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Abstract

A user interface Mmanagement system (UIMS) for extensible software environments must
promote uniformity, and vet be both extensible and powerful. We describe the architec-
ture of Chiron-0. a UIMS designed to meet the demands of a software environment. We
discuss the key concepts underlying the design. and how those concepts are realized in the
implementation of a prototype. Our experiences with the prototype brought to light the
successes of our approach as well as its limitations. We devised wayvs to circumvent some
of these problems; others are influencing a redesign effort that is currently under way-.
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1 Introduction

Chiron is a user interface management system (UIMS) for extensible software development
environments. It provides basic user interface functions and is used to build interactive.
graphical tools. Chiron's approach separates interaction from abstract tool behavior. A
program called an artist, which sits between Chiron and the tool. makes decisions as to
how the abstract objects in the tool are to be displayed on the the screen. A large amount
of flexibility is attained by allowing the application and the UIMS to execute concurrently.
Each displayed object can have its own thread of control — for example. C'hiron can update
the display at the same time the application responds to user commands.

~ An initial prototype called Chiron-0 was built on top of version 11 of the X Window
Svstem [SG86], as part of the Arcadia software environment [TBC*88]. We are now in
the process of designing Chhiron-1, which has gained extensively from our experiences with
Chiron-0.

Throughout this paper, the name Chiron is used when discussing issues involving a gen-
eral UIMS for a software development environments, and the names Chiron-0 or C' ‘hiron-1
are used to refer to those particular systems. For more general information. Young [YTTS3]
describes the conceptual design of C'hiron within the software environment framework. and
discusses in depth the constraints the environment architecture imposes upon the design of
the UIMS. Anderson [DYTSS] presents a tutorial on how to use Chiron-0 to build graphical
tools.

This paper describes the architecture and design rationale of Chiron-0. First. we discuss
the conceptual design questions facing user interface management system designers. and
give an overview of the solutions we adopted. We present the architecture of the system by
describing each major component and its relationship to the other components in detail.
We also discuss implementation dependent issues. such as language and platform consid-
erations. The results of our design decisions are then examined. and compared to current
work in the field. Finally, we examine the limitations of our design and implementation and
present various solutions to these problems. Our experiences with Chiron-0 should prove
valuable to others interested in the development of user interface management systems.

In order to gauge the success of the design and implementation of Chiron the goals
should be clearly identified. In particular. effort was focused on exploring new ideas re-
garding the interface between tools and interactive components, rather than on visual
design and human factors issues. The primary design goals for Chiron are discussed below.,

Scope and power. A software development environment supports a broad range of
activities. and so must its UIMS. In no way should the UIMS limit the sort of tools
available to the environment, nor should it place restrictions on any particular tool.

The UIMS should strive to take full advantage of the workstation hardware on which it
is implemented. Advanced graphics and color capabilities should be used whenever appro-
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priate and beneficial. In particular. support should be provided for the direct manipulation
style of interaction that is found in the Nerox Star [SIN*82] and its derivatives such as
the Apple Macintosh [AC85]. Direct manipulation allows users to manipulate the repre-
sentations of data objects on the display. giving them the illusion of directly controlling
the actual objects.

Although bells and whistles are not among our primary goals. the UIMS should provide
a platform on which such features could later be built.

Uniformity. Uniformity. or consistency. is a kev concern for user interface management
systems. The tool builder wants a uniform scheme for adding new tools to the environment
as well as consistent mechanisms for the combining of tools. communications between tools.
and persistent object storage.

From the user’s viewpoint. the user interface should enable consistency of the input and
output conventions across all tools. The user should be able to learn a smgle consistent
set of commands which apply to all tools.

Attempts at end user uniformity are typically made by imposing style guidelines on
applications (such as the Apple Macintosh user interface standards). and by providing
toolkits of commonly used components [Sun86. Xtk83].

Extensibility Software environments must be able to handle modifications. deletions.
and additions. and so must the corresponding UIMS. New and improved tools and capa-
bilities will become available. and it is necessary for them to be easily incorporated into
the environment. Changes to the UIMS itself must not force changes to every tool. It is
important that the UIMS be designed with growth in mind. or modifications such as these
will be unacceptably difficult.

2 General Design Issues

Chiron-0’s design incorporates a number of recent developments in user interfaces. and
has tailored them for use in software development environments. These ideas are briefly
presented below. A detailed discussion of Chiron-0's concrete realization of the concepts
described here is presented in later sections.

2.1 Separating UIMS and Tool Functionality

One of the fundamental aspects of Chiron-0’s design is the decoupling of interface and
tool functionality. Most interactive tools in a software development environment produce
displays in which the objects on the screen actually represent abstract data objects in the
tool. This is in contrast to applications in which the display itself is the desired end result,
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such as VLSI and image processing applications. Chiron-0 exploits this characteristic of
applications to separate user interface from tool functionality. rather than intertwining
graphical manipulations with the tool itself. A number of recent user interface systems.
such as Smalltalk [GRs83] with its model-view-controller (MVC(C) paradigm. also have a
high-level organization that separate application data objects (the model) from the graph-
ical user interface objects (the view). In addition to the standard advantages of modularity.
this scheme promotes uniformity through the reuse of both interface and tool components.

2.2 Artists and Annotation

Chiron uses artists. first introduced by Myers in the Incense Svmbolic Debugger [Mye33]
to referee the interaction between the tool and the user interface. The artist associated
with each data type in the tool is responsible for making decisions as to how the data type
is to be depicted on the screen and how that depiction should change in response to user
mput.

Chiron uses a restricted form of inheritance, called annotation [SBS6. SBK&6]. to attach
artists to tools. Accessing the abstract data objects has the side effect of invoking the
artist to update the display. For details on how artists and annotations are implemented
in Chiron-0. see section 4.1.

Since annotations (unlike unrestricted inheritance) preserve the semantics of the under-
lIving abstract data type (ADT). an annotation cannot introduce errors into the abstract
data type. This implies that multiple artists may be attached to a single type to pro-
vide multiple depictions. When the underlying abstract data type instance changes. the
currently attached artist takes care of the updating the display. Furthermore. since the
underlying abstract data type is preserved. annotations can be nested. It is guaranteed
that intermediate annotations will not change the semantics of the data type.

2.3 The Abstract Depiction

Artists make policy decisions about how an object is to be depicted: the UIMS is concerned
with the mechanism of rendering these depictions on the screen. To keep these concerns
separate, Chiron-0 distinguishes between the abstract depiction as composed by the artists.
and the concrete depiction displayed on the screen. A separate, asynchronous rendering
agent is responsible for mapping the abstract depiction onto the concrete depiction. Hav-
ing a structured representation between the model and view facilitates input correlation
and incremental updates. and makes possible the representation of displays which are not
derivable from data objects alone (e.g. a display lavout modified by user manipulation).
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2.4 Processing Commands

In Chiron-0 the input routines and application are concurrent processes. This differs from
the more common UIMS schemes in which either the input routines are subroutines to
the application (called the prompting model) or the application is a subroutine to the
user interface’s input processor (called the dispatch model). The concurrent model used by
Chiron-0 allows multiple tools to work on the same display. Also, the UIMS can continue to
update the display while the application responds to commands. A method for developing
such concurrent interfaces. called the device model is presented by Anson [Ans82).

