reflected temporal expectations as sequence

shapes were different between short and long delay lengths.
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Figure 3.2: Differential sequential activity in CA1 reflects implicit timing during
delay period
A) Example field of view of dorsal CA1 neurons expressing GCaMP8f. Scale bar is
100µm. B) Example activity traces of 15 neurons across 6 standard trials. Dark blue
traces indicate the ∆F/F, while the gray trace represents the normalized and floored
deconvolved signal used to estimate firing rate. Vertical colored bars represent the odor
delivery periods. C) Heatmaps of 4 example neurons from the first day including reverse
trials. Heatmaps show deconvolved signal on each trial that was grouped into trial type.
Vertical white lines indicate onset and offset of each odor delivery. Average traces at
bottom show difference in average firing rate split by trials that started with Odor A and
those that started with Odor B. D) Sequential activity of only neurons that had a
significant peak of firing during the first odor presentation or delay period. Each row is
the average trace of selected trials normalized and sorted based on its peak firing rate on
preferred trials (left most panels). The top three panels show neurons that have a
significant peak during odor A or the delay period following odor A (short trial neurons).
The bottom three panels are the same but for neurons with a significant peak during or
after odor B (long trial neurons). Orange and green lines indicate the first odor onset and
offset, while blue lines indicate second odor onset and offset (which could be either odor).
E) Distribution of significant peaks were different between short trial and long trial
neurons (pooling all cells, Kolmogorov-Smirnov test, p = 4x10-6). F) Location of
significant peaks into 0.5 second bins (n = 11, repeated paired t-tests corrected for
multiple comparisons with Benjamini-Hochberg procedure, asterisk indicates p = 0.0315).
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3.3.3 Neural trajectories increase in speed in anticipation of second odor

To further evaluate the differences between CA1 population activity between short and

long delays, we evaluated neural trajectory dynamics of all significant short-trial or long-

trial sequence neurons. First, we performed principal component analysis (PCA) and

visualized the first two principal components (PCs) of population activity during the first

odor and delay period. By splitting the neural trajectories based on the trial type, we

revealed differences in speed of change and distance from a baseline resting state before the

presentation of the first odor (Figure 3.3 A). Following a dramatic change of population

activity during the odor presentation, the neural trajectory slowed and returned toward

the baseline starting point. However, on standard short trials, the trajectory turned away

from the baseline and increased its speed as if in anticipation of the second odor (Figure

3.3 B and D). When comparing the trajectories between standard short and standard long

trials, the difference was significant over 1 second before the arrival of the 2nd odor on

the short trials. On reverse-long trials when the second odor comes later than expected,

the trajectory slowed and returned toward baseline (Figure 3.3 A, C, and E). When

comparing standard-long and reverse-long trials (both with 5 second delays), the distance

from baseline and trajectory speed was significantly higher for reverse-long trials in the

middle of the delay period when the second odor was expected. This is likely driven by

the over-representation of significant sequence cells that have their peak activity at the

end of the short delay following odor A. All together, these findings further suggest that

CA1 neural trajectories show differences in temporal expectations with the speed at which

the population neural activity changes across the delay period.
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Figure 3.3: Neural trajectories increase in speed in anticipation of second odor
A) Principal component analysis of neural trajectories during first odor and delay period.
Top left panel are standard long and standard short trials averaged, while top right panel
being reverse short and reverse long trials averaged. Bottom shows timepoints of colored
dots that correspond to half-second increments in top panels. Baseline is calculated as the
activity that precedes the first odor (from -2 to 0 seconds). Dotted line for ‘expected 2nd
odor’ refers to the expected arrival of 2nd odor of reversal long trials with the cued-short
odor A. B) Distance from baseline is calculated as the Euclidian distance between neural
activities at a point in time compared to baseline 2 second period before the first odor.
Comparing traces of significant short trial and long trial sequence neurons (from Figure
3.2 D-F) by averaging standard short and standard long trials (normalizing number of
significant neurons (n) by dividing by

√
n). Thick line represents mean of 22 recording

sessions (first two days with inclusion of reverse trials), and shaded area represents
standard error of the mean. Asterisks represent bins of 1/6 second that are significantly
different (Two-Way ANOVA animal and day, corrected for multiple comparisons with
Benjamini-Hochberg procedure, p < 0.01). C) Same as (B) but comparing standard long
and reverse long trials. The dotted line is same as (A) for expected 2nd odor arrival on
reverse long trials. To control for the same number of trials, the nearest neighbor
standard long trials were chosen. D-E) Same as (B-C) but for trajectory speed, which is
the Euclidian distance between neighboring bins of size 1/6 second.
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3.3.4 CA1 encoding of elapsed time is stronger with short delay expectation

Given that the neural trajectories of CA1 sequential activity were different between

expected short and long delay lengths, we asked if this yields a difference in the strength

of time encoding at the population level. Does an increase of trajectory speed and over-

representation of cells firing at the end of the short delay lead to a better ability to decode

the current time within the delay period? To answer this question, we trained a support

vector machine (SVM) error-correcting output codes (ECOC) multiclass decoding on

the activity of all neurons. To allow fair comparison between short and long trials, we

only performed decoding during the short delay period from the 1.1 second to 3.4 second

timepoints to exclude any directly cue-related activity (Figure 3.4 A). Using 7 bins of

1/3 seconds, we calculated the correlation of real and predicted bins as the quantitative

measure to compare between standard short and standard long trials. Across all four days

of recording (last 2 days of only standard trials and first 2 days with reverse trials), time

decoding correlations were higher in the standard short trials suggesting that the neural

activity is more predictive during these trials (Figure 3.4 B). Together, these findings

suggest that in the first 2.5 seconds of the delay periods, CA1 population activity more

strongly encodes time when expecting a shorter delay. This suggests that the neural

sequences and differences in trajectory speed led to significant differences in the ability to

decode time within the delay period.
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Figure 3.4: CA1 encoding of elapsed time is stronger with short delay expecta-
tion
A) Support vector machine (SVM) error-correcting output codes (ECOC) multiclass
decoding of time bin within short delay period between 1.1 and 3.4 second time points
with 7 bins of size 1/3 seconds. B) Decoding accuracy calculated as the correlation of real
bins to the decoder predicted bins (0 being chance, and 1 being perfect). Two-Way
ANOVA animal and day for the 44 recording sessions, p = 0.004).
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3.4 Discussion

By developing a novel rodent olfactory-based differential-delayed nonmatch-to-sample

