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Abstract

This report describes the SpecC methodology for system-level embedded system design. The methodology
consists of a set of well-defined tasks and design models which allow the easy insertion and reuse of intellectual
property. Starting from the abstract executable specification written in SpecC different design alternatives
concerning the system architecture (components and communication) can be explored and the specification
is gradually refined and mapped to a final HW/SW implementation such that the constraints are satisfied
optimally. The final hand-off for manufacturing includes software code compiled for the processors and the
RTL descriptions for hardware synthesis.
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The SpecC Methodology

D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao

Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

This report describes the SpecC methodology for system-level embedded system design. The methodology consists
of a set of well-defined tasks and design models which allow the easy insertion and reuse of intellectual property.
Starting from the abstract executable specification written in SpecC different design alternatives concerning the
system architecture (components and communication) can be explored and the specification is gradually refined
and mapped to a final HW/SW implementation such that the constraints are satisfied optimally. The final hand-
off for manufacturing includes software code compiled for the processors and the RTL descriptions for hardware
synthesis.

1 Introduction

We define a methodology as a set of models and transformations that can refine an initial, functional system
specification into a detailed implementation description ready for manufacturing. The SpecC design methodology
we discussed in this report is based on four well-defined models, namely, a specification model, an architecture
model, a communication model, and finally, an implementation model.

In the following sections, we will give a detailed description of each model and of the refinement tasks leading
from a functional specification model all the way to a cycle-accurate implementation model in SpecC.

2 Overview

The SpecC system-level design methodology starts with the capture of the intended functionality in the form of an
executable specification as shown in Figure 1. This initial specification model describes the functionality
as well as the performance, power, cost and other constraints of the intended design. It does not make any
premature allusions to implementation details. During specification capture the designer may reuse existing code
segments, functions or procedures by instantiating them out of an algorithm library.

The synthesis flow of the SpecC methodology consists of two major tasks: architecture exploration and com
munication synthesis tasks. Through a series of well-defined steps the initial specification is gradually mapped
onto a selected target architecture.

Architecture exploration, which refines the specification into an architecture model, includes the design
steps of allocation, partitioning of behaviors, channels, and variables, and scheduling. Allocation determines the
number and types of the system components, such as general-purpose or custom processors, memories, and busses,
which will be used to implement the system behavior. Allocation includes the reuse of intellectual property (IP),
when IP components are selected from the component library.

Next, behavior partitioning distributes the behaviors (or processes) that comprise the system functionality
amongst the allocated processing elements, while variable partitioning assigns variables to memories, and
channel partitioning assigns communication channels to busses. Scheduling determines the order of execution



Capture

Specrficatlon

Arcrutecture exploration

Allocation

Partitioning

Scneduling

ArcNtecture
model

Communication synttwsis

I Protocol Insertion
Interface syntriasis

Protocol iniining

Communication
mods

Implementation

Soltware

compilation

Hardware

synthesis

Implementation

Manutactunng

Library

[pfoto^
lUbraty

Validation (low

Compilation

Validation

Analysis
Estimation

Compilation

Validation

Analysis
Estimation

Compilation

Validation
Analysis
Estimation

Compilation

Validation

Analysis
Estimation

Simulation
model

Simulation

model

Simulation
model

Simulation
model

Figure 1: The SpecC methodology.

of the behaviorsassigned to either the standard or customprocessors after partitioning. In other words, scheduling
is used for software and hardware components.

Architecture exploration is an iterative process culminating with an architecture model which represents
a refinement of the specification model. Estimators evaluate each architecture candidate's satisfaction of the
design constraints; until all constraints are satisfied, component and connectivity reallocation is performed and
a new architecture with different components, connectivity, partitions, schedules or protocols is generated and
evaluated.

Communication synthesis refines the abstract communications between behaviors in the architecture model
into an implementation. The task of communication synthesis includes the insertion of communication protocols,
synthesis of interfaces and transducers, and iniining of protocols into synthesizable components. In the resulting
communication model, communication is described in terms of actual wires and timing relationships are
described by bus protocols.

The result of the synthesis flow is handed off to the back-end tools, as shown in the lower part of Figure 1. The
software part of the hand-off model consists of C code for compilation and the hardware part consists of behavioral
C (VHDL) code for high-level synthesis. The back-end tools include compilers and a high-level synthesis tool.
The compilers are used to compile the software C code for the chosen processor. The high-level synthesis tool
synthesizes the functionality assigned to custom hardware and the functionality of transducers which are necessary
for connecting diflterent processors, memories, and IPs.

After software compilation and hardware synthesis, the final implementation model is generated, represent
ing a clock-cycle accurate description of the whole system. This description, in turn, then serves as the basis for
manufacturing of the system.

In each of the tasks the designer can make design decisions manually by using an interactive graphical user
interface, for example, while transformations from one model into another can be accomplished automatically
by following the refinement rules or model guidelines which will be described later in this chapter. After each
refinement step in the synthesis flow, a corresponding SpecC model of the system is generated, which means that



design decisions made in each design task are reflected in the generated models. Thus, in the validation flow-
that is orthogonal to the synthesis flow in the SpecC methodology, one can perform simulation, analysis and
estimation of the SpecC models generated after each task.

After each design step, the design model is statically analyzed to estimate certain quality metrics such as
performance, cost, and power consumption. Analysis and estimation results are reported to the user and back-
annotated into the model for simulation and further synthesis.

The design can be statically analyzed or simulated after each step for validation of design correctness in terms
of functionality, performance, and other constraints. A simulation model is compiled after each step which can
be run on the host computer to validate correctness for simulation. For example, at the specification stage,
the simulation model is used to verify the functional correctness of the intended design. After architecture
exploration, the simulation model willverify the performance of behaviorson different processing elements (PEs).
After communication synthesis, the bus-functional model is used to verify the communication and synchronization
between processing elements.

