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FULL PAPER
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dynamic MRI
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Objective: MRI-guided radiotherapy is particularly attrac-

tive for abdominal targets with low CT contrast. To fully

utilize this modality for pancreas tracking, automated

segmentation tools are needed. A hybrid gradient, region

growth and shape constraint (hGReS) method to seg-

ment two-dimensional (2D) upper abdominal dynamic

MRI (dMRI) is developed for this purpose.

Methods: 2D coronal dynamic MR images of two healthy

volunteers were acquired with a frame rate of 5 frames

per second. The regions of interest (ROIs) included the

liver, pancreas and stomach. The first frame was used as

the source where the centres of the ROIs were manually

annotated. These centre locations were propagated to

the next dMRI frame. Four-neighborhood region transfer

growth was performed from these initial seeds before

refinement using shape constraints. Results from hGReS

and two other automated segmentation methods using

integrated edge detection and region growth (IER) and

level set, respectively, were compared with manual con-

tours using Dice’s index (DI).

Results: For the first patient, the hGReS resulted in the

organ segmentation accuracy as a measure by the DI

(0.77) for the pancreas, superior to the level set method

(0.72) and IER (0.71). The hGReS was shown to be

reproducible on the second subject, achieving a DI of

0.82, 0.92 and 0.93 for the pancreas, stomach and liver,

respectively. Motion trajectories derived from the hGReS

were highly correlated to respiratory motion.

Conclusion: We have shown the feasibility of automated

segmentation of the pancreas anatomy on dMRI.

Advances in knowledge:Using the hybridmethod improves

segmentation robustness of low-contrast images.

Patients with pancreatic adenocarcinoma have a poor
prognosis with cumulative 5-year survival ,5%.1,2 Many
patients present with unresectable locally advanced lesion
at the time of diagnosis. Although radiotherapy alone is
unlikely to cure pancreatic cancer, with sufficiently high
doses, it is possible to achieve local control or resectability
conversion3–8 that is correlated to significantly prolonged
patient survival.9 However, radiation doses to the pancreas
are limited by the surrounding radiosensitive serial organs.
The goals to deliver sufficient tumour dose are further
complicated by significant organ motion in this region.10–12

Currently, large motion margins to sufficiently cover the
tumour motion excursion in the planning target volume
are used, resulting in increasing high dose spillage to sur-
rounding critical structures. Consequently, the doses needed
for local tumour control are not typically achievable.13

A pre-requisite for overcoming the challenge and de-
veloping a motion management method for pancreatic
cancer treatment is quantitative imaging. Four-dimensional

CT (4DCT), which has been successfully used in lung tumour
motion management, is not commonly performed in the
upper abdominal region owing to its intrinsic poor soft-
tissue contrast and, if imaging contrast is administrated,
the difficulty to synchronize pharmacokinetics of imaging
contrast and 4DCT acquisition.14 Furthermore, 4DCT is
either unavailable during treatment or available with fur-
ther degraded qualities so is less useful for the upper ab-
dominal region. Alternatively, dynamic MRI (dMRI) has
been employed to describe the tumour motion and has
shown complementary features to the CT-based images. In
addition to superior soft-tissue contrast, dMRI has the
flexibility to image in the orientations most relevant to
motion and for a prolonged duration without ionizing
radiation. These abilities have been utilized to provide a
statistically robust characterization of the lung tumour.15–18

The superior soft-tissue contrast in the upper abdomen,
and its non-ionizing nature makes MR a better suited mo-
dality to provide continuous imaging guidance for intra-
fractional image-guided pancreas treatment. The feasibility
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of utilizing MR to guide radiotherapy has been enhanced by the
advent of MR-guided linacs and Co-60 systems.19–21 With MRI-
guided radiotherapy, gated pancreas treatment can be performed

at an anatomical position that maximizes critical organ sparing
when there is a greater separation between the tumour and
the dose-limiting critical organs. To do so, the locations of the
pancreas and its nearby organs need to be known based on their
respective contours but an automated tool for such purpose
has not been developed. Without such a tool, tedious manual
contouring is required on the large number of time-resolved
dMRI images. This deficiency would severely limit the utilization
of MRI guidance for pancreatic motion management.

