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1 Introduction

Many applications of time series econometrics—such as hypothesis tests from generalized

method of moments estimation (Hansen (1982)) or general dynamic models (Gallant and

White (1988))—require accurate estimation of large-sample covariance matrices that is ro-

bust to autocorrelation and heteroskedasticity. A general theory towards heteroskedasticity

and autocorrelation consistent (HAC) covariance matrix estimation has been put forth in

the landmark papers of Newey and West (1987) and Andrews (1991); see also the related

work of Gallant (1987), Andrews and Monahan (1992), Hansen (1992), and Newey and

West (1994).

Nevertheless, the current state-of-the-art seems to be lacking in three respects:

(a) The accuracy of the HAC covariance estimators is suboptimal; their rate of convergence

is T 2/5 even in situations when higher-order accuracy is possible, e.g., a rate closer to T 1/2.

(b) The problem of optimal bandwidth choice for the HAC estimators has not been con-
∗Research partially supported by NSF grant SES-04-18136 funded jointly by the Economics and Statistics

Divisions of NSF. Many thanks are due to Dimitrios Gatzouras for his help with the proof of Lemma 8.1,

and to Arthur Berg for a careful proof-reading and bringing the Eaton-Tyler paper to the author’s attention.
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clusively addressed. For example, the ‘plug-in’ procedure of Andrews (1991) will not give

consistent estimation of the optimal bandwidth unless the parametric model used to esti-

mate the ‘plug-in’ values holds true. On the other hand, cross-validation methods may give

consistent bandwidth estimates but their consistency is typically achieved at a very slow

rate; see e.g. Robinson (1991) and the references therein.

(c) The existing literature focuses on obtaining a single optimal bandwidth, common for

estimating all elements of the target matrix; this is suboptimal as each element of the target

matrix generally comes with its own individual optimal bandwidth.

In this note we attempt to fix the above three issues. A new class of HAC covariance

matrix estimators is proposed based on the notion of a flat-top kernel as in Politis and Ro-

mano (1995) and Politis (2001). The new estimators are shown to be higher-order accurate

when higher-order accuracy is possible, and a discussion on kernel choice is given.

The higher-order accuracy of flat-top kernel estimators typically comes at the sacrifice of

the positive semi-definite property. Nevertheless, we show how a modified flat-top estimator

is positive semi-definite while maintaining its higher-order accuracy. In addition, it is shown

that there is an easy (and consistent) procedure for optimal bandwidth choice for flat-top

kernel HAC estimators; this procedure estimates the optimal bandwidth associated with

each individual element of the target matrix.

Since estimation of the large-sample covariance matrix of a sample mean or generalized

method of moments estimator is tantamount to estimation of a spectral density matrix

evaluated at the origin, the paper treats the more general problem of higher-order accurate,

positive semi-definite estimation of spectral density matrices. The problem of spectral

estimation under a potential lack of finite fourth moments is also addressed.

2 Background

Consider the general framework of Andrews (1991) or Hansen (1992) in which the problem

at hand is estimation of the large-sample covariance matrix Ω of the sample mean of a

second-order stationary (and weakly dependent) sequence of mean zero random vectors

Vt = Vt(θ), t = 1, . . . , T , where Vt takes values in IRd, i.e.,

Ω = lim
T→∞

1
T

T∑
k=1

T∑
j=1

EVkV
′
j . (1)
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Here θ is an unknown parameter assumed to have a
√

T–consistent estimator θ̂, yielding

the estimated sequence V̂t = Vt(θ̂). We then define the usual autocovariance estimators

ˆ̂Γ(j) =
1
T

T−j∑
t=1

V̂tV̂
′
t+j for j ≥ 0, and ˆ̂Γ(j) = ˆ̂Γ(−j)′ for j < 0.

The general HAC kernel estimator of Ω has the form

ˆ̂Ω =
T∑

j=−T

κ(j/sT )ˆ̂Γ(j),

where the kernel κ(·) and the bandwidth/truncation parameter s
T

∈ [1, T ] satisfy some

standard conditions. A typical condition on κ is:

κ : IR → [−1, 1], κ is symmetric, continuous at 0 and for all but a finite number of points,

and satisfying κ(0) = 1 and
∫
IR

κ2(x)dx < ∞, (2)

The kernel κ(·) is called a ‘spectral window generator’ by Andrews (1991) as it corresponds

to the function K(w) = 1
2π

∑∞
j=−∞ κ(j)e−ijw that is useful for smoothing the periodogram;

here i =
√−1. With the exception of the ‘truncated’ window defined as κtrunc(x) = 1

if |x| ≤ 1, and κtrunc(x) = 0 else, the kernels considered by Andrews (1991) and Newey

and West (1987) are positive semi-definite, i.e., their respective spectral window K(w) is a

nonnegative function. Nevertheless, this is not a useful restriction inasmuch as higher-order

accuracy of ˆ̂Ω is concerned; more details are found in the next Section.

We now consider the idealized estimator

Ω̂ =
T∑

j=−T

κ(j/s
T
)Γ̂(j), (3)

that is computed as if the sequence Vt, t = 1, . . . , T were directly observable; in the above,

Γ̂(j) =
1
T

T−j∑
t=1

VtV
′
t+j for j ≥ 0, and Γ̂(j) = Γ̂(−j)′ for j < 0. (4)

Interestingly, the estimators Ω̂ and ˆ̂Ω are asymptotically equivalent under general con-

ditions such as Assumptions A, B and C of Andrews (1991) or Condition (V2) of Hansen

(1992); see e.g. Theorem 1(b) of Andrews (1991). Intuitively, this is due to the slower rate

of convergence of both Ω̂ and ˆ̂Ω as compared to the
√

T–consistency of θ̂ and Vt(θ̂).
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In view of the results of our next Section, we now give a slight generalization of The-

orem 1(b) of Andrews (1991) to cover a possible choice of the bandwidth parameter s
T

that does not necessarily tend to infinity (or it does at a slow, logarithmic rate); see e.g.