At any stage of the refinement process, a standard software debugger can be used to locate and fix the errors
if verification fails. Such debuggers enable one to set break points anywhere in the source code and to perform
detailed state inspection at any time.

3 Specification

The synthesis flow begins with the capture of a specification of the system being designed. The specification is
captured either textually by use of a standard text editor or visually by use of a graphical design entry tool which
allows to capture the behavioral and structural hierarchy via a graphical user interface.

An executable specification in a formal description language describes the functionality of the system along
with performance, cost and other constraints, but without premature allusions to implementation details. The
specification should be as close to the computational model of the system as possible.

The source code can be executed with the help of a simulator and a set of test vectors, while errors can be
detected with debugger tools. This step verifies the algorithms and the functionality of the system. Obviously,
it is easier and more efficient to verify the correctness of the algorithms at a higher abstraction level than at a
lower level which includes the implementation details as well.

In our system, we use the SpecC language, described in detail in [ZDG97], to capture the high-level specifica
tion of the system under design. SpecC is a superset of C [Sec90] and provides special language constructs for
modeling concurrency, state transitions, structural and behavioral hierarchy, exception handling, timing, com
munication and synchronization. This is very different from popular hardware description languages, like VHDL
[IEEE98] and Verilog [TM91], which do not include explicit constructs for state transitions, communication, and
standard programming languages like C/C-H- [Str97] and Java [AG96], which cannot directly model timing,
concurrency, structural hierarchy, and state transitions. Thus, SpecC is appropriate for specifying the SFSMD or
PSM computational models defined in [GVNG94].

In addition, SpecC is synthesizable and aids the designer in developing "good" designs by providing the features
listed above as language constructs, rather than just supporting them in some contrived way. Another important
feature of SpecC is its emphasis on separation of communication and computation at higher levels of abstraction.
This dichotomy is essential for supporting plug-and-play of IPs. SpecC achieves this by using abstract function
calls in the port interfaces of behaviors. The function calls are themselves implemented by communication
channels. An executable specification in SpecC includes only the computation portion and uses a model similar
to remote procedure calls (RPC) for communication. The actual communication methods are resolved and
inlined during the refinement process for the final implementation model.

3.1 Specification Model

In the SpecC methodology, the specification model is the model with the highest level of abstraction. It is
an accurate model of the intended system in terms of pure functionality but does not reflect its structure or
timing. Typically, the specification model executes in zero simulation time. Neither the computation nor any
communication is modeled with timing.
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Figure 2: Specification model of design example.

behavior B5(in int vl , out int data,
ISyncOut sync , out int v2) {

int v3;
B6 b6(vl, data, sync, v3);

5 B7 b7(v3, v2);

void main (void) {
b6 . main ();
b7. main ();

10 }
};

behavior B2(in int vl , out int v2) {
int data;

15 CSync sync;
B4 b4(vl, data, sync);
B5 b5(vl, data, sync, v2);

void main (void) {
20 par {

b4 . main ();
b5 . main ();

}
}

25 };

behavior B0() {
int vl , v2 ;
B1 bl(vl);

30 B2 b2(vl, v2);
B3 b3(v2);

void main (void) {
bl. main ();

35 b2 . main ();
b3 . main ();

}
};

Figure 3: SpecC code for specification model of design example.



We illustrate our methodology with a simple example design. The specification model of the example is shown
in Figure 2. The corresponding SpecC code is shown in Figure 3. The top level behavior BO consists of three
sequential behaviors: Bl, B2 and B3. The system starts execution with behavior Bl. When B1 completes, the
system transitions to B2. Finally, the system transitions to B3 upon behavioral completion of B2. Behavior B2
again is a compound behavior, composed of two concurrent behaviors: B^ and B5. Behavior B4 is a leaf behavior
like Bl and B3. On the other hand, B5 is hierarchical and consists of two sequential behaviors: B6 and B7.

behavior B4(in int vl , out int data,
ISyncIn sync) {

void main (void) {

5 sync . recv 0 ; // wait for synchronization

X = data; // use "data"

}
10 };

behavior B6(in int vl , in int data,
ISyncOut sync, out int v3) {

void main (void) {
15

data = f(y); // assign "data"

20 }
};

sync.send(); // send synchronization

Figure 4: Synchronization of shared variable accesses in the specification model.

The leaf behaviors Bl and B3 communicate with behavior B2 via variables vl and v2, respectively. Inside
B2, the concurrent behaviors B4 and B6 communicate through the shared variable data. B6 synchronizes its
execution and hence the shared variable access with B4 over the synchronization channel sync, as shown in
Figure 4 and symbolized by the dashed arrow in Figure 2. The channel with simple synchronization semantics,
shown inFigure 5,isinstantiated outoftheSpecC communication library. Finally, asshown in the code (Figure 3),
data is communicated from behavior B6 to behavior B7 through the variable v3, and B7 in turn produces the
output value of v2. Note that although all variables are of plain integer type in the example code, in general data
communicated can be of arbitrarily complex type.

In general, communication can be modeled in two ways, either as shared variables or by use of channels from
the SpecC communication library. Communication channels which are useful for a specification model are those
with basic synchronization, such as one-way or two-way handshaking, and channels for data communication such
as blocking and non-blocking FIFOs. Communication in the specification over shared global variables or via
channels implies nothing about the way it will be implemented later. For the implementation, the communication
scheme could be transformed into a message passing or a shared memory mechanism.

The specification model can be composed using any of the constructs supported through the SpecC language.
The initial specification should model the system at a very abstract level without prematurely introducing un
necessary implementation details. When developing the initial specification, a designer has to follow certain
modeling guidelines in order to achieve optimal results. Basically, the specification should capture the required
system functionality in a natural way and in a clear and concise manner, expressing essential features of the
specification explicitly.