(dDNMS) task, we demonstrate that mice learn an implicit cue-delay association. Similar to

previous human experiments (Zhou et al., 2023), mice performed worse and responded later

when delay length expectations were violated in reverse trials. These behavioral results

suggest an interaction between the required WM demands of the task and the implicit

timing that mice learn. Using two-photon calcium imaging of dorsal CA1 pyramidal

neurons during performance of the dDNMS task, we found odor-specific sequential activity

encoding WM and timing representations during the delay period. First, odor-specific

sequential activity being odor-specific and tiling the entire delay lengths allowed the first

odor representation to be maintained until the arrival of the 2nd odor. Second, sequential

activity kept track of elapsed time as different neurons become active at different time

points within the delay period. Third, the different slopes and speed of change of these

sequences encoded the distinct expected delay lengths. When expecting the arrival of the

2nd odor following a short delay, there was an over-representation of timepoints prior to

the arrival of the 2nd odor and neural trajectories increased their speed. Finally, this

anticipatory increase in trajectory speed improved decodability within the short delay,

suggesting a role in the animal’s ability to predict the arrival of the 2nd odor.

While sequential activity has been proposed as possibly multiplexing working memory

and timing representations (Liu and Buonomano, 2009; Rajan et al., 2016; Murray and

Escola, 2017; Zhou et al., 2023), our findings demonstrate this at both the behavioral and

neural level. When implicit timing expectations were violated, WM performance suffered

despite no change to the WM component of the task. Future manipulation studies will

be necessary to probe the role of increasing trajectory speed in CA1 for anticipation or

maintenance of working memory olfactory representations.

Different population level neural dynamics of working memory have also been observed

in many areas of the brain: steady-state persistent activity (Fuster and Alexander, 1971;
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Kubota and Niki, 1971; Funahashi et al., 1989; Riley and Constantinidis, 2016) and

ramping activity (Inagaki et al., 2018, 2019; Cueva et al., 2020). Although persistent

activity does not allow for the encoding of temporal information, both ramping activity

and complex dynamics could be alternative or additional ways the brain may multiplex

working memory and timing. Despite our robust findings including only neurons that

passed our sequence-cell detection analysis, it is possible that other dynamics may also

play a role in CA1. Voltage or electrophysiological recording would be better suited to

distinguish sequential activity from persistent, ramping, or complex activity in tasks like

ours with relatively short delay periods of 2.5 seconds.

While dorsal CA1 was chosen for this study because of its known representations of

time through sequential activity (Pastalkova et al., 2008; Itskov et al., 2011; MacDonald

et al., 2011, 2013; Taxidis et al., 2020), its relatively weak recurrent connectivity (Knowles

and Schwartzkroin, 1981; Deuchars and Thomson, 1996; Yang et al., 2014) makes it

unlikely to be generating the temporal representations. The odor-specific working memory

information observed in CA1 is likely integrated from multiple areas such as lateral

entorhinal cortex (Igarashi et al., 2014; Li et al., 2017; Woods et al., 2020; Zhang et al.,

2024) and piriform cortex (Howard et al., 2009; Bekkers and Suzuki, 2013; Strauch and

Manahan-Vaughan, 2020), but it is unclear which brain regions play a role in maintaining

this information during the delay period. The CA3 region of the hippocampus - given its

stronger recurrent connectivity and inputs to CA1 (Li et al., 1994; Le Duigou et al., 2014)

- is likely playing a critical role in the formation or the sequential activity we observed in

CA1. Alternatively, both the medial and lateral entorhinal cortices have been implicated

in timing representations as well (Kraus et al., 2015; Tsao et al., 2018; Umbach et al.,

2020). Future manipulation studies will be necessary to understand which regions play a

role in generating the timing-dependent dynamics we have recorded in this study.

Finally, this study focused on excitatory pyramidal neurons, but the role of inhibition

within the CA1 region during our task is likely critical for the formation of the sequential
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activity we observed. The balance of excitation and inhibition is suggested to be necessary

for sequential activity, but recent computation theories suggest that inhibitory plasticity

and connection may be more important than excitatory ones (Zhou et al., 2023). Although

some research has focused on the differential role of interneuron subtypes on CA1 sequential

activity (Taxidis et al., 2023), it will be valuable to understand their causal role in driving

sequential formation across learning.

3.4.1 Method Details

Animals

All of the experiments were conducted according to the National Institute of Health (NIH)

guidelines and with the approval of the Chancellor’s Animal Research Committee of the

University of California, Los Angeles. A total of 9 adult male and 3 female mice (8-34

weeks old) were used for in-vivo behavioral experiments, and a total of 6 adult male and 5

female mice (8-16 weeks old) were used in-vivo calcium CA1 neuron imaging experiments.

All were C57BL/6J (Jackson Laboratory, 000664), experimentally naïve, and housed in

the vivarium under a 12-hour light/dark cycle. All mice were group housed (2-4 per cage)

with the exception of 3 that had to be separated following surgery because of fighting.

Surgical Procedures

Mice (8-30 weeks old) were subcutaneously administered pre-operative drugs (carprofen 5

mg/kg, dexamethasone 0.2 mg/kg, lidocaine 5 mg/kg) 30 minutes before surgery. Mice

were anaesthetized with isoflurane (5% induction, 1-2% for maintenance), and anesthesia

was continuously monitored and adjusted as necessary. The scalp was shaved, and mice

were placed into a stereotactic frame (David Kopf Instruments, Tujunga, CA) on a

feedback-controlled heating pad (Harvard Apparatus) set to maintain body temperature

at 37°C. Eyes were protected from desiccation using artificial tear ointment. The surgical
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incision site was cleaned three times with 10% povidone-iodine and 70% ethanol. Fascia

was removed by applying hydrogen peroxide, connective tissue was cleared from the skull,

and the skull was scored to facilitate effective bonding with adhesives at the end of surgery.

Behavioral experiments: After removing fascia and connective tissue, a custom-made

lightweight stainless-steel headbar was attached to posterior skull and secured with

cyanoacrylate glue. Dental cement (Ortho-Jet, Lang Dental) was applied to seal and cover

any remaining skull.

