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Deep match: A zero-shot framework for improved fiducial-free respiratory 
motion tracking 

Di Xu a, Martina Descovich a, Hengjie Liu b, Yi Lao b, Alexander R. Gottschalk a, Ke Sheng a,* 

a Radiation Oncology, University of California, San Francisco, United States 
b Radiation Oncology, University of California, Los Angeles, United States   
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A B S T R A C T   

Background and purpose: Motion management is essential to reduce normal tissue exposure and maintain 
adequate tumor dose in lung stereotactic body radiation therapy (SBRT). Lung SBRT using an articulated robotic 
arm allows dynamic tracking during radiation dose delivery. Two stereoscopic X-ray tracking modes are avail
able – fiducial-based and fiducial-free tracking. Although X-ray detection of implanted fiducials is robust, the 
implantation procedure is invasive and inapplicable to some patients and tumor locations. Fiducial-free tracking 
relies on tumor contrast, which challenges the existing tracking algorithms for small (e.g., <15 mm) and/or 
tumors obscured by overlapping anatomies. To markedly improve the performance of fiducial-free tracking, we 
proposed a deep learning-based template matching algorithm – Deep Match. 
Method: Deep Match consists of four self-definable stages – training-free feature extractor, similarity measure
ments for location proposal, local refinements, and uncertainty level prediction for constructing a more trust
worthy and versatile pipeline. Deep Match was validated on a 10 (38 fractions; 2661 images) patient cohort 
whose lung tumor was trackable on one X-ray view, while the second view did not offer sufficient conspicuity for 
tumor tracking using existing methods. The patient cohort was stratified into subgroups based on tumor sizes 
(<10 mm, 10–15 mm, and >15 mm) and tumor locations (with/without thoracic anatomy overlapping). 
Results: On X-ray views that conventional methods failed to track the lung tumor, Deep Match achieved robust 
performance as evidenced by >80 % 3 mm-Hit (detection within 3 mm superior/inferior margin from ground 
truth) for 70 % of patients and <3 mm superior/inferior distance (SID) ~1 mm standard deviation for all the 
patients. 
Conclusion: Deep Match is a zero-shot learning network that explores the intrinsic neural network benefits 
without training on patient data. With Deep Match, fiducial-free tracking can be extended to more patients with 
small tumors and with tumors obscured by overlapping anatomy.   

Introduction 

With the advancements of diagnostic algorithm and the increase of 
lung screening initiatives, a growing number of patients with lung 
cancer are being diagnosed at earlier stages, where surgery or radiation 
therapy can be offered with curative intent. Notably, patients with 
smaller tumors (<=15 mm) have reported a significantly higher 5-year 
survival rate of >95 % compared to those with larger tumors (5-year 
survival rate >79 % for >15 mm tumors) [1]. In recent years, stereo
tactic body radiation therapy (SBRT) has gained increased popularity 

due to improved local control and reduced toxicity compared to con
ventional radiation therapy, and becomes the standard-of-care for sur
gically ineligible NSCLC (Non-small cell lung cancer) patients [2]. SBRT 
has demonstrated remarkable outcomes in localized stage I NSCLC, with 
a promising two-year survival rate of 70 % and a two-year local control 
rate of 91 % [3]. Moreover, studies suggest that SBRT is applicable to a 
broader range of tumors beyond medically inoperable cases [4], and it 
may provide comparable survival outcomes to surgical resection [5]. To 
achieve adequate lung tumor coverage and minimize exposure to 
normal organs, motion management plays a pivotal role in lung SBRT. 
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Current motion management strategies, including internal target vol
ume (ITV), gated radiotherapy, and dynamic tumor tracking, have been 
employed to account for respiratory motion and enhance treatment 
precision while reducing exposure to healthy tissues. The CyberKnife® 
Robotic Radiosurgery System (Accuray Incorporated, Sunnyvale, CA) 
offers frameless dynamic SBRT for lung tumors, specifically attuned for 
real-time target and motion tracking, providing enhanced treatment 
accuracy and efficacy [6]. 

The CyberKnife system manages respiratory motion using the Syn
chrony® Respiratory Tracking System (Accuray Incorporated, Sunny
vale, CA), which establishes a correlation between the surface infrared 
light-emitting diodes and periodic stereoscopic X-rays of the lung 
tumor and then uses the hybrid system to guide robotic tracking of the 
moving tumor [7]. In specific, lung tumor tracking is achieved by 
matching stereoscopic live X-rays acquired periodically throughout 
treatment (typically every 60 s) to their corresponding digitally recon
structed radiographs (DRRs) generated from the treatment planning 
computed tomography (CT) images [6]. Two tracking algorithms are 
currently available for lung SBRT – fiducial marker tracking and 
Xsight™ (Accuray Incorporated, Sunnyvale, CA) Lung Tracking (XLT). 

Fiducial Marker tracking requires 1–3 bronchoscopically, endo
vascularly, or percutaneously implanted radiopaque fiducial markers in 
or adjacent to the target volume several days before treatment planning 
[8]. The radio-opaque fiducials are used as reference markers to localize 
the target during patient alignment and treatment delivery [7]. Research 
has shown that fiducial markers provide unambiguous contrast in X- 
rays, and their tracking is generally robust [9–11]. Fiducials are not 
without limitations. Besides reported fiducial migration [7], fiducial 
implantation is an invasive and resource-demanding procedure associ
ated with non-negligible medical risk, including pneumothorax. 

Alternatively, the intrinsic radiographical contrast between lung 
tumors and lung parenchyma makes fiducial-less XLT possible for 
certain lung patients. Evidence suggests that such X-ray visible tumors 
are typically above 15 mm across all dimensions and located in the 
peripheral or apex regions [6,7]. Tumors smaller than this or obscured 
by dense structures (such as the mediastinum, heart, ribcage, or spine) 
cannot be reliably detected and tracked with existing XLT algorithms. 
XLT registers live X-rays to its corresponding DRRs solely using pixel 
intensities from the tumor and its surrounding soft tissues. The algo
rithm consists of two steps. The first step is spine registration for global 
patient alignment (position and orientation), while the second step is 
direct tumor registration for tumor position localization. The step-two 
soft-tissue registration algorithm has evolved through three versions. 
The original XLT released in 2006 performed a block-matching search of 
the most similar region in live X-rays based on the pre-defined tumor 
“matching window” extracted from DRRs. Pattern intensity [12] was 
used to determine image similarity [7]. Original XLT was revised in 
2009 with a more rigidly defined DRR “matching window” (within 20 
mm of delineated tumor volume), ±10◦ in-plane “matching window” 
rotation to compensate tumor respