
UC Irvine
ICS Technical Reports

Title
Modularizing a concurrent artist-based UIMS for software environments

Permalink
https://escholarship.org/uc/item/7qb79839

Authors
Anderson, Jennifer A.M.
Taylor, Richard N.
Young, Michal

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qb79839
https://escholarship.org
http://www.cdlib.org/

^Modularizing a Concurrent Artist-based
UIMS for Software Environments

TR-92-80

Jennifer A. M. Anderson

Department of Computer Science
Stanford University^

Richard N. Taylor
information and C<

^ * University of California, Irvine^
1^1 Department of Information and Computer Science

Michal Young
Software Engineering Research Center

Department of Computer Sciences
Purdue University

C3

t.2j

^Address correspondence to the first author at: Department of Computer Sci
ence, Stanford University, Stanford, CA 94305. Email: anderson@cs.stanford.edu.
Phone: (415)723-4096.

^This material is based upon work supported by the National Science Founda
tion under Award No. CCR-8704311, with cooperation from the Defense Advanced
Research Projects Agency, by the National Science Foundation under Award No.s
CCR-8451421 and CCR-8521398, Hughes Aircraft (PYI program), and TRW (PYI
program).

t

CONTENTS 1

Contents

List of Figures 3

List of Tables 3

1 Introduction 1

2 General Design Issues 2
2.1 Separating UIMS and Tool Functionality 2
2.2 -Artists and .Annotation 3

2.3 The Abstract Depiction 3
2.4 Processing Commands 4

3 Organization of Modules 4
3.1 The -Abstract Depiction 4

3.1.1 Figures 6
3.1.2 Relative Positioning of Figures 9
3.1.3 Occlusion Ordering of Figures 11
3.1.4 Selectability 12
3.1.0 -Attributes 12

3.1.6 Menus 13
3.1.7 The Picture Manager 13

3.2 -Artists 1.5
3.3 The Device Module 15
3.4 The Concrete Depiction Module 18

3.4.1 The Input Correlator 18
3.4.2 The Mouse Task 18

3.4.3 The Renderer 19
3.4.4 Events 19

4 Implementation Considerations 20
4.1 -Ada as the Implementation Language 20
4.2 Deciding on a Platform 21

5 Experience Using the Prototype 22
•5.1 Design Limitations 23

5.1.1 Explicit Representation 23
5.1.2 Controlling the Semantics of -Applications 25

5.2 Implementation Problems 25
5.2.1 Semantics of the -Assignment Operator 25

CONTENTS 2

5.2.2 Simula,ting Annotation 25
5.2.3 Performance Problems 28

5.3 Improvements to the Design 32
5.3.1 Limited Event Handling 32
5.3.2 Multiple Artists 33
5.3.3 -Artists are Difficult to Implement 33

5.4 Client-Server Split 34

6 Conclusions 35

References 36

Inm"

LIST OF FIGURES

List of Figures

1 The overall organization of modules in Chiron-0
2 Distinguishing between ablock's extent and viewable region ' 7
3 Blocks and views in the abstract depiction hierarchy. .° " ' ' ' §
4 Using anchors and corners [
•5 Occlusion vs. dependency ordering
6 The results of different types of stretches ' ' 14
I Implementation of the device abstraction j-
8 .Sample screens from the Petri net editor
9 Duplication of abstract data type code in the artist. 97

List of Tables

The effect of Ada bindings on X library calls.
The most time-consuming routines in Chiron-0. 29

31

Abstract

Auser interface management sj^stem (UIMS) for extensible software en^-ironments must
piomote unifoimit}-. and yet be both extensible and powerful. We describe the architec
tuie of Cbiron-0, a IdlMS designed to meet the demands of asoftware environment We
discuss the key concepts underhdng the design, and how those concepts are realizeTL tL
imp ementation of aprototype. Our experiences with the protot^•pe brought to lioht the
successes of our approach as well as its limitations. We devised wL to cunu„^^^^^

these problems; others are influencing aredesign effort that is currentl,y under wav.

I INTRODUCTION 1

1 Introduction

Chhon is a user interface management system (I IMS) for extensible software development
environments. It pro^•ides basic user interface functions and is used to build interactive,
graphical tools. Chiron's approach separates interaction from abstract tool behavior. A
program called an artist, which sits between Chiron and the tool, makes decisions as to
how the abstract objects in the tool are to be displayed on the the screen. .A. large amount
of flexibilit} is attained b} allowing the application and the UIMS to execute concurrentlv.
Each displayed object can ha^^e its own thread of control - for example. Chiron can update
the display at the same time the application responds to user commands.

-An initial prototj-pe called Chiron-0 was built on top of version 11 of the X Window
System [SGS6], as part of the Arcadia software enAuronment [TBC+88]. We are now in
the piocess of designing Chiron-1. which has gained extensively from our experiences with
Chiron-0.

Throughout this paper, the name Chiron is used when discussing issues in^-olving agen
eral 1. IMS for a software development environments, and the names Chiron-0 or Chiron-1
are used to refer to those particular s}-stems. For more general information. Young [YTT88]
desciil^es the concejDtual design ol Chiron within the software en^dronment framework, and
discirsses in depth the constraints the en^•ironment architecture imposes upon the design of
the ITMS. .\nderson [DYT88] presents a tutorial on how to use Chiron-0 to build graphical
tools.

This paper describes the architecture and design rationale of Chiron-0. First, we discuss
the conceptual design questions facing user interface management system designers, and
give an overview of the solutions we adopted. We present the architecture of the system b}-
desciibing each major component and its relationship to the other components in detail.
We also discuss implementation dependent issues, such as language and platform consid
erations. The results of our design decisions are then exanhned. and compared to current
work in the field. Finally, we examine the limitations of our design and implementation and
pre.sent r'arious solutions to these problems. Our experiences with Chiron-0 .should prove
valuable to others interested in the der-elopment of user interface management systems.

In order to gauge the success of the design and implementation of Chiron the goals
should be clearly identified. In particular, effort was focused on exploring new ideas re-
gar drng the interface between tools and interactii'e components, rather than on visual
design and human factors issues. The primary design goals for Chiron are discussed below.

Scope and power. A software development emdronment supports a broad range of
activities, and so must its UlYIS. In no way should the UIMS limit the .sort of tools
available to the environment, nor should it place restrictions on any particular tool.

The UIMS should strive to take full ach'antage ofthe workstation hardware on which it
is implemented. Advanced graphics and color capabilities should be used whenever appro-

2 GENERAL DESIGN ISSUES 2

priate and lieneficial. In particular, support should be provided for the direct manipulation
style of interaction that is found in the Xerox Star [SIIv"^S2] and its deri^•a.tives such as
the Apple Macintosh [.4CS5]. Direct manipulation allows users to manipulate the repre
sentations of data objects on the display, gi^dng them the illusion of directly controlling
the actual objects.

Although I)ells and whistles are not among our primary goals, the UIMS should pro^•ide
a platform on which such features could later be built.

Uniformity. Uniformity, or consistency, is a key concern for user interface management
systems. The tool builder wants a uniform scheme for adding new tools to the environment
as well as consistent mechanisms for the combining of tools, communications between tools,
and persistent object storage.

From the user's ^-iewpoint, the user interface should enable consistency of the input and
output conventions across all tools. The user should be able to learn a single, consistent
set of commands which apply to all tools.

-Attempts at end user uniformity are typicall}- made by imposing style guidelines on
applications (such as the Apple Macintosh user interface standards), and by pro^•iding
toolkits of commonly used components [SunSG. XtkSS].

Extensibility Software environments must be able to handle modifications, deletions,
and additions, and so must the corresponding UlhlS. Xew and improved tools and capa
bilities will become available, and it is necessar}- for them to be easily incorporated into
the en^-ironment. Changes to the UlhlS itself must not force changes to every tool. It is
important that the ITMS be designed with growth in mind, or modifications such as these
will be unacceptably difficult.

2 General Design Issues

Ghiron-O's design incorporates a number of recent developments in user interfaces, and
has tailored them for use in software development environments. These ideas are briefly
presented below. A detailed discussion of Ghiron-0 s concrete realization of the concepts
described here is presented in later sections.

2.1 Separating UIMS and Tool Functionality

One of the fundamental aspects of Chiron-O's design is the decoupling of interface and
tool functionality. Most interactive tools in a software development environment produce
displays in which the objects on the screen actually represent abstract data objects in the
tool. This is in contrast to applications in which the display itself is the desired end result.