Table 1 gives the guidelines for developing the initial system specification. The language provides all the
necessary support to efhciently describe the desired system features following these guidelines. Hence, each of the
modeling concepts like parallelism or hierarchy is reflected in the SpecC description in an explicit and clear way.



interface ISyncIn {
void recv ();

}:
interface ISyncOut {

5 void send ();
};

channel CSync()
implements ISyncIn , ISyncOut

10 {
bool valid = false ;
event e;

void send () {
15 valid = true;

notify (e);
}
void recv () {

if (! valid ) wait ( e );
20 valid = false ;

}
};

Figure 5: SpecC code for the synchronization channel.

Table 1: Specification model guidelines.
Separate communication and computation

Algorithmic functionality has to be detached from communication functionality. In addition, inputs and
outputs of a computation have to be explicitly specified to show data dependencies.

Expose parallelism
Allow independent behaviors to runconcurrently instead ofartificially serializing behaviors inexpectancy
of a serial implementation. In essence, all parallelism should be made available to the exploration tools
in order to increase room for optimizations.

Use hierarchy to group related functionality
Introduce one hierarchical level for each functional group and eliminate localized effects at higher levels.
Forexample, localcommunication and local data dependencies are grouped and hidden by the hierarchical
structure.

Choose proper granularity
The size of leaf behaviors has to be chosen such that optimization possibilities and design complexity
are balanced when searching the design space. Basically, the leaf behaviors, which build the smallest
indivisible units for exploration, should reflect the division into basic algorithmic blocks.

Identify system states
Use state transitions to explicitly model the steps of the computation in terms of basic algorithms or
abstracted, hierarchical blocks.



3.2 Architecture exploration

The first major refinement step in the synthesis flow is the task of architecture exploration which includes allo
cation, partitioning and scheduling.

Allocation is usually done manually by the designer and basically involves selection of components from
a library. In general, three types of components have to be selected from the component library: processing
elements, called PEs (where a PE can be a standard processor or custom hardware), memories, and busses. Of
course, the component library can include IP components and parts which have already been designed and which
can be reused.

The set of selected and interconnected components is called the system target architecture. The task of
partitioning, then, is to map the system specification onto this architecture. In particular, behaviors are mapped
to PEs, variables are mapped to memories, and channels are mapped to busses. Scheduling of the behaviors
mapped to each PE is then used to serialize execution. In the SpecC methodology, the resulting architecture
model, like the initial specification, is modeled in SpecC.

Note that in general, exploration is an iterative process. The different tasks can be executed repeatedly and
in each iteration the task can be done generally in any order or even simultaneously.

In order to perform architecture exploration, it is crucial to obtain accurate information about the design in a
short amount of time. Therefore, the task of estimation is central to the whole exploration process. Estimation
tools determine design metrics such as performance (execution time) and memory requirements (code and data
size) for each part of the specification with respect to the allocated components. Estimation is performed as a
combination of static analysis of the specification and dynamic profiling of the design description during functional
simulation. Obviously estimation has to support software, hardware and bus components.

The estimation results are back-annotated into the corresponding behaviors and channels of the architecture
model. There, they are used during simulation and synthesis in order to obtain feedback on whether the design
constraints are met and to drive the decision making process during exploration in order to optimize the design.

3.2.1 Allocation

The task of architecture allocation is the selection of the type and number of components from a given library
of system components, such as processors, memories, and busses. Allocation also determines the interconnection
among the selected components. All of this has to be done in such a way that the functionality of the system can
be implemented, all design constraints are satisfied, and the objective cost function is minimized.

During architecture allocation in the SpecC methodology, three types of components are selected from the
component library. First, processing elements (PEs), including standard processors and custom processors, are
needed as active elements performing the systems functions. Second, memories are needed to store the processing
data. Finally, busses are allocated for the communication among the PEs and memories. Note that for each
component type either a synthesizable, custom component or a predesigned IP can be selected. For the system
busses, the designer selects the appropriate communication protocol from a library of bus/protocol schemes. In
addition, the designer has the option of including custom protocols or customizing available protocols to suit the
current application.

The network of selected components is called the target architecture of the system. The architecture consists
of a set of system ports, a set of system busses, a set of system components, and a connectivity matrix which
determines the interconnections among the ports, busses, and components.

3.2.2 Behavior partitioning

Behaviors are partitioned among the allocated processing elements; this decides which behavior is going to be
executed on which PE. For example, behaviors to be implemented in software are separated from behaviors to
be implemented in hardware. Based on a partitioning decision the design model is refined to reflect the selected
partition.

For our design example we assume that two processing elements, PEO and PEl (a standard processor and
synthesizable custom hardware), have been allocated. The specification model from Figure 2 after partitioning is
shown in Figure 6. Here, the behaviors BO, B2, B8, B5, B6 and B7 are assigned to PEO (executing in software).
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and the behaviors B1 and B4 are assigned to PEl (implemented in hardware). In order to maintain the execution
semantics of the specification, two additional behaviors, BBctrl and B4-ctrl, are inserted which synchronize the
execution with B1 and B4, respectively. The variables vl, data and the channel sync are used for communication
between behaviors in different components and hence became global system variables. Also, for the additional
synchronization of behaviors between components, two global synchronization channels BBsyn and B4-syn are
added which handle the respective start and done signaling, as shown in Figure 6.

In summary, the steps involved in creating the refined design model after behavior partitioning are shown in
Table 2.

3.2.3 Scheduling

The assignment of possibly concurrent behaviors to the inherently sequential PEs requires scheduling. The task
of scheduling determines the order of execution for the behaviors that execute on a processor. The scheduler
ensures that the schedule does not violate any dependencies imposed by the specification and tries to optimize
objectives specified by the designer. After a schedule is determined, the design model is refined so that it reflects
the sequentialization of the behaviors assigned to the same PE.