A device is similar to an abstract data type. The difference lies in the fact that an
instance of an abstract data type changes state only as the result of an operation, whereas
devices may change state autonomously. A device may also send messages to other devices:
Chiron-0 has a simple hierarchy of communicating devices in which composite devices
receive events only from their components.

In Chiron-0. devices are combined with artists to manage the interaction of an abstract
data type. The term gadget is used to refer to the combination of an artist and a device.

3 Organization of Modules

The previous sections have given a high-level view of the key design decisions made in
Chiron-0. The purpose of this section is to describe. in greater detail. each of the modules
in the implementation. so that the solution mechanism — and their ensuing consequences
— can be fullv understood. We also discuss how the various pieces fit together to form
the overall system. and present some of the tradeoffs made in the implementation. The
modules are organized as shown in Figure 1.

3.1 The Abstract Depiction

The abstract depiction is Chiron-0's internal representation of graphical objects as com-
posed by the artists. The abstract depiction is represented as a tree. whose root is a window
onto the entire display screen in the current implementation. A tree structure was chosen
because it reflects any inherent structure in an abstract data type better than a simple
linear list. without the complexity of an arbitrary graph. This facilitates maintaining the
correlation between the graphical objects in the display and the data objects in the tool,
as well as simplifying the determination of which parts of the display need to be redrawn
for incremental updates. The tree’s hierarchy can be exploited to provide inheritance of
graphical attributes and other properties.
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Figure 1: The overall organization of modules in Chiron-0.
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3.1.1 Figures

The nodes of the abstract depiction tree are structures called figures. Each figure corre-
sponds to a single graphical object. There are six different types of figures: blocks. views.
polygons. polylines. bitmaps and text. This set of figures was chosen as a compromise
between a general purpose set of primitives that would support a broad range of possible
depictions. and specialization that would provide more power and support for a smaller
class of depictions. The tree structure of the abstract depiction combined with this small
number of figures is set up to work well with simple diagrams, such as are typical of the
displays desired in software development environments. Chiron-0's design also allows for
multiple depictions to be incorporated by separate rendering agents into a single output
screen. thus providing for more complex displays.

Blocks. A block is a logically infinite viewing surface. Each block has its own left-hand
coordinate system (r goes left to right. y goes top to bottom).

Blocks are used for hierarchically grouping other figures. and figures are added to a
single block upon creation. This implies that the block must be created before the figure
it contains. and creates a strong bias toward building complex pictures from the top down.
However, a top down strategy may not be appropriate for all structures. Thus. to allow for
the bottom up creation of pictures. blocks (and only blocks) may be created in isolation
and inserted into the ahstract depiction tree at a later time. The order in which figures
are inserted into a block is significant. as described in sections 3.1.2 and 3.1.3.

Blocks have the notion of extent. Even though blocks are considered to be infinite
viewing surfaces. the figures within that block occupy a finite space. The extent of a block
is the virtual rectangle that logically encompasses all the figures within it.

Blocks also have a defined viewable region. The viewable region of a block is the portion
currently visible through a window. The difference between viewabhle region and extent is
lustrated in Figure 2. '

Views. A view is a rectangle through which a portion of a block is visible. A view is
roughly equivalent to the usual idea of a window, and in fact views are implemented as
windows in the X Window Svstem. When a view is created. a block is automatically created
within it to group the ob jects which may be visible through that view. The viewable region
of a block can then be defined as the rectangular area within the block that intersects its
enclosing view. The root of the abstract depiction tree is a view — in the implementation,
this corresponds to the root window of X.
The relationship between blocks and views is illustrated in Figure 3.

Polygons. A polygon is an arbitrary closed shape. A polygon is defined as a series of
points. any of which can be relatjve to other figures.
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Figure 2: Distinguishing between a block’s extent and viewable region. The extent is the virtual
rectangle that encompasses the figures within the block. The viewable region is the portion of
the block which is currently visible through a window.
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Figure 3: Blocks and views in the abstract depicition hierarchy. This figure shows a sample
subtree of the abstract depiction. A view contains exactly one block. A block contains a

sequence (implemented as a linked list) of polygons, polylines, text, bitmaps, views and other
blocks. ‘
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Polylines. A polyline is an arbitrary open shape. Like polygons. polylines are defined
by an arbitrary vector of points.

Bitmaps. Bitmaps are rectangular images. A bitmap is represented as a two-dimensional
array of pixel values.

Text. Text is represented as a virtual rectangle enclosing a string of characters. Making
text a separate type of figure (as opposed to modeling it as combination of polylines. for
example) makes it possible for Chiron-0 to provide specialized text operations that do not
make sense for any other objects. as well as facilitating the use of predefined fonts available
via the window system. Text strings are dynamic. and all the standard functions (such as
insert. append. delete. and read) are available to mahipulate them. Any font available to
X can be used for Chiron-0 text figures.

3.1.2 Relative Positioning of Figures

Upon creation. the location of most figures is specified in terms of their relation to other
figures within their block. Absolute positioning is achieved by making a figure relative to
the root. and therefore is only provided for figures in the root’s block. Circular relationships
are impossible. since a newly created object can only be relative to figures that have already
been inserted into the tree.

Since polygons and polylines are made up of an arbitrary set of points. any of which
can be relative to other figures. the behavior and shape of a figure are closelv coupled.
For example. if the northwest corner of a polygon is dependent upon a figure that is then
moved. the northwest corner of that polygon may also move and thus change the dependent
polygon’s shape and size. Views and text are permanently rectangular so their shapes will
not change. although they may be moved or resized in response to an action on a figure
to which they are relative. Finally. a block has no shape, but may move as a result of its
dependencies.

Corners and Anchors. Because of the issue of relative positioning discussed above. the
way the dependencies of a figure are specified will determine both its shape and behavior.
For aid in regulating this, Chiron-0 distinguishes between sets of corners and anchors.
Corners are the set of points which are connected to define the shape of a figure. Anchors
are the points which characterize the figure’s relative dependencies on other existing figures.
Corners are specified in terms of the anchors of that figure. Note that a single point can
be both an anchor and a corner, and this, in fact. is quite common. For a detailed example
of the use of corners and anchors, see Figure 4.

In this figure, Z's anchor Al is 0 units (pixels) over and 25 units down from the
southeast corner of figure X (recall that the y coordinate increases from top to bottom).
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Z’s Anchor Offsets:

Al = (0, 25) from X
A2=(0, 25) from Y

—_———-—
9]

5 Z’s Cormner Offsets:
Cl =(0,0) from Al
Al A2 C2 = (5, -5) from A1
C1 C3 C3 = (0, 0) from A2
X Y
5

Figure 4: Using anchors and corners. Anchors determine the location of a figure, and corners
determine its shape. A figure's anchors are relative to existing figures.
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Similarly, 42 is (0. 25) away from the southwest corner of figure Y. Corners determine the
shape of a figure. A figure's corners are given in terms of its anchors. In this example, ("2
1s (5, -5) away from A1. As the relative figure moves. the anchors which are dependent on
that figure also move. possibly altering the shape of the dependent figure.