2 GENERAL DESIGN ISSUES 3

such as \'LSI and image processing applications. Chiron-0 exploits this characteristic of
applications to separate user interface from tool functionality, rather than intertwining
graphical manipulations with the tool itself. A number of recent user interface sx^stems.
such as Smalltalk [GRsS3] with its model-view-controller (MVC) paradigm, also have a
high-level organization that separate application data objects (the model) from the graph
ical user interface objects (the vieic)- In addition to the standard advantages of modularity,
this scheme promotes uniformity through the reuse of both interface and tool components.

2.2 Artists and Annotation

Chiron uses artists, first introduced by Myers in the Incense Symbolic Debugger [Mye83]
to referee the interaction between the tool and the user interface. The artist associated

with each data type in the tool is responsible for making decisions as to how the data type
is to be depicted on the screen and how that depiction should change in response to user
input.

Chiron uses a restricted form of inheritance, called annotation [SBS6. SBKS6]. to attach
artists to tools. Accessing the abstract data objects has the side effect of invoking the
artist to update the display. For details on how artists and annotations are implemented
in Chiron-O. see section 4.1.

Since annotations (unlike unrestricted inheritance) preserve the semantics of the under
lying al^stract data type (ADT). an annotation cannot introduce errors into the abstract
data type. This implies that multiple artists may be attached to a single type to pro-
\4de multiple depictions. When the underlying abstract data type instance changes, the
currently attached artist takes care of the updating the display. Furthermore, since the
underh'ing abstract data ty'pe is preserved, annotations can l)e nested. It is guaranteed
that intermediate annotations will not change the semantics of the data type.

2.3 The Abstract Depiction

.Artists make policy decisions about how an object is to be depicted: the TIMS is concerned
with the mechanism of rendering these depictions on the screen. To keep these concerns
separate. Chiron-0 distinguishes between the abstract depiction as composed by the artists,
and the concrete depiction displayed on the screen. .A separate, asynchronous rendering
agent is responsible for mapping the abstract depiction onto the concrete depiction. Hav
ing a structured representation between the model and view facilitates input correlation
and incremental updates, and makes possible the representation of displays which are not
derivable from data objects alone (e.g. a display layout modified by user manipulation).

3 ORGAMZATION OF MODULES 4

2.4 Processing Commands

In ChiroD-0 the input routines and application are concurrent processes. This differs from
the more common UIMS schemes in which either the input routines are subroutines to
the application (called the prompfing model) or the apiDlicatioii is a subroutine to the
user interface's input processor (called the dispatch model). The concurrent model used by
Chiron-0 allows multiple tools to work on the same display. Also, the UIM.S can continue to
update the displaj- while the application responds to commands. A method for developing
such concurrent interfaces, called the device model is presented by .\nson [Ans82].

A device is similar to an abstract data type. The difference lies in the fact that an
instance of an abstract data type changes state only as the result of an operation, whereas
devices may change state autonomously. .4 device may also send messages to other devices:
Chiron-0 has a simple hierarchy of communicating devices in which composite devices
receive events onh" from their components.

In Chiron-0. de^-ices are combined with artists to manage the interaction of an abstract
data t}-pe. The term gadget is used to refer to the combination of an artist and a device.

3 Organization of Modules

The previous sections ha^-e given a high-level view of the key design decisions made in
Chiron-0. The purpose of this section is to describe, in greater detail, each of the modules
in the implementation, so that the solution mechanism - and their ensuing consecpiences
- can be fully understood. \Ae also discuss how the various pieces fit together to form
the overall s}-stem. and present some of the tradeoffs made in the implementation. The
modules are organized as shown in Figure 1.

3.1 The Abstract Depiction

The a.lDstract depiction is Chiron-O's internal representation of graphical objects a.s com
posed by the artists. The abstract depiction is represented as a tree, whose root is a window
onto the entire display screen in the current implementation. .A tree structure was chosen
because it reflects any inherent structure in an abstract data type better than a simple
linear list, without the complexity of an arbitrary graph. This facilitates maintaining the
correlation between the graphical objects in the display and the data objects in the tool,
as well as simplifying the determination of which parts of the display need to be redrawn
for incremental updates. The tree's hierarchy can be exploited to provide inheritance of
graphical attributes and other properties.

3 OR GANIZATION OF MODITES

event notification

makes changes
and reads

Artist

Picture Manager

Abstract
reads (mostly)

Depiction

pointer to
task reads- writes

queue ofchange
requests

User Application

Chiron-0

Devices
Input Coirelator draw requests

event

notification

Mouse Task

gets event
X Interface

forwards
requests

1 '

X
C Library
Interface

Figure 1; The overall organization of modules in Chiron-0.

3 ORGANIZATION OF MODULES
6

3.1.1 Figures

The nodes of the abstract depiction tree are structures called ffoarcs Each ficro c„,
sponds to asingle graphical object. There are si.c different types of figures: Hocfa
polygons. poJyhnes. bitmaps and text This set nf fio-nftse i

':9:atetr .--nd
sin 111 l"^ grouping other figures, and figures are added to a^ „eblock upon creation. This implies that the block must be created before the finite
It contains, and creates astrong bias toivard building complex pictures from the top dot"
Howe™., atop doivn strateg_r may not be appropriate for all structures. Th s oallot for
the bottom up creation of pictures, blocks (and only blocks) mav be created nisd tit

vieiring surfp. the fittttiitn tatt:ttritaIS the virtual rectangle that logically encompasses all the figuris within i,

illustra.ted in Figure 2

Views. AViews, .k view is arectangle through which aportion of ablock is visible Aview is

enctsl:: vt: T?et f"t ttins corrtponds to thetot.'vintw'ott ^ ^ i-Pletnentation,
The relationship lietween blocks and views is illustrated in Figure 3.

Polygons. Apolygon is an arbitrary closed shape. Apolvgon is defined as aseries of
points. an\ of which can be relative to other figures.

3 ORGANIZATION OF MOD I 'LES

Viewable Region

Figure 2: Distinguishing between a block's extent and viewable region. The extent is the virtual
rectangle that encompasses the figures within the block. The viewable region is the portion of
the block which is currently visible through a window.

3 ORGANIZATION OF MODULES

view

contains

_X
block

linked
list

contains

polygon

Dependencies

polyline

block

contains

polygon

polygon

of the abstract depiction. Aview contains exactly one block. Ablock contains a

bbT" of polygons, polylines, text, bitmaps, views and other

3 ORGAMZATIOS OF MOD I'LES g

Polylines. A polyline is an arbitrary open shape. Like pol}-gons. polylines are defined
by an arbitrar}- vector of points.

Bitmaps. Bitmaps are rectangular images. Abitmap is represented as a two-dimensional
array of pixel ^"a]ues.

Text. Text is represented as a \'irtual rectangle enclosing a string of characters. Making
text a separate type of figure (as opposed to modeling it as combination of pohdines. for
example) makes it possible for Cbiron-0 to pro^dde specialized text operations that do not
make sense for an}' other objects, as well as facilitating the use of predefined fonts available
via the window system. Text strings are dynamic, and all the standard functions (such as
insert, append, delete, and read) are available to mahipulate them. Any font available to
X can be used for Chiron-0 text figures.

3.1.2 Relative Positioning of Figures

I pon creation, the location of most figures is specified in terms of their relation to other
figures within their Irlock. Absolute positioning is achieved bj- making a figure relative to
the root, and therefore is only provided for figures in the root's block. Circular relationships
are impossible, since a newly created object can only berelati^^e to figures that have already
been inserted into the tree.

Since pol}-gons and polylines are made up of an aibitrary set of points, any of which
can be relative to other figures, the l^ehaAuor and shape of a figure are closeh' coupled.
For example, if the northwest corner of a pol}-gon is dependent upon a figure that is then
moved, the northwest corner of that polygon ma}- also move and thus change the dependent
polygon s shape arid size. Views and text are permanentlv rectangular so their shapes will
not change, although the}- ma}- be moved or resized in response to an action on a figure
to which they are relative. Finally, a block has no shape, but may move as a result of its
dependencies.

Corners and Anchors. Because ofthe issue ofrelative positioning discussed above, the
way the dependencies of a figure are specified will determine both its shape and behavior.
For aid in regulating this, Chiron-0 distinguishes between sets of corners and anchors.
Corners are the set of points which are connected to define the shape of a figure. Anchors
are thepoints which characterize thefigure's relative dependencies on other existing figures.
Corners are specified in terms of the anchors of that figure. Note that a single point can
be lioth an anchor and a corner, and this, in fact, is ciuite conmion. For a detailed example
of the use of corners and anchors, see Figure 4.

In this figure, Z s anchor .41 is 0 units (pixels) over and 2.5 units down from the
southeast corner of figure A (recall that the y coordinate increases from top to bottom).

3 ORGANIZATION OF MODULES

Z's Anchor Offsets:

A1 = (0, 25) from X
A2 = (0, 25) from Y

Z's Comer Offsets:

C1 = (0, 0) from A1
C2 = (5, -5) from A1
C3 = (0, 0) from A2

10

Figure 4: Using anchors and corners. Anchors determine the location of a figure, and corners
determine its shape. A figure's anchors are relative to existing figures.

3 ORGANIZATION OF MODULES
11

shape of A'fi corner of figure y. Corners determine the
is (0 ? f an ' sample. C2s(0 -ol a„a_, from .41. .As the relative figure moves, the anchors which are dependent on
that figure also move, possibl.v altering the shape of the dependent figure.

3.1.3 Occlusion Ordering of Figures

hWld f'f"f aset of siblings (i.e. two figures within the same parentlock) the abstract depiction tree; dependency order and occlusion order (see Figure -5).

renderer

Concrete Depictian (display)
Abstract Depiction

Figure o; Occlusion vs. dependency ordering. The placement of figures in the abstract deoic

sreaf[:.h:rd:;e^x cir;.

figumr'wCT t^ieT,-la«onships between dependent and relativeguies When the rendering agent calculates the coordinates of some figure 4 which
depends on figtire Bthe position of figure Bmust already have been calculated Occlusion
(the laT *°P''^Sttres must be drawnhe last figures drawn may cover the previous figures, but never vice-versa). Note that
implementing views as wundows in .X doesnh have.exactly the correct semantics intended

3 ORGANIZATION OF MODULES 12

as a nested window is always drawn a.ljove ever}'tliing in its parent window. Chiron-0 stores
its objects in occlusion order. When a figure is created and inserted, its position in the
tree (and thus its position in the drawing order ofobjects) can be specified. The ordering
is such that the leftmost child is drawn last. If no ordering is specified, then the new figure
is placed in the leftmost position. Dependency order is implicitly specified by the order in
which the figures are created.

3.1.4 Selectability

l^jon creation, a figure can be tagged as sehcfablt. Selectable figures are eligible to Ije
picked by the end user (usually done by clicking one of the mouse buttons while the cursor
is or-er that figure). By turning selectabilit}- on for a group of figures, a tool can make
collections of objects appear as a single complex object. Also, turning selectabilitv off for
such objects as titles and scroll bar meters keeps end users from inadvertently playing with
parts of the screen layout that should be off-limits.

3.1.5 Attributes

The graphical attrilxites of a figure (such as line style, color, and font) are stored with each
figure in the abstract depiction. I nless otherwise specified, figures inherit attributes from
their enclosing block. A suitable set of defaults are preset in the highest level block. The
following attriljutes are available in Chiron-0:

• The l)ackground color of a figure (available for all figures). If an olyject is filled, the
color becomes the figure s background color. The color clear is used for transparent
objects that do not erase a.m'thing below them. An}* other background color obscures
the objects below it. On monochrome devices, colors are mapped to either black or
white.

• The color of a polyline or of the outline of a polygon (i.e. foreground color).

• The style of a pohdine, either dashed or solid.

• The width of each drawn segment of a dashed polyline.

• The arrow at the head of a polyline and/or an arrow at the tail of a polyline. A
polyline can have arrows at both its head and its tail.

• The ability to draw line segments by inverting the background, commonlj' referred
to as XOR drawing. This determines how the lines of a transpaxent figure combine
with a figure below it. Lines in the upper figure will invert lines and regions of the
same region in the lower figure.

3 ORGANIZATION OF MODULES 13

• The font used for displacing text.

• The manner in which a figure stretches. The tc'pes of stretches availaljile are sym-
tnttric. constrained-ii\ constrained-y. and free form. St'mmetric stretches cause the
figure to stretch eciuallj- in all directions. Constrained-x and constrained-y restrict
the figure to stretching uniformly, but only in the x and y directions, respectively.
Lastly, the free form stretch only moves one corner of the figure. Of course, the
stretchiness of a figure is also constrained by its anchors. For example, in a symmet
ric stretch the northwest corner of a figure will onh" move if the corner is not also an
anchor. For examples of the results of different kinds of stretches, see Figure 6.

3.1.6 Menus

A menu of textual commands can be associated with a figure. Menus are linked to figure
objects, so that each figure (not just each type of object) can have a menu. Chiron-0
handles the menu interaction, and when the end user makes a menu selection, Chiron-0
notifies the appropriate artist (for details on how this is implemented, see section 3.4.4).

Chiron-0 allows a hierarchical system of menus to be defined, and supports both sub
menus and child menus. .A. submenu is a menu nested within another menu. Child menus

are similar to submenus, except that if a child menu has a selection with the same name as
one of its ancestors, the selection is suppressed in the ancestor menu. If all of the selections
in an ancestor menu are suppressed, then it is not displayed. Child menus can be used to
imitate an inheritance hierarchy in which a sub-class overrides operations defined by its
snper-class. A "walking" style is used for presenting nested sub and child menus (similar
to the default menu style in SunView).

Indirudual selections within a menu can be made inactive or active. An inactive selection

will not be highlighted as the cursor passes over it. and cannot be selected - if the user clicks
on an inactive selection, it is as if no selection were made (a better implementation would
have inactive selections visibly distingnished. e.g. by "ghosting"). All menu selections are
initially active.

Chiron-O's abstract depiction pro^'ides a rich set of operations for creating and modi-
f}'ing figures. Functions are included for changing any of a figure's attributes, its shape or
its position on the display. Additional operations are available that qneiy and manipulate
the abstract depiction structure itself.

3.1.7 The Picture Manager

The picture manager provides artists with an interface to Chiron-0. It exports all the
types and operations in the abstract depiction which are useful to artists, as well as the
routines artists need for event notification via devices (section 3.3). The picture manager

3 ORGANIZATION OF MODULES
14

Symmetric
Constraiaed Y

Constrained X
Free Form

Figure 6: The results of different types of stretches. The dotted lines show the outcome after
the figure is stretched the distance indicated by the vector.

3 ORGANIZATION OF MOD ULES
15

also notifies the Tenderer when an artist calls a routine which potentially modifies the
display.

3.2 Artists

There must be a clear distinction between the presentation issues decided by the artist and
those decided by the user interface infrastructure. The artist, should not be o^-erburdened
with making calculation-intensive decisions, but its flexibility and power should not be
limited lyv delegating too man}- decisions to the ITMS. Often the artist will have more
infoimation than the user interface s rendering agent regarding which layouts are prefer
able.^ In Chiron-O, the artists take care of the top-level presentation decisions (such as the
relative positioning and selectability of figures). Decisions that require extensive calcula
tion or knowledge of exact coordinates are left to the Tenderer (the Tenderer is described
in section 3.4.3).

The Chiron-O model assumes that the applications are based on abstract data t}-pes
(ADTs). An artist creates an annotated t}-pe for the abstract data tvpe it depicts (see
section 2.2). Each operation on the ADT is overloaded with the annotated tvpe and
extended. The overloading routines typically call the original ADT operation in msponse
to user input (the process by which an artist is notified of user actions is described in
section 3.3) and then update the display if necessary. The artist may add local state
information to keep track of an object's depiction, and ma}- also add new functions to
manage the display. Graphical figures are created and modified by calling the routines
a^-ailable in the picture manager interface to the abstract depiction.^
^ The interface between the artist and ADT is determined solely by the ADT operations

visible to the artist. T̂he ADT must provide a functional interface to all references and
manipulations of objects, so that these operations can be extended bv the artist. As
a lesult. the artist for an .4DT in a gi^-en tool can generally be written without any
modifications to the existing tool.

3.3 The Device Module

The device module makes the concurrenc}- iDetween Chiron-O and the application possible.
The application and Chiron-O sinput routines are concurrent processes which communicate
using the device abstraction described in section 2.4. Via the device mechanism, an artist
receives notification of user actions that are directed towards graphical figures which depict
objects of the artist's associated abstract data t^-pe. Conceptually, each figure (node in
the abstract depiction tree) can have a corresponding device that defines its behavior. As
all ob^cts of the same type tt-picalh- have the same behavior, all figures depicting objects
of a single abstract data have the same device in the current implementation (this
was done to cut down on the number of active tasks at runtime). For example, a Petri net

3 ORGANIZATION OFMODULES
16

application would have one device fm- all ^ i
the transitions Tl.,-c " • " another device for all

^ o'̂ r in .he da.a, sU.e in^Ldtasldng overhead, given the current state otldrconrpiS uM^C-
ine aitist passes in a procedure that is called hv Ghimn n i

an object of that tvpe 4s aresult of r , o Cb'ion-0 whenever an event occurs for

tS=E~5SSSSS=
=£—=>3™
Sn '̂LTit

iliiiisassiii
msmmrnrn
srzHS3i333r--
relav task tp'the^rtiVirWolkenb^^^ notification from the
in a-wait ioop. and :!:3=s':ftL

3 ORGANIZATION OF MODULES

Artist

Notified of event

Relay

Receive Event

Channel

Sent Event

Input Listener
(Mouse Module)

Lookup of
device group

Register!/Cancel
device handle

Mapping

Table

Serial
Numbers

Devices

Device Abstraction

17

Figure 7: Implementation of the device abstraction. A group of three tasks are used to
communicate events from the input listener in Chiron-Q to the artist.

3 ORGANIZATION OF MODULES
IS

3.4 The Concrete Depiction Module

--»•

and mouse to the channel task It is' It" titem) from the keyboai-dtendeten, attd the n^rtk " "
S-'l.l The Input Correlator

-nt teas directed

identifiers and a X re^aTr'S; ^ "" '™^r°
mented as A' windows). The renderer i. r... . ^ews are imple-

3.4.2 The Mouse Task

JomeXrora m'ilnon^^^^ thirl' 7'land mouse), and translates them into X^Io ' nZn'0keyboard
information as raw Y ek'ents Imt in t- r r- ' ' .' events conv-ey the samearttsts ,Ior trrore deta^srlu:! sh rhnUr,::,::"^" •'>•
this fN: 'I For
oltject) of each figure is stored along ivithTt hhhe 'aW —"""""Passes agraphical
is calculated and deposited into tlie^al-iqf- t- l • • ^ epiction tree. This informationlooks into the cor ea" , t Me fi A <Fa tenderer. The trrottse task first
the tvindow in r tepresentmg
depiction rooted at that vien cmh ,1 ahstract
of eaUi figure until amatch is'formd. """"""''"ataa "''th the bounding box

Now that the mouse task has found the figure for the event it mn.t i n

Wd'Tt: ae :t;rRe?a;tafaf "̂device-'whia him:figures for tchich an^^st tSfestekt^rnh^rm
tre figure for the event has an associated det ice - if so the event is s:Thtr* I''

3 ORGAXIZATIOS OF MODULES

3.4.3 The Renderer

ItTo tT P-sentecl to the end user 1.- makingca ls to the under ying window s.ystem. Chiron-O's basic drawable figure twpes (view
po 3-gon polvhne. bitmap and text) are ^•ery similar to to X's primitive shapel so little
Xtia calculation is needed Whenever an artist makes acall to the picture manacrer that

cause the display to change, the picture manager sends amessage to amailbox task
maintained by the renderer. The renderer then asynchronously processes the recTTstlii the
t,ee '̂ T H S^^ting the information it needs by reading the abstract depiction
to b' implementation, each display update message causes the entire screento be lediawn: he renderer can also be told to batch such updates and incorporate them
mt^ asmgle redraw. Asmarter update algorithm which only redraws the modified areas
of he display is certamli- possible within the current design. An initial attempt at smarter
lefiesh vas made using XI1 clipping regions to redraw only asmall region surrounding
updated figures, but the X11R3 implementation of clipping regions was so slow that the
smarter refresh polici' actualli- slowed Chiron-0 down. When the renderer draws afigure
for the hrst time, it calculates that figure's bounding box. and stores those coordinltes
mthe abstract depiction for later use by the mouse task. Upon drawing aI'iew - which

^ '̂ 3-

3.4.4 Events

ait., s. Aevents cc.nmi,n.cate the details of user actions with window identifiers and
eoordmate values, winch .s too low level for artists that are working with CAiron-0 views
and othei hguies. Specifically. CA.ron-0 events contain the following iiifonnation;

' derall'lfo "detail (foi example, representing which selection was made In amenu).
• The figure acted upon in the event and the figure which actuallv received the event

.rincirded ^ 'iP "tiect
The devices of both the figure that received the event and of the object figure.

• lentsT'''̂ positions of the mouse during the event (used primarily for move
• A timestamp of when the event occurred.

4 IMPLEMENTATION CONSIDERATIONS 20

4 Implementation Considerations

The preceding sections ha,-\-e emphasized the implementation independent aspects of the
Chiron-0 design, noting a few implementation limitations where rele-\-ant. This section
focuses on issues specific to the implementation, and examines the results of the decisions
that were made.

4.1 Ada as the Implementation Language

Chiron-O's design is language independent, allowing a clear distinction to be made be
tween the ITMS architectural issues and language dependent concerns. Discussions and
functionality considerations led us to decide on Ada [.A.LRS3] as the primarv implementa
tion language. A number of advantages and disadvantages to this decision were found in
the course of building and evaluating the Chiron-0 prototype. In particular. Ada package
construct for building ADTs and its built-in tasking for concurrency fit '̂ery well with the
Chiron-0 model. Howe^•er. the lack of inheritance and procedure variables in the language
pror-ed to be handicaps in mapping the conceptual design into the implementation.

Advantages of Ada. Aside from the general positive aspects of using Ada as an imple
mentation language (such as explicit provision for modules through the package construct),
there are a number of particular advantages to using it to implement Chiron-0.

Abstract data types are easily implemented using Ada packages. This is a significant
benefit, as the Chiron-0 model assumes that the tools for which artists are written are
based on abstract data types.

Another considerable advantage of Ada is its tasking primitives. The Chiron-0 model
requires concurrency between the application and the HALS, and the de\-ice abstraction
described in section 3.3 maps naturally into tasks. In the implementation of Chiron-0 it
was assumed that tasks were fairly inexpensi '̂e but not Iree. Thus, we opted for one three-
task device for all of the graphical objects representing the data, objects of an abstract
data t}-pe. rather than associating a different task for each figure. For example, a Petri
net application would have one device for all the Petri net places, and another device for
all the transitions. This is in contrast to haring a device for every individual object. Also,
there are no polling loops (the tasks are lazy tasks) in the implementation of devices.

Disadvantages of Ada. Ideally, an artist should be able to pass Chiron-0 an arbitrary
procedure to call when an event is received for a particular object. However, since Ada does
not support procedure variables, they had to be simulated using task tj-pes and generics
as described in [LHS3, Rou85].

Ada's type system caused the worst mismatch between the high level design and the
implementation. Ada is strongly typed and does not support inheritance. This made it

4 IMPLEMENTATION CONSIDERATIONS
21

difficult to implement annotation, which had to be simulated with packages and overload
mg G.ven ^ abstract data type package aa the otiginaj toel. the artist hn be arltttt
no let pac -age a iich exports the types and operations of the original The artist tiien

to an entrre class of objects (of course objects can be created and dratnt rfhe &pla:
micalli). Also, since the .4da assignment operator cannot be overloaded procedure

Us aie necessary to make assignments to annotated objects. The problems encountered
1.1 the implementation of Cbiron-0 are discussed in more detail in section .12.

4.2 Deciding on a Platform

Our primary interest in building Chiron-0 has been in the user interface issues u-.

C-: ol .
evaluaih™Tnr' »nd GKS [BEHtH8-2]. were
SI itoTtl „I "shortcoming of these traditional standards is that thev onlv providesupport tor pioducmg graphical output. Thev do little to ;,ssi^t I'n A L
tl. display with the data objects those figures represent ^

furctlonahrv F̂°'tf software em-ironments rarel.y take advantage of suchitr Further-more, these packages are not yet available for all the modern bit
apped workstations for which ClmonT is intended^ For these reasons, verv few software

del elopment tools have used these conventional packages
Window s.iitem.s such as .1". .VeWS [NeVS7] and InnView [.SunSbJ are more suited to

as higher level components (i.e.. scrollbars, menus). Also, if necessarv. atool that uses a
nventional graphics package could always run in its own window under these svstems

graphkawlnput th^- dg pnical output, thev do provide acontrol structure for processing user inputs.