CA1 calcium imaging experiments: After stereotactically aligning the skull, a single

burr hole was made above right dorsal CA1. Either pGP-AAV1-syn-jGCaMP8f-WPRE

(1000nL of 1:5 saline dilution) or pGP-AAV1-syn-jGCaMP8f-WPRE (1000nL of 1:5 saline

dilution) was injected into the right dorsal CA1 (2.0 mm posterior from bregma, 1.8

lateral from bregma, and 1.3 ventral from dura). Viruses were injected using a Nanoject

II microinjector (Drummond Scientific) at 60nL per minute. Following virus injection and

waiting for 45 minutes, a circular craniotomy (3 mm diameter) was made centered around

a point made 2.0 mm posterior and 1.8 lateral to bregma. Dura beneath the craniotomy

was removed and cortical tissue above dorsal CA1 was carefully aspirated using a 27-gauge

blunt needle. Corpus callosum was spread to the sides of the craniotomy to expose the

alveus. Cortex buffer (NaCl = 7.88g/L, KCl = 0.372g/L, HEPES = 1.192g/L, CaCl2 =

0.264g/L, MgCl2 = 0.204g/L, at a pH of 7.4) was continuously flushed during aspiration

and until bleeding stopped. A titanium ring with a 3 mm diameter circular thin #0

coverglass attached to its bottom was implanted into the aspirated craniotomy and the

overhanging flange was secured to the skull with vetbond (3M). A custom-made lightweight

stainless-steel headbar was attached to posterior skull and secured with cyanoacrylate glue.

Dental cement (Ortho-Jet, Lang Dental) was applied to seal and cover any remaining skull,

and to form a small well around the titanium ring for holding immersion water for the

objective during imaging.

Following surgery, all animals were given post-operative care (carprofen 5 mg/kg and
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dexamethasone 0.2 mg/kg for 48 hours after surgery) and provided amoxicillin-treated

water at 0.5 mg/mL for 7 days. All mice recovered for 7-14 days before experiments began.

Experimental setup

The entire behavioral setup is as described in Taxidis et al. (Taxidis et al., 2020). Mice

were head-fixed above an 8-inch spherical Styrofoam ball (Graham Sweet) which can rotate

about one axis for 1D locomotion that was recorded with a sensor (Avago ADNS-9500).

A continuous stream of clean air (∼1 L/min) was delivered toward the animal’s nose via

Tygon PVC clear tubing and a custom-made port that held the air tube and water port.

At the onset of the odor presentation period, a dual synchronous 3-way valve (NResearch)

switched to the odorized one for 1 second. Odorized air was created by using a 4-ports

olfactometer (Rev. 7c; Biology Electronics, Caltech) supplying air to either of two glass

vials containing odor A (70% Citral, FCC; Sigma Aldrich) or odor B ((-)-a-Pinene ≥

97%, FCC; Sigma Aldrich), which were both diluted in mineral oil at 5% concentration.

Water droplets (∼10µl) were released by a 3-way solenoid valve (Lee Company), and

licks were detected by using a custom battery-operated circuit board with one end of the

circuit connected to the headbar and the other to the lickport. The behavioral rig was

controlled with custom written software (MATLAB) and through a data acquisition board

(USB-6341: National Instruments).

Behavioral training

After 7-14 days recovering from surgery, mice were handled and began water-restriction

to 85% of their original weight before water-restriction. After one day of handling, mice

were habituated to being head-fixed above the spherical treadmill (can rotate about one

metal axis for 1D locomotion that is recorded) for two days. On the 4th day of training,

mice began learning to lick from the lickport as water was automatically delivered at the

beginning of the reward period following only standard non-matched odor trials (AB or

81



BA, with water delivery at the offset of the 2nd odor). Trials were delivered in blocks of 20

trials. This phase was always 2 days except for the rare mouse that needed one extra day

to reach motivation level and lick water from port for at least 50 trials. In the next phase,

water was only delivered if the mouse licked during the response period, and mice learned

to reliably lick in anticipation of the reward following the 2nd odor. This phase was also 2

or 3 days, dependent on the mouse licking during the response period of at least 50 trials.

The next phase was the full differential delayed non-match-to-sample (DNMS) task in

which standard matched odor trials (AA and BB) were introduced and mice learned to

refrain from licking the port following these trials. There was no punishment or timeout

following an incorrect lick; the water was simply not delivered. For this phase and previous

phases, the response window was 3 seconds starting at the offset of the 2nd odor. After 6

days of this phase or until behavior reached 85 %, we began sliding the response window

forward by 1/3 of second. For example, the first day with the new response window started

2/3 of a second after the onset of the second odor. On the following day, the response

window would start 1/3 of a second after the onset of the second odor. Finally, mice

performed the dDNMS task with the response window starting at the onset of the second

odor. At this stage, always 7 blocks of 20 trials were delivered. Mice performed 3 days of

this phase with only standard trials delivered, except for 3 mice that were given an extra

4th day because of performance below 85%. This phase is referred to as the standard trial

days. Following this phase, reverse trials were introduced at a 20% rate for 3 more days.

Again, 7 blocks of 20 trials were delivered. For simplicity throughout the figures and text,

odor A (citral) always predicts short delay and odor B (pinene) always predicts long delay.

However, we counterbalanced mice with half trained the opposite way with odor A (citral)

predicting long delay and odor B (pinene) predicting short delay.
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In-vivo two-photon imaging

All two-photon calcium imaging was conducted using a resonant scanning two-photon

microscope (Scientifica) fitted with a 16x 0.80 NA objective (Nikon) to record 512x512

pixel frames at 30.9 Hz. CA1 imaging fields of view were 500x500 µm and axonal imaging

fields were 250x250 µm. Excitation light was delivered with a Ti:sapphire excitation laser

(Chameleon Ultra II, Coherent), operated at 920 nm. GCaMP8f and GCaMP7f fluorescence

was recorded with a green channel gallium arsenide photomultiplier tube (GaAsP PMT;

Hamamatsu). Microscope control and image acquisition were performed using LabView-

based software (SciScan). Imaging and behavioral data were synchronized by recording

TTL pulses generated at the onset of each imaging frame and olfactory stimulation digital

signals at 1 kHz, using WinEDR software (Strathclyde Electrophysiology Software).

For imaging experiments, dorsal CA1 was imaged for at least 5 consecutive days of

task performance. This includes 2 days of standard trials only and 3 days with reversal

trials (however, the last reversal trial day was not included in any analysis presented here).

While careful attention was given to aligning the FOV to the previous day’s when possible,

sometimes FOV’s needed to be changed to optimize the number of active neurons. We

used rotating stages, a motor for adjusting mouse head angle, and a tiltable objective

attachment with two degrees of freedom to fine-tune the alignment. Laser power and

PMT settings were kept consistent between days, except for rare occasions when it was

necessary to keep similar signal-to-noise.

For each day of recording, imaging was halted between each of the 7 blocks of 20 trials.