In general, scheduling can be either time-constrained or resource-constrained. For time-constrained schedul
ing, the designer supplies a set of timing constraints. Each timing constraint specifies the minimum and maximum
time between two behaviors. The scheduler therefore has to compute a schedule in which no behavior violates
any of the timing constraints, and which can minimize the number of resources used. On the other hand, for
resource-constrained scheduling, the designer specifies constraints on the available resources. The scheduler



Table 2: Refinement rules for behavior partitioning.
Introduce additional level of hierarchy

At the top-level of the behavior hierarchy, insert behaviors which represent the components of the system
architecture.

Bind behaviors to components
Annotate the component behaviors with the name of the component type out of the component library.
Since the inserted behaviors simply group behaviors for each PE, this establishes the correlation of PE
behaviors with allocated components in the system architecture.

Group behaviors
Group the behaviors of the specification under the component behavior to which they have been mapped,
preserving the structural and behavioral hierarchy of the specification in the parts mapped to each
component.

Estimate behavior metrics

Annotate the behaviors with the estimated values of chosen metrics for the components executing the
behaviors. For example, in leaf behaviors appropriate wait() statements are added to establish correct
execution times during simulation.

Add synchronization
For original behavior transitions that now cross component boundaries, introduce additional control
behaviors in each component and corresponding global synchronization channels in order to preserve
execution semantics.

Move communication

Move variables and channels in the original specification that are used for communication between behav
iors mapped to different components to the top level and declare them as global system variables/channels.
Add corresponding ports and connections in the structural hierarchy from the top down to the behaviors
accessing the variables and channels.

then creates a schedule while optimizing execution time, such that all the subtasks are completed in the shortest
time possible, given the restrictions on the resource usage.

Scheduling may be done statically or dynamically. In static scheduling, each behavior is executed according
to a fixed schedule. The scheduler computes the best schedule at design time and the schedule does not change
at run time. On the other hand, in dynamic scheduling, the execution sequence of the subtasks is determined
at run-time. An embedded real-time operating system (RTOS) maintains a pool of behaviors ready to be
executed. A behavior becomes ready for execution when all its predecessor behaviors have been completed and
all inputs are available. With a non-preemptive scheduler, a behavior is selected from the ready list as soon as
the current behavior finishes, whereas for a scheduler with preemption, a running behavior may be interrupted
in its computation when another behavior with higher priority becomes ready to execute.

After a schedule is created, the scheduler moves the leaf behaviors into the scheduled order and also adds
necessary synchronization signals and constructs to the behaviors. This refined model then refiects the tasks
performed for behavior partitioning including scheduling. Since, in the SpecC system, all design models are
captured with the same language, the scheduled model is also specified in SpecC.

We illustrate the scheduling process with the intermediate model after behavior partitioning, as shown before
in Figure 6. Figure 7 shows how scheduling is performed for this example. As shown in Figure 7(a), the behavioral
hierarchy inside PEO is flattened and its leaf behaviors are sequentialized. For PEl, the behavior changes from
(potentially) concurrent to sequential execution.

Due to scheduling, some explicit synchronization can become redundant. Figure 7(b) shows the optimized
version of the example. Here, the behaviors Bl.ctrl and B4-ctrl, which were introduced in the partitioning stage,
are removed, together with any obsolete synchronization signals.

The rules for creating the refined, scheduled model are summarized in Table 3.



Table 3: Refinement rules for scheduling.
Serialize behavior hierarchy

Inside the PE behaviors, remove all concurrent (parallel, pipe) behaviors and transform the behavior
hierarchy according to the selected schedule into a purely sequential execution. Possibly flatten parts of
the hierarchy or move behaviors across the hierarchy.

Optimize control
Optimize the scheduled hierarchy by removing unnecessary control and synchronization behaviors and
channels.

3.2.4 Variable partitioning
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Figure 8: Model after behavior partitioning.

Up to this point, communication between the allocated PEs is performed via global, shared variables and channels.
Figure 8(b) shows the design example at this point from a structural view which emphasizes communication
structure. This representation helps to explain the insertion of communication channels and memory behaviors
which is described in this and the next section.

Variables in the system specification need to be assigned to memories. This especially applies to the global,
shared variables used for communication between components. These variables have to be mapped either to local
memory in the components or to a dedicated shared memory component. In addition, due to memory limitations
inside the components, even component-local variables might have to be moved to a shared memory component
that has been allocated in the target architecture. This partitioning step of mapping variables to memories is
called variable partitioning.

Variable partitioning essentially decides whether a variable used for communication is stored in one of the
memories allocated outside the PEs, in one of the local memories of the PEs, or whether a local copy of the
variable is kept in each accessing PE.

Figure 9 shows our example for a case where the global, shared communication variables vl and data are
mapped to a dedicated, shared memory component MO. An additional behavior MO representing the memory
component is inserted into the design model. Accesses to the variables vl and data inside the two PEs are
replaced with accesses to the shared memory over communication channels Cvl and Cdata. Variable accesses
in leaf behaviors are replaced with read() and write() calls to the corresponding variable channel. For exam-

10
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pie, statements like x = data or data = f (y) are now transformed into statements like x = Cdata.readO or
Cdata.write(f(y)) instead. The variable channels encapsulate the communication with the memory behavior
which is listening on the other end to answer and handle those access requests.

Figure 10 shows the case where the global variables vl and data are mapped to local memories with a local
copy in each PE. Hence, behaviors in the PEs can access their local copies normally. However, in order to preserve
semantics updated variable values have to be exchanged at synchronization points among PEs. Variable values
are communicated over two global message-passing channels, Cvl and Cdata. At synchronization barriers, code
is added that transfers new values from producers to consumers using the message-passing primitives of these two
channels.