In this study, we develop a hybrid gradient, region growth and
shape-constraint (hGReS) imaging segmentation method based
on seed transfer and organ cosegmentation for this challenging
problem.

METHODS AND MATERIALS
MRI acquisition
Thoracic-abdomen dMRI images of two healthy volunteers were
used for the study. For the first healthy volunteer, two-dimensional
(2D) coronal dMRI images were performed on a Siemens 1.5 T
Avanto scanner (Siemens Medical Solutions, Erlangen, Germany).

Figure 1. Flowchart of the proposed hybrid gradient, region

growth and shape constraint (hGReS) method. ROIs, regions

of interest.

Figure 2. Initial seed location as denoted by number 1 (left liver

lobe), 2 (stomach) and 3 (pancreas) circles. A blood vessel in

the lungwith high conspicuity denoted by number 4was selected

to create a respiratory motion reference.

Figure 3. First-stage segmentation results. (a) Seed transfer

growth result of three organs. (b) Transfer growth results with

shared pixels of the liver (R1), stomach (R2) and pancreas (R3)

from adjacent imaging frames.
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The MRI was performed utilizing a fully sampled Cartesian
TrueFISP (TFI) sequence (5 images per second, sagittal and
coronal orientations) with an 18-channel body receiver coil.
Data were acquired with the scan parameters: repetition time
(TR)/echo time (TE), 2.90/1.04ms; field of view (FOV),
3003 360mm2; flip angle, 52°; slice thickness, 7mm; matrix
dimension, 1603 192 pixels. The position of the coronal slices
was selected to show the pancreas head, stomach and liver. 300
continuous imaging frames were obtained and analysed.

To test if the segmentation method was image set dependent, a
second healthy volunteer was imaged using a modified TFI se-
quence based on radial trajectory using the following scan
parameters: TR/TE, 2.9/1.5ms; FOV, 3603 360mm2; flip angle,
41°; slice thickness, 6mm; matrix dimension, 1923 192 pixels.
Three coronal planes each with 300 continuous frames were
obtained for this subject.

Segmentation methods
Figure 1 shows a flowchart of the automated segmentation
routine. In the source task, imaging priors was extracted from
the source frame (Frame 0), which was the first frame of the
dMRI images but could be generalized to use images from a
different sequence of the same subject to save time in the case of
MRI-guided radiotherapy with a priori MRI. Seeds were man-
ually placed near the centre of the regions of interest (ROIs),
which included the stomach, left liver lobe and pancreas head.
This step took ,1min. In the target task, the seed locations and
their ROI association were transferred to the second dMRI
frame. Automated segmentation was performed using hybrid
gradient, region growth and shape constraints (hGReS). New
seed locations, which were the centres-of-mass of the automated
contours, were be transferred to the next imaging frame. Seed
propagation and ROI segmentation were repeated until all im-
aging frames were segmented. The details of hGReS are as follows.

Source task: obtain a priori information
Initial seeds were placed near the centre of each ROI by a human
operator. The co-ordinates of the three points are denoted by
(pi, qi), i5 1, 2, 3 for the liver, stomach and pancreas, respectively,
as shown in Figure 2. A highly conspicuous landmark in the lung
was selected to establish a respiratory trace. The seed locations
were automatically transferred to the target images by projection
to initiate automated segmentation.

Figure 4. The locations where two organs are closest to each

other are marked by colour-coded line segments. The gap

distance is defined as the average distance between these line

pairs with matching colour.

Figure 5. Automated segmentation results for a typical imaging frame. (a) Integrated edge detection and region growth; (b) level

set; (c) hybrid gradient, region growth and shape constraint; (d) manual contour.
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Target task
The target images were first pre-processed to calculate their
associated gradient and edge matrices. The gradient matrix of
the kth dMRI frame was defined by:

Gkðp; qÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Iðp1 1; qÞ2 Iðp; qÞ�2 1 ½Iðp; q1 1Þ2 Iðp; qÞ�2

q

(1)

I(p, q) is the grey value of the pixel (p, q) of an image.

The Canny operator22 was used to obtain the edge matrix Ek.