Theorem 3.1 (ii) and (iii) in what follows.

Lemma 2.1 Assume Assumptions A, B and C of Andrews (1991) hold true, and that κ

satisfies eq. (2). Further assume that, as T → ∞, we have s
T
/T → 0 and that:

(i) s−1
T

∑T−1
j=−T+1 |κ(j/sT )| = O(1);

(ii) Bias(Ω̂) = O(
√

s
T
/T ); and

(iii) s
T
→ ∞ or EVt

∂
∂θVt−j = 0 for all j.

Then, ˆ̂Ω = Ω + OP (
√

s
T
/T ), Ω̂ = Ω + OP (

√
s

T
/T ), and Ω̂ − ˆ̂Ω = oP (

√
s

T
/T ).

Note that condition (i) of Lemma 2.1 is immediately satisfied if the kernel κ ‘cuts-off’, e.g.,

if κ(x) = 0 for |x| > some x0. Condition (ii) of Lemma 2.1 can be viewed as a restriction

(a lower bound) on the rate of growth of sT .

In view of Lemma 2.1, in what follows we will focus on theoretically analyzing (our

version of) Ω̂, safe in the knowledge that the asymptotic behavior of the corresponding ˆ̂Ω

will be identical.

3 Spectral density matrix estimation

Here, and throughout the rest of the paper, we consider observations V1, . . . , VT from a

second-order stationary d-variate time series {Vt, t ∈ ZZ} possessing mean zero and autoco-

variance matrix sequence Γ(j) defined as

Γ(j) = EVtV
′
t+j for j ≥ 0, and Γ(j) = Γ(−j)′ for j < 0. (5)

Under typical weak dependence conditions—see e.g. Hannan (1970), Brillinger (1981),

Brockwell and Davis (1991), or Hamilton (1994)—the spectral density matrix evaluated at

point w is defined as

F (w) =
1
2π

∞∑
k=−∞

Γ(k)e−ikw (6)

where i =
√−1. The dxd matrix F (w) is positive semi-definite and Hermitian for any

w ∈ [−π, π] but note that its off-diagonal elements are, in general, complex-valued; Fjk(w)
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will denote the (j, k) element of F (w). Nevertheless, F (0) has all its elements real-valued,

and it is easy to see that F (0) = Ω/(2π) where Ω was defined in eq. (1). Hence, accurate

estimation of F (0) is tantamount to accurate estimation of Ω. In what follows, we will

consider the more general problem of estimation of F (w) at an arbitrary (fixed) point

w ∈ [−π, π]; since w will be fixed, the short-hand notation F will be used to denote F (w),

and Fjk will denote the (j, k) element of F .

To describe our new spectral matrix estimator, we need the notion of a ‘flat-top’ kernel.

The general family of flat-top kernels was introduced in Politis (2001). Its typical member

is λg,c(x) where

λg,c(x) =

{
1 if |x| ≤ c

g(x) else;
(7)

here c > 0 is a parameter, and g : IR → [−1, 1] is a symmetric function, continuous at all

but a finite number of points, and satisfying g(c) = 1, and
∫
IR g2(x)dx < ∞. The kernel

λg,c(x) is ‘flat’, i.e., constant, over the region [−c, c], hence the name flat-top.

If g is such that g(x) = 0 for |x| ≥ some x0, then the kernel λg,c(x) has a hard cut-off.

The simplest representative of such a flat-top kernel has a trapezoidal shape defined as

λTR,c(x) =

⎧⎪⎨
⎪⎩

1 if |x| ≤ c
|x|−1
c−1 if c < |x| ≤ 1

0 else

(8)

with c ∈ (0, 1], i.e., the function g performs a linear interpolation between the values g(c) = 1

and g(1) = 0. The trapezoidal kernel’s favorable properties were documented in Politis and

Romano (1995). The trapezoid may be seen as a cross between the square truncated kernel

κtrunc(x), and the well-known triangular Bartlett kernel κB(x) = (1 − |x|)+; the notation

(y)+ indicates the positive part of y, i.e., (y)+ = max(y, 0).

Let S be a dxd matrix of bandwidth parameters with (j, k) element denoted by Sjk. As

usual, S is thought of as a function of T although this dependence will not be explicitly

denoted. The estimator of F that we will consider is F̂ with (j, k) element given by:

F̂jk =
1
2π

T∑
m=−T

λg,c(m/Sjk)Γ̂jk(m)e−imw (9)

where λg,c is some chosen member of the flat-top family, and Γ̂jk(m) is the (j, k) element

of the sample autocovariance matrix Γ̂(m) defined in eq. (4). Note that the dependence of

F̂jk on the chosen λg,c is not explicitly denoted.
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The favorable large-sample properties of F̂ are manifested in the following theorem.

Theorem 3.1 Assume conditions strong enough to ensure that∗

V ar(F̂jk) = O(Sjk/T ) for any fixed j, k; (10)

Then, for each combination of j and k, the following are true.

(i) If
∑∞

m=−∞ |m|r|Γjk(m)| < ∞ for some real number r ≥ 1, then letting Sjk proportional

to T 1/(2r+1) yields

F̂jk = Fjk + OP (T−r/(2r+1)).

(ii) If |Γjk(m)| ≤ Ce−am for some constants C, a > 0, then letting Sjk ∼ A log T , for some

appropriate constant A, yields

F̂jk = Fjk + OP (
√

log T√
T

);

as usual, the notation A ∼ B means A/B → 1.

(iii) If Γjk(m) = 0 for |m| > some q, then letting Sjk = max(�q/c	, 1), yields†

F̂jk = Fjk + OP (
1√
T

);

here �x	 is the ‘ceiling’ function, i.e., the smallest integer larger or equal to x.