SunView and NeWS Both SnnView and NeWS were evaluated, and rejected for sev
statijrXlW ht",l 'l iT'T' r"""" Sun work-, . , / desirable feature of being network transparent (SunView is not

comniunicate using-dipt [Aclobo] programs. Hoivever. for Chiron-O the support for the handling of use?
kSun does have SunCORE and SunGKS packages for use with its SunView window .system.

•5 EXPERIENCE USING THE PROTOTYPE 22

inputs is one of the significant ach-antages of window s_ystems in general, and Postscript
is designed primarily for display, not input correlation. .\Iso. NeWS has failed to attract
a large following among window sj^stem users, and does not have a broad support base.
Another important consideration is that the style of Sun\'ie\v applications assumes a sin
gle thread ol control per large process. .A. client program (window systems treat both the
I IMS and the application as a single client) is expected to sleep until it is notified by
the window system. Notification is accomplished via a call to a client's procedure, thus
inlorming the client that an event (user action) has occurred. This protocol is in direct
conflict with the concurrency between the application and ITMS reciuired by the Chiron-0
model. The SunView notifier does ha^^e an "explicit dispatching" style in which a client
passes control to the window s}^stem at regular intervals. Notification is not recjuired in
this case, but the window s}-stem still assumes a single thread of control.

The X Window System. The A' Window System was best suited for Chiron-0 for
the following reasons. A has become the standard window system, and is portable to a
wide range of hardware systems. A is network' transparent, meaning that a distributed
environment can be supported. .Also. A s client/server model reduces the size of client
programs. Finally. A"s control structure is compatible with the concurrency in Chiron-0.
.All events are represented as data objects in a ciueue. When the client wants an event, it
can perform either blocking (client waits until an event arrives before returning) or non-
blocking reads from the ciueue. No notification is reciuired. thus both the application and
I'lA'LS are continually acti^^e.

5 Experience Using the Prototype

The current version of Chiron-0 is built on top of Version 11. Revision 3 of the A' Win
dow System. It has been tested on Sun 3/50 and Sun 3/260 workstations, and DEC
VaxStations.

The prototype is in a stable working state. All the basic functionality described in this
document has been implemented, including all types of figures (polygons, polylines, text,
bitmaps, blocks and views), attributes and menus. The er-ent structure is in place, and
events can be received. Also, a small library of reusable components, including buttons,
scrollbars, and dialogue boxes is available.

Several versions of Chiron-0 have been in use at UC Irvine as Avell as other Arcadia sites
for about two years now. As a result, several experimental applications were developed:

Petri Net Editor: .A simple graphical editor for Petri nets, which can simulate transition
firings.

•5 EXPERIENCE USING THE PROTOTYPE 23

IRIS Graph Editor: Agraphical editor for IRIS graphs. IRIS is a graph-oriented inter
nal representation of Ada programs [BFSSS].

DFA Editor: An editor for creating deterministic finite state automata.

Semantic Ada Viewer: A rdewer for displaying semantic information on statements in
an Ada program.

^The Petri net editor, written lyv one of the developers of Chiron-O. was the first ap
plication written and was a good test of the Chiron-O model (see Figure 8 for a screen
shot of the Petri net editor). First, a package was written that implemented the Petri
net abstract data type. Its data structures were designed for efficient use of a Petri net.
and aie quite different than the data structures appropriate for graphical representation.
Foi instance, the number of tokens in a Petri net place is represented as a single integer,
although graphically it is represented as a collection of individual graphical objects.

After the Petri net was complete, the artist responsilde for maintaining the display of
the Petii net and handling user inputs was written. The other applications listed above
were also written in this two phase manner (i.e. first write the tool encapsulating the
abstract data, and then write the artist). °

The successful building of these applications shows that Chiron-O's approach to UIMS
design is feasible. Artists were written for the abstract data types within these various
tools without modifying their original implementations. Furthermore. Chiron-O was aide
to manage the display while the tool concurrentl}- processed the user actions. Yet despite
this, our experiences in writing these applications brought to light several limitations of
the design and resulting implementation. Ways were de^dsed to avoid some of them: others
are influencing a redesign effort currently under way.

5.1 Design Limitations

5.1.1 Explicit Representation

Within the annotation scheme used to bind artists to model objects (see section 2.2). access
to the data type of the model is gained by going through the artist (recall that the artist
overloads the operations available on the abstract data type). As the model data type is
not directly accessible, the ADT must export all significant operations so that they can
be overloaded and called by the artist. For example, the artist is informed if the" user
chooses to delete an object and updates the display accordingly. Yet, if the tool does not
implement an explicit destruction routine, the artist has no way of effecting the deletion
of the corresponding model object.

J Of el

experiexce l'sl\'g the prototype

Pctrl Hel tOitC'i v(-l.C)

Adci toK6ri

R^ov0 token

Cleer token®

Output Arc

delete

-fw r

Figure S: Sample screens from the Petri net editor.

24

9
ii

h

5 EXPERIENCE USING THE PROTOTYPE 25

5.1.2 Controlling the Semantics of Applications

.Annotation is guaranteed to preserve the correctness of the underlying data type: new
operations pro^•ided by the artists must not alter the state of data objects. For this reason,
artists cannot provide any operations that depend on controlling the semantics of the
.ADT. For example, a general "undo" function would be very difficult to implement. Upon
recei^bng an undo conniiand from the user, the artist can easily update the display, but
it has no way of relaying the change to the underh'ing model objects. .As a result, unless
the tool e.xplicitly exports undo operations, the artist can only pro^dde an undo option for
those functions that do not alter model objects (for instance, graphically moving a place
or transition in the Petri net editor without altering the underlying Petri net).

5.2 Implementation Problems

5.2.1 Semantics of the Assignment Operator

.Assignment is not a first-class operator in many languages, including Ada. as it cannot be
redefined or extended. The semantics of the assignment operator depend on the represen
tation. rather than abstract semantics, of an object. For instance, assignment of a binary
tree represented b}' a nodes-and-links structure causes the new copy to share a structure
with the old. while assignment of a binary tree represented as an arra.}- does not cause
structure-sharing. The artist must b.e aware of the model object's representation in cases
such as this, in order to maintain a correct display. Thus complete transparency of an
artist is possible only for Ada limited pri^•ate types (a type where assignment is not al
lowed directly). In contrast, C+P allows the assignment operator to be redefined in order
to prevent this problem [StrSGj.

5.2.2 Simulating Annotation

Implementing annotation by simulating inheritance in a strongly-typed language such as
Ada led to seA'eral problems. Experience writing the Petri net editor and other applications
revealed that the artist in some cases must maintain much of the same state information

as the abstract data, type in order to keep the display current. This results in the artist
duplicating a significant amount of code from the ADT. The heart of this problem lies
in the fact that there is no link from the model object to the annotated object in the
artist. .Artists for Chiron-0 were designed not to force airy modifications to the underlying
abstract data type, including the installation of pointers back to annotated objects in the
artist. The artist manages the display based onh- on calls made into the abstract data type
- it has no way of knowing when a model object changes state, and thus must simulate
many of the tool's actions. For example, the Petri net abstract data type keeps track of all
the arcs connecting places and transitions, and removes them when the place or transition

EXPERIENCE USING THE PROTOTYPE
26

IS deleted. At the same time, the Petri net artist also maintains the connectm-ity of the
net s components so that it can correctly erase the arcs from the display in response to a
delete place or transition command (see Figure 9).

In a language that supports true inheritance, the association between annotated and
model objects is trivially maintained as they are actually the same object. The artist
is inioimed of all calls made on abstract data tj-pe routines, including calls made from
within the abstract data type to other internal subprograms. The annotated tvpe would
be implemented as a subclass of the abstract data type's class. This subclass overloads its
superclass" routines (including object creation functions), from which the display is updated
and the original routine called. .A.s a result of true inheritance, whenever a function in the
superclass is called, the overloading function in the subclass is executed, resulting in the
proper display and correct model objects. °

A bettei simulation of inheritance can be achieved with an automatically generated
dispatcher, asoftware layer built around each abstract data tr-pe in atool that dispatches
inconring calls from both the tool and the artist. The dispatcher overloads all the subpro-
p-ams in the abstract data tj-pe. and presents an interface that is identical to the type's
interface. The tool must have all calls to the original abstract data type replaced with calls
to the dispatcher (in Ada this modification means changing the with Abstract_Data_Type
clause to with Dispatcher). The bodies of the overloading routines, contain calls to the
oiiginal abstract data t}-pe. followed b}- a call to the artist notifying it of the operation.
With this scheme, the artist is informed of each subprogram call made to the abstract data
t}'pe. with only a minor modification to the tool's code.