This allowed fine-tuning of alignment to keep the same FOV within the day, and it also

prevented brain heating or photo-toxicity. Laser power was kept as minimal as possible

(60-90mW) without sacrificing signal-to-noise ratio, and no significant photo-bleaching was

observed.
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Histology

Following all experiments, mice were deeply anaesthetized under isoflurane and transcar-

dially perfused with 30 mL 1x PBS followed by 30 mL 4% paraformaldehyde in 1x PBS at a

rate of approximately 4 mL/min. After perfusion, the brains were extracted and post-fixed

in 4% paraformaldehyde. Coronal sections of 80 µm were collected using a vibratome,

24-48 hours after perfusion. The sections were mounted onto glass slides and cover-slipped

with DAPI mounting medium. Images were acquired on an Apotome2 microscope (Zeiss;

5x, 10x, 20x objectives) to confirm proper expression and location of viral expression. For

CA1 imaging experiments, GCaMP8f or GCaMP7f was confirmed to be in dorsal CA1

with no damage to the hippocampal formation.

3.4.2 Quantification and Statistical Analysis

Performance and lick-latency

For all 23 mice (behavior and CA1 imaging cohorts), performance was measured as

the percentage of trials with the correct response. Responses were only considered for

performance during the response window (3 second period starting at the onset of 2nd

odor). Within the response period, the time elapsed between the onset of the 2nd odor

and the first lick is considered the ‘lick latency’. To minimize the effect of extremely late

licking outlier events, the median lick latency was taken for each recording session.

Calcium imaging data pre-processing

For CA1 imaging experiments, each day was analyzed separately as neurons were not aligned

across days. Movies were processed using the Python implementation of Suite2P 0.9.2

(Pachitariu et al., 2017) to perform non-rigid motion registration, neuron segmentation,

extraction of fluorescence signals, and deconvolution with parameters optimized to our

GCaMP8f and GCaMP7f CA1 recordings (with only the decay time-constant being different
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between the two). We used the default classifier and an ‘iscell’ threshold of 0.3 to only

include masks that were likely neurons. Deconvolved signals were taken as the selected

output from Suite2P and taken to MATLAB 2021a for further processing. Deconvolved

signals were smoothed by a rolling mean of 10 frames (0.32 seconds), then z-scored, and

finally values below 2 were set to zero. The resulting signal was what was used for all

analysis and referred to as ‘firing rate (STD)’ as a proxy for spiking activity. Signals

were aligned to the trial structure (odor presentations and lick timing) and the recorded

locomotion as mice ran on the spherical ball.

Sequence neuron detection and analysis

To evaluate peak firing timing, we performed sequence detection similar to the previously

described approach in our DNMS task, Taxidis et al. (Taxidis et al., 2020). First, standard

trials that begin with Odor A and those that begin with Odor B are separated, and the one

with a larger peak of the average activity was considered further. Additionally, only the 3.5

or 6-second period including first odor presentation and the delay period was considered.

The peak of average activity within this period and a given trial type was determined

to be significant if the peak was greater than the 95th percentile of 2000 circular shuffles.

The cell must also have had a trial reliability of at least 20% and have fired above 2 STD

for 20% of the preferred trials within 0.5 seconds of the peak frame found in the previous

step. If a cell passed both criteria, it was considered to be a ‘short trial neuron’ or ‘long

trial neuron’ regardless of its odor selectivity.

PCA analysis and Trajectory Speed

For figure 3.3 A, all active neurons were taken, and principal component analysis (PCA)

was conducted on the average deconvolved signal of each of the 4 different trial types. The

baseline point was calculated as the average position of the trajectories in the 2 seconds

preceding the onset of the first odor. While figure 3.3 A only shows the first 2 principal
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components (PCs), figure 3.3 B-E calculates the Euclidian distances without performance

any dimensionality reduction. These figure panels only use the significant ‘short trial

neurons’ and ‘long trial neurons’ detected in the previous figure. Using bins of 5 frames

(0.16 seconds), distance from baseline is defined as the distance in full dimensional space

between the baseline point and the bin in question. Trajectory speed is the distance in full

dimensional space from one bin to the next. Arbitrary units (a.u.) are displayed because

distance and speed are normalized for number of significant neurons (n) by dividing by
√

n.

Time decoding

As described in the text, support vector machine (SVM) error-correcting output codes

(ECOC) multiclass decoding was used to decode the time bin within the short delay period

between 1.1 and 3.4 second time points with 7 bins of size 1/3 seconds. The MATLAB

function ‘fitcecoc’ was used to perform the decoding using the default one vs one method.

Correlation was chosen as the measure to achieve one value for accuracy for each recording

session.

Statistical analysis

All statistical tests are described in the legend text. For all figures, individual p-values

are listed in the figure or legend text. On occasions when single asterisks were displayed

above a curve or trace, p-values were corrected for multiple comparisons using the false

discovery rate Benjamini-Hochberg procedure, and asterisks indicate bins in which the

adjusted p-value < 0.01. In all cases in the text, values were written in the format ‘mean

± standard deviation’ (STD), while error bars in all figures show the mean and standard

error of the mean (SEM). No statistical methods were used to determine appropriate

sample sizes but were chosen as being comparable to sizes used in similar publications.
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CHAPTER 4

LEC or MEC inhibition does not impair learning or

performance on an olfactory working memory task

4.1 Introduction

This hippocampus is known to integrate inputs from many regions during the formation

of memories (Canto et al., 2008; Knierim, 2015; Zemla and Basu, 2017). The primary

inputs to the hippocampus are from the entorhinal cortex (EC), which is further divided

into the lateral and medial parts (LEC and MEC). Within spatial tasks, MEC is known

for its importance in spatial encoding (Hafting et al., 2005; Knierim et al., 2014; Save

and Sargolini, 2017), while LEC is recognized for its encoding of non-spatial elements in

the environment such as wall color (Lu et al., 2013) and time elapsed (Tsao et al., 2018).

While older models characterize the functional difference between MEC and LEC as being

‘where’ and ‘what’, newer models have a more appropriate division being ‘context’ and

‘content’ (Knierim et al., 2014). This distinction is more easily applied to non-spatial

contexts.

Additionally, LEC is recognized for its strong olfactory encoding (Igarashi et al., 2014;

Li et al., 2017; Woods et al., 2020; Zhang et al., 2024). LEC receives direct inputs from

the olfactory bulb and extensive inputs from the piriform cortex, and LEC neurons have

been shown to encode odor-specific information in various tasks and contexts (Kerr et al.,

2007; Chapuis et al., 2013; Igarashi et al., 2014). Furthermore, the direct pathway of LEC

to CA1 has been shown to be necessary for learning and performance on a simple odor
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association task (Li et al., 2017).