The conditions of the three parts of Theorem 3.1 are usual conditions of weak depen-

dence. For example, if Γjj(m) = 0 for |m| > some q, then the jth coordinate of Vt, say

V
(j)
t , can be thought to follow a Moving Average (MA) model of order q. Similarly, the

condition |Γjj(m)| ≤ Ce−am is satisfied if V
(j)
t follows a stationary ARMA (p, q) model, i.e.,

AutoRegressive with Moving Average residuals; see e.g. Brockwell and Davis (1991). The

polynomial decay in condition (i) is a worst-case scenario; suffices to note that in order to

even define the spectral density of V
(j)
t the typical condition is

∑∞
m=−∞ |Γjj(m)| < ∞, i.e.,

r = 0 in condition (i).

Theorem 3.1 gives the rate of convergence of F̂jk to Fjk, at the same time suggesting the

optimal values of the bandwidth parameter Sjk; here optimality is meant with respect to
∗There exist different sets of conditions sufficient for eq. (10). Assumption A of Andrews (1991) is such

a condition based on summability of fourth cumulants; different conditions based on moment and mixing

assumptions are also available, see e.g. Hannan (1970), Brillinger (1981), or Brockwell and Davis (1991).
†Taking the maximum of �q/c� and 1 is done to cover the possibility that q = 0.
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optimizing the rate of convergence of F̂jk. As is apparent, the optimal Sjk crucially depends

on the rate of decay of Γjk(m) as m increases. If we had some reason to believe that the

rate of decay of Γjk(m) is the same for all j, k, then we could let Sjk equal some common

value s
T
, in which case our estimator would take the familiar simple form

F̂simple =
1
2π

T∑
m=−T

λg,c(m/s
T
)Γ̂(m)e−imw; (11)

letting w = 0, it is seen that the above is of the same exact form as the Newey-West (1987)

and Andrews (1991) estimator Ω̂ given in eq. (3). Nevertheless, there is typically no reason

to believe that the rate of decay of Γjk(m) is common for all j, k. Thus, F̂ is generally

preferable to F̂simple.

To elaborate, consider the following example. Let Vt = (V (1)
t , V

(2)
t , V

(3)
t )′ where V

(1)
t

follows an MA(q1) model, V
(2)
t follows an MA(q2) model independent of V

(1)
t , and V

(3)
t =

V
(2)
t−L for all t. Suppose that the trapezoidal kernel λTR,1/2(x) is used, i.e., c = 1/2. Then,

Theorem 3.1 (iii) suggests the following optimal bandwidth parameters: S11 = 2q1, S22 =

2q2, S33 = 2q2, S12 = S21 = 1, S13 = S31 = 1, and S23 = S32 = 2(q2 + L).

Parts (ii), (iii)—as well as part (i) with r > 2—of Theorem 3.1 show that the rate of

convergence of F̂ is superior to the Newey-West (1987) estimator based on Bartlett’s kernel,

as well as to all second order kernel estimators considered by Andrews (1991); the Newey-

West (1987) estimator only achieves a rate of convergence of T 1/3, while the second order

kernels (including the optimal quadratic spectral window) achieve a rate of convergence of

T 2/5.

4 Spectral estimation in the absence of finite fourth moments

As mentioned in the last section, eq. (10) is typically satisfied for kernel estimators such as

F̂ . Nevertheless, if the series {Vt} does not possess finite fourth moments, then V ar(F̂jk)

is not well-defined. For this reason, it is convenient to also define the correlation/cross-

correlation matrix ρ(m) with (j, k) element given by ρjk(m) = Γjk(m)/
√

Γjj(0)Γkk(0), and

estimated by ρ̂jk(m) = Γ̂jk(m)/
√

Γ̂jj(0)Γ̂kk(0). We can then define the normalized spectral

density matrix evaluated at point w as
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f(w) =
1
2π

∞∑
k=−∞

ρ(k)e−ikw; (12)

the short-hand notation f will again be used to denote f(w), and fjk will denote the (j, k)

element of f . The corresponding flat-top kernel estimator of f is f̂ with (j, k) element given

by:

f̂jk =
1
2π

T∑
m=−T

λg,c(m/Sjk)ρ̂jk(m)e−imw. (13)

Because ρ̂jk(m) is bounded (by unity), V ar(f̂jk) is well-defined even if {Vt} does not possess

finite fourth moments. The following alternative to eq. (10) is then suggested:

V ar(f̂jk) = O(Sjk/T ) for any fixed j, k. (14)

Eq. (14) is now typically satisfied under regularity conditions; see e.g. Robinson (1991) and

Hansen (1992) who considered the problem of spectral estimation in the absence of finite

fourth moments.

A further consequence of lack of finite fourth moments is that, although ρ̂(m) will still

be
√

T—consistent under appropriate weak dependence assumptions, Γ̂(m) is consistent but

typically at slower rate; see e.g. Brockwell and Davis (1991) or Embrechts et al. (1997). A

reasonable assumption adopted by Robinson (1991) is:

Γ̂jj(0) = Γjj(0) + OP (1/Tα), for all j, and some α ∈ (0, 1/2]. (15)

For our purposes we will require the slightly stronger condition:

E
∣∣∣Γ̂jj(0) − Γjj(0)

∣∣∣1+δ
= O(1/Tα(1+δ)) for all j, and some δ > 0 and α ∈ (0, 1/2].

(16)

The following theorem is a generalization of Theorem 3.1 to the setting where finite fourth

moments are potentially lacking.

Theorem 4.1 Fix values for j, k, and assume conditions (14), (16), and that‡

S−1
jk

T−1∑
j=−T+1

|λg,c(j/Sjk)| = O(1). (17)

‡As in condition (i) of Lemma 2.1, eq. (17) is easily satisfied such as when λg,c(x) has a hard ‘cut-off’,

i.e., λg,c(x) = 0 for |x| > some x0.
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Also assume Γjj(0) > 0 for all j.