N̂ote. howe\-er that the dispatcher does not solve the entire duplication of code problem.
It IS not a perfect substitute for a link between the abstract data type and the annotated
object 111 the artist. The dispatcher can only notify artists of subprogram calls made to
the abstract data tj-pe. not of ever}- state change to an object. For example, within a
graph ADT's subprogram to delete a vertex, it may also remove all the edges connected
to that vertex as a side effect. The dispatcher will notify the artist that a vertex has been
deleted when this subprogram is called, but it has no way of knowing which edges were
also deleted. Thus, the addition of a dispatcher will result in less duplication of abstract
data. t\-pe code in the artist, but ivill not eliminate the problem completel}-.

-Another manifestation of Chiron-O's imperfect simulation of annotation is that the
series of declarations used to annotate an abstract data type does not work correctly with
lecuisive data structures such as trees and lists. Links within the recursive data type point
to instances of the base ti^pe, not the annotation. As a result, the artist cannot access the
next annotated object by following the existing links, and is forced to maintain the entire
pointer structure itself! .Again, in languages with inheritance, the annotated and model
objects are one and the same, so this problem does not occur.

-A final issue is that since the assignment operator cannot be overloaded, procedure
calls are needed for assignment to annotated objects. This requires the abstract data type

5 EXPERIENCE USING THE PROTOTYPE

Hash Table

figure Back Pointer

Abstract Depiction

annoted model
object

Artist

Back Pointer

Link missing model object

Abstract Data Type

Figure 9: Dupiication of abstract data type code in the artist. Pointers exist from the abstract
depiction in Chiron-0 to artist and back, as well as from the artist to the abstract data type.
Yet, lack of a link from the abstract data type to the artist can force some of the data type's
code to be duplicated in the artist. The artist must keep track of much of the same information
as the abstract data type because the artist has no way of knowing when the state of a model
object changes.

•5 experience USING THE PROTOTYPE o-

to export an exphcit creation routine, wliich can then be overloaded l^y the artist.

5.2.3 Performance Problems

One of the most risible problems tvith CUron^O'. implementation is its performance, .41-
lougi le peifcimance is acceptable for a simple editor (such as the Petri net and DF4

editors . Cli,roii-0 is still too slow to be used as a UIMS for real svstems. For instance a
figuie dragged across the screen cannot keep up tvith aquicklv moving mouse Also there
IS anoticeable delap be. tveen the selection of amenu item and'the corresponding update on
the screen. Even though speed tvas not considered one of the primary goals in developing

1-0. It IS an important consideration in the current redesign effort. There are alame
number of factors, including quality of the generated code, tasking overhead, and choice
of algorithms, ha. could account for Ciiron-O's slow performance, and unfortunateh-. few
piohlmg tools for Ada programs are available.

Since Chiron-O is built on top of the .Y IFindoir .System, the performance of Ymust
aso be taken into account. Cliiron-O interfaces to -Y's library (written in C) via a set
of Ada Inndings . .A number of simple applications were written in both Cand Ada to
measure the effect oi the binding's extra leiel of indirection on .several common ,Y iibrarv
calls The resul sare shown in Table 1. The numbers listed are elapsed times (obtained

wml^of rti:!:^'•^
These tests show that the .Ada interface dominates the function call time for all but

xZIY NaT' 'J. ('̂ "P^-'Display, XLoadQueryFont, andXSetStandardProperties). On the other hand, the absolute times are small - on the

tlm end ust" '™ ™ipincally. the Ada programs were only slightly slower to
As there were no profiling tools available for the .Ada compiler available to us. we wrote

a smiple profiler ourselves, and used it to time each of the routines in Ciiron-0. The
profiler records the elapsed and system time on entry and e.xit to each subprogram and
uses a call stack to keep track of nested routines. As there is only one stack, it can onlv

Jhrnrt d'"; ! rf. u degree of concurrence meant
of ev t l«<i to be repeated for each subset of subprograms within asingle threadof sedition. Furthermore, aroutine with ahigh time is not necessarily inefficient (tasks
la are executing concurrently with a routine that is being timed will be included in the

routine sfinal rime). Despite this, the profiler does give some indication of where to start
looking for inefficiencies Table 2shows alisting of the most time-consunnng routines in

ron-0 (all loutmes which that had acpu time of greater than 0..5 seconds ate included)
Again, these tests were performed on a .Sun 3/50 workstation with only the -Y server

-The Ada bindings were written by SAIC and are publically available

•5 EXPERIENCE USING THE PROTOTYPE

Overhead of using an Ada interface to X

Ada C Ada - C

Name of Routine time (msec) time (msec) time (msec) Percentage
XOpenDispIay 144.8 144 0.8 .6%
XDefauItScreen 2.6 0.0 2.6 100.0

XWhitePixel 3.6 0.0 3.6 100.0

XBlackPixel 3.0 0.0 3.0 100.0

XDefaultRootWindow 3.3 0.0 3.3 100.0

XLoaclQueryFont 88.6 61.2 27.4 31.0

XSet Stan dardP ropert ies 14.6 2.0 12.6 86.3

XCreateSimpleWindow 6.6 0.0 6.6 100.0

XSetWhIHints 5.9 0.0 5.9 100.0

XCreateGC 4.3 0.0 4.3 100.0

XSelect Input 4.6 0.0 4.6 100.0

Xj\Iap\\'indow 3.9 0.0 3.9 100.0

XCleaiTVindow 3.6 0.0 3.6 100.0

XDrawRect angle 3.1 0.0 3.1 100.0

XDrawLine 2.3 0.0 2.3 100.0

XDrawString 2.9 0.0 2.9 100.0

Percentage = {Adatiive —Cfime)/Adatime

29

Table 1: Averages were taken over 6 runs of both the Ada. and C code. Times were taken for
10 calls to each of the above routines (results here are thus divided by 10) with the exception
of XOpenDisplay.

o EXPERIE^CE USING THE PROTOTYPE
30

^ -< edi...., do„„g wuch

• Create a place.

• Add a token to the place.
• Create a transition.

• Add aa input arc between from the place to the traitsition.
• Alove the transition.

• Fire the transition.

• Delete the transition.

• Delete the place.
• Click on the close button to end.

of the tot'Il dlp.Lf thire^^^ 25%
multiple polling loops checking for events' VhriZltUEehl
a bug in an earlv version of tlie Y ir," rl '-c necessain- because of
be received out of order. We are now t^"' ^ caused certain mouse events to
this package which conilhnes these m"1 ^ efficient implementation ofthe iouse modueaLA^:, hr: W "T' i"
time spent wailina for user event f „ I the
of calk to A- in tltett hA e ,v ,1 °ther routinea in the table have antutrber
Dra»JlJ=„lyg„n cfhfjhatcr? a T r> C '̂ 'S' Create_Windo.,
«Tr • - - -
abs,;hrdXi»Re%tt%i::^f,tfr-pc-f-some form of access control is121 fm the ab« e- " T concurrently.
renclerer could be readino-the abstract dp " f " h For instance, theis u-nting utto the st^^:.^to^rtrt'rTgr 'cltrr"'"f
coarse-grained scheme that lorl-c tlno +• . + ° i . . "' •'-"-'tt 0 emplo} s a verjt
allowed) or written. The profiles showed"thaM " (t™ltiple readers are
alock to write in the abstrcCreptrm Mlta:;? .'."Preuderer takes out
create a new figure Iwhich refiihrpo -f ' ^^^^fi^lization routine is trying toThe tnitiahsatifn ri: e ir rShrt'w^ "i"
though tt needs to access ac„mi,U l f completes its write, evenartifidal serializa^llo:Ts not catflhowr'
machines it may have a noticeable imnact 4 on a umprocessoi, but for multiprocessor
considered that will lock onlv subtrees rathei'Tharth "" r """ access controller is being
order to allow more concurrent accesses to the structure."" "" P""""

