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Abstract 

Two studies are reported in which participants drew 
inferences about variables in systems of causal relationships. 
Previous work has shown that such inferences are influenced 
by information about variables that, on a normative account 
of causal reasoning, should be irrelevant. The present studies 
tested two hypotheses about how relevance is assigned to 
these normatively irrelevant variables. Though results were 
mixed, they suggest that greater relevance is assigned to 
variables that are closer in known causal structure to the 
variable about which an inference is being made.  

Though the learning of causal relationships from 
correlational evidence has received a fair amount of 
attention from psychologists, the use of causal knowledge to 
make inferences and predictions has not. This may be due to 
the fact that until recently most studies have focused on how 
learners detect the existence or strength of a causal 
relationship between just two dichotomous variables: a 
single cause and a single effect, each either present or 
absent. Drawing inferences or predictions from knowledge 
of a single causal relationship is presumably straightforward 
in the sense that each variable is predictive of the other: An 
effect is more likely present when its cause is present, and 
vice versa. 

This paper deals with inferences about variables in 
complex causal systems, that is, systems of causal 
relationships among three or more variables. Such 
inferences are often less straightforward than inferences 
from single causal relationships, in that it is not always so 
clear whether or under what conditions variables are 
relevant to one another. Suppose, for example, that a doctor 
knows that virus X causes a certain enzyme deficiency, 
which in turn causes liver damage. That is, the doctor knows 
this three-variable causal chain: 

virus X  →   enzyme deficiency  →   liver damage . 
Suppose this doctor sees a patient for whom both the 
presence or absence of the virus and the presence or absence 
of the enzyme deficiency are known, and the doctor must 
make an inference about whether this patient is at risk for 
liver damage. In this case virus X and enzyme deficiency 
can be called observed variables, and liver damage an 
unobserved variable. To what extent would (or should) 
information about each of the two observed variables 
influence the doctor’s inference? 

Previous work suggests that such inferences are partly but 
not fully explained by a normative or rational theoretical 
framework, variously known as causal Bayesian network 
theory or graphical causal model theory (Pearl, 2000; 
Spirtes, Glymour, & Scheines, 2000), which has in recent 

years been applied to the psychology of learning complex 
causal systems (e.g., Gopnik et al., 2004; Steyvers, 
Tenenbaum, Wagenmakers, & Blum, 2003). The central 
principle in this framework is known as the causal Markov 
condition, and it can be interpreted as saying just when 
variables in causal systems are relevant to one another and 
when they are not. Formally, the causal Markov condition 
says that a variable is independent of all variables that are 
not its descendants in causal structure, conditional on its 
immediate cause(s). For the current example, this means 
that liver damage is independent of virus X (a 
nondescendant in causal structure) if the presence/absence 
of the enzyme deficiency (the immediate cause of liver 
damage) is known. Since it is known whether the patient has 
the enzyme deficiency, the presence or absence of virus X is 
irrelevant to an inference about liver damage. 

This kind of conditional independence—independence of 
two variables just when the state of a third is known—is 
often called “screening off.” We say, for example, that virus 
X is screened off from liver damage by the enzyme 
deficiency. Indirectly related variables in causal chains are 
screened off from one another by mediating variables, but 
this is not the only form that screening off can take. For 
instance, the causal Markov condition also implies that 
variables with a single common cause are screened off from 
one another by that cause. To modify the current example, if 
it were known that virus X causes, by separate mechanisms, 
both the enzyme deficiency and liver damage, then enzyme 
deficiency would be irrelevant to an inference about liver 
damage given information about the virus. This form of 
screening off—screening off by a common cause—was 
described by Reichenbach (1956). 

Rehder and Burnett (2005) asked participants to draw 
inferences like the ones just described and found that 
greatest relevance was indeed assigned to variables deemed 
relevant by the causal Markov condition. However, 
inferences were also influenced by variables that, according 
to the causal Markov condition, should have been screened 
off from the variable about which  inferences were being 
made. This was found for causal systems with several 
different structures, including the chain and common-cause 
structures. When making inferences about a variable in a 
chain, participants implicitly assigned relevance to 
indirectly related variables even when the state of a 
mediating variable was known. When making inferences 
about one of multiple effects of a single cause, participants 
assigned relevance to the other effects even when the state 
of the common cause was known (for a related finding see 
Walsh & Sloman, 2004). This phenomenon was termed 
nonindependence, since relevance was assigned in violation 
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of the independencies specified by the Markov condition. 
The aim of the current study is to clarify how relevance, 

or inferential support, is assigned to normatively screened-
off variables—that is, to clarify the form that 
nonindependence naturally takes. 