(i) If
∑∞

m=−∞ |m|r|Γjk(m)| < ∞ for some real number r ≥ 1, then letting Sjk proportional

to Tα/(r+1) yields

f̂jk = fjk + OP (T−αr/(r+1)), (18)

and

F̂jk = Fjk + OP (T−αr/(r+1)). (19)

(ii) If |Γjk(m)| ≤ Ce−am for some constants C, a > 0, then letting Sjk ∼ A log T , for some

appropriate constant A, yields

f̂jk = fjk + OP (
log T

Tα
) and F̂jk = Fjk + OP (

log T

Tα
). (20)

(iii) If Γjk(m) = 0 for |m| > some q, then letting Sjk = max(�q/c	, 1), yields

f̂jk = fjk + OP (
log log T

Tα
) and F̂jk = Fjk + OP (

log log T

Tα
) (21)

Note that, even under the potential absence of finite fourth moments, F̂ maintains its

higher-order accuracy. Parts (ii) and (iii) of Theorem 4.1 show that the rate of convergence

of F̂ comes very close to Tα which is the rate of convergence of Γ̂(0). Interestingly, under

the premises of either part (ii) or (iii) of Theorem 4.1, the optimal rates for the bandwidth

Sjk are insensitive to whether fourth moments are finite or not.

5 Positive semi-definite spectral estimation

Flat-top kernels are infinite-order kernels, and therefore they are capable of achieving higher-

order accuracy when that is possible. For example, it is apparent that, under the MA(q)–

type condition of Theorem 3.1 (iii),
√

T–consistent estimation of Fjk is possible since Fjk is

a function of only finitely many (q) parameters. The flat-top estimator F̂jk indeed attains√
T–consistency in that case, and the flatness of the kernel over the interval [−c, c] is crucial

for this attainment.

The disadvantage of flat-top kernels, however, is that they are not positive semi-definite,

i.e., the matrix F̂ is not almost surely positive semi-definite for all w. The fast rate of
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convergence of F̂ to a positive semi-definite matrix indicates that the incidents of a non-

positive semi-definite F̂ may be rare; this fact was documented in the simulations of Andrews

(1991) with respect to the truncated kernel that technically belongs to the flat-top family.§

However, the positive semi-definiteness is an important philosophical point especially in

the case of w = 0 when the object is estimation of a covariance matrix. It is likely for this

reason that the focus in the recent literature starting with Newey-West (1987) has been on

positive semi-definite estimators. Nonetheless, we now show how the flat-top estimator F̂

can be easily modified to render a positive semi-definite estimator.

Recall that a Hermitian matrix has all real eigenvalues, and can be diagonalized by

a unitary transformation. Thus, consider the unitary decompositions of the Hermitian

matrices F and F̂ , namely:

F = UΛU∗ and F̂ = Û Λ̂Û∗ (22)

where U, Û are unitary (complex-valued) matrices, i.e., they satisfy U−1 = U∗ and Û−1 = Û∗

where ∗ denotes the conjugate transpose; the columns of U and Û are the orthonormal

eigenvectors of F and F̂ respectively, and Λ = diag(λ1, . . . , λd), Λ̂ = diag(λ̂1, . . . , λ̂d) are

diagonal matrices containing the respective eigenvalues.

Noting that the entries of Λ are all nonnegative suggests the following fix to the possible

negativity of F̂ . Let Λ̂+ = diag(λ̂+
1 , . . . , λ̂+

d ) where λ̂+
j = max(λ̂+

j , 0), i.e., the entries of

Λ̂+ are given by the positive part of the entries of Λ̂, and define the positive semi-definite

estimator

F̂+ = Û Λ̂+Û∗. (23)

The following theorem shows that, in addition to being positive semi-definite, F̂+ inherits

the higher-order accuracy of F̂ ; F̂+ is therefore our proposed higher-order accurate, positive

semi-definite estimator.

Theorem 5.1 Let RT be a sequence such that RT → ∞ as T → ∞. If F̂ = F +OP (1/RT ),

then F̂+ = F + OP (1/RT ) as well.¶

§Note, however, that the discontinuity of the truncated kernel gives its corresponding spectral window

very pronounced ‘sidelobes’, and hence high variance (because of large l2–norm) and unfavorable finite-

sample behavior; see e.g. Politis and Romano (1995). More details on kernel choice are given in Section 6.
¶The notation A = OP (1/RT ) for some matrix A means that each element of A is OP (1/RT ).
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6 Flat-top kernel choice

The favorable asymptotic rates of Theorems 3.1 and 4.1 are achievable by any member of the

flat-top family. Nevertheless, finite-sample properties will be dependent upon kernel choice.

For example, as mentioned in the previous section, the truncated kernel κtrunc(x) is one of

the worse representatives of the flat-top family because of the pronounced ‘sidelobes’ of the

Dirichlet kernel which is its corresponding spectral window—see e.g. Figure 2 of Politis and

Romano (1995). Since half of those sidelobes are on the negative side, they unnecessarily

inflate the L2–norm of the spectral window under the constraint that its L1–norm is unity;

as is well-known, a large L2–norm implies a large variance.‖

In order to reduce the size of a spectral window’s sidelobes, the flat-top kernel must be

chosen as smooth as possible. The poor finite-sample performance of the truncated kernel

is due to the discontinuity of the function κtrunc(x) at points ±1. The trapezoidal kernel

λTR,c(x) is continuous everywhere, and is thus much better performing than the truncated.

Even better finite-sample behavior is expected if the ‘corners’ of the trapezoid λTR,c(x)

are smoothed out. For example, McMurry and Politis (2004) constructed a member of the

flat-top family that is infinitely differentiable; it is defined as

λID,b,c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |x| ≤ c

exp
(−b exp(−b/(|x| − c)2)/(|x| − 1)2

)
if c < |x| < 1

0 if |x| ≥ 1

(24)

where c ∈ (0, 1], and b > 0 is a shape parameter, making the transition from λID,b,c(c) = 1

to λID,b,c(1) = 0 more or less abrupt.