Therefore, we predicted that LEC would be necessary for learning and performance

of an olfactory-based delayed non-match-to-sample (DNMS) working memory task. The

result in Figure 2.9 A that LEC or MEC chemogenetic inhibition did not impair behavioral

performance of expert mice was unexpected. To address this unexpected result, we

performed optogenetic inhibition of LEC and MEC to investigate if either region is

necessary for learning. However, we consistently observed that LEC or MEC inhibition

had no effect on learning or performance of the olfactory DNMS working memory task.

Neither inhibition of excitatory neurons with stGtACR2 nor excitation of inhibitory

neurons with channelrhodopsin-2 yielded a behavioral effect. Making the task more

difficult by increasing delay length to 15-seconds, diluting odors to 0.05%, and changing

the pre-training shaping protocol also did not yield an effect. Finally, no effect was

observed with stGtACR2 inhibition of excitatory neurons during an olfactory Go-No-Go

association task. Together these findings support the chemogenetic inhibition finding in

Figure 2.9 A, but ask many further questions about the causal role of LEC in olfactory

tasks.

4.2 Results

We trained a total of 64 adult male and female mice on various versions of olfactory working

memory and olfactory association tasks. For all DNMS tasks, mice were water-restricted

and trained while head-fixed on a spherical treadmill. Each trial consisted of two 1-second

odor presentations separated by a delay period. One second after the offset of the 2nd odor

there was a 3-second reward period during which the choice of the animal was determined.

Mice were trained to lick the lickport to release water during this reward period if the

two odors did not match (correct ‘hit’). Mice learned to refrain from licking the lickport

if the odors matched (correct ‘rejection’), and overall performance was quantified as the

percentage of correct ‘hits’ and correct ‘rejections’ out of all trials. Each session of the
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DNMS task consisted of 5 blocks of 20 trials, with pseudorandomly distributed odor

combinations. For all variants of the DNMS task, 470nm light was delivered through fiber

cannulas to the brain region of interest continuously during both odor periods and the

delay period (Figure 4.1 A).

4.2.1 stGtACR2 inhibition of LEC or MEC does not impair learning or

performance on the standard olfactory DNMS task

In the first cohort of 18 animals, animals performed the standard DNMS task with a

5 second delay (Figure 4.1). Mice were injected with viruses (pAAV-CaMKIIa-EGFP

or pAAV-CaMKIIa-stGtACR2-FusionRed) in LEC or MEC (Figure 4.1 B). A standard

shaping protocol that consisted of 5 days of only non-match trials was used to train mice

to lick after the 2nd odor. Following these 5 days of shaping, ‘Day 1’ was considered the

first day of learning as match trials were introduced and mice had to learn to refrain from

licking after these trials. On every trial starting on this Day 1, blue light was delivered for

the 7-second period including both odors and the delay period. We observed no significant

behavioral effect for 6 days of learning (individual t-tests: day 1 p = 0.15, day 2 p = 0.29,

day 3 p = 0.93, day 4 = 0.10) (Figure 4.1 C). The same comparison for MEC mice also

showed no significant difference, although we were not sufficiently powered to observe a

statistically significant difference (Figure 4.1).

89



A A
AB

A B
B B

No Lick

No Lick

Lick
Lick

470nm Blue Light

0 1 6 7 8 11
Time (seconds)

A B
Standard DNMS Task

LEC MEC

Fi
be

r c
an

nu
la

Fi
be

r c
an

nu
la

C D

Figure 4.1: stGtACR2 inhibition of LEC or MEC does not impair learning or
performance on the standard olfactory DNMS task
A) Blue light delivered continuously for 7 seconds during odor and delay periods of
standard DNMS task. B) Injections of virus to drive the expression of EGFP or
stGtACR2 were delivered to either LEC or MEC. Blue is Dapi, and red is FusionRed in
stGtACR2. Images showing LEC are from coronal sections, while MEC are from sagittal
sections. For both LEC and MEC, the scale bar is 500µm. C) LEC inhibition yields no
significant behavioral effect. Thin lines represent individual animals, while thick lines are
group average. Shaded areas represent SEM (standard error of mean). D) Same as (C),
but MEC also not significant.
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4.2.2 Longer delays and odor-free shaping protocol make task more difficult

but no effect of LEC inhibition

The fast learning curves observed in the standard DNMS raised questions regarding whether

low-level of task difficulty was impairing our ability to detect behavioral differences with

LEC or MEC inhibition. As a first measure in making the task more difficult, we increased

the delay period from 5 to 15 seconds. It is known that working memory demands are

higher with longer delays and impairments may only be observed on longer delay tasks

(Olson et al., 2006). With all other parameters identical to Figure OPTO1 C, the 15-second

delay LEC cohort of mice also showed no behavioral difference between control EGFP and

experimental stGtACR2 mice (Figure 4.2 A). Additionally, the mice still learned the task

remarkably quickly, which forced us to evaluate the pre-training shaping period of days

that precede ‘Day 1’ of match trials and blue light delivery.

In the next cohort of mice, all parameters remained the same to the standard DNMS

task, except the olfactometer remained turned off during shaping. Termed ‘odor-free’

shaping, mice were forced to learn the temporal structure (to lick after 2nd odor delivery)

from only the auditory clicks of the valve for odor period onset and offset. Because

the auditory cues are salient, mice learned the temporal structure in ‘odor-free’ shaping

similarly to the standard shaping protocol. With 5-second delays and all other parameters

the same, this ‘odor-free’ shaping variant of the task was more difficult since the entire

cohort of animals learned much more slowly than cohorts trained on the standard DNMS

task (Figure 4.2 B). All mice remained at chance levels on day 1 because this was the first

day of receiving any odors. However, again we observed no significant differences between

experimental stGtACR2 mice and control EGFP mice. While we were likely not powered

to observed significance, the experimental group trended on learning the task more quickly.