3.1.3 Occlusion Ordevring'of Figures

There are two different orderings of a set of siblings (

Le. two figures within the same parent
block) in the abstract depiction tree: dependency or

der and occlusion order (see Figure 5)

- renderer ——

draws reads

Concrete Depiction (display) Abstract Depiction

Figure 5: Occlusion vs. dependency ordering. The placement of figures in the abstract depic-

tion tree determines their occlusion ordering, whereas the sequence in which they are inserted
specifies their dependency ordering.

Dependency ordering is based on the relationships between dependent and relative
figures. When the rendering agent calculates the coordinates of some figure A which
depends on figure B. the position of figure B must already have been calculated. Occlusion
order. on the other hand, is the order. from bottom to top, in which figures must be drawn
(the last figures drawn may cover the previous figures, but never vice-versa). Note that
Implementing views as windows in X doesn’t have exactly the correct semantics intended,
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as a nested window is always drawn above evervthing in its parent window. C'hiron-0 stores
its objects in occlusion order. When a figure is created and inserted. its position in the
tree (and thus its position in the drawing order of objects) can be specified. The ordering
is such that the leftmost child is drawn last. If no ordering is specified. then the new figure
is placed in the leftmost position. Dependency order is implicitly specified by the order in
which the figures are created.

3.1.4 Selectability

Upon creation. a figure can be tagged as selectable. Selectable figures are eligible to be
picked by the end user (usually done by clicking one of the mouse buttons while the cursor
1s over that figure). By turning selectability on for a group of figures. a tool can make
collections of objects appear as a single complex object. Also. turning selectability off for
such objects as titles and scroll bar meters keeps end users from inadv ertently playing with
parts of the screen lavout that should be off-limits.

3.1.5 Attributes

The graphical attributes of a figure (such as line style. color. and font) are stored with each
figure in the abstract depiction. Unless otherwise specified. figures inherit attributes from
their enclosing block. A suitable set of defaults are preset in the highest level block. The
following attributes are available in C'hiron-0:

¢ The background color of a figure (available for all figures). If an object is filled. the
color becomes the figure’s background color. The color clear is used for transparent
objects that do not erase anything below them. Any other background color obscures
the objects below it. On monochrome devices. colors are mapped to either black or
white.

e The color of a polyline or of the outline of a polygon (i.e. foreground color).
o The style of a polyline, either dashed or solid.
e The width of each drawn segment of a dashed polvline.

e The arrow at the head of a polyline and/or an arrow at the tail of a polyline. A
polyline can have arrows at both its head and its tail.

o The ability to draw line segments by inverting the background, commonly referred
to as XOR drawing. This determines how the lines of a transparent figure combine
with a figure below it. Lines in the upper figure will invert lines and regions of the
same region in the lower figure.
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e The font used for displayving text.

e The manner in which a figure stretches. The types of stretches available are sym-
metric. constrained-r, constrained-y. and free form. Symmetric stretches cause the
figure to stretch equally in all directions. Constrained-x and constrained-y restrict
the figure to stretching uniformly. but only in the x and y directions. respectively.
Lastly, the free form stretch only moves one corner of the figure. Of course. the
stretchiness of a figure is also constrained by its anchors. For example. in a symmet-
ric stretch the northwest corner of a figure will only move if the corner is not also an
anchor. For examples of the results of different kinds of stretches. see Figure 6.

3.1.6 Menus

A menu of textual commands can be associated with a figure. Menus are linked to figure
objects. so that each figure (not just each type of object) can have a menu. Chiron-0
handles the menu interaction. and when the end user makes a menu selection, Chiron-0
notifies the appropriate artist (for details on how this is implemented. see section 3.4.4).

Chiron-0 allows a hierarchical system of menus to be defined. and supports both sub-
menus and child menus. A submenu is a menu nested within another menu. Child menus
are similar to submenus. except that if a child menu has a selection with the same name as
one of its ancestors. the selection is suppressed in the ancestor menu. If all of the selections
in an ancestor menu are suppressed. then it is not displaved. Child menus can be used to
imitate an inheritance hierarchy in which a sub-class overrides operations defined by its
super-class. A “walking™ stvle is used for presenting nested sub and child menus (similar
to the default menu stvle in SunView).

Individual selections within a menu can be made inactive or active. An inactive selection
will not be highlighted as the cursor passes over it. and cannot be selected — if the user clicks
on an inactive selection. it is as if no selection were made (a better implementation would
have inactive selections visibly distinguished. e.g. by “ghosting™). All menu selections are
initially active.

Chiron-0’s abstract depiction provides a rich set of operations for creating and modi-
fving figures. Functions are included for changing any of a figure's attributes, its shape or
its position on the display. Additional operations are available that query and manipulate
the abstract depiction structure itself.

3.1.7 The Picture Manager

The picture manager provides artists with an interface to Chiron-0. It exports all the
tvpes and operations in the abstract depiction which are useful to artists, as well as the
routines artists need for event notification via devices (section 3.3). The picture manager
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Figure 6: The results of different types of stretches. The dotted lines show the outcome after
the figure is stretched the distance indicated by the vector.
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also notifies the renderer when an artist calls a routine which potentially modifies the
display.

3.2 Artists

There must be a clear distinction between the presentation issues decided by the artist and
those decided by the user interface infrastructure. The artist should not be overburdened
with making calculation-intensive decisions. but its flexibility and power should not be
limited by delegating too many decisions to the UIMS. Often the artist will have more
information than the user interface’s rendering agent regarding which layouts are prefer-
able. In Chiron-0, the artists take care of the top-level presentation decisions (such as the
relative positioning and selectability of figures). Decisions that require extensive calcula-
tion or knowledge of exact coordinates are left to the renderer (the renderer is described
in section 3.4.3). '

The Chiron-0 model assumes that the applications are based on abstract data types
(ADTs). An artist creates an annotated type for the abstract data type it depicts (see
section 2.2). Each operation on the ADT is overloaded with the annotated tyvpe and
extended. The overloading routines typically call the original ADT operation in response
to user input (the process by which an artist is notified of user actions is described in
section 3.3) and then update the display if necessary. The artist may add local state
information to keep track of an objects depiction. and may also add new functions to
manage the display. Graphical figutes are created and modified by calling the routines
available in the picture manager interface to the abstract depiction.

The interface between the artist and ADT is determined solely by the ADT operations
visible to the artist. The ADT must provide a functional interface to all references and
manipulations of objects. so that these operations can be extended by the artist. As
a result. the artist for an ADT in a given tool can generally be written without any
modifications to the existing tool.