Nevertheless, the already good performance of the trapezoidal kernel indicates that one

might not have to use an infinitely differentiable kernel to gather appreciable finite-sample

benefits. For example, we can create a flat-top kernel by adding a piecewise cubic tail,

similar to that of Parzen’s (1961) kernel, to the [−c, c] flat-top region. The resulting flat-
‖The variance is still of order O(Sjk/T ) as eq. (10) demands, but the proportionality constant in the

term O(Sjk/T ) is large for the Dirichlet kernel.
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top kernel would be defined as:

λPR,c(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x ≤ c

1 − 6(x − c)2 + 6|x − c|3 if c ≤ x ≤ c + 1/2

2(1 − |x − c|)3 if c + 1/2 < x < c + 1

0 if x ≥ c + 1

λPR,c(−x) if x < 0.

(25)

Similarly, we can create a flat-top kernel by a modification of Priestley’s (1962) ‘quadratic

spectral kernel’:

κQS(x) =
3
x2

(
sin x

x
− cos x

)

that has been found optimal∗∗ among positive semi-definite second order kernels; see e.g.

Priestley (1962) or Epanechnikov (1969). The modification would amount to defining:

λQS,b,c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ x ≤ c
3

b2(x−c)2

(
sin(b(x−c))

b(x−c) − cos(b(x − c))
)

if x > c

λQS,b,c(−x) if x < 0,

(26)

so that λQS,b,c(x) has the required [−c, c] flat-top region, but inherits the tails of κQS(x).

Note that κQS(x) tends to zero for large x but does not vanish after a cut-off point. The

parameter b > 0 in λQS,b,c(x) is again a shape parameter scaling the magnitude of the tail.

Since c ‘scales’ together with b, we can let c = 1 in connection with λQS,b,c(x), so that b is

the only remaining shape parameter.

Having chosen the shape of the function g, the remaining parameters c and/or b have to

be chosen as well. For the trapezoidal kernel λTR,c(x), the recommendation of Politis and

Romano (1995) is to take c in the neighborhood of 1/2; the rationale is that the extreme

values c → 0 and c → 1 are both to be avoided, corresponding to the aforementioned poorly

performing kernels, the Bartlett and truncated kernel respectively.

For the infinitely differentiable kernel λID,b,c(x) there is an interplay between the two

parameters b and c; for example, even with c close to 0, there is a range of values of b that

will make λID,b,c(x) look very much like the trapezoidal λTR,1/2(x) with ultra-smoothed
∗∗Priestley’s kernel κQS(x) leads to the so-called Epanechnikov spectral window of quadratic form, i.e.,

KQS(w) = (1−w2)+ that satisfies a number of optimality criteria among positive semi-definite second order

kernels; see Andrews (1991).
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Figure 1: (a) Plot of λTR,1/2(x) vs. x > 0; (b) Plot of λID,0.25,0.05(x) vs. x > 0; (c) Plot of

λPR,0.75(x) vs. x > 0; (d) Plot of λQS,4,1(x) vs. x > 0.

corners. Similarly, to implement the kernels λPR,c(x) and/or λQS,b,1(x), the parameters c

and b must be chosen respectively.

The problem of identifying the optimal shape of a flat-top kernel is still open, and more

work is needed in that respect. In the meantime, motivated by the good performance of

the trapezoidal kernel λTR,1/2(x), the following rule-of-thumb may be suggested: choose

the parameter(s) of a flat-top kernel such that the resulting shape is similar to λTR,1/2(x)

with smoothed corners. For example, letting c = 0.05 and b = 1/4 has this desired effect in

connection with λID,b,c(x), i.e., λID,0.25,0.05(x) ‘looks’ like a smoothed version of λTR,1/2(x).

To get λPR,c(x) and λQS,b,1(x) to yield a similar balance between the flat-top region and the

tail, the values c = 0.75 and b = 4 may be used respectively. Plots of the flat-top kernels

λTR,1/2(x), λID,0.25,0.05(x), λPR,0.75(x) and λQS,4,1(x) are shown in Figure 1.
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7 Data-dependent bandwidth choice

In this section, assume that a member of the flat-top family, say λg,c, has been identified to

be used for F̂+ and F̂ . Besides the favorable asymptotic properties and speed of convergence

associated with flat-top kernels as demonstrated in Theorems 3.1 and 4.1, a further reason

for using a flat-top lag-window is that choosing its bandwidth in practice is intuitive and

doable by a simple inspection of the correlogram/cross-correlogram, i.e., a plot of ρ̂jk(m)

vs. m where ρ̂jk(m) = Γ̂jk(m)/
√

Γ̂jj(0)Γ̂kk(0) for all j, k.

The proposed bandwidth choice rule is motivated by case (iii) of Theorems 3.1 and

4.1 and boils down to looking for a point, say q̂, after which the correlogram appears

negligible, i.e., ρ̂jk(m) 
 0 for |m| > q̂ (but ρ̂jk(q̂) �= 0). Of course, ρ̂jk(m) 
 0 is taken

to mean that ρ̂jk(m) is not significantly different from zero, i.e., an implied hypothesis

test. After identifying q̂, the recommendation is to just take Ŝjk = max(�q̂/c	, 1) as part

(iii) of Theorems 3.1 and 4.1 suggests. Although it may be overoptimistic to expect that

our data will follow a finite-order MA(q) model, the validity of this simple rule in general

situations is due to the fact that an MA(q) model—with high enough q—can always serve

as an approximation at least as far as the spectral density is concerned; see e.g. Brockwell

and Davis (1991).

The intuitive interpretation of the above bandwidth choice rule is an effort to extend

the ‘flat-top’ region of λg,c over the whole of the region where ρ̂jk(m) is thought to be

significant so as not to downweigh it and introduce bias. Nevertheless, the ‘flat-top’ region

of λg,c can be greater than [−c, c] depending on the choice of function g. Even if g(x)

is strictly decreasing for x > c, its rate of decrease near c may be slow enough so that

λg,c(x) 
 1 for x in an interval much greater than [−c, c]; see, for example, Figure 1 (b)

regarding the infinitely differentiable λIS,b,c(s) with b = 1/4 and c = 0.05. Thus, we are

led to define the ‘effective’ flat-top region of λg,c as the interval [−cef , cef ] where cef is the

largest number such that λg,c(x) ≥ 1− ε for all x in [−cef , cef ]; here ε is some small chosen

number, e.g. ε = 0.01.