Uniformity versus Proximity 
Here it is proposed that nonindependence has a rational 
basis, and from this rational basis are derived two 
hypotheses about how inferential support is assigned to 
normatively screened-off variables. 

The causal Markov condition holds only if a causal model 
is complete, in the sense that there is no unknown common 
cause of any combination of known variables (an 
assumption that Spirtes et al., 2000, call “causal 
sufficiency”) and no unknown causal path between any two 
known variables. If a model fails to satisfy these conditions, 
then variables may be relevant to one another in ways that 
violate the Markov condition. Consider again the doctor 
who knows 

virus X  →   enzyme deficiency  →   liver damage . 
If, unbeknownst to the doctor, there is a common cause of 
virus X and liver damage, or a relationship between virus X 
and liver damage that is not mediated by the enzyme 
deficiency, then the virus and liver damage may be relevant 
to one another even when the presence/absence of the 
enzyme deficiency is known. This is important because 
natural causal knowledge tends to be surprisingly 
incomplete (Keil, 2003; Rozenblit & Keil, 2002). Indeed, as 
Hausman and Woodward (1999) have noted, it is often 
incomplete in just the ways that invalidate the Markov 
condition (see also Cartwright, 1999). Nonindependence, 
then, can be seen as a rational way of compensating for a 
mismatch between an assumption of graphical causal model 
theory and a characteristic of natural causal knowledge. On 
this account, reasoners assign inferential support more 
liberally than predicted by the causal Markov condition so 
as to allow for incompleteness in their knowledge of causal 
systems. 

One way to allow for incompleteness would be to reason 
as if from an augmented causal model in which a single 
hidden common cause underlies all of the variables in the 
known model. This method would assign inferential support 
to variables in the following way. Since all of the variables 
that are normatively screened off from one another in the 
known model are related in just the same way in the 
augmented model (via the hidden common cause), they 
should, all else equal, provide equal degrees of inferential 
support to one another. That is, the relevance or support that 
is assigned to normatively screened-off variables should be 
distributed uniformly over these variables; this can be called 
the uniform hypothesis. It predicts, for example, that a 
reasoner who knows the model in Figure 1 and makes an 
inference about D given information about A, B, and C will 
assign equal support to A and B (in addition, of course, to 
the support assigned to C, which is the one normatively 
relevant variable in this inference). 

The theory that people reason as if from an augmented 
model with a single common cause was proposed by Rehder 
and Burnett (2005) in a context where a causal model 
represents relationships among features of a category of 
objects. In this context, the theory is nicely consistent with 
psychological essentialism, or people’s tendency to suppose 
that a category’s features arise from a single deep cause 
(Medin & Ortony, 1989). 

A more precise method of allowing for incompleteness 
would be possible if there were some regularity in the 
relationship between causal knowledge and the true causal 
structure of the world—that is, if causal knowledge were 
more likely to be incomplete in some ways than in others. In 
this case, inferential support could be assigned to 
normatively screened-off variables according to their 
probabilities of being related to the variable in question in 
some unknown way. One strong possibility is that two 
variables are more likely to be related by an unknown 
common cause or an unknown path if they are closer to one 
another in a known causal model. If this is right, then a 
reasoner who knows the model in Figure 1 would do well to 
suppose (explicitly or implicitly) that B and D are more 
likely to be related in some unknown way than are A and D, 
and to assign greater inferential support to B than to A in an 
inference about D. This would constitute a proximity effect 
in the assignment of inferential support, and the hypothesis 
that inference naturally works in this way can be called the 
proximity hypothesis. 

The current experiments were designed to distinguish 
between the uniform hypothesis and the proximity 
hypothesis. 