In both cases, global channels are not touched during the variable partitioning process. In the refined model
after variable partitioning that has been obtained by following rules in Table 4, communication between PEs is
handled exclusively over channels and no global variables exist any longer.

3.2.5 Channel Partitioning

In order to refine the abstract communication between components, the global channels need to be mapped onto
the allocated busses in the target architecture. This is achieved by grouping and encapsulating global channels
in the additional channels representing the system busses.

In other words, abstract channels are partitioned into groups which are assigned to allocated bus channels.
Later, during communication synthesis, these virtual bus channels will be refined into time-accurate models
according to the selected bus protocols. However, at this point, the virtual bus channels are simply annotated
with the type and name of the bus protocol in the IP library.

Figure 11 shows how channel partitioning is performed in our example. Due to the simplicity of this example,
channel partitioning here is easy. Since we have to connect only two PEs, we allocate one system bus between the
two PEs, represented by the channel BusO. All the channels are assigned to this bus, as shown in Figure 11(a),
and all channel accesses in the leaf behaviors are replaced with accesses to this bus channel.

The general refinement rules for channel partitioning, explained in Table 5, are similar to the rules for behavior
partitioning. Instead of introducing structure to the computational part of the system, channel partitioning
introduces structure to the communication part.

11
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Table 4: Refinement rules for variable partitioning.
Move vririables into components

According to the selected partition, move variables into the (memory or processing) components to which
they have been assigned.

Add communication channels

For each variable add a global communication channel. In case a variable has been mapped to a dedicated
server component, add a channel for communication with the memory server and connect all components
accessing the variable to that channel. In case a local copy of a variable is kept in each component, add
a message-passing channel for exchange of updated values.

Update variable accesses
For PEs with no local copy of a variable, replace all variable accesses with read() and write () calls
to the corresponding channel. Otherwise, replace with accesses to local copy and add code at each
synchronization point (wait) to send or receive updated variable values over the correspondingmessage-
passing channel, in case the local copy was modified before or will be needed after synchronization,
respectively. In both cases, update ports and connectivity accordingly.

Optimize communication and synchronization
Optimize variable communication bymerging it with anyexisting communication and/or synchronization.
For optimization, remove communication channels and corresponding code if variable is accessed only
inside the assigned component.
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Figure 11: Model of design example after channel partitioning.

Add level of hierarchy
Introduce an additional level ofhierarchy. At the top-level ofthe channel hierarchy, insert channels which
represent the busses in the system architecture.

Bind channels to busses

Annotate the busses with the name of the bus type and bus protocol out of the IF library. Since the
inserted busses simply group communication handled over each bus, virtual bus channels are thereby
correlated with allocated busses and their protocols in the system architecture.

Group communication
Group the global communication channels which have been assigned to the same bus under the top-level
channel representing the corresponding bus.

Estimate channel metrics

Annotate the channels in each bus with performance metrics estimated from the bus protocol assigned to
the channels. For example, appropriate wait() statements are added in the communication primitives
to establish execution times during simulation.

Update channel accesses
Replace channel accesses in the components with accesses to the corresponding bus interface. Update
the ports and connectivity of the structural hierarchy accordingly.

Table 5: Refinement rules for channel partitioning.
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behavior PEO(IBusO busO) {
int vl, v2, v3, data;
Bl_ctrl bl_ctrl(vl, busO );
B6 b6(vl, data, v3, busO);

5 B7 b7(v3, v2);
B4_ctrl b4_ctrl ( busO );
B3 b3(v2);

void main (void) {
10 b 1 -Ctrl . main ();

b6 . main ();
b7. main ();
b4_ctrl . main ();
b3 . main ();

15 }
};

behavior PEl(IBusO busO) {
int vl , data;

20 B1 bl(vl);
Bl-done bl_done(vl, busO);
B4 b4(vl, data, busO);
B4_done b4-done(busO);

25 void main (void) {
bl. main ();
bl-done . main ();
b4 . main ();
b4-done . main ();

30 }
};

behavior B0() {
BusO busO;

35 PEG peO(i3usO);
PEl pel(busO) ;

void main (void) {
par {

40 peO . main ();
pel . main ();

}
}

};

Figure 12: SpecC code for architecture model of design example.
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channel BusO()
implements IPEObusO , IPElbusO

{
CInt vl, data;

5 CSync B4_syn ;

void send_vl(int v) { vl.send(v);
void recv_vl(int *v) { vl.recv(v);
void send-data(int v) { data.send(v);

10 void recv_data(int *v) { data.recv (v);
void send_b4_syn 0 { B4_syn . send ();
void recv_b4_syn 0 { B4_syn . recv ();

};

15 behavior Bl_ctrl(int vl , IPEObusO busO) {
void main (void) { busO . recv_vl (vl); }

};
behavior Bl_done(int vl, IPElbusO busO) {

void main(void) { busO . send.vl (vl); }
20 };

behavior B4_ctrl (IPEObusO busO ) {
void main(void) { busO . recv_b4_syn (); }

};
26 behavior B4_done (IPElbusO busO ) {

void main (void) { busO. send_b4_syn (); }
};

Figure 12 (continued): SpecC code for architecture model of design example.

behavior B4(in int vl, inout int data,
IPElbusO busO ) {

void main (void) {

5 // wait for "data"
busO.recv-data(&data );

X = data ; // use "data"

10 }
};
behavior B6(in int vl , out int data,

out int v3, IPEObusO busO) {
void main (void) {

15

data = f(y); // assign "data"

20 }
};

busO . send-data ( data ); // send "data"

Figure 13: Synchronization inside leaf behaviors of the architecture model.
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interface ISendInt {
void send(int v);

};
interface IRecvInt {

5 void recv(int *v);
};

channel CInt ()
implements ISendInt , IRecvInt

10 {
int buf;
bool valid = false ;
event e;

15 void send (int v) {
buf = v;
valid = true;
notify (e);

}
20 void recv(int *v) {

if (! valid ) wait ( e );
* V = buf;
valid = false ;

}
25 };

Figure 14: SpecC code for message-passing channel.