Now we can rigorously define the empirical bandwidth choice rule. Note that in the case

j �= k, ρjk(m) is the cross-correlation sequence which is not symmetric in m; rather than

looking at both positive and negative m, we choose to look at both ρjk(m) and ρkj(m) for

only positive m which is equivalent.
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EMPIRICAL RULE OF CHOOSING Sjk FOR FLAT-TOP KERNEL λg,c.

Case j = k: Let q̂ be the smallest nonnegative integer such that |ρ̂jk(q̂+m)| < C0

√
log10 T/T ,

for m = 0, 1, . . . ,KT , where C0 > 0 is a fixed constant, and KT is a positive, nondecreasing

integer-valued function of T such that KT = o(log T ). Then, let Ŝjk = max(�q̂/cef 	, 1).
Case j �= k: Let q̂jk be the smallest nonnegative integer such that |ρ̂jk(q̂jk + m)| <

C0

√
log10 T/T , for m = 0, 1, . . . ,KT , where C0 > 0 is a fixed constant, and KT is a

positive, nondecreasing integer-valued function of T such that KT = o(log T ). Similarly,

let q̂kj be the smallest nonnegative integer such that |ρ̂kj(q̂kj + m)| < C0

√
log10 T/T , for

m = 0, 1, . . . ,KT . Then, let q̂ = max(q̂jk, q̂kj), and Ŝjk = Ŝkj = max(�q̂/cef 	, 1).

In the case j = k, the above bandwidth choice rule was empirically suggested by Politis

and Romano (1995) for the trapezoidal kernel; it was then rigorously studied in Politis

(2003). Note that the constant C0 and the form of KT are the practitioner’s choice. Politis

(2003) makes the concrete recommendations C0 
 2 and KT = max(5,
√

log10 T ) that

have the interpretation of yielding (approximate) 95% simultaneous confidence intervals for

ρjk(q̂ + m) with m = 1, . . . ,KT by Bonferroni’s inequality. Nevertheless, the practitioner

should always be vigilant in a case where altering the value of C0 slightly leads to radically

different values of q̂. In such a case, the rule-of-thumb is to use the smaller of the two

potential estimates q̂ in the sense that flat-top kernels work best with small bandwidth

parameters; see Politis and White (2004) for an example of this phenomenon.

The performance of our empirical bandwidth choice rule is quantified in the following

theorem; the case j = k of the theorem was given in Politis (2003) for the trapezoidal

flat-top kernel.

Theorem 7.1 Fix j, k, and assume conditions strong enough to ensure that†† for all fi-

nite N ,

max
m=1,...,N

|ρ̂jk(n + m) − ρjk(n + m)| = OP (1/
√

T ) (27)

††There exist different sets of conditions sufficient for eq. (27); see Brockwell and Davis (1991) or Romano

and Thombs (1996). As a matter of fact, under further regularity conditions, the process
√

T (ρ̂jk(·)−ρjk(·))
is asymptotically Gaussian with autocovariance tending to zero; consequently, eq. (28) would follow from

the theory of extremes of dependent sequences—see e.g. Leadbetter et al. (1983).
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uniformly in n, and

max
m=0,1,...,T−1

|ρ̂jk(m) − ρjk(m)| = OP (

√
log T

T
). (28)

Also assume that the sequence ρjk(m) does not have more than KT − 1 consecutive zeros‡‡

in its first m0 lags (i.e., for m = 0, 1, . . . ,m0).

(i) Assume that for m > m0 we have ρjk(m) = C1m
−p1 or ρjk(m) = C1m

−p1 cos(a1m+θ1),

and ρkj(m) = C2m
−p2 or ρkj(m) = C2m

−p2 cos(a2m+θ2), for some positive integers p1, p2,

and some constants satisfying Cv > 0, av ≥ π
KT

, and θv ∈ [0, 2π] for v = 1, 2. Then,

Ŝjk
P∼ A1T

1/(2p)

(log T )1/(2p)
where p = max(p1, p2)

for some positive constant A1; the notation A
P∼ B means A/B

P−→ 1.

(ii) Assume that for m > m0 we have ρjk(m) = C1ξ
m
1 or ρjk(m) = C1ξ

m
1 cos(a1m + θ1),

and ρkj(m) = C2ξ
m
2 or ρkj(m) = C2ξ

m
2 cos(a2m + θ2), where the constants satisfy Cv > 0,

|ξv| < 1, av ≥ π
KT

, and θv ∈ [0, 2π] for v = 1, 2. Then,

Ŝjk
P∼ A2 log T

where A2 = −1/max(log |ξ1|, log |ξ2|).
(iii) If |ρjk(m)| + |ρkj(m)| = 0 for m > some nonnegative integer q (with q < m0 + KT ),

but |ρjk(q)| + |ρkj(q)| �= 0, then

Ŝjk = max(�q/cef 	, 1) + oP (1).

Comparing the empirical rule Ŝjk to the theoretically optimal values of Sjk given in Theo-

rem 3.1 we see that Ŝjk manages to capture exactly the theoretically optimal rate in cases

(ii) and (iii) of Theorem 7.1. In case (i) of Theorem 7.1, Ŝjk increases essentially as a power

of T since the 2p-th root of the logarithm changes in an ultra-slow way with T ; note that the

empirically found exponent 1/(2p) is slightly smaller than the theoretically optimal band-

width given in part (i) of Theorem 3.1 but the difference is small, and becomes even smaller

for large p. Thus, Ŝjk is seen to automatically adapt to the underlying rate of decay of the

correlation/cross-correlation function, switching between the polynomial, logarithmic, and

constant rates that are optimal respectively in the three cases of Theorems 3.1 and 4.1.
‡‡Because of this assumption, it is advisable to take KT be an increasing function of T , albeit at the very

slow rate suggested by the recommendation KT = max(5,
√

log10 T ).
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8 Appendix: Technical proofs

Proof of Lemma 2.1. The case s
T
→ ∞ is covered in Theorem 1 of Andrews (1991);

thus, we now assume EVt
∂
∂θVt−j = 0 for all j.