Next, in another cohort of mice, we combined the ‘odor-free’ shaping protocol with

15-second delays. Mice learned more slowly, but we still observed no behavioral difference

between groups. These results suggest that making the task more difficult with longer
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delays was not sufficient to observe behavioral effects. Furthermore, our concern about

odor exposure for days before blue light delivery resulted in a new shaping protocol that

slowed learning but did not yield behavioral impairments with LEC inhibition.
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A B C15-second Delays Odor-free Shaping
Odor-free Shaping +
15-second Delays

Figure 4.2: Longer delays and odor-free shaping protocol make task more
difficult but no effect of LEC inhibition
A) Blue light delivered continuously for 17 seconds during odor and delay periods of
DNMS task with 15 second delays. Visualization same as Figure 4.1. B) Odor-free
shaping in days that preceded 7-second blue light delivery during standard DNMS task.
C) Odor-free shaping and 15 second delays with same 17-second blue light delivery.
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4.2.3 Excitation of inhibitory neurons also does not impair learning or per-

formance

Given that task difficulty did not affect the impact of LEC inhibition, we chose to test a

different form of inhibition. Instead of inhibiting excitatory neurons with stGtACR2, we

chose to excite inhibitory neurons. Gad2Cre::Ai14 (expressing tdTomato in all inhibitory

neurons) and Gad2Cre::Ai27 (expressing channelrhodopsin-2 in all inhibitory neurons) were

used in the next experiment. Fiber cannulas were lowered above LEC just as previously

done. First, with the standard DNMS task and shaping protocol, we observed a small trend

of experimental Gad2Cre::Ai27 animals learning more slowly, but we were not powered to

see an effect.

Next, we used Gad2Cre::Ai27 negative and positive cage mates as control and experi-

mental mice following ‘odor-free’ shaping. Again, we observed slower learning compared

to the standard shaping protocol, but we observed no difference between the control

and experimental groups. Together, these experiments exciting inhibitory neuron further

support our previous findings that LEC may not be necessary for learning of the olfactory

DNMS task.
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A BStandard DNMS Task Odor-free Shaping

Figure 4.3: Excitation of inhibitory neurons also does not impair learning or
performance
A) Control mice express Ai14 tdTomato in inhibitory neurons, while experimental mice
express Ai27 channelrhodopsin-2 in inhibitory neurons. Blue light delivered continuously
for 7 seconds during odor and delay periods of standard DNMS task. B) Control mice
were cage mate negatives to the experimental positive Ai27 channelrhodopsin-2 mice.
Odor-free shaping in days that preceded 7-second blue light delivery during standard
DNMS task.
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4.2.4 Diluting odors in DNMS or Go-No-Go task also does not impair learning

or performance

Although LEC may not be necessary for the working memory component of the task, we

hypothesized that it still may be necessary for olfaction perception. Therefore, we chose

to make the olfaction perception component more difficult by dramatically reducing the

concentration of the odors. All previous experiments were performed with 5% odorant

concentration diluted in mineral oil, as was done previously in the lab (Taxidis et al.,

2020). Previous experiments from that publication demonstrated 0.05% as being the lowest

concentration that mice could still perform the DNMS task above chance level (Taxidis

et al., 2020). Therefore, we repeated the ‘odor-free’ shaping protocol from Figure 4.2 B and

conducted the standard DNMS task with 5-second delays with odorant concentrations at

0.05%. Mice had the slowest learning curves of all cohorts, suggesting that we successfully

made the task much more difficult to learn; however, we observed no behavioral difference

between control EGFP and experimental stGtACR2 mice.

Finally, we attempted to validate the behavioral finding from Li et al., 2017 showing

behavioral impairments in a Go-No-Go olfactory association task (Li et al., 2017). Instead

of only inhibiting the LEC axon terminals in CA1 with halorhodopsin, we continued

to inhibit LEC directly with stGtACR2. However, other behavioral parameters were

identical, and we continued to use the diluted odors at 0.05%. Mice were first pre-trained

to lick following a LED response cue. The task consisted of odor A or B being presented

for 1 second with a 2 second delay period until the response cue, which initiated a 1

second response window. If mice licked during the response window following odor A, they

received a water reward. If they licked during following odor B, no reward was dispensed.

Assignment was randomized between mice as to which odor was rewarded. We trained the

mice on 5 blocks of 20 trials per day, and mice rapidly learned to refrain from licking after

odor B. We observed similar learning curves as Li et al., 2017 (Li et al., 2017), however,

we observed no difference between control EGFP and experimental stGtACR2 mice.
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A BOdor-free Shaping
Dilute Odors 0.05%

Go-No-Go Task
Dilute Odors 0.05%

Figure 4.4: Diluting odors in DNMS or Go-No-Go task also does not impair
learning or performance
A) Odors diluted to 0.05% instead of 5%. Blue light delivered continuously for 7 seconds
during odor and delay periods of standard DNMS task. B) 3 days of Go-No-Go task with
the same 0.05% odors. Each day was divided into 5 sessions of 20 trials.
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4.3 Discussion

Using optogenetic silencing approaches, we asked if LEC or MEC is necessary for learning

of an olfactory DNMS working memory task. Throughout many different iterations and

versions of experiments, we consistently observed no behavioral difference between control

animals and inhibited animals. Neither inhibiting excitatory neurons with stGtACR2

nor exciting inhibitory neurons with channelrhodopsin-2 yielded a behavioral effect. We

also made the task more difficult with longer delays, more dilute odors, or an odor-free

shaping protocol. We even attempted to replicate a previous finding of LEC to CA1

projections being necessary for learning of an olfactory association task. In the same task,

our stGtACR2 silencing of LEC itself did not yield a learning or performance effect.

Many questions remain regarding the necessity of LEC or MEC in learning or perfor-

mance of our olfactory DNMS task. Although some of the individual experiments were

not sufficiently powered to observe statistical significance, overall, we did not see a trend

toward LEC inhibition impairing performance. We performed two inhibition methods,

but it remains possible that other opsins or inhibition approaches may yield behavioral

impairments. Another possibility is simply that inhibiting all of LEC or MEC does not

impair performance on our task. Finer manipulations to inhibit specific pathways such as

LEC to CA1 may be required to observe behavioral effects.

Future experiments testing various optogenetic opsins, chemogenetic tools, or other

inhibition methods may be required to confirm the lack of behavioral necessity we observed.

Additionally, alternate versions of pretraining protocol and task itself may be required.
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4.4 Method Details

Animals

All of the experiments were conducted according to the National Institute of Health (NIH)

guidelines and with the approval of the Chancellor’s Animal Research Committee of the

University of California, Los Angeles. A total of 52 mice (8-18 weeks old) were used for

EGFP and stGtACR2 inhibition experiments, and all were C57BL/6J (Jackson Laboratory,

000664). A total of 12 mice (8-18 weeks old) were used for channelrhodopsin-2 excitation

of inhibitory neurons. These were all Gad2-IRES-Cre (Jackson Laboratory, 010802) and

were additionally bred with either Ai14 (Jackson Laboratory, 007914) or Ai27 (Jackson

Laboratory, 012567). All mice were experimentally naïve and housed in the vivarium

under a 12-hour light/dark cycle. All mice were group housed (2-4 per cage) with the

exception of few that had to be separated following surgery because of fighting.