3.3 The Device Module

The device module makes the concurrency between Chiron-0 and the application possible.
The application and Chiron-0's input routines are concurrent processes which communicate
using the device abstraction described in section 2.4. Via the device mechanism, an artist
receives notification of user actions that are directed towards graphical figures which depict
objects of the artist’s associated abstract data tvpe. Conceptually, each figure (node in
the abstract depiction tree) can have a corresponding device that defines its behavior. As
all objects of the same type typically have the same behavior, all figures depicting objects
of a single abstract data type have the same device in the current implementation (this
was done to cut down on the number of active tasks at runtime). For example, a Petri net
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application would have one device for all the Petri net places. and another device for all
the transitions. This is in contrast to having a device for every individual object. There
is a slight loss of flexibility to this approach. because information that could otherwise be
kept in the control state of a particular object must be kept in the data state instead.
However. the more general scheme of one task per object is just not practical because of
tasking overhead. given the current state of Ada compiler technology.

The artist passes in a procedure that is called by Chiron-0 whenever an event occurs for
an object of that type. As a result of Chiron-0's concurrent model of command processing.
the application does not run only when an event procedure is called. rather the application
and input processor run concurrently at all times. In contrast. the more common dispatch
model treats a ( single-threaded) application as a set of subroutines that execute only when
called by the user interface.

Accordingly. a device is coupled with an artist to form a gadget that manages hoth the
behavior and appearance of an abstract data type. The device abstraction is implemented
by a group of three tasks: the mapping. relay. and channel tasks (see Figure 7).

The primary duties of the device module are to first determine the model object corre-
sponding to the graphical figure on which the user acted. and then to notify the artist. To
accomplish the first of these duties. the mapping task assigns serial numbers to the data
objects and keeps them in a table. The serial number is also stored with the graphical
figure in the abstract depiction. The artist is responsible for informing the mapping task
(via the picture manager) of the data objects for which it Wants to receive events. and for

table which registers data objects.

When the input listener receives an event from the underlying window syvstem. it cal-
culates the graphical figure for which the event was intended, and sends the event on to
the channel task (see section 3.4.2 for details on Chiron-0's input handler). The channel
task acts like mailbox which accepts messages from the input listener and holds them until
they are picked up by the relay task.

Upon receiving an event, the relay task uses the figure’s serial number to obtain the
appropriate data object from the mapping task. Once it has this data object, the relay
task can notify the artist of the event.

At first thought, it would seem as if the mapping and relay tasks could be combined
into a single task; this is largely an artifact of Ada’s asymmetric rendevous. The mapping
task must be able to accept commands from the artist even when notification from the
relay task to the artist is blocked. Also. the mapping task is essentially a server which sits
in a wait loop, and therefore is not able to make calls on the channel to receive events.
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[94)

3.4 The Concrete Depiction Module

The concrete depiction is responsible for mapping the abstract depiction onto the screen.
and routing user actions (events sent by the underlying window system) from the kevhoard
and mouse to the channel task. It is split into three modules: the input correlator. the
renderer. and the mouse task.

3.4.1 The Input Correlator

The input correlator determines the abstract depiction view in which an event occurred.
The events Chiron-0 receives from the X Window Svstem indicate the window to which the
event was directed and the position of the mouse at the time. Accordingly. the correlator’s
primary duty is to maintain a mapping between the X windows and the corresponding
views in the abstract depiction. For this purpose. the correlator keeps a table of X window
identifiers and a pointer to the associated view (recall that Chiron-0 views are imple-
mented as X windows). The renderer is responsible for depositing this information into
the correlator’s table.

3.4.2 The Mouse Task

The mouse task receives all the events sent by the N Window Svstem (‘mouse task’ is
somewhat of a misnomer. since this module handles all mput from both the kevbhoard
and mouse). and translates them into Chiron-0 events. Chiron-0 events convey the same
information as raw X events. but in terms of figures which is more sujtabje for use by
artists (for more details on events. see section 3.4.4 below).

The mouse task must determine the figure for which the event was mtended. For
this reason. the bounding hox (virtual rectangle that completely encompasses a graphical
object) of each figure is stored along with it in the abstract depiction tree. This information
1s calculated and deposited into the abstract depiction by the renderer. The mouse task first
looks into the correlator’s table to find the view in the abstract depiction tree representing
the window in which the event occurred. It then traverses the subtree of the abstract
depiction rooted at that view, comparing the event's coordinates with the bounding hox
of each figure until a match is found.

Now that the mouse task has found the figure for the event. it must send the event on

the figure for the event has an associated device — if so. the event s sent. Otherwise, the
mouse task searches upwards in the abstract depiction tree (following parent pointers) for

a figure with a device. If none is found, the event is discarded.
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3.4.3 The Renderer

The renderer produces the concrete depiction which is presented to the end user by making
calls to the underlying window system. Chiron-0's basic drawahle figure types (view.
polygon. polvline. bitmap and text) are very similar to to X's primitive shapes, so little
extra calculation is needed. Whenever an artist makes a call to the picture manager that
will cause the display to change, the picture manager sends a message to a mailbox task
maintained by the renderer. The renderer then asynchronously processes the requests in the
order thev were received. getting the information it needs by reading the abstract depiction
tree. In the current implementation. each display update message causes the entire screen
to be redrawn: the renderer can also he told to batch such updates and Incorporate them
nto a single redraw. A smarter update algorithm which only redraws the modified areas
of the display is certainly possible within the current design. An initial attempt at smarter
refresh was made using X117 clipping regions to redraw only a small region surrounding
updated figures. but the X1IR3 implementation of clipping regions was so slow that the
smarter refresh policy actually slowed Chiron-0 down. When the renderer draws a figure
for the first time. it calculates that figure’s bounding hox. and stores those coordinates
in the abstract depiction for later use by the mouse task. Upon drawing a view — which
involves creating a new window - the renderer deposits the window identifier returned by
X in the correlator’s table.

3.4.4 Events

The mouse task. as mentioned above. converts raw X events into a form more useful to
artists. X events communicate the details of user actions with window identifiers and
coordinate values. which is too low level for artists that are working with Chiron-0 views
and other figures. Specifically. Chiron-0 events contain the following information:

¢ The kind of event received (such as expose. move or select) and possibly a numeric
detail (for example. representing which selection was made in a menu).

® The figure acted upon in the event and the figure which actually received the event
(these may be different — see section 3.4.2). Also for binary operations, the object
figure is included.

¢ The devices of both the figure that received the event and of the object figure.

e The initial and final positions of the mouse during the event (used primarily for move
events).

A timestamp of when the event occurred.
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4 Implementation Considerations

The preceding sections have emphasized the implementation independent aspects of the
Chiron-0 design. noting a few implementation limitations where relevant. This section
focuses on issues specific to the implementation. and examines the results of the decisions
that were made.

4.1 Ada as the Implementation Language

Chiron-0’s design is language independent. allowing a clear distinction to be made he-
tween the UIMS architectural issues and language dependent concerns. Discussions and
functionality considerations led us to decide on Ada [ALR83] as the primary implementa-
tion language. A number of advantages and disadvantages to this decision were found in
the course of building and evaluating the Chiron-0 prototype. In particular. Ada package
construct for building ADTs and its built-in tasking for concurrency fit very well with the
Chiron-0 model. However. the lack of inheritance and procedure variables in the language
proved to be handicaps in mapping the conceptual design into the implementation.