Seed transfer From the source domain, we obtained probable
scopes of the three ROIs and then built three template matrices,
denoted by Y1(pi, qi), Y2(pi, qi) and Y3(pi, qi). Initial seeds I(pi, qi)
were projected to the target image as the rough estimate of the new
seed locations. For each seed, the average of its 33 3 neighbour-
hood was denoted by “ave”. Additionally, the variance of its 53 5

neighbourhood was denoted by “var”. The size of the neigh-
bourhood was empirically determined after comparing the
performance of smaller and larger patches.

Cosegmentation of regions of interests Cosegmentation of
ROI included the following three steps.

(i) Four-neighbourhood region transfer growth The seed pool,
initially only consisting the seeds projected from the source
frame, grew by adding the four-neighbourhood pixels U(xi, yi)
of the seeds I(pi, qi):

if
��U�

xi; yi
�
2 ave

��# var (2)

The average grey value of the seed pool was subsequently updated by:

avenew 5
1

m1 s

h
ave3m1 +

s

i51

I
�
pi; qi

�i
(3)

Figure 6. Segmentation result of the first subject. Five imaging frames were selected with organ contours shown in binary masks.

hGReS, hybrid gradient, region growth and shape constraint; IER, integrated edge detection and region growth.
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where m is the maximum pixel number template matrix Yi,
i5 1, 2, 3, and s is the number of seeds. The seed pool grew until
all pixels in the template Yi were evaluated.

(ii) Organ extraction To properly assign the remaining
regions after the four-neighbourhood region transfer growth,
specific segmenting operations were performed on the three
ROIs based on their individual morphological and imaging
characteristics as follows.

Because of the relatively sharp liver boundary, gradient matrix
condition was used to determine if a point (pi, qi) belonged
to the liver seed pool. The gradient matrix condition was de-
fined as:

��Gðpi; qiÞ
��#T;  T552 (4)

(iii) Shape constraint A shape constraint was imposed on the
stomach owing to its elliptical representation in the MRI, for
all pixels in the ambiguous area if:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
pi 2 pj

�2
1

�
qi 2 q j

�2q
# r;  r513 (5)

T and r were empirically selected. Additionally, an edge matrix
constraint was used for both the stomach and the pancreas that:

Eðpi; qiÞ5 0 (6)

The preliminary segmentation results after these operations are
shown in Figure 3a,b. Figure 3b shows merging contours and
ambiguous pixels that could belong to either the stomach or
pancreas after region growth and gradient operation, but the
ambiguity was substantially reduced by applying the stomach
shape and size constraint.

Propagation of segmentation to subsequent imaging
frames The centre-of-mass locations of the three ROIs were
projected to the next imaging frame as the initial seed loca-
tions and Step (ii) was repeated until all images are processed and
segmented.

Comparing methods
Our method was compared against two state-of-the-art seg-
mentation methods. The first one is an integrated edge de-
tection and region growth (IER) algorithm23,24 that has been
shown superior to either single method. The second method is
level set that has gained wide utilization for segmentation
problems.25

In IER, the Otsu method26 using the Canny operator was ap-
plied with the lower and upper thresholds of 0.03 and 0.15,
respectively. In the region growth algorithm, the original seed

Figure 7. Dice’s index (DI) comparison for the three regions of

interests over the 300 dynamic MRI frames. (a) Pancreas,

(b) stomach, (c) liver. hGReS, hybrid gradient, region growth and

shapeconstraint; IER, integratededgedetectionand regiongrowth.

Table 1. Average Dice’s coefficient for 300 frames

Segmentation methods Pancreas Stomach Liver

Integrated edge detection and region growth 0.70936 0.0131 0.85246 0.0061 0.84746 0.0009

Level set 0.72106 0.0036 0.90516 0.0008 0.84856 0.0040

Hybrid gradient, region growth and shape constraint 0.77016 0.0030 0.90266 0.0005 0.92786 0.0040

Full paper: Automated pancreas segmentation based on dynamic MRI BJR
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points were manually placed in the same way as the hGReS. The
growth terminated when there was no more point with the grey
scale value within the variance of the seed points. The variance
thresholds var were set as 20, 25 and 28 for the liver, pancreas
and stomach, respectively. Seed transfer from the initial frame to
subsequent time frames was performed similar to the hGReS.