Experiment 1 
In Experiment 1 participants learned causal systems, 
developed by Rehder and Hastie (2001), with the chain 
structure shown in Figure 1. Consider an inference about D 
given knowledge of the states of A, B, and C. The uniform 
hypothesis predicts that A and B provide equal support to D, 
so that inferences are sensitive to whether neither, one, or 
both of them are present. This prediction is shown in Figure 
2a, where the horizontal axis (disregarding the shaded 
region for now) represents the states of variables A and B 
(00 = A absent and B absent; 01 = A absent and B present; 
and so on). The proximity hypothesis predicts the pattern 
shown in Figure 2b: Both A and B provide support, but B 
provides greater support than A. 

Causal knowledge supports inferences from effect to 
cause (as in medical diagnosis), as well as from cause to 
effect. In addition to inferences about D, participants made 
inferences about A given knowledge of B, C, and D. 
Predictions are shown by relabeling the axes in Figure 2 as 
shown in the shaded region. Here B is the normatively 
relevant variable, and the proximity hypothesis predicts that 
C provides greater support than D. 

A B C DA B C D

Figure 1: Causal chain used in the current experiments. 
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Method 
Participants Participants were 18 introductory psychology 
students at Northwestern University who received course 
credit. 

Stimuli Stimuli were adopted from Rehder and Hastie 
(2001). They consisted of six causal systems, each with the 
chain structure shown in Figure 1. These systems were in 
various domains: biology, astronomy, chemistry, 
automobile engineering, and computer design. One of the 
two biological systems, for example, was said to exist in a 
kind of shrimp: A was the level of the neurotransmitter 
acetylcholine in a shrimp (high or normal), B was the 
duration of the shrimp’s flight response (long or normal), C 
was the rate of the shrimp’s sleep cycle (accelerated or 
normal), and D was the shrimp’s body weight (high or 
normal). The non-“normal” values (e.g., high, long, 
accelerated) were the ones related to one another by causal 
mechanisms (e.g., a high level of acetylcholine causes a 
long flight response). We call these values present, and the 
“normal” values absent. 

Procedure Participants were assigned at random and in 
equal numbers to the six causal systems. The experiment 
was administered by computer and involved two phases: a 
learning phase, in which the participant learned about the 
assigned causal system, and an inference phase, in which the 
participant made inferences about unobserved variables in a 
series of instances. 

In the learning phase, the participant read several screens 
of information about the four variables and the three causal 
relationships. This information included the mechanisms 
behind the causal relationships; for example, for the shrimp 
system, an accelerated sleep cycle was said to cause a high 
body weight because shrimp feed after waking, and a 
shrimp that sleeps and therefore wakes more often will eat 
more. In addition to verbal descriptions of the causal 
system, the participant was presented with a graphical 
depiction like Figure 1 (but with values like “accelerated 
sleep cycle” instead of variables). In order to complete the 

learning phase, the participant had to pass a 21-item 
multiple-choice test on the variables, relationships, and 
mechanisms. To correctly answer the questions about the 
three causal relationships, the participant had to rule out 
other possible relationships among the four variables. 
Consequently, by the conclusion of this phase, the 
participant had learned that the four variables were related 
in just the ways shown in Figure 1. 

The inference phase involved a series of 32 instances in 
which three variables were observed and one was 
unobserved (e.g., a description of shrimp with a high level 
of neurotransmitter, a long flight response, a normal sleep 
cycle, and unknown body weight). On each item, the 
participant was asked to make an inference about the 
unobserved variable by positioning a slider on a rating scale. 
The scale was said to represent probability or confidence; 
one end represented certainty that the feature in question 
was absent (e.g., normal body weight), and the other end 
represented certainty that it was present (e.g., high body 
weight). Ratings were recorded in the range [0, 100], where 
0 = absent, and 100 = present (though participants never 
saw these numbers). The series of instances comprised all 
32 possible items in which three variables were observed 
(each either present or absent) and one was unobserved. 
Items were presented in a different random order for each 
participant. 

There was a third phase, administered just before or just 
after the inference phase, in which participants judged the 
degree to which each of the 32 instances was a good 
example of the learned causal system, but this phase is 
irrelevant to present purposes and will not be discussed. 

Results and Discussion 
Inferences about A and D are shown in Figure 3. Inferences 
about B and C are less useful for distinguishing between the 
uniform and proximity hypotheses, since they involve 
normatively screened-off variables at only one distance 
from the variable in question. Consequently these won’t be 
reported or analyzed. 