Create high-level structure
The top-level behaviors and channels represent the components and busses of the system architecture and
their connectivity corresponds to the structure of the architecture. Behaviors grouped under the top-level
behaviors specify the functionality (and storage) to be implemented on the corresponding component.
Similarly, channelsgrouped under the top-level channels represents the communication to be implemented
over the corresponding system bus.

Sequentialize component functionality
The behavior hierarchy inside the component behaviors is purely sequential, i.e. there are no parallel or
pipelined behavior types. Parallelism is available only at the top-level, where all the component behaviors
run concurrently.

Specify global communication
The bus channels exclusively contain abstract channels for directed communication of data values, i.e.
there are no variables and random-access storage inside the bus channels.

Annotate estimated metrics

Behaviors and channels are annotated with their estimated design metrics for the components and busses
to which they are mapped, respectively. For simulation purposes, appropriate delay statements are added
to the behaviors and channels.

Table 6: Architecture model guidelines.
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Figure 15: Model of design example after protocol insertion.

3.3.1 Protocol Insertion

The designer selected the appropriate communication protocol for the system busses during the allocation task of
architecture exploration. Now, the virtual busses in the architecture model are refined into hierarchical channels
which implement the required communication functionality over the actual wires of the bus. Communication is
implemented in two layers. The low-level layer is a channel that provides the native communication primitives
of the actual bus protocol. On top of that, an application layer implements the abstract communication over the
low-level bus protocol, for example by sizing the complex data types used in the application into blocks that can
be transported over the bus.

Low-level bus protocolspecifications are taken out of a protocol library and are written in the SpecC language
in terms of channel primitives that supply common interface function calls to facilitate reuse. For example, a
given VME bus description will supply send() and receiveQ as would the PCI specification. In this way, we can
easily interchange protocols (as channels) and perform some simulation to obtain performance estimates. Later,
the remote procedure calls (RPCs) to the channels will be replaced by local I/O instructions for software, or by
additional behavior to be synthesized for hardware entities.

This process can be either manual or automatic. The cost of manual refinement is still lower than that of the
traditional way, since, on account of the abstraction provided by the channel construct, the user does not have to
bother with issues like detailed timing. Automatic refinement will generate code for the application layer which
assembles high-level messages from low-level messages, or vice versa.

Figure 15 shows this refinement (summarized in Table 7) for our example. According to the target protocol
allocated during architecture exploration, a bus protocol Protocol, such as the PCI bus, is inserted in order to
carry out the communication between the behaviors. The methods of the virtual bus BusO are refined to use the
methods of the bus protocol encapsulated in the channel Protocol. Figure 15(b) shows how the channel hierarchy
directly refiects the layers of the communication between the PEs.

3.3.2 Transducer Synthesis

The previous section on protocol insertion assumed that all components are synthesizable and therefore that later
the communication layers can be inlined into the components, where they would be synthesized together with the
other functionality to implement the required protocols at their interfaces.
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Table 7: Refinement rules for protocol insertion.
Insert protocol code

For each system bus, pull the corresponding protocol channel out of the protocol library.

Generate application layer
For each bus, generate the application layer that implements the abstract communication assigned to
that bus, using the primitives provided by the corresponding protocol channel.

Replace bus channels
Replace the virtual bus channels in the architecture model with the hierarchical combination of application
layer and bus protocol channels.
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Figure 16: Model with IPs after protocol and transducer insertion.

However, it is possible that the selected bus protocols conflict with the flxed, built-in interfaces of non-
synthesizable components. This situation is most likely to occur with hard IP components, processors, or mem
ories, when they are connected to an incompatible system bus.

For such IPs, a model which encapsulates both the proprietary protocols at the IP interface and the (custom
or fixed) application layer of the IP communication in a wrapper is inserted from the component library during
protocol insertion. The corresponding implementation of the communication layers inside the component is part
of the IP behavior inside the wrapper.

In the refined design model, introduction of IPs with fixed interfaces necessitates the creation and insertion of
a transducer which bridges the gap between the IP component and the channels to which the original behavior
is connected. Again, it is easy to create such a transducer manually due to the high-level nature of the wrapper
and the connected channel. On the IP side, the wrapper provides the layers to implement the communication
functionality over the IP protocol which will later become part of the transducer.

It is important to note that the replacement of synthesizable behaviors with IP components is not limited
to the communication synthesis stage, but can be executed at any time during architecture exploration and
communication synthesis, due to the encapsulation of IP protocols in wrappers. At any time, a behavior can be
replaced by a wrapped IP model plus a transducer.

In our example. Figure 16 shows the design model where component PEO is replaced with an IP processor that
will run the behaviors assigned to it and FBI is replaced with a non-synthesizable hard IP component. The fixed
IP protocols are encapsulated in wrappers and connected to the bus channel BusO via the inserted transducers
TO and Tl. The wrapper processor behavior provides the layers implementing the communication functionality
over the processor interface internally to the behaviors running on the processor.
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Figure 17: Model after protocol inlining.

As part of protocol insertion described in Section 3.3.1, transducer insertion and synthesis consists of the steps
listed in Table 8.

Table 8: Refinement rules for transducer synthesis.
Insert transducers

Insert transducer behaviors between component behaviors and bus channels that have incompatible pro
tocols on their ports.