The level set method was first developed by Osher and Fedkiw27

and Sethian28 to describe wave propagation. The method was
then applied for medical imaging processing29 and has evolved
to be one of the most important tools for imaging segmenta-
tion.30 The level set evolution is derived as the gradient flow that
minimizes energy functional with a distance regularization term
and an external energy that drives the motion of the zero level
set towards desired locations. In this study, initial contours were
roughly manually drawn on the first imaging frames and prop-
agated to subsequent time frames. The detail of the distance
regularized level set method can be found in the study by
Li et al.30 Briefly, segmentation was performed based on a dis-
tance regularized level set energy function:

«ð∅Þ5mℛpð∅Þ1 lℒ gð∅Þ1aAgð∅Þ (7)

whereℛpð∅Þ is the level set regularization term, ℒ gð∅Þ computes
the line integral of the function along the zero-level contour, and
Agð∅Þ is introduced to speed up the motion of the zero level
contour in the level set evolution process. We adopted the same
parameter values for m(0.2), l(5) from the original publication,
but the a value given by Li et al30 resulted in poor segmentation
performance. In this study, we set a as 22, 2.2 and 25, and the
number as 40, 100 and 8 for the liver, stomach and pancreas,
respectively. All algorithms were implemented using in-house pro-
grams implemented in MATLAB® (R2007; MathWorks®, Natick,
MA). In addition to the automated segmentation methods, man-
ual segmentation of the three ROIs was performed by an oncol-
ogist. The manual contour served as a common sense reference.

Validation of the segmentation
The segmentation results were evaluated both visually and
quantitatively.

To quantitatively analyse the segmentation performance, Dice’s
similarity index was used:

S5 2 ×
jA1\A2j

jA1j1 jA2j (8)

where A1 and A2 were the binary masks from automated and
manual segmentation, respectively.

The second quantitative validation was performed by calculating
the motion trajectories of the ROI centroids, which were as-
sumed to be highly correlative to the respiratory motion. To
quantify the correlation, a highly conspicuous blood vessel in the
lung was selected as the reference (Figure 2). The blood vessel
was tracked using maximal cross-correlation. Details of lung
blood vessel motion tracking can be found in previous
publications.15–18

Figure 8. Estimated centroid motion trajectories on two-

dimensional MRI of individual frames using (a) integrated edge

detection and region growth, (b) level set, (c) hybrid gradient,

region growth and shape constraint, and (d) manual contour.

Horizontal axis is MRI frame number, and vertical axis is computed

based on the centroiddisplacement5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1y2

p
with the unit

(millimetres). Respiratory trace is superimposed on the plots.
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The third quantification is the proximity between ROIs calcu-
lated as the average gap distance between two colour-coded line
segments in adjacent ROIs that were closest to each other as
shown in Figure 4. The 2-cm-long line segments consisted 11
pixel-pairs that were closest to each other. Different from gating
based on a fixed breathing phase, the gap distance is useful for
gating based on greatest separation between the tumour and the
critical normal organs.

RESULTS
Segmentation performance
Figure 5 shows the segmentation results for a select imaging frame.
The hGReS results agreed well with our visual inspection despite
the low conspicuity of organ boundaries. IER was oversensitive to
the growth threshold and tended to over- or undergrow. The level
set was better at separating the stomach and pancreas but showed
slightly less accurate definition of the boundary.

Comparison of different image
segmentation methods
Figure 6 shows the comparison of IER, level set, hGReS and
manual contouring methods for every 45th frame of the dMRI
sequence. Clearly, the IER method was not robust to consistently
separate the pancreas and stomach. The level set method
resulted in more robust segmentation than did the first two
methods but failed to consistently separate the stomach and the
pancreas owing to under- and oversegmentation.

The segmentation quality was quantified for the three methods
using the Dice’s index and referencing to the manual contours.
The result is shown in Figure 7. All methods resulted in ac-
ceptable segmentation of the liver and stomach (.0.84), but
hGReS resulted in consistently more accurate segmentation for
all three organs (Table 1).