Figure 2: Predictions for Experiment 1. 
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As expected, inferences were based heavily on the 
normatively relevant variable (C in inferences about D, B in 
inferences about A). The nonindependence effect was also 
clearly evident: Inferences were influenced by normatively 
screened-off variables, as reflected in the upward trends in 
Figure 3. These observations were confirmed by submitting 
each participant’s ratings to a regression analysis with three 
predictors representing the states of the observed variables 
(1 = present, or –1 = absent). In inferences about D, the 
mean weight assigned to C (29.9) was greater than the mean 
weights assigned to A (7.4), t(17) = 5.458, p < .001, and B 
(9.2), t(17) = 5.573, p < .001. In evidence of 
nonindependence, the mean weights assigned to A and B 
were greater than zero, t(17) = 4.901, p < .001, and t(17) = 
7.013, p < .001, respectively. Likewise, in inferences about 
A, the mean weight on B (26.7) was greater than the mean 
weights on C (11.6), t(17) = 5.078, p < .001, and D (8.8), 
t(17) = 4.796, p < .001, and the weights on C and D were 
greater than zero, t(17) = 8.160, p < .001, and t(17) = 4.689, 
p < .001. 

 On distinguishing between the uniform and proximity 
hypotheses, the results were mixed. First consider 
inferences about D. In these inferences the mean weight 
assigned to B (9.2) was not reliably greater than the mean 
weight assigned to A (7.4), t(17) = 1.204, p = .25, though 
these means did differ in the expected direction. For finer 
resolution, participants were grouped according to whether 
they assigned greater weight to B than to A (consistent with 
proximity), equal weight to the two, or greater weight to A 
than to B. The numbers of participants who gave these three 
orderings of weights were 10, 3, and 5, respectively. This is 
suggestive of a proximity effect, though a chi-square test on 
these frequencies falls short of reliability, χ 2(2) = 4.333, p = 
.11. In sum, these overall analyses reveal some evidence of 
a proximity effect, but this evidence is not statistically 
significant. 

On the other hand, the relative degrees of support 
assigned to A and B seem to depend somewhat on whether 
C, the normatively relevant variable, was present or absent. 
To see this, let each stimulus be named by its values on the 
four variables such that, for example, 101x indicates an item 

in which A is present, B is absent, C is present, and the state 
of D is to be inferred. When C was absent, mean inference 
ratings were equal (to 21) when just A was present (in 100x) 
and when just B was present (in 010x); that is, uniform 
support was assigned to A and B. But when C was present, 
there was some evidence of a proximity effect. Mean ratings 
given to 011x and 101x (84 and 77, respectively) differed in 
the expected direction, and this difference was marginally 
reliable, t(17) = 2.097, p = .05. For finer resolution, 
participants were grouped according to whether they gave a 
higher rating to 011x than to 101x (consistent with 
proximity), equal ratings to the two items, or a lower rating 
to 011x than to 101x. The numbers of participants who fell 
into these three groups were 11, 3, and 4, respectively, 
which suggests a reliable tendency for proximity-based 
inference, χ 2(2) = 6.333, p < .05. In contrast, the numbers of 
participants whose responses fit these patterns when C was 
absent were 5, 7, and 6. 

Inferences about A show a similar pattern. Overall, the 
average weight on C (11.6) was not reliably greater than the 
average weight on D (8.8), t(17) = 1.603, p = .13, though 
again the direction of the difference was consistent with a 
proximity effect. The numbers of participants who assigned 
greater weight to C, equal weights to C and D, and greater 
weight to D were 10, 3, and 5, respectively, which is again 
suggestive of a tendency toward proximity-based inference, χ 2(2) = 4.333, p = .11. When B was present, the mean 
ratings given to x101 and x110 were 76 and 81, t(17) = 
1.47, p = .16, and the numbers of participants whose ratings 
of these items were in the order predicted by proximity, 
equal, and in the opposite order were 8, 4, and 6, 
respectively, χ 2(2) = 1.333, p = .51. When B was absent, the 
mean ratings given to x001 and x010 were 23 and 29, 
respectively, t(17) = 0.77, p = .45, and the numbers of 
participants who ratings of these items were in the order 
predicted by proximity, equal, and in the opposite order 
were 10, 3, and 5, χ 2(2) = 4.333, p = .11. 