•5 EXPERIENCE USING THE PROTOTYPE

Petri Net Editor Profile

Module Subprogram Elapsed CPU Calls

time (sec) time (sec)
Abstract Depiction: R ecalcJPlacement 1.120 1.020 12

Parent-Block 1.060 0.600 116

Calculate-Coords O.SSO 0.640 44

Figure-Extent 0.800 0.560 17

Access Controller: Seize-\\Tite 7.680 2.960 29

Hash Table: Find 3.920 2.840 245

Search 2.500 2.040 279

Menus: Show-Menu 21.160 13.000 7

Create-Batch-Windows 1.520 0.740 3

Mouse: poll loop 57.480 11.760 74

Sub-Window 1.500 1.160 195

Find-Figure 1.420 1.360 100

Picture Manager: Initialize 5.020 0.580 1

Delete-Figure 1.520 0.620 5

Change-Polygon 1.540 0.740 2

CornerJndex 1.220 0.720 22

Renderer: Add-View 5.480 1.980 1

Change-Block 1.640 1.160 21

Deposit 5.380 1.340 23

Determine-Clip 0.620 0.580 8

Draw-Polygon 3.540 1.560 29

Draw-Text 2.240 1.000 12

Fnter-Block 0.740 0.580 12

Update-Screen 0.960 0.500 17

Add-Figure 2.220 0.920 9

Bye_Figure 1.380 0.500 5

Create-Window 3.640 1.380 1

Draw-A-Polygon 1.340 0.780 17

Total 90.960 24.060 482

31

Table 2: All subprograms which had a cpu time of greater than 0.5 seconds (over all calls) are
included. The figures for the total is representative of the time it took to run a complete test
- it is not the sum of the numbers listed here.

.5 EXPERIENCE USING THE PROTOTYPE 32

In addition to the efforts described abo^•e. an improved refresh scheme is being consid
ered. There is a one-to-one mapping between each figure in the abstract depiction and the
bitmap which depicts it on the display. In current implementation, none of these bitmaps
are stored - an olDject is completely redrawn each time the screen is updated. In order to
speed up these refreshes a bitmap cache can be implemented by storing iDitmaps Avith their
corresponding figures in the abstract depiction. When a figure is created or modified, a
new iDitmap is created and cached before being mapped to the display. Subseciuent screen
updates that do not alter the appearance of the figure (such as a move or refresh) can
use a cached bitmap and should be much faster as a result. As bitmaps consume a large
amount of storage space, having an infinite cache size (i.e., cache every figure's bitmap) is
not realistic. We need to inA'estigate the tradeoffs among various bitmap cache sizes and
cache replacement strategies. For example, only complex and commonh^ used bitmaps may
be made eligible for caching. If a least-recentlA--used replacement strategy is adopted the
most commonly used bitmaps Avill tend to remain in the cache. The size of the cache and
other parameters can l)e varied dynamically depending on such factors as SA'stem load and
available memory.

Finally, we are also examining different Ada compilers. One of the significant differences
between the compilers availablewhen Chton-0 wasfirst written and the current generation
is in tasking optimization. Some of Chiron-O's man}- tasks can be compiled into simple
monitors b}" smarter compilers [HNSO]. This may haA'e a large impact on the tasking
OA'erhead. and will certainly affect the design of the tasking structure in Chiron-1. Also,
more profiling tools are l^eing made aA-ailable Avith the neAver compilers, making early
detection of bottlenecks much easier.

5.3 Improvements to the Design

The preA-ious tAA'o sections described the problems found in the design and implementation
of Chiron-0. The solutions presented in this discussion are being applied in the current
redesign effort into Chiron-1. Our experience Avith the prototype also pointed out seA'eral
improA-ements and additions that could Idc made to the current design. Avhicli are also
planned for Chiron-I.

5.3.1 Limited Event Handling

Chiron-OT event handling mechanism is very simple. For each data type, the artist passes
an event-handling procedure to the UIMS that is executed Avhenever any eA^ent for an object
of that type is receiA'ed. It Avould be desirable for an artist to be able to specify classes
of eA'ents in Avhich an annotated type is interested (i.e., button clicks, mouse motion) and
haA'e the IJIMS separate out the rest. Without this facilitA^ unnecessary calls are made
to the artistfs event-handler, and the artist is forced to perform extra processing to filter

-5 EXPERIENCE USING THE PROTOTYPE 33

out the unwanted events itself. Furthermore, there is no mechanism for an artist to put
an event back in the queue, or to pass it on to another artist. This capabilit}' is useful
when an operation requires the cooperation of several artists (for example, a group delete
operation that deletes different tt'pes of objects).

A simple solution to these problems, which is being incorporated into the current re
design. is for the artist to pass a list of interesting events along with its event-handling
procedure. The mapping task in the devices module (section 3.3) can easily store this
information in a table. The relay task will check each e'V'ent received against the table and
onl}- notify the artist when necessary.

5.3.2 Multiple Artists

Currently only one artist can be attached to a single abstract data type at a time (this is
a result of the current implementation - multiple artists are conceptually possible in the
framework of the design). Several artists can be attached to a single abstract data tyq^e,
by further extending the mapping task's duties. This makes it possible to display multiple,
coordinated views of a single abstract data t3-pe at the same time. Each artist that wants
notification of e"\-ents for objects of the abstract data t^'pe can pass the mapping task an
e^•ent-handling procedure, which it stores in a table. The rela.}- task can then queiu' the
mapping task for the list of artist procedures to call. Multiple artists are also consistent
with the dispatcher mechanism proposed as a partial solution to the imperfect simulation
of annotation in Ada. Instead of informing a single artist of each abstract data type
operation, the dispatcher can notify all interested artists.

5.3.3 Artists are DifRcult to Implement

A common complaint ofusers of Chiron-0 is that artists are difficult to write. The program
mer needs some understanding of Chiron-O's device model in order to use event notification
mechanism, and must be familiar with interface to Chiron-0 provided by the picture man
ager. Even though all the routines the artist writer needs are isolated in this one package,
the interface is still cpiite lengthy and complex. Furthermore, the necessary duplication of
abstract data type state in the artist (discussed alcove in section 5.2.2) forces the artist
writer to reimplement much of the original data structures. As a result, writing an artist
is a significant undertaking for a single programmer, and yet does not lend itself well to
sub-division so that the project can be worked on bj' a team.

A possible remedy for this problem is to provide artist builders with an artist generator
- a graphical system that automatically generates artist code. An artist generator for
Chiron-0 should be largely dialogue and menu-driven. It must provide the artist builder
with the capability to draw the graphical representation of an abstract data type on the
screen, and then generate the proper artist code. In addition, the artist generator can

•5 EXPERIENCE USING THE PROTOTYPE 3^

maintain alibraiy of reusable graphical components (e.g. buttons, titlebars) which would
uithei simplify user interface construction, as well as foster reuse and uniformit^^

the ^ management systems include editors for specih-in.^presentation anc unctional behavior of their user interfaces. Existing s^•stems inciud:
Prototyper for the Macintosh, and Interla.ce Builder for the NeXT Computer Several
lecent projects, such as Serpent [InsS9]. ET++ [WGMSS]. and Interyie^vs [LVCSQ] are
cuiientlj. developing graphical specification tools and generators.

5.4 Client-Server Split

It's"'m,' are linked together into asingle executable
I ,l • . " ™n-time processes (partly because of the use of Ada)

code s' tdLT'T "tC '--"-piled) tvhenever anicode IS nrodified. Furthermore, tools written in languages other than .4da cannot b'e
accmnmodated without some kind of language-dependent interface

One possible solution to these drawl,acks calls for afundamental change to Cbivon-0\
ar h.,« ure: split the f LMS into aclient and aserver. The server implements thtnte.-

of the user interface management system - essentially Chiron-O's abstract depiction
concrete depiction, and devices tasks. The tools and artists are on the client side which

rSm/s'eiweC Ih"f ttnicate with the server. The advantages of sucha client/seivei architecture are numerous;

. Tools can be built in different (non-.Ada) languages, .ks long as the tools use the
riect communication protocol they can make make requests of the Chiron-0 server

and are treated as first-class applications.

* '"P™-" f'""' the client code leads to smaller processes, as well as theabil, yto modify one vnthout having to relink and possibly recompile the other, Onlv
he client side is loaded with atool, thus reducing the overhead of experimenting w.tii

r arious applications. ®

' moce'i!"'Tr'' ""N °""P""'" '"-I'i"" from the clientprocess. The system configuration can be tuned based on such factors as machine
load and network traffic.