A careful reading of the proof of Theorem 1(b) of Andrews (1991) indicates that the proof

first hinges on showing that (TsT )−1/2∑T−1
j=−T+1 κ(|j|/sT ) → 0; but this follows immediately

from our condition (i).

Now noting that T−1∑T
t=j+1 Vt

P−→ 0 from a Weak Law of Large Numbers under As-

sumption A, we further need to show that T−1∑T
t=j+1 Vt

∂
∂θVt−j

P−→ 0. But this follows

from a Weak Law of Large Numbers for the cross-correlation of the series Vt to the series
∂
∂θVt−j under Assumption C and our assumption EVt

∂
∂θVt−j = 0.�

Proof of Theorem 3.1. In view of eq. (10), the proof amounts to bounding the bias of

F̂jk under the different weak dependence conditions. Note that EΓ̂jk(m) = (1− |m|
T )Γjk(m).

Thus, we have

Bias(F̂jk) ≡ EF̂jk − Fjk = A1 + A2 + A3

where

A1 =
1
2π

T−1∑
m=−T+1

(
λg,c(

m

Sjk
) − 1

)
Γjk(m)e−imw

A2 = − 1
2πT

T−1∑
m=−T+1

|m|λg,c(
m

Sjk
)Γjk(m)e−imw

A3 = − 1
2π

∑
|m|≥T

Γjk(m)e−imw.

But |A3| ≤ 1
2π

∑
|m|≥T |Γjk(m)| ≤ 1

2πT

∑
|m|≥T |m||Γjk(m)| = o(1/T ), since under any of

the three conditions (i), (ii) or (iii) we have
∑

m |m||Γjk(m)| < ∞.

Similarly, |A2| = O(1/T ), using the fact that |λg,c( m
Sjk

)| ≤ 1.

Now note that A1 = a1 + a2, where

a1 =
1
2π

∑
|m|≤cSjk

(
λg,c(

m

Sjk
) − 1

)
Γjk(m)e−imw

a2 =
1
2π

∑
cSjk<|m|≤T

(
λg,c(

m

Sjk
) − 1

)
Γjk(m)e−imw
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First observe that a1 = 0, because λg,c( m
Sjk

) = 1 for |m| ≤ cSjk. Now

|a2| ≤ 1
π

∑
cSjk<m≤T

|λg,c(
m

Sjk
) − 1||Γjk(m)| ≤ 1

π

∑
cSjk<m≤T

2|Γjk(m)| (29)

But under the condition of part (i), we have:

|a2| ≤ 1
π

∑
cSjk<m≤T

2
mr

crSr
jk

|Γjk(m)| i.e. Bias(F̂jk) = O(1/Sr
jk) + O(1/T ) = O(1/Sr

jk).

Under the condition of part (ii), eq. (29) gives

|a2| ≤ 2C
π

∑
cSjk<m≤T

e−am,

i.e., Bias(F̂jk) = O(e−acSjk) + O(1/T ) = O(1/T ).

Finally, under the condition of part (iii), we have a2 = 0, i.e., Bias(F̂jk) = O(1/T ), and

the theorem is proven. �

For the proof of Theorem 4.1, we will need the following auxiliary lemma.

Lemma 8.1 Eq. (16), together with the assumption Γjj(0) > 0 for all j, implies that

E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣1+δ

= O(1/Tα(1+δ)) for all j, k. (30)

Proof of Lemma 8.1. Let ∆ = 1 + δ, and note that:

E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣∆ =

= E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γ̂kk(0) +
√

Γjj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣∆

= E

∣∣∣∣
√

Γ̂kk(0)(
√

Γ̂jj(0) −
√

Γjj(0)) +
√

Γjj(0)(
√

Γ̂kk(0) −
√

Γkk(0))
∣∣∣∣∆ ≤ c1A1 + c2A2

where c1, c2 are some positive constants. In the above, the simple inequality (a + b)∆ ≤
2∆ max(a, b)∆ ≤ 2∆(a∆ + b∆) for a, b ≥ 0 is used, and

A1 = E
√

Γ̂kk(0)∆ |
√

Γ̂jj(0) −
√

Γjj(0)|∆ and A2 =
√

Γjj(0)∆ E|
√

Γ̂kk(0) −
√

Γkk(0)|∆.
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But
(√

Γ̂kk(0) −
√

Γkk(0)
)∆ (√

Γ̂kk(0) +
√

Γkk(0)
)∆

=
(
Γ̂kk(0) − Γkk(0)

)∆
, hence

E|
√

Γ̂kk(0)−
√

Γkk(0)|∆ = E
|Γ̂kk(0) − Γkk(0)|∆(√
Γ̂kk(0) +

√
Γkk(0)

)∆
≤ E

|Γ̂kk(0) − Γkk(0)|∆√
Γkk(0)∆

= O(1/Tα∆)

(31)

by eq. (16). Therefore, A2 = O(1/Tα∆).

Note that inequality (31) holds for all k; hence, it follows that

A1 = E|
√

Γ̂jj(0) −
√

Γjj(0)|∆|
√

Γ̂kk(0) −
√

Γkk(0)|∆ + O(1/Tα∆).

Finally, observe that the function h(x) =
√

1 − x− (1−√
x) is nonnegative for all x ∈ [0, 1].