In sum, all differences between means were in the 
direction predicted by proximity, and proximity-consistent 
orderings of ratings and weights were most frequent in all 
cases; however, most differences fell short of reliability. 

Figure 3: Results, Experiment 1. 
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It should be noted in retrospect that the power to detect a 
proximity effect was low. Given 18 participants and the 
observed variance, the power to detect a difference in 
weights of 2.0 was around .2. A study with greater sample 
size and a longer causal chain (so that normatively screened-
off variables are at more than two distances from the 
variable in question) is planned. Meanwhile, Experiment 2 
approaches the problem in a different way. 

Experiment 2 
Experiment 1 provided some suggestive evidence in support 
of the proximity hypothesis. To distinguish more powerfully 
between the uniform and proximity hypotheses, participants 
in Experiment 2 were asked to make forced choices rather 
than ratings on a continuous scale. In each forced-choice 
problem, one variable was unobserved, and two normatively 
screened-off variables were pitted against each other. These 
two variables were at different distances from the 
unobserved variable in question, and so the proximity 
hypothesis made a clear prediction on each problem. The 
uniform hypothesis, in contrast, predicted no preference for 
either choice. 

The same causal systems as in Experiment 1 were used. 
Half of the problems involved inferences about A (the initial 
variable in the chain), and half were about D (the final 
variable). In half of the items the immediate neighbor of the 
variable in question (B in problems concerning A, or C in 
problems concerning D) was observed present, and in half it 
was observed absent. This was to test the possibility, raised 
in Experiment 1, that proximity-based inference is more 
likely when the screening-off variable is present than when 
it is absent. 

Method 
Participants Participants were 22 members of the 
Northwestern University community.  

Stimuli The experiment was run as a paper-and-pencil task. 
Each causal system was described on a cover page, in much 
the same way as in the learning phase of Experiment 1 (with 
both verbal description and graphical depiction). Attached 
to this cover page were two inference problems. Each 
problem involved descriptions of two configurations of 
values on three observed variables. The state of the fourth 
variable was said to be unknown, and the participant was 
asked to indicate in which of the two configurations the 
unobserved variable was more likely to be present. For 
example, a participant might be given the two 
configurations 101x and 011x and the question “Which of 
these shrimp do you think is more likely to have high body 
weight [variable D]?” The instructions were to check one of 
the two options and to provide a justification. 

Procedure Participants were assigned at random and in 
roughly equal numbers to the six causal systems. Each 
participant made forced choices on two different inference 
problems. One concerned the final variable in the chain (D), 
and in this problem C was either observed present (011x 
versus 101x) or observed absent (010x versus 100x). The 
other concerned the initial variable in the chain (A), where B 

was either observed present (x110 versus x101) or observed 
absent (x010 versus x001). Whether C (in problems 
concerning D) or B (in problems concerning A) was 
observed present or observed absent was counterbalanced 
across participants and inference problems, and the order of 
the two problems was counterbalanced across participants. 
Whether the choice predicted by the proximity model 
appeared on the left or on the right varied randomly. 

Results and Discussion 
Choice data are presented in Table 1. (One participant is not 
represented in these counts because she declined to choose, 
saying that both choices on each problem were equally 
likely to have the unobserved variable present—a response 
consistent with the causal Markov condition.) Overall there 
was a strong tendency to choose in accordance with the 
proximity hypothesis. In inferences about D, 17 of 21 
choices were consistent with proximity, χ 2(1) = 8.05, p < 
.01. In inferences about A, 16 of 21 choices were consistent 
with proximity, χ 2(1) = 5.76, p < .05. There was no evidence 
that this tendency depended either on whether the 
normatively relevant variable was present or absent or on 
whether inferential support was derived from upstream or 
downstream in the causal chain (i.e., whether inference was 
about A or D). Dividing the data on either of these 
dimensions yields nearly equal numbers of proximity-
consistent choices. 

Justifications fell into three main categories: 
(1) Proximity. For example, in an inference about A, a 

participant who based his choice on C rather than D wrote 
that “[D] is a more distant emergent property of [A] than is 
[C].” On an analogous item another participant wrote, “[ A] 
more closely linked to [C].” 