Advantages of Ada. Aside from the general positive aspects of using Ada as an imple-
mentation language (such as explicit provision for modules through the package construct).
there are a number of particular advantages to using it to implement Chiron-0.

Abstract data types are easily implemented using Ada packages. This is a significant
benefit, as the Chiron-0 model assumes that the tools for which artists are written are
based on abstract data types.

Another considerable advantage of Ada is its tasking primitives. The Chiron-0 model
requires concurrency between the application and the UIMS. and the device abstraction
described in section 3.3 maps naturally into tasks. In the implementation of Chiron-0 it
was assumed that tasks were fairly inexpensive but not free. Thus. we opted for one three-
task device for all of the graphical objects representing the data objects of an abstract
data type. rather than associating a different task for each figure. For example, a Petri
net application would have one device for all the Petri net places. and another device for
all the transitions. This is in contrast to having a device for every individual object. Also.
there are no polling loops (the tasks are lazy tasks) in the implementation of devices.

Disadvantages of Ada. Ideally, an artist should be able to pass Chiron-0 an arbitrary
procedure to call when an event is received for a particular object. However, since Ada does
not support procedure variables, they had to be simulated using task types and generics
as described in [LH83, Rou85].

Ada’s type system caused the worst mismatch between the high level design and the
implementation. Ada is strongly tvped and does not support inheritance. This made it
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difficult to implement annotation. which had to be simulated with packages and overload-
ing. Given an abstract data type package as the original tool. the artist can be written as
another package which exports the types and operations of the original. The artist then
performs its own processing to receive events and update the display before or after calling
the operations in the original tool.

Furthermore, since Ada objects are static, it is impossible to dvnamically attach and
detach artists to individual obh jects at runtime. Moreover. artists must be bound statically
to an entire class of objects (of course objects can be created and drawn on the display
dynamically). Also. since the Ada assignment operator cannot be overloaded. procedure
calls are necessary to make assignments to annotated objects. The problems encountered
in the implementation of Chiron-( are discussed in more detail in section 5.2,

4.2 Deciding on a Platform

Our primaryv interest in building Chiron-0 has been in the user interface issues — we are
not interested in graphics per se. and so wanted to use existing graphics software as much
as possible. The choice of a graphics platform is an Important one as it determines. to a
large extent. the course of the implementation.

Conventional graphics packages. such as Core [MvD78] and GLS [BEHtHS2]. were
evaluated. The primary shortcoming of these traditional standards is that they only provide
support for producing graphical output. They do little to assist in relating the figures on
the display with the data objects those figures represent. These packages are intended to
create intricate graphics. but typical software environments rarely take advantage of such
functionality. Furthermore. these packages are not vet available for all the modern hit-
mapped workstations for which Chiron-0 is intended! For these reasons. very few software
development tools have used these conventional packages.

Window systems such as X. NeW'S [NeWS87] and SunView [Sun86] are more suited to
the platform Chiron-0 needs. They provide support for graphics and windowing. as well
as higher level components (ie.. scrollbars. menus). Also. if necessary. a tool that uses a
conventional graphics package could always run in its own window under these svstems.
Although most of the functionality of window systems is still geared towards producing
graphical output, they do provide a control structure for processing user inputs.

SunView and NeWS. Both Sun View and NeW'S were evaluated. and rejected for sev-
eral reasons. Neither of these systems are portable as they will run only on Sun work-
stations. NeWS has the desirable feature of being network transparent (SunView is not
network transparent), and and is very flexible since its client and server communicate using
Postscript [Ado85] programs. However. for Chiron-0 the support for the handling of user

'Sun does have SunCORE and SunGKS packages for use with its SunView window system.
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inputs is one of the significant advantages of window systems in general. and Postscript
is designed primarily for display. not input correlation. Also. NeW'S has failed to attract
a large following among window system users. and does not have a broad support base.
Another important consideration is that the style of SunView applications assumes a sin-
gle thread of control per large process. A client program (window systems treat both the
UIMS and the application as a single client) is expected to sleep until it is notified by
the window system. Notification is accomplished via a call to a client’s procedure. thus
informing the client that an event (user action) has occurred. This protocol is in direct
conflict with the concurrency between the application and UIMS required by the C'hiron-0
model. The SunView notifier does have an “explicit dispatching” stvle in which a client
passes control to the window system at regular intervals. Notification is not required in
this case. but the window system still assumes a single thread of control.

The X Window System. The X Window Svstem was best suited for Chiron-0 for
the following reasons. X has become the standard window system. and is portable to a
wide range of hardware systems. X is network transparent. meaning that a distributed
environment can be supported. Also. N's client/server model reduces the size of client
programs. Finally. X's control structure is compatible with the concurrency in Chiron-0.
All events are represented as data objects in a queue. When the client wants an event. it
can perform either blocking (client waits until an event arrives before returning) or non-
blocking reads from the queue. No notification is required. thus both the application and
UIMS are continually active.

5 Experience Using the Prototype

The current version of Chiron-0 is built on top of Version 11. Revision 3 of the X Win-
dow System. It has been tested on Sun 3/50 and Sun 3/260 workstations. and DEC
VaxStations.

The prototype is in a stable working state. All the basic functionality described in this
document has been implemented. including all types of figures (polygons. polylines. text,
bitmaps. blocks and views), attributes and menus. The event structure is in place. and
events can be received. Also, a small library of reusable components, including buttons,
scrollbars, and dialogue boxes is available.

Several versions of Chiron-0 have been in use at UC Irvine as well as other Arcadia sites
for about two vears now. As a result. several experimental applications were developed:

Petri Net Editor: A simple graphical editor for Petri nets, which can simulate transition
firings.
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IRIS Graph Editor: A graphical editor for IRIS graphs. IRIS is a graph-oriented inter-
nal representation of Ada programs [BFS83].

DFA Editor: An editor for creating deterministic finite state automata.

Semantic Ada Viewer: A viewer for displaying semantic information on statements in
an Ada program.

The Petri net editor. written by one of the developers of Chiron-0. was the first ap-
plication written and was a good test of the Chiron-0 model (see Figure 8 for a screen
shot of the Petri net editor). First, a package was written that implemented the Petri
net abstract data type. Its data structures were designed for efficient use of a Petri net.
and are quite different than the data structures appropriate for graphical representation.
For instance, the number of tokens in a Petri net place is represented as a single integer.
although graphically it is represented as a collection of individual graphical objects.

After the Petri net was complete. the artist responsible for maintaining the display of
the Petri net and handling user inputs was written. The other applications listed above
were also written in this two phase manner (i.e. first write the tool encapsulating the
abstract data, and then write the artist).

The successful building of these applications shows that Chiron-0's approach to UIMS
design is feasible. Artists were written for the abstract data types within these various
tools without modifying their original implementations. Furthermore. Chiron-0 was able
to manage the display while the tool concurrently processed the user actions. Yet despite
this. our experiences in writing these applications brought to light several limitations of
the design and resulting implementation. Ways were devised to avoid some of themn: others
are influencing a redesign effort currently under way.