Encapsulate with wrappers
Replace the component behaviors with their wrapped equivalents that encapsulate the IP interface pro
tocols.

Synthesize transducer code
Create code inside the transducer behaviors which performs a one-to-one mapping of communication
primitives on one side to corresponding primitives on the other side.

3.3.3 Protocol inlining

During the final task of protocol inlining, methods located in the channels and wrappers are moved into the
connected behaviors, where they will be synthesized together with the rest of the component's functional (com
putational) behavior. The communication functionality is thereby included in the behaviors. Protocol inlining
exposes the variables encapsulated inside the protocol channel, which then represent the wires of the system
busses. The port interfaces of the behaviors are therefore composed of bit-level signals, as compared to the
abstract function calls before inlining was done.

Figure 17 shows our example with synthesizable behaviors after inlining of the methods of both channels, BusO
and Protocol, into the behaviors. After this protocol inlining, the protocol channel variables dat, adr, ctrl, and en
are exposed and serve as interconnection wires between the accordingly created ports of the components.

Finally, Figure 18 shows the model with the IP components after protocol inlining is performed. Here, the
methods from all the channels and wrappers are inlined into the transducers which communicate with the IPs
via proprietary busses. Again, the bus variables dat, adr, ctrl, and en are exposed and serve as interconnection

20



BO rHin I adr I I Ctrl I I en I

PC I c>IQ I I tlalO I IP1 I ctrll I I datl I

PO

B6

B7

83

(a)

)(
dat

)(
adr

Ctrl

en

(b)

1P1

Figure 18; Model with IPs after protocol inlining.

Table 9: Refinement rules for inlining.
Inline communication methods

Move the communication functions provided by the wrappers and channels into the transducer and
component behaviors where they are accessed. Variables inside the low-level protocol channels become
global, shared variables. Change ports and connectivity from channel interfaces to variable accesses.

Optimize
Cancel away transducers in case the protocols on both sides of a transducer are equivalent after inlining.

wires between the transducers. The processor component contains the corresponding code, which implements
the communication layers over the processor interface using the processor's I/O instructions, and which will later
become part of the embedded operating system.

In summary, the task of protocol inlining consists of the steps listed in Table 9.

3.3.4 Communication Model

After the communication functions have been inlined into the behaviors, the task of communication synthesis is
complete. As a result, the architecture model of the design has been refined into the communication model.

The communication model is a design model at a medium level of abstraction. As the architecture model,
it is an accurate representation of the design in terms of functionality and overall structure. In addition, the
communication model features bit-exact, time accurate communication.

More specifically, the communication model is a bus functional model. The transactions on the system busses
are represented bit-exactly with accurate timing in great detail. On the other hand, the components in the system
are still represented at a high abstraction level, allowing for fcist simulation. However, the execution times of the
components are not exact, but are only estimated values.

The communication model of the design example after protocol inlining is shown in Figure 17. Figure 19
lists the corresponding SpecC code. In the example the component interfaces match with the bus protocol (e.g.
components PEl is a synthesizable custom hardware processor and the bus protocol is equivalent to the protocol
of the processor PEO). Therefore, no transducers are needed.

The inlined application layer and bus protocols are modeled as explicit bus drivers inside the components.
The drivers driverO and driver1 translate the functionality of former channel BusO in the architecture model into
protocol transactions. Therefore, all the behaviors inside the component remain unchanged.
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behavior PEO(inout bit [15:0] dat , out bit [15:0] adr.
out bit[l:0] Ctrl , out event en) {

int vl , v2 , v3 , data ;
CDriverO driverO(dat, adr, Ctrl, en);

5 Bl.ctrl bl_ctrl(vl, driverO);
B6 b6(vl, data, v3, driverO);
B7 b7(v3, v2);
B4_ctrl b4_ctrl ( driverO );
B3 b3(v2);

10

void main (void) {
bl_ctrl . main ();
b6 . main ();
b7. main ();

15 b4-Ctrl . main 0 ;
b3 . main ();

}
};

20 behavior PEl(inout bit [15:0] dat, in bit [15:0] adr,
in bit[1:0] Ctrl , in event en) {

int vl, data;
CDriverl driverl(dat, adr, Ctrl, en);
B1 bl(vl);

25 Bl_done bl_done(vl, driverl );
B4 b4(vl, data, driverl );
B4_done b4_done( driverl );

void main (void) {
30 bl. main ();

bl_done . main ();
b4 . main ();
b4_done . main ();

}
35 };

behavior B0() {
bit[15:0] dat, adr ;
bit [1:0] Ctrl ;

40 event en;
PEO peO ( dat , adr, Ctrl , en);
PEl pel (dat, adr, ctrl , en);

void main (void) {
45 par {

peO . main ();
pel . main ();

}
}

50 };•

Figure 19: SpecC code for communication model of design example.
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channel CDriverO (inout bit [15:0] dat , out bit [15:0] adr ,
out bit[1:0] Ctrl , inout event en)

implements IPEObusO

{
5 CBusMaster bus (dat, adr, Ctrl , en);

void recv_vl(int *v) {
bus . IntA 0 ; // wait for interrupt
*v = bus . readBus (ADDR-Vl); // bus read cycle

10 *v = *v I ( bus . readBus (ADDR_V1) << 16);
}

void send_data(int v) {
// bus write cycle

15 bus . writeBus (v &c OxFFFF, ADDRJDATA);
bus . writeBus (V >> 16, ADDRJDATA);

}

void recv_b4_syn () {
20 bus. IntB 0; // wait for interrupt

}
};

channel CDriverl (inout bit [15:0] dat, out bit [15:0] adr,
25 out bit [1:0] Ctrl , inout event en)

implements IPEObusl

{
CBusSlave bus (dat, adr, ctrl , en);

30 void send_vl(int v) {
io . raiseA (); // raise interrupt
// bus write cycle
bus.putBus(v & OxFFFF, ADDR_V1);
bus.putBus(v >> 16, ADDPLVl);

35 }

void recv-data(int* v) {
*v = bus . getBus (ADDRJDATA); // bus read cycle
*v = ♦v I ( bus. getBus (ADDRJDATA) << 16);

40 }

void send_b4_syn () {
io . raiseB (); // raise interrupt

}
45 };

Figure 19 (continued): Communication model, bus drivers.
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In comparison to the architecture model presented in Section 3.2.6, the additional characteristics of the com
munication model are listed in Table 10.