(2) Theories about hidden causal structure. Several 
justifications involved explicit reasoning about hidden 
common causes and hidden paths. For example, one 
participant theorized that a shrimp’s quantity of the 
neurotransmitter acetylcholine (A) and body weight (D) had 
a common cause, the amount of choline-rich algae eaten by 
the shrimp. (The choline-rich algae was mentioned in the 
cover story.) Another participant, who had learned about a 
causal system involving characteristics of a certain kind of 
molecule, inferred a hidden path between a molecule’s 
structure (B) and its reactivity (D): “The pyramid 
structure…seems to contain more overall energy, so it is 
possibly more prone to react.” 

(3) Consistency with known causal relationships. For 
example: “Since we’re seeing some obvious causal 
violations, I’ll use the same reasoning as before: The system 
with the most causal violations is more likely to show 
another violation.” This justification implies, for example, 

Table 1: Numbers of choices consistent with proximity. 

Variable in question 
Neighbor 
present 

Neighbor 
absent 

D 8/10 9/11 
A 8/10 8/11 

Note. Neighbor is C in inferences about D, B in inferences 
about A. 
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that 011x is more likely to have D present than is 101x, 
because 011x shows just one violation of known causal 
structure, whereas 101x shows two. 

Overall, 35 of the 37 interpretable justifications were in 
these three categories; 17 involved proximity, 11 involved 
theories, and 7 involved consistency with known causal 
relationships. Of the theories about hidden causal structure, 
8 involved specific hidden paths, 2 involved specific hidden 
common causes, and 1 was a general appeal to the 
possibility of hidden relationships. Notably, these theories 
supported proximity-inconsistent choices (6 times) as often 
as proximity-consistent choices (5 times). More importantly 
for present purposes, the most frequent kind of justification 
was an explicit appeal to structural proximity. 

Conclusion 
Taken together, results of these experiments constitute 
evidence of a proximity effect in inference from complex 
causal models. In previous work, inferences were shown to 
assign relevance to variables that, on a normative account of 
causal reasoning, should have been screened off from the 
variables about which inferences were made—a 
phenomenon called nonindependence (Rehder & Burnett, 
2005). The present results clarify the form that 
nonindependence naturally takes. They suggest that 
relevance is assigned to normatively screened-off variables 
as a function of proximity to the variable in question. In 
Experiment 1, though most differences fell short of 
statistical significance, the directions of differences between 
means favored the proximity hypothesis in all cases, as did 
the numbers of participants whose inferences and implied 
weightings fell in the orders predicted by proximity. Results 
of Experiment 2 were less ambiguous. The great majority of 
forced choices were as predicted by the proximity 
hypothesis, and the most frequent type of justification was 
an explicit appeal to proximity. 

The proximity effect can be seen as a rational way of 
compensating for incompleteness in causal knowledge on an 
assumption about causal knowledge and causal truth, 
namely, that proximity between variables in known causal 
structure reflects the likelihood that these variables are 
related via unknown common causes or unknown paths in 
true causal structure. 

The theory that people reason as if from an augmented 
causal model with a single common cause of all known 
variables was proposed by Rehder and Burnett (2005) in a 
context where causal models represent relationships among 
features of objects. The proximity effect can be seen as 
complementing or elaborating on this theory. A single 
common cause may often be the most salient kind of hidden 
causal structure to allow for. This may be especially true in 
reasoning about features of categories of objects, which are 
often thought of as having single deep hidden causes 
(psychological essentialism; Medin & Ortony, 1989). One 
interpretation of the proximity effect is that, beyond 
allowing for a single hidden common cause, inference also 
allows for shallower hidden common causes (that is, ones 
that underlie just subsets of the known variables) and hidden 
paths between known variables. Though the current work 
has been framed in general terms, the stimuli involved 

features of objects, and it is an open question whether the 
proximity effect is stronger for other sorts of causal systems. 

It might be argued that the tendency to choose in 
accordance with proximity in Experiment 2 was an artifact 
of the forced-choice procedure. Participants may have 
chosen proximity only because it was more appealing than 
its opposite. Justifications provide evidence against this 
interpretation, in that they tended to imply serious reasoning 
about causal principles (e.g., “D is a more distant emergent 
property of A”). Still, further empirical work will be 
informative. One possibility is that inferences made as in 
Experiment 1 will reveal the proximity effect more clearly 
when they involve longer causal chains and otherwise more 
elaborate causal structures.  
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