5.1 Design Limitations
5.1.1 Explicit Representation

Within the annotation scheme used to bind artists to model objects (see section 2.2). access
to the data type of the model is gained by going through the artist (recall that the artist
overloads the operations available on the abstract data type). As the model data type is
not directly accessible, the ADT must export all significant operations so that they can
be overloaded and called by the artist. For example, the artist is informed if the user
chooses to delete an object and updates the display accordingly. Yet, if the tool does not
implement an explicit destruction routine. the artist has no way of effecting the deletion
of the corresponding model object.
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5.1.2 Controlling the Semantics of Applications

Annotation is guaranteed to preserve the correctness of the underlying data type: new
operations provided by the artists must not alter the state of data objects. For this reason.
artists cannot provide any operations that depend on controlling the semantics of the
ADT. For example. a general "undo” function would be very difficult to implement. Upon
receiving an undo command from the user. the artist can easily update the display. but
it has no way of relaying the change to the underlying model objects. As a result. unless
the tool explicitly exports undo operations. the artist can only provide an undo option for
those functions that do not alter model objects (for instance. graphically moving a place
or transition in the Petri net editor without altering the underlying Petri net).

5.2 Implementation Problems
5.2.1 Semantics of the Assignment Operator

Assignment is not a first-class operator in many languages, including Ada. as it cannot be
redefined or extended. The semantics of the assignment operator depend on the represen-
tation. rather than abstract semantics. of an object. For instance. assignment of a binary
tree represented by a nodes-and-links structure causes the new copy to share a structure
with the old. while assignment of a binary tree represented as an array does not cause
structure-sharing. The artist must be aware of the model object’s representation in cases -
such as this. in order to maintain a correct display. Thus complete transparency of an
artist is possible only for Ada limited private types (a type where assignment is not al-
lowed directly). In contrast, C'++ allows the assignment operator to be redefined in order
to prevent this problem [Str86].

5.2.2 Simulating Annotation

Implementing annotation by simulating inheritance in a strongly-typed language such as
Ada led to several problems. Experience writing the Petri net editor and other applications
revealed that the artist in some cases must maintain much of the same state information
as the abstract data type in order to keep the display current. This results in the artist
duplicating a significant amount of code from the ADT. The heart of this problem lies
in the fact that there is no link from the model object to the annotated object in the
artist. Artists for Chiron-0 were designed not to force any modifications to the underlying
abstract data type, including the installation of pointers back to annotated objects in the
artist. The artist manages the display based only on calls made into the abstract data tyvpe
~ it has no way of knowing when a model object changes state, and thus must simulate
many of the tool’s actions. For example. the Petri net abstract data type keeps track of all
the arcs connecting places and transitions, and removes them when the place or transition
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is deleted. At the same time. the Petri net artist also maintains the connectivity of the
net’s components so that it can correctly erase the arcs from the display in response to a
delete place or transition command (see F igure 9).

In a language that supports true inheritance, the association between annotated and
model objects is trivially maintained as they are actually the same object. The artist
is informed of all calls made on abstract data type routines, including calls made from
within the abstract data type to other internal subprograms. The annotated type would
be implemented as a subclass of the abstract data type’s class. This subclass overloads its
superclass” routines (including object creation functions), from which the display is updated
and the original routine called. As a result of true inheritance. whenever a function in the
superclass is called, the overloading function in the subclass is executed, resulting in the
proper display and correct model objects.

A better simulation of inheritance can be achieved with an automatically generated
dispatcher. a software layer built around each abstract data type in a tool that dispatches
incoming calls from both the tool and the artist. The dispatcher overloads all the subpro-
grams in the abstract data type. and presents an interface that is identical to the type's
interface. The tool must have all calls to the original abstract data type replaced with calls
to the dispatcher (in Ada this modification means changing the with Abstract.Data_Type
clause to with Dispatcher). The bodies of the overloading routines contain calls to the
original abstract data type. followed by a call to the artist notifying it of the operation.
With this scheme. the artist is informed of each subprogram call made to the abstract data
type. with only a minor modification to the tool’s code. '

Note. however that the dispatcher does not solve the entire duplication of code problem.
It is not a perfect substitute for a link between the abstract data type and the annotated
object in the artist. The dispatcher can only notify artists of subprogram calls made to
the abstract data type. not of every state change to an object. For example. within a
graph ADT’s subprogram to delete a vertex. it may also remove all the edges connected
to that vertex as a side effect. The dispatcher will notify the artist that a vertex has been
deleted when this subprogram is called. but it has no way of knowing which edges were
also deleted. Thus. the addition of a dispatcher will result in less duplication of abstract
data type code in the artist, but will not eliminate the problem completely.

Another manifestation of Chiron-0s imperfect simulation of annotation is that the
series of declarations used to annotate an abstract data type does not work correctlv with
recursive data structures such as trees and lists. Links within the recursive data type point
to instances of the base tvpe, not the annotation. As a result, the artist cannot access the
next annotated object by following the existing links. and is forced to maintain the entire
pointer structure itself! Again, in languages with inheritance, the annotated and model
objects are one and the same. so this problem does not occur.

A final issue is that since the assignment operator cannot be overloaded, procedure
calls are needed for assignment to annotated objects. This requires the abstract data type
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to export an explicit creation routine. which can then be overloaded by the artist.

5.2.3 Performance Problems

One of the most visible problems with Chiron-0's implementation is its performance. Al-
though the performance is acceptable for a simple editor (such as the Petri net and DFA
editors). Chiron-0 is still too slow to he used as a UIMS for real systems. For instance. a
figure dragged across the screen cannot keep up with a quickly moving mouse. Also. there
Is a noticeable delay between the selection of a menu item and the corresponding update on
the screen. Even though speed was not considered one of the primary goals in developing
Chiron-0. it is an important consideration in the current redesign effort. There are a large
number of factors. including quality of the generated code. tasking overhead. and choice
of algorithms. that could account for Chiron-0's slow performance. and unfortunately., few
profiling tools for Ada programs are available.

Since Chiron-0 is built on top of the X' Window Svstem. the performance of X' must
also be taken into account. Chiron-0 interfaces to X's library (written in (') via a set
of Ada bindings®. A number of simple applications were written in both (* and Ada to
measure the effect of the binding’s extra leve] of indirection on several common X library
calls. The results are shown in Table 1. The numbers listed are elapsed times (obtained
via the system clock). taken on a Sun 3/50 with only the X server running (and one xterm
window. of course).

These tests show that the Ada interface dominates the function call time for all but
the most compute intensive X system routines (XOpenDisplay, XLoadQueryFont, and
XSetStandardProperties). On the other hand. the absolute times are small — on the
order of a few milliseconds. and empirically. the Ada programs were only slightly slower to
the end user.