Table 10: Communication model guidelines.
Implement bus functionality

At the top level, the behaviors which represent the components of the system architecture communicate
via a set of shared variables which represent the wires of the system busses in the target architecture.

Annotate bus timing
The communication between components over their interfaces and the bus wires is modeled with accurate
timing whereas the (purely sequential) behavior inside the components is at the functional level with
annotated estimated delays for simulation.

3.4 Backend

Communication synthesis, as the last step in the synthesis flow, generates the hand-off model for our system.
This model is then further refined using traditional backend tools as shown in Figure 1.

It is the task of the backend to create an optimized implementation for each particular component in the
design model. More specifically, the custom hardware and transducer components need to be implemented by a
behavioral hardware synthesizer and the software components need to be compiled for the particular processor.
After inlining, the communication functionality has become part of the software (bus drivers in the operating
system) and hardware/transducer (communication FSMDs) components, and thus will be implemented together
with the other parts, possibly employing specific optimizations.

As a result of the backend process, the final implementation model of the system is created. The implementation
model will then be used for manufacturing of the system. It is a cycle-accurate RTL description of both the
computation and communication in the system.

3.4.1 Software Compilation

C code for each of the allocated processors in the target architecture is created from the communication model.
Retargetable compilers or special compilers for each of the different processors are then used to compile the C
code into instructions for the target processor.

In the implementation model, the processor behaviors are then replaced with a cycle-accurate description of the
target processor executing the generated assembly code. For example, an existing instruction set simulator
(ISS) of the processor can be hooked into the SpecC implementation model, provided that the simulator supports
a suitable C programming interface.

3.4.2 Hardware Synthesis

The hardware portion of the communication model consists of synthesizable, behavioral models in SpecC. For the
behavior hierarchy in the SpecC description, C (or VHDL) code can be created, which is then synthesized using
standard high-level synthesis (HLS) tools. Note that the translation of the SpecC model into synthesizable C
(or VHDL) is straightforward, since the component models are free of any special SpecC constructs at this point.

High-level synthesis creates a behavioral or structural RTL model of the hardware components in the form of
scheduled register-transfer code or a netlist of RTL components, respectively. This structural or behavioral RTL
description can then be modeled in SpecC, to be included in the implementation model for final cosimulation, for
example.

3.4.3 Implementation Model

As a result of hardware synthesis and software compilation for each component in the communication model, the
final implementation model of the design is generated.
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The implementation model is the model with the lowest level of abstraction in the SpecC methodology.
It is an accurate model of the design implementation in terms of functionality, structure, communication and
timing. Note that the implementation model reflects both bus-cycle accurate timing for the communication, as
well as clock-cycle accurate timing for the computation performed in the system.

The implementation model differs from the previous communication model only within the synthesizable com
ponents. A software component is described in terms of an instruction set architecture, while a hardware com
ponent is described with a FSMD model or a RTL netlist, a control unit and a data path, or at least a scheduled
(but not bound) description of the operations performed in each clock step. In summary, the implementation
model is ready for manufacturing.

Table 11 summarizes the main features of the implementation model, in comparison with the communication
model (Section 3.3.4).

Table 11: Implementation model guidelines.
Implement system busses

As in the communication model, component behaviors communicate over shared variables representing
the wires of the system busses. Communication is modeled with accurate timing.

Implement system components
The component behaviors are replaced with a cycle-accurate model of the component implementation.
Hence, computation is modeled with accurate timing, too.

4 Summary

With the background of a specify-explore-refine paradigm, we have presented an IP-centric methodology for the
codesign of embedded systems. The SpecC methodology consists of a set of well-defined tasks and design models
which allow the easy insertion and reuse of intellectual property.

More specifically, the design methodology starts with an executable specification of the system under design
and eventually creates an implementation model ready for manufacturing. The intermediate tasks of allocation,
partitioning, scheduling, and communication synthesis are performed by the designer interactively, either manually
or with the help of design automation tools. As explained in this chapter, each task is built upon well-defined
models and transformations. Therefore, the new, refined models produced at each step will be automatically
generated by the corresponding refinement tools. On the other hand, refinement is driven by the decisions made
manually by the designer or automatically by a set of algorithms. In all cases, the designer can focus on the
critical design decisions while tools automate tedious exploration and refinement tasks.

The SpecC methodology is based on four well-defined design models of different levels of abstraction: the
specification model, the architecture model, the communication model, and the implementation model. With each
successive model, more implementation details are introduced. The specification model is purely functional with
no timing at all. The architecture model represents the structure of the target architecture, and the functionality in
the components and on the busses is annotated with estimated delays. In the communication model, components
are still functional (with annotated delays), but the communication over system busses is time accurate. Finally,
the implementation model is cycle-accurate both in computation (components) and communication (interfaces
and busses).

Please note that because of the modularity of the SpecC model ("plug-and-play"), a design can also be easily
represented as a mixture of these models. This is especially useful if parts of a design are further refined as others,
or if accuracy is only required for specific portions in the design model. For example, a mixture of communication
and implementation models, makes possible a cycle-accurate simulation of certain system components together
with bus-functional models for the rest of the system.
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