Multi-display or inulti-client configurations are supported. Asingle client can displav
mSle cliX ''''''
The heavyweight process model of Unix provides protection boundaries between pro
cesses, whereas the lightweight model of Ada tasks does not. Bv making the client
and server separate Unix processes. Cbiron-0 will have auseful boundary between

6 CONCLUSIONS
35

client and server processes (e.g.. clients can't destroj- UIMS data structures), without
paj-ing the overhead of hea^•^-weight protection boundaries between ail tasks The
heavyweight process nranagement may also be helpful in maintaining housekeepin<^
details, such as noticing that a client has terminated.

6 Conclusions

The goal of the Chiron project is to develop organizing principles for UlhlS that promote
uniiormity without compromising power or extensibility. The design of Chiron presented
in this paper is a viable approach for meeting these goals, and is applicable to software
environments in general.

Chiron s decoupling of interaction and tool functionality provides the benefits of mod-
ularit}-. and allows independent development of interface and tool components. Both inter-
ace and tool components can be reused, encouraging uniformitv and reducing the time to

build new applications. This separation of concerns is accomplished in apowerful, flexible
manner by binding artists to abstract data tvpes with the annotation mechanism.

^ ^3-pes of tools available by imposing a dispatch model ofcontrol. The tools run concurrenth" with the interface facilities: the UIMS can continue to
process inputs and update the display while the tool responds to user commands. Within
Chiron-O the renderer runs concurrentlv" with the abstract depiction, allowing requests
on the abstract depiction (e.g. create flgure. move figure) to proceed at the same time as
display updates.

Ĉhiron s abstract depiction provides a structured representation between the model
objects and view objects - no particular representation scheme (such as parse trees) is
creed upon the applications. The abstract depiction's hierarchical structure provides the

means to build complex representations from a small set of primitive figures. Also, such
tunctionalit.y as input correlation and incremental update is facilitated

The lessons we learned from building Chiron-O are shaping the design and imple
mentation ol Chiron-l. We discovered several limitations resulting from our implemen
tation most notably the imperfect simulation of annotation and disappointing perfor
mance. There also number improvements and additions to this design that are planned
tor Ginron-J. These include an e.xtended event handling mechanism, artist generators,
an the client/server split. In addition, we are investigating a scheme for the persistent
storage of views using P-Graphite [WWFTSSj. Lastly, we are also developing an object-
oriented .yostract Depiction Language to simplify the definition of graphical objects and
then relationships (this information is stored in the abstract depiction).

Acknowledgements We are grateful to the many people within the Arcadia consortium
that have contributed to the Chiron project. At UC Irvine, Dennis Troup was involved

REFERENCES 36

in the design from early on. contributed to the Chiron-0 implementation, and is now
working on Chiron-1. Cheryl Kelly and Craig Snider also contributed to the design and
implementation when it was still in its early stages. Greg Bolcer. hlary Cameron. Greg
•James, and Reucli Keller are currently working on the Chiron-1 redesign. We also A\dsh
to thank the following Arcadia members that have contributed to Chiron: Ray Klefstad,
Stephen Sykes. Rick Selby, Izhar Shy. Kari Forester, and Adam Porter.

References

[ACS5]

[AdoSo]

[ALRS3]

Inc. Apple Computer. Inside Macintosh. Addison Weslev. Reading. Mass..
1985.

Adobe Systems Inc. PostScript Language Reference Manual. .Addison-Wesley.
Reading. Massachussetts. 1985.

.\merican National Standards Institute. Military Standard .Mia Programming
Language (ANSI/MIL-STD-1815.M1983}. January 1983.

Ed .^nson. The device model of interaction. Computer Graphics. 16(3):107-
114. July 1982. (Proceedings of SIGGRAPH 82).

[BEHtH82] Peter R. Bono, Jose L.-Encarnagao. F. Robert .A. Hopgood. and Paul J. W.
ten Hagen. GKS—the first graphics standard. IEEE Computer Graphics and
Applications. 2(5):9-23. July 1982.

[BFS88] Deborah .4. Baker. David .4. Fisher, and Jonathan C. Shultis. The gardens
of iris. Technical Report .4rcadia-IncS3^s-88-03. Incremental S '̂stems Corpo
ration. August 1988. Draft.

[DAT88] Jennifer-.4nn M. Durand. Michal Young, and Dennis B. Troup. Atool builder's
guide to Chiron. .Arcadia Technical Report UCTS8-18, University of Califor
nia, Irvine, May 1988.

[GRs83] .Adele Goldberg and David Robson. Sm.alItaIk-80: The Language And Its
Implem-entation. Addison-Wesle3\ 1983.

[HNSO] A.N. Habermann and I.R. Nassi. Efficient implementation of Ada. tasks. Tech
nical Report CMU-CS-80-103. Carnegie Mellon University, 1980.

[Ins89] CMU Software Engineering Institute. Serpent overview. Technical Report
J/SEI-89-UG-2, Carnegie Mellon University, April 1989.

REFERENCES 37

[LHS3] David A. Lamb and Paul N. Hilfinger. Simulation of procedure variables
using Ada tasks. IEEE Transactions on Software Engineering. SE-9(1):13-15.
January 1983.

[LV'CS9] Mark A. Linton, John M. VJissides. and Paul R. Calder. Composing user
interfaces with inteiAuews. IEEE Computer, •22(2):S-22, February 1989.

[MvD78] James C. Michener and Andries von Dam. A functional over '̂iew of the Core
system with glossary. ACM Computing Surveys. 10(4):381-387. December
1978.

[M}'e83] Brad A. Myers. Incense: A system for displaAung data structures. Computer
Graphics. 17(3):115-125. July 1983.

[NeW87] Sun Microsystems. Inc.. Mountain View. California. NeWS Technical
Overview. 1987.

[Rou85] 0. Roubine. Programming large and flexible systems in .\da. In John G. P.
Barnes and Gerald .\. Fisher, Jr.. editors. Ada in Use: Proceedings of the
.Ada International Conference, volume 5, pages 197-209. Paris, May 1985.
.\ssociation for Computing Machiner}' and Ada-Furope, Cambridge University
Press.

[SB86] Mark Stefik and Daniel Bobrow. Object-oriented programming: Themes and
variations. AI Magazine. 6(4):40-62, Winter 1986.

[SBK86] Mark .1. Stefik, Daniel G. BoIdi'ow, and Kenneth M. Kahn. Integrating access-
oriented programming into a multiparadigm en^dronment. IEEE Software,
3(1):10-18. Januaiw 1986.

[SG86] RolDert W. Scheifler and Jim Gettys. The X window system. ACM Transac
tions on Graphics, .'kpril 1986. .\ctually appeared June 1987.

[SIK"'"82] David Canfield Smith, Charles Irby. Ralph Kimball. Bill Verplank, and Fric
Harslem. Designing the Star user interface. BYTE Magazine, 7(4):242-282,
April 1982.

[Str86] B. Stroustrup. The C-h-h Programming Language. Addison-Wesle}-, Menlo
Park. California, 1986.

[Sun86] Sun Microsystems, Inc.. Mountain View, California. Sun]''ieui Programmer's
Guide, February 1986.

REFERENCES 38

[TBC"^S8] Richard N. Taylor. Frank C. Belz. Lori .A.. Clarke. Leon Osterweil. Richard W.
Selby. Jack C. Wileden. Alexander L. Wolf, and Midial Young. Foundations
for the .Arcadia environment architecture. In Proceedings of ACM SIGSOFT
88: Third Symposium on Software Development Environments, pages 1-13.

Boston. November 1988. Appeared as Sigplan Notices JJ(2) and Software
Engineering Notes 13[o).

['̂VGM88] .A. Weinand. E. Gamma, and R.. Marty. ET++ - an object-oriented application
framework in C-)-+. In Object OrientedProgramming Systems. Languages and
Applications '88 Conference Proceedings, pages 46-57. September 1988.

[\VWFT88] Jack C. Wileden. Alexander L. Wolf. Charles D. Fisher, and Peri L. Tarr.
PGR.APHITE; .An experiment in persistent typed object management. In
Proceedings of .\CM SIGSOET '88: Third Symposium on Software Develop
ment Environments, pages 130-142. Boston. November 1988.

[Xtk88] Massachusetts Institute of Technology and Digital Eciuipment Corp., Cam
bridge and Maynard, Massachusetts. A' Window System. X]Lr.sion 11. Re
lease 3. October 1988.

[YTT88] Michal Young. Richard N. Taylor, and Dennis B. Troup. Software environment
architectures and user interface facilities. IEEE Transactions on Software
Engineering. 14(6):697-70S. June 1988.