Region of interest motion trajectory tracking
Figure 8 shows the automatically tracked centroid motion tra-
jectories of three ROIs and the reference point in the lung. All
three methods were able to produce regular breathing motion
profiles consistent with reference breathing motion. The ab-
dominal organ motion was found to be well correlated to the
respiratory motion as shown in Table 2 with .0.90 correlation
coefficient between the upper abdominal organs and the lung
blood vessel when manual contouring was used. Automated
segmentation using the hGReS and level set methods produced
a similar level of correlation. IER resulted in inferior correlation
between the pancreas and the lung motion owing to increased
inconsistency and noisy centroid tracking results.

Boundary-based evaluation
The gap distances between ROIs are shown in Figure 9. Both
the hGReS and level set methods produced regularly varying
gap distances between the liver and pancreas correlated to the
breathing cycles, but only the hGReS method was able to
discern the varying gap distances between the pancreas and
stomach. IER was not sensitive to the gap distance changes.
The varying gap distances were less clearly captured by the
human observer but subsequently validated after viewing the
automated segmentation results. For example, in the fifth row
of Figure 6, the pancreas touched the stomach, resulting in
a zero-millimetre gap distance that was reflected in the auto-
mated segmentation, but the human operator kept a gap in
between the first pass.

Robustness test on the second healthy volunteer
The result of applying hGReS on the second subject is shown in
Figure 10. dMRI of the second subject showed both higher
contrast and noise. The images were first denoised using a three-
dimensional (3D) non-local means filter.31 Robust segmentation
hGReS results were observed for all imaging frames with small
deviation compared with the manual contouring results. The
average Dice’s index of the automated and manual contouring
results for the pancreas, stomach and liver are 0.82, 0.92 and
0.93, all slightly superior to the first subject.

The second imaging planes of this subject showed the scenario
where the pancreas was intersected by the plane twice owing
to folding. This resulted in two parts for the same organ in the
same imaging plane as shown in Figure 11. hGReS was able to
consistently segment the entire organ presented in this plane
unaffected by this separation.

Computational time
All calculation was performed on a personal computer with an
i3 core central processing unit and 2-GB memory. Table 3 shows
the total calculation time and the time used to segment each
frame. Edge detection, region growth and hGReS were signifi-
cantly faster than the level set method.

DISCUSSION
Geometrical accuracy in radiotherapy is paramount to the
quality of treatment. Extensive research has been performed
to characterize the internal organ motion. Passive and active
motion adaptive treatment protocols, such as internal target
volume, gating32,33 and four-dimensional (4D) treatment,34–36

have been developed to mitigate the adverse effects of organ
motion.

Table 2. Correlation coefficients of three organs and lung reference for four segmentation methods

Segmentation methods Liver–lung reference Stomach–lung reference Pancreas–lung reference

Integrated edge detection and region growth 0.8981 0.9250 0.8119

Level set 0.8389 0.9350 0.9218

Hybrid gradient, region growth and shape
constraint

0.9163 0.9261 0.8906

Manual contour 0.9379 0.9201 0.9372
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Among tumours exhibiting significant intrafractional motion, lung
tumours have been most thoroughly studied both because of their
significant internal motion driven by the breathing motion and
high CT contrast that allows for CT-based motion modelling and
tracking. An intrinsic challenge in both the gated and 4D radio-
therapy is to determine the precise tumour location during treat-
ment. For lung tumours, it has been reported that the gating
position can drift significantly to outside the gating window despite
using the same respiratory phase and verification of the tumour
position at the beginning of treatment using cone beam CT.15,37

The uncertainties and tightened geometrical margin in the gated
radiotherapy may have reduced local tumour control rates in some
studies.38 The same problem is expected to exist in pancreatic tu-
mour treatment without a reliable way to determine the target
location during treatment. Compared with lung cancer therapy, the
ability to continuously monitor the tumour location during treat-
ment for gated pancreas radiotherapy was technically limited by the
low soft-tissue X-ray contrast despite its great clinical relevance.