As there were no profiling tools available for the Ada compiler available to us. we wrote
a simple profiler ourselves. and used it to time each of the routines in Chiron-0. The
profiler records the elapsed and system time on entry and exit to each subprogram. and
uses a call stack to keep track of nested routines. As there is only one stack. it can only
support a single thread of control at a time. Chiron-0's high degree of concurrency meant
that the the tests had to be repeated for each subset of subprograms within a single thread
of execution. Furthermore, a routine with a high time is not necessarily inefficient (tasks
that are executing concurrently with a routine that is being timed will be included in the
routine’s final time). Despite this, the profiler does give some indication of where to start
looking for inefficiencies. Table 2 shows a listing of the most time-consuming routines in
C'hiron-0 (all routines which that had a cpu time of greater than 0.5 seconds are included).
Again, these tests were performed on a Sun 3/50 workstation with only the X server

*The Ada bindings were written by SAIC and are publically available
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B Overhead of using an Ada interface to X l
Ada C Ada- C
Name of Routine time (msec) | time (msec) | time (msec) | Percentage
XOpenDisplay 144.8 144 0.8 6%
XDefaultScreen 2.6 0.0 2.6 100.0
XWhitePixel 3.6 0.0 3.6 100.0
XBlackPixel 3.0 0.0 3.0 - 100.0
XDefaultRootWindow 3.3 0.0 3.3 100.0
XLoadQueryFont 88.6 61.2 274 31.0
XSetStandardProperties 14.6 2.0 12.6 86.3
XC(CreateSimpleWindow 6.6 0.0 6.6 100.0
XSetW\IHints 5.9 0.0 5.9 100.0
NCreateGC 4.3 0.0 1.3 100.0
XSelectInput 4.6 0.0 4.6 100.0
XMapWindow 3.9 0.0 3.9 100.0
X(learWindow 3.6 0.0 3.6 100.0
XDrawRectangle 3.1 0.0 3.1 100.0
XDrawLine 2.3 0.0 2.3 100.0
XDrawString 2.9 0.0 2.9 100.0

Percentage = (Adatime — C'time)/ Adatime

Table 1: Averages were taken over 6 runs of both the .Ada and (' code. Times were taken for

10 calls to each of the above routines (results here are thus divided by 10) with the exception

of XOpenDisplay.
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running. The times reported are for a sample run of the Petri net editor. during which the
following actions were performed:

e Create a place.

¢ Add a token to the place.

¢ Create a transition.

® Add an input arc between from the place to the transition.
¢ Move the transition.

e Fire the transition.

o Delete the transition.

® Delete the place.

Click on the close button to end.

As a result of these profiles. we discovered that a large amount of time (about 25%
of the total elapsed time) was spent in the menus package — most likely a result of its
multiple polling loops checking for events. The multiple loops were necessary because of
a bug in an early version of the X Window Svstem which caused certain mouse events to
be received out of order. We are now trying to find a more efficient 1mplementation of
this package which combines these multiple polling loops into one. The polling loop in
the Mouse module also has a high time. but this is to be expected since this includes the
time spent waiting for user events. Most of the other routines in the table have a number
of calls to X in them. which easily accounts for their high times (e.g. Create Window,
Draw_A_Polygon, Create Batch Windows). Other routines were called so often that the

times added up (e.g.. Find, Search, Parent_Block, Calculate_Coords).

some form of access control is needed for the abstract depiction structure. For instance. the
renderer could he reading the abstract depiction tree to update the display, while the artist
Is writing into the structure to create a new figure. Currently, Chiron-0 employs a very
coarse-grained scheme that locks the entire tree when it is being read ( multiple readers are
allowed) or written. The profiles showed that during initialization. the renderer takes out
a lock to write in the abstract depiction. Meanwhile, the Initialization routine is trying to
create a new figure (which requires writing a new node into the abstract depiction tree).
The initialization routine is forced to wait until the renderer completes its write, even
though it needs to access a completely different part of the abstract depiction tree. This
artificial serialization does not cause a slowdown on a uniprocessor, but for multiprocessor
machines it may have a noticeable impact. A new version of the access controller is being
considered that will lock only subtrees, rather than the entire abstract depiction tree, in
order to allow more concurrent accesses to the structure.
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Petri Net Editor Profile

Module Subprogram Elapsed | . CPU Calls
|| time (sec) | time (sec)

Abstract Depiction: | Recalc_Placement 1.120 1.020 12
Parent_Block 1.060 0.600 | 116

Calculate_Coords 0.830 0.640 4

Figure_Extent 0.800 0.560 17

Access Controller: | Seize_Write 7.680 2.960 29
Hash Table: Find 3.920 2.840 | 245
Search 2.500 2,040 | 279

Menus: Show_Menu 21.160 13.000 T
Create_Batch-Windows 1.520 0.740 3

Mouse: poll loop 57.480 11.760 &
Sub_Window 1.500 1.160 | 195

Find Figure 1.420 1.360 | 100

Picture Manager: Initialize 5.020 0.580 1
Delete_Figure 1.520 0.620 5

Change_Polvgon 1.540 0.740 2

Corner Index 1.220 0.720 22

Renderer: Add_View 5.480 - 1.980 1
-| Change-Block 1.640 1.160 21

Deposit 3.380 | 1.340 23

Determine_Clip 0.620 0.580 8

Draw_Polvgon 3.540 1.560 29

Draw_Text 2.240 1.000 12

Enter_Block 0.740 0.580 12

Update_Screen 0.960 0.500 17

Add-Figure 2.220 0.920 9

Bye_Figure 1.380 0.500 5

Create_Window 3.640 1.380 1

Draw_A_Polygon 1.340 0.780 17

Total - 90.960 24.060 | 482

Table 2: All subprograms which had a cpu time of greater than 0.5 seconds (over all calls) are
included. The figures for the total is representative of the time it took to run a complete test
— it Is not the sum of the numbers listed here.
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In addition to the efforts described above. an improved refresh scheme is being consid-
ered. There is a one-to-one mapping between each figure in the abstract depiction and the
bitmap which depicts it on the display. In current implementation. none of these bitmaps
are stored ~ an object is completely redrawn each time the screen is updated. In order to
speed up these refreshes a bitmap cache can be implemented by storing bitmaps with their
corresponding figures in the abstract depiction. When a figure is created or modified, a
new bitmap is created and cached before being mapped to the display. Subsequent screen
updates that do not alter the appearance of the figure (such as a move or refresh) can
use a cached bitmap and should be much faster as a result. As bitmaps consume a large
amount of storage space, having an infinite cache size (i.e., cache every figure’s bitmap) is
not realistic. We need to investigate the tradeoffs among various bhitmap cache sizes and
cache replacement strategies. For example, only complex and commonly used bitmaps may
be made eligible for caching. If a least-recently-used replacement strategy is adopted the
most commonly used bitmaps will tend to remain in the cache. The size of the cache and
other parameters can be varied dynamically depending on such factors as system load and
available memory. _

Finally. we are also examining different Ada compilers. One of the significant differences
between the compilers available when C'hiron-0 was first written and the current generation
is in tasking optimization. Some of Chiron-0's many tasks can be compiled into simple
monitors by smarter compilers [HN80]. This may have a large impact on the tasking
overhead. and will certainly affect the design of the tasking structure in Chiron-1. Also.
more profiling tools are being made available with the newer compilers. making early
detection of bottlenecks much easier.