Therefore, for any a ≥ b > 0, we have:
√

a −√
b = |√a −√

b| ≤ √
a − b =

√|a − b|.
Using the above, it follows that

E|
√

Γ̂jj(0)−
√

Γjj(0)|∆|
√

Γ̂kk(0)−
√

Γkk(0)|∆ ≤ E
√
|Γ̂jj(0) − Γjj(0)|∆

√
|Γ̂kk(0) − Γkk(0)|∆

≤
√

E|Γ̂jj(0) − Γjj(0)|∆E|Γ̂kk(0) − Γkk(0)|∆ = O(1/Tα∆),

the second inequality being the Cauchy-Schwarz, and the last claim due to eq. (16). Hence,

A1 = O(1/Tα∆) as well, and the lemma is proven.�.

Proof of Theorem 4.1. Note that (15) follows by eq. (16) using Jensen’s and Markov’s

inequality. Now by (15) we have:

F̂jk =
√

Γ̂jj(0)Γ̂kk(0)f̂jk =
√

Γjj(0)Γkk(0)f̂jk + OP (1/Tα). (32)

Let

WT = F̂jk −
√

Γjj(0)Γkk(0)f̂jk =
(√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
)

f̂jk = OP (1/Tα).

Focusing on integrability of WT , note that

E|WT |∆ ≤ max |f̂jk|∆E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣∆ .

But

|f̂jk| ≤ 1
2π

T∑
m=−T

|λg,c(m/Sjk)||ρ̂jk(m)||e−imw| ≤ 1
2π

T∑
m=−T

|λg,c(m/Sjk)| = O(Sjk)
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by assumption (17). Hence, max |f̂jk|∆ = O(S∆
jk). Therefore, by eq. (30) we have:

E|WT |∆ = O(S∆
jk/T

α∆). (33)

Proof of (i) and (ii). Recall that TαWT = OP (1) by eq. (32). Since Sjk → ∞, it follows that
T α

Sjk
WT = oP (1). But then eq. (33) implies that the sequence T α

Sjk
WT is uniformly integrable;

hence

E
Tα

Sjk
WT = o(1) i.e., EWT = o(Sjk/T

α),

and therefore

EF̂jk =
√

Γjj(0)Γkk(0)Ef̂jk + o(Sjk/T
α).

However, Fjk =
√

Γjj(0)Γkk(0)fjk; hence,

Bias(F̂jk) =
√

Γjj(0)Γkk(0) Bias(f̂jk) + o(Sjk/T
α). (34)

But from part (i) of Theorem 3.1 we have: Bias(F̂jk) = O(1/Sr
jk); it follows that

Bias(f̂jk) = O(1/Sr
jk) + o(Sjk/T

α). (35)

Recall that V ar(f̂jk) = O(Sjk/T ) by eq. (14). Note that the second term in Bias(f̂jk) is of

bigger order than the standard deviation of f̂jk since α ≤ 1/2 ≤ (r + 1)/(2r + 1).

Hence, minimization of the order of magnitude of the Mean Squared Error of f̂jk gives

the stated optimal choice for the bandwidth Sjk in part (i) of Theorem 4.1, and the resulting

rate of convergence of f̂jk as given in eq. (18). Finally, note that the OP (1/Tα) term in

eq. (32) is negligible compared to the accuracy of f̂jk as given in (18). Thus, eq. (32)

together with (18) implies (19), and part (i) is proven.

To prove part (ii), recall that from part (ii) of Theorem 3.1 we have Bias(F̂jk) = O(1/T ).

Plugging the optimal bandwidth Sjk = A log T in eq. (34) we obtain:

Bias(f̂jk) = O(1/T ) + o(log T/Tα) = O(log T/Tα). (36)

Recall that V ar(f̂jk) = O(log T/T ) by eq. (14). Hence, minimization of the order of

magnitude of the Mean Squared Error of f̂jk gives the stated rate of convergence of f̂jk. By

eq. (32), F̂jk has the same rate of convergence as f̂jk, and part (ii) is proven.
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Proof of (iii). Note that T α

log log T WT = oP (1). Also note that Sjk is constant under the

premises of part (iii). Thus, eq. (33) implies E|TαWT |∆ = O(1), and thus the sequence
T α

log log T WT is uniformly integrable; hence

E
Tα

log log T
WT = o(1) i.e., EWT = o(log log T/Tα),

and therefore

EF̂jk =
√

Γjj(0)Γkk(0)Ef̂jk + o(log log T/Tα).

However, Fjk =
√

Γjj(0)Γkk(0)fjk; hence,

Bias(F̂jk) =
√

Γjj(0)Γkk(0) Bias(f̂jk) + o(log log T/Tα).

But from part (iii) of Theorem 3.1 we have: Bias(F̂jk) = O(1/T ); it follows that

Bias(f̂jk) = O(1/T ) + o(log log T/Tα) = O(log log T/Tα). (37)

Recalling that V ar(f̂jk) = O(1/T ) by eq. (14), gives the stated rate of convergence for

f̂jk which—by eq. (32)—is the same as that of F̂jk, and part (iii) of the theorem is proven.�

Proof of Theorem 5.1. The condition F̂ = F + OP (1/RT ) implies

Λ̂ = Λ + OP (1/RT ), and hence λ̂j = λj + OP (1/RT ) for all j; (38)

see e.g. Theorems 3.2 and 4.2 (and the discussion afterwards) of Eaton and Tyler (1991).

But, viewed as an estimator of the nonnegative λj , λ̂+
j is a better (or, at least, not worse)

estimator than λ̂j in the sense that |λ̂+
j − λj | ≤ |λ̂j − λj | always. Hence, it follows that

λ̂+
j = λj + OP (1/RT ) for all j, and hence Λ̂+ = Λ + OP (1/RT ). (39)

Using eq. (38) and (39) we have the following:

F + OP (1/RT ) = F̂ = Û Λ̂Û∗ = Û (Λ + OP (1/RT )) Û∗

= Û
(
Λ+ + OP (1/RT )

)
Û∗ = F̂+ + OP (1/RT ),

the latter since Û = U + oP (1) = OP (1); solving for F̂+ in the above, the theorem is

proven.�

Proof of Theorem 7.1. The proof is analogous to the proof of Theorem 2.3 of

Politis (2003) and is omitted.�
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