MRI-guided radiotherapy provides the ability to image soft
tissues during treatment, but these images need to be segmented.
Automated segmentation of the pancreas and surrounding
anatomies is challenging as evidenced by the scarcity in related
literature. In the limited number of reports based on either CT
with contrast or MRI, significantly poorer accuracy of pancreas
segmentation was observed than with other abdominal organs.39,40

We have used a method combining region growth, gradient and
shape constraints to more robustly segment these organs as evi-
denced by consistent and high similarity to manual contours.

In this study, we modified an IER method by imposing additional
shape constraints. As a result, the new segmentation method,
which we termed hGReS, outperformed both IER and a state-of-
the-art level set method. hGReS is particularly more sensitive to
the gap distance between organs than the other two methods.
The new method is computationally efficient, making it suitable
for online imaging segmentation.

Varying gap distances between ROIs from automated segmen-
tation were found and correlated to respiratory motion. The
variation may be exploited in maximizing the dosimetric gains
in gated radiotherapy. Instead of gating at a fixed respiratory
phase, the dose should be delivered when there is a maximal
separation between the pancreas and the surrounding critical
organs. Interestingly, the distance variation was less clearly reflected
by the manual contours. The discrepancy may attribute to that the
human operator had a tendency to maintain the contour copied
from previous imaging frames when the motion is perceived to be
small. To better understand the phenomenon, the situation where
the ground truth is known, such as phantom studies, is needed.

The study has several limitations. The main limitation of this
study is that the segmentation method was tested on a small
number of healthy volunteers. Although the limitation is com-
pensated to a certain degree by the large number of imaging
frames for the same subject, the pancreas and its surrounding
anatomies are highly complex and variable between subjects.
Post-operative pancreas can exhibit substantially different im-
aging characteristics that may require modification of the

Figure 9. Gap distances between region of interest boundaries

vs imaging frame for five segmentation methods using

(a) integrated edge detection and region growth, (b) level set,

(c) hybrid gradient, region growth and shape constraint and

(d) manual contour. Respiratory signal is overlaid on the distance.
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segmentation parameters. This study shows the feasibility of
segmenting intact pancreas, with potential applicability to pre-
operative patients.

Another limitation is the shape constraints that facilitate the
segmentation of abutting stomach and pancreas with little
contrast. The highly engineered approach may be inapplicable
to an empty/collapsed stomach. To solve the problem, mani-
fold clustering41 can be introduced as a more general approach
for anatomies substantially different from these healthy vol-
unteers including empty/collapsed stomachs. The third and

comparably minor limitation is the manual annotation step
required to initialize automated segmentation. On the other
hand, this step does not require high precision and should take
very little time to accomplish owing to the small number of
organs involved in pancreas treatment.

It will be interesting to test the feasibility of 3D MRI segmen-
tation. Currently, 3D MRI is not dynamic owing to limited ac-
quisition speed but multiple breath-hold images should enable
testing of some of the algorithms. The changes of organ shapes
between MRI slices are more drastic than the changes between

Figure 10. Hybrid gradient, region growth and shape constraint (hGReS) and manual segmentation comparison for Subject 2. The

third and fourth columns show contours superimposed on the denoised images.

Original(frame1) binary  segmentation hGReS Manual contour

Original(frame 25) binary  segmentation hGReS Manual contour

Original(frame 50) binary  segmentation hGReS Manual contour

Original(frame75) binary  segmentation hGReS Manual contour

Original(frame100) binary  segmentation hGReS Manual contour

binaryy segmentation hGReS Manual contour

binaryy segmentation hGReS Manual contour

binary  y segmentation hGReS Manual contour

binary  y segmentation hGReS Manual contour

Figure 11. (a) A frame of dynamic MRI shows folded pancreas intercepted by the imaging plane twice. (b) Segmentation results

superimposed on the denoised image.
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sequential 2D dMRI frames and may pose a challenge to the seed
transfer algorithm. However, the organ continuity in the 3D
space offers additional information to assist segmentation.

CONCLUSION
We showed the feasibility of employing a hGReS method to segment
pancreas and surrounding normal organs of two healthy volunteers

based on dMRI. This method resulted in superior segmentation
accuracy than do edge detection and region growth and was more
robust and computationally efficient than the level set segmentation.
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