5.3 Improvements to the Design

The previous two sections described the problems found in the design and implementation
of Chiron-0. The solutions presented in this discussion are being applied in the current
redesign effort into Chiron-1. Our experience with the prototype also pointed out several
improvements and additions that could be made to the current design. which are also
planned for Chiron-1.

5.3.1 Limited Event Handling

Chiron-0’s event handling mechanism is very simple. For each data type. the artist passes
an event-handling procedure to the UIMS that is executed whenever any event for an object
of that type is received. It would be desirable for an artist to be able to specify classes
of events in which an annotated type is interested (i.e., button clicks. mouse motion) and
have the UIMS separate out the rest. Without this facility. unnecessary calls are made
to the artist’s event-handler, and the artist is forced to perform extra processing to filter
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out the unwanted events itself. Furthermore. there is no mechanism for an artist to put
an event back in the queue. or to pass it on to another artist. This capability is useful
when an operation requires the cooperation of several artists (for example. a group delete
operation that deletes different types of objects).

A simple solution to these problems, which is being incorporated into the current re-
design. is for the artist to pass a list of interesting events along with its event-handling
procedure. The mapping task in the devices module (section 3.3) can easily store this
information in a table. The relay task will check each event received against the table and
only notify the artist when necessary.

5.3.2 Multiple Artists

Currently only one artist can be attached to a single abstract data type at a time (this is
a result of the current implementation - multiple artists are conceptually possible in the
framework of the design). Several artists can be attached to a single abstract data type,
by further extending the mapping task’s duties. This makes it possible to display multiple,
coordinated views of a single abstract data type at the same time. Each artist that wants
notification of events for objects of the abstract data type can pass the mapping task an
event-handling procedure. which it stores in a table. The relay task can then query the
mapping task for the list of artist procedures to call. Multiple artists are also consistent
with the dispatcher mechanism proposed as a partial solution to the imperfect simulation
of annotation in Ada. Instead of informing a single artist of each abstract data type
operation. the dispatcher can notifv all interested artists.

5.3.3 Artists are Difficult to Implement

A common complaint of users of Chiron-0 is that artists are difficult to write. The program-
mer needs some understanding of Chiron-0's device model in order to use event notification
mechanism. and must be familiar with interface to Chiron-0 provided by the picture man-
ager. Even though all the routines the artist writer needs are isolated in this one package,
the interface is still quite lengthy and complex. Furthermore. the necessary duplication of
abstract data type state in the artist (discussed above in section 5.2.2) forces the artist
writer to reimplement much of the original data structures. As a result. writing an artist
is a significant undertaking for a single programmer, and yet does not lend itself well to
sub-division so that the project can be worked on by a team.

A possible remedy for this problem is to provide artist builders with an artist generator
— a graphical system that automatically generates artist code. An artist generator for
Chiron-0 should be largely dialogue and menu-driven. It must provide the artist builder
with the capability to draw the graphical representation of an abstract data type on the
screen, and then generate the proper artist code. In addition, the artist generator can
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maintain a library of reusable graphical components (e.g. buttons. titlebars) which would
further simplify user interface construction. as well as foster reuse and uniformity.

A number of current user interface management svstems include editors for specifying
the presentation and functional behavior of their user interfaces, Existing systems include
Prototyper for the Macintosh. and Interface Builder for the NeXT Computer. Several
recent projects, such as Serpent (Ins39], ET++ [WGMSS]. and InterViews [LVC39]. are
currently developing graphical specification tools and generators.

5.4 Client-Server Split

In the current implementation the tool and artist are linked together into a single executable
process. This results in very large run-time processes (partly because of the use of Ada).
and the entire system must be reloaded (and modules possibly recompiled) whenever any
code is modified. Furthermore. tools written in languages other than Ada cannot be
accommodated without some kind of language-dependent interface.

One possible solution to these drawbacks calls for a fundamental change to Chiron-0's
architecture: split the UIMS into a client and a server. The server implements the inter-
nals of the user interface management system - essentially Chiron-0's abstract depiction.
concrete depiction. and devices tasks. The tools and artists are on the client side. which
provides a data-shipping interface to communicate with the server. The advantages of such
a client/server architecture are numerous:

® Tools can be built in different (non-Ada) languages. As long as the tools use the
correct communication protocol they can make make requests of the Chiron-0 server.
and are treated as first-class applications.

e Separation of the server from the client code leads to smaller processes, as well as the
ability to modify one without having to relink and possibly recompile the other. Only
the client side is loaded with a tool. thus reducing the overhead of experimenting with
various applications.

® The Chiron-0 server and the display can run on a separate machine from the client
process. The system configuration can be tuned based on such factors as machine
load and network traffic.

o Multi-display or multi-client configurations are supported. A single client can display
results on several different machines, or a single display could handle input from
multiple clients.

® The heavyweight process model of Unix provides protection boundaries between pro-
cesses, whereas the lightweight model of Ada tasks does not. By making the client
and server separate Unix processes, Chiron-0 will have a useful boundary hetween
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client and server processes (e. g.. clients can’t destrov UIMS data structures). without
paying the overhead of heavyweight protection boundaries between all tasks. The
heavyweight process Mmanagement may also be helpful in maintaining housekeeping
details. such as noticing that a client has terminated.

6 Conclusions

The goal of the Chhiron project is to develop organizing principles for UIMS that promote
uniformity without compromising power or extensibility. The design of Chiron presented
in this paper is a viable approach for meeting these goals. and is applicable to software
environments in general.

Chiron’s decoupling of interaction and tool functionality provides the benefits of mod-
ularity, and allows independent development of interface and tool components. Both inter-
face and tool components can be reused. encouraging uniformity and reducing the time to
build new applications. This separation of concerns is accomplished in a powerful, flexible
manner by binding artists to abstract data types with the annotation mechanism.

Chiron does not limit the types of tools available by imposing a dispatch model of
control. The tools run concurrently with the interface facilities: the UIMS can continue to
process inputs and update the display while the tool responds to user commands. Within
Chiron-0. the renderer runs concurrently with the abstract depiction. allowing requests
on the abstract depiction (e.g. create figure. move figure) to proceed at the same time as
display updates.

Chiron’s abstract depiction provides a structured representation hetween the model
objects and view objects - no particular representation scheme (such as parse trees) is
forced upon the applications. The abstract depiction’s hierarchical structure provides the
means to build complex representations from a small set of primitive figures. Also, such
functionality as input correlation and incremental update is facilitated.

The lessons we learned from building Chiron-0 are shaping the design and imple-
mentation of Chiron-1. We discovered several limitations resulting from our implemen-
tation — most notably the imperfect simulation of annotation and disappointing perfor-
mance. There also number improvements and additions to this design that are planned
for Chiron-1. These include an extended event handling mechanism, artist generators,
and the client/server split. In addition, we are investigating a scheme for the persistent
storage of views using P-Graphite [WWFTSS]. Lastly, we are also developing an object-
oriented Abstract Depiction Language to simplifv the definition of graphical objects and
their relationships (this information is stored in the abstract depiction).
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