Surgical Procedures

Mice (8-18 weeks old) were subcutaneously administered pre-operative drugs (carprofen 5

mg/kg, dexamethasone 0.2 mg/kg, lidocaine 5 mg/kg) 30 minutes before surgery. Mice

were anaesthetized with isoflurane (5% induction, 1-2% for maintenance), and anesthesia

was continuously monitored and adjusted as necessary. The scalp was shaved, and mice

were placed into a stereotactic frame (David Kopf Instruments, Tujunga, CA) on a

feedback-controlled heating pad (Harvard Apparatus) set to maintain body temperature

at 37°C. Eyes were protected from desiccation using artificial tear ointment. The surgical

incision site was cleaned three times with 10% povidone-iodine and 70% ethanol. Fascia

was removed by applying hydrogen peroxide, connective tissue was cleared from the skull,

and the skull was scored to facilitate effective bonding with adhesives at the end of surgery.

After stereotactically aligning the skull, a single or several burr holes were made depending

on the experiment performed and virus was injected.
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EGFP and stGtACR2 experiments: Control virus (800 nL of 1:5 saline dilution of

pAAV1-CaMKIIa-EGFP into all 4 sites) or experimental virus (800 nL of 1:5 saline dilution

of pAAV1-CaMKIIa-EGFP into all 4 sites) was injected into LEC (bilaterally 3.4 and 3.9

mm posterior, 4.35 mm lateral, and 4.3 ventral from bregma) or MEC (bilaterally 4.7 mm

posterior, 3.35 mm lateral, and 3.8 and 3.0 mm ventral from bregma). After waiting at

least 20 minutes following the last injection, 400µm diameter 0.39NA fiber cannulas were

slowed lowered to 0.5 mm above the injection sites of LEC (bilaterally 3.5 mm posterior,

4.35 mm lateral, and 3.8 ventral from bregma) or MEC (bilaterally 4.7 mm posterior, 3.35

mm lateral, and 2.5 mm ventral from bregma).

Gad2Cre channelrhodopsin-2 experiments: Cannula placement was identical to EGFP

and stGtACR2 experiments.

All mice recovered for 7-14 days before experiments began.

Experimental setup

The entire behavioral setup is as described in Taxidis et al. (Taxidis et al., 2020). Mice

were head-fixed above an 8-inch spherical Styrofoam ball (Graham Sweet) which can rotate

about one axis for 1D locomotion that was recorded with a sensor (Avago ADNS-9500).

A continuous stream of clean air (∼1 L/min) was delivered toward the animal’s nose via

Tygon PVC clear tubing and a custom-made port that held the air tube and water port.

At the onset of the odor presentation period, a dual synchronous 3-way valve (NResearch)

switched to the odorized one for 1 second. Odorized air was created by using a 4-ports

olfactometer (Rev. 7c; Biology Electronics, Caltech) supplying air to either of two glass

vials containing odor A (70% isoamyl acetate basis, FCC; Sigma Aldrich) or odor B

((-)-a-Pinene ≥ 97%, FCC; Sigma Aldrich), which were both diluted in mineral oil at

5% concentration. Water droplets (∼10µl) were released by a 3-way solenoid valve (Lee

Company), and licks were detected by using a custom battery-operated circuit board

with one end of the circuit connected to the headbar and the other to the lickport. The
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behavioral rig was controlled with custom written software (MATLAB) and through a data

acquisition board (USB-6341: National Instruments). Blue light 470nm from fiber-coupled

LED (Thorlabs, M470F3) was delivered via 400µm diameter fiber which was coupled to the

400µm 0.39NA fiber cannula surgically attached to the skull. Light power was measured

to be 4mW coming out of each fiber cannula.

Behavioral training

After 7-14 days recovering from surgery, mice were handled and began water-restriction to

85% of their original weight before water-restriction. After one day of handling, mice were

habituated to being head-fixed above the spherical treadmill (can rotate about one metal

axis for 1D locomotion that is recorded) for two days. These first 3 days were consistent

for all experiments.

For standard pretraining / shaping: On the 4th day, mice began learning to lick from

the lickport as water was automatically delivered at the beginning of the reward period

following only non-matched odor trials (AB or BA, with water delivery at time point of

8 seconds). Trials were delivered in blocks of 20 trials. This phase was always 2 days

except for the rare mouse that needed one extra day to reach motivation level and lick

water from port for at least 50 trials. In the next phase, water was only delivered if the

mouse licked during the response period, and mice learned to reliably lick in anticipation

of the reward following the 2nd odor. This phase was also 2 or 3 days, dependent on the

mouse licking during the response period of at least 50 trials. The final phase was the full

delayed non-match-to-sample (DNMS) task in which matched odor trials (AA and BB)

were introduced and mice learned to refrain from licking the port following these trials.

There was no punishment or timeout following an incorrect lick; the water was simply not

delivered. The first day of this final full DNMS task was considered ‘Day 1’ and the first

day of blue light delivery (6-8 days from the start of water-restriction). A total of 100

trials delivered in five blocks of 20 trials were given each day.
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For ‘odor-free’ shaping: All steps are identical except that the olfactometer remains off

for the days before ‘Day 1’ of full DNMS task.

Go-No-Go Association Task: Different from the standard DNMS task, an orange

LED was installed just above the lickport. Similar to the standard pretraining / shaping,

there were 2-3 days of automatic water delivery. Odor valves clicks were present but the

olfactometer remained off, and 2 seconds after the offset the LED turned on for 0.5 seconds.

The one second response started at the same time as the LED turned on. In the first stage

of automatic water delivery, the water was delivered at the offset of the LED. However,

on the following stage where mice needed to trigger water delivery, the entire response

window was available to trigger. After 2-3 days on this stage, mice transitioned to ‘Day 1’,

which is when the olfactometer was turned on and blue light was delivered. Again a total

of 100 trials delivered in five blocks of 20 trials were given for 3 days total.

Quantification and Statistical Analysis

All data was analyzed and visualized in MATLAB 2021a. Two-sample t-tests were

performed when noted in the text.
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CHAPTER 5

Paradoxical optogenetic kindling with ‘inhibitory’

opsin stGtACR2 in excitatory neurons

5.1 Introduction

Optogenetics is a powerful tool for evaluating causal roles of circuits by controlling neural

activity with light and genetic engineering (Emiliani et al., 2022). However, as is true with

any technique, there are certain limitations that must be considered. This can sometimes

be challenging with a tool like optogenetics when so many different opsins and protocols

are used in labs across the world.

Here we tell a short cautionary tale to warn others about potential problems with

use of an inhibitory opsin. In early pilot optogenetics experiments to silence excitatory

neurons in lateral entorhinal cortex or medial entorhinal cortex (LEC or MEC), we chose

stGtACR2 as the opsin of choice because of its reported potency of inhibition (Mahn

et al., 2018). This soma-targeted version of the anion-conducting channelrhodopsin is also

widely used. However, we mistakenly chose to pulse the 470nm blue light at 20Hz in the

same previous experiments in the lab had done with halorhodopsin. We noticed that mice

rapidly developed seizure-like activity within minutes of the first blue-light pulse trains,

even though we only expected to be inhibiting excitatory neurons. While the creators of

stGtACR2 acknowledge the possibility of rebound spiking following the offset of light, the

soma targeted version was designed to limit the likelihood this occurring.

We followed up this discovery with a systematic experiment to confirm that pulsed light
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delivery to inhibit excitatory neurons in LEC or MEC with stGtACR2 could elicit seizure-

like activity. To accomplish this, we modified an existing protocol for rapid optogenetic

kindling (Cela et al., 2019). Kindling is a model for epileptogenesis, which is a gradual

process for a brain to develop synchronous activity following an electrical stimulation

(Goddard, 1967). While at first the electrical stimulation has no behavioral effect, if

repeated epileptiform behavior will gradually arise as synchronous activity builds to the

electrical stimulation. Recent work has shown kindling protocols are also possible using

optogenetics to target specific cells (Cela et al., 2019). We delivered at 20Hz for 5 second

trains 4 times per day separated by 20 minutes, and all mice expressing stGtACR2 in LEC

or MEC fully kindled to criteria within 4 to 11 days. This originally unexpected result

suggests that stGtACR2 and potentially other similar opsins should be used with caution,

especially in circuits known to be involved in epilepsy like the EC or hippocampus (Thom,

2014). Additionally, it behaviorally supports previous observations that differences in

chloride reversal potentials between the soma and axon terminals can lead the opening of

chloride channels with opsins like stGtACR2 to be hyperpolarizing and inhibitory at the

soma while depolarizing and excitatory at axon terminals (Messier et al., 2018). Although

the soma targeted version of GtACR2 increases the ratio of expression to the soma, some

remaining expression in the axons could drive the effects we observed.

5.2 Results

5.2.1 Rapid optogenetic kindling by ‘inhibition’ of LEC or MEC with stG-

tACR2 expressing in excitatory neurons

We performed a rapid optogenetic kindling protocol on a total of 11 adult mice. Mice were

injected with viruses (pAAV-CaMKIIa-EGFP or pAAV-CaMKIIa-stGtACR2-FusionRed)

in LEC or MEC and fiber cannulas were inserted just above the region (Figure 5.1 A).

Following 3-5 weeks of viral expression, mice were habituated to an open arena chamber
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with fibers connected bilaterally to the fiber cannulas attached to their skull. After one

day of habituation, the experiment began with 470nm blue light being delivered for 5

seconds at 20Hz with a 20% duty cycle (Figure 5.1 B). These 5 second pulse trains were

delivered 4 times per day separated by 20 minutes (Figure 5.1 B). Using a modified Racine

scale (Racine, 1972), stages of epileptic seizures were categorized from 0 to 5 following

each of the pulse trains (Figure 5.1 B). Mice continued until a Racine scale 5 was reached.

On the first day, no LEC or MEC stGtACR2 expressing mice exhibited any behavioral

changes to the blue light pulse trains. However, by day 2 most of the mice began exhibiting

freezing behavior. Seizure severity gradually increased until all 7 mice eventually reached

Racine scale 5 seizure with wild running and jumping. Notably, 3 control EGFP expressing

mice for both LEC and MEC followed the same protocol for 7 days. None of these 6

control mice ever showed any behavioral changes; they scored a 0 on each pulse train.

Additionally, no mice showing any behavioral changes to continuous light delivery (see

chapter 4).
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5 seconds 20Hz - 20% Duty Cycle
4 trains per day separated by 20 minutes

Modified Racine Scale

5    Wild jumping / running
4    Rear limb clonus
3    Forelimb clonus
2    Head nodding
1    Freezing
0    No behavioral change

Figure 5.1: Rapid optogentic kindling by ‘inhibition’ of LEC or MEC with
stGtACR2 expressing in excitatory neurons
A) Injections of virus to drive the expression of EGFP or stGtACR2 were delivered to
either LEC or MEC. Blue is Dapi, and red is FusionRed in stGtACR2. Images showing
LEC are from coronal sections, while MEC are from sagittal sections. For both LEC and
MEC, the scale bar is 500µm. B) Details for rapid optogenetic kindling protocol. C) 4
LEC mice all fully kindle to a Racine scale of 5. Each color is a different mouse. Each day
consisted of 4 light trains with each having a Racine scale measure. D) Same as (C), but
MEC also had 3 mice fully kindle.
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5.3 Discussion

We demonstrated that stGtACR2 expression in LEC or MEC can drive seizure-like activity

if activation blue-light is pulsed. Using a rapid optogenetic kindling protocol, we fully

kindled all mice in 4 to 11 days. The results are paradoxical given that stGtACR2 is an

inhibitory anion-conducting channelrhodopsin, and we restricted expression to excitatory

neurons with the CaMKIIa promoter. However, slice electrophysiological studies of

GtACR2 point to the likely explanation. Messier et al., observed that GtACR2 activation

drove hyperpolarization and inhibition at the soma, but drove depolarization and excitation

at axon terminals (Messier et al., 2018). This is due to differences in resting chloride

membrane potentials. While the soma targeted version does enhance expression at the

soma, we still observe significant expression in the axon terminals (Figure 5.1 A).

Additional experiments would be needed to confirm the pathway that is driving the

seizure activity we observe as it could be axon terminals in EC that are being depolarized

or terminals in other areas like the ventral hippocampus that may also be receiving enough

activation blue light. However, we demonstrate sufficient evidence to tell the cautionary

tale for using pulsed light with stGtACR2 and we remind all scientists of the value of

researching and fully understanding the limitations of the tools being used.

5.4 Method Details

Mice were not experimentally naïve. Kindling experiments took place after the optogenetic

experiments described in chapter 4 (see Methods for that chapter). Following the conclusion

of the previous experiments, mice were given 2 days to recover and hydrate following water

restriction. The kindling protocol is as described in the main text, and all surgical and

light delivery methods can be found in the Methods section of Chapter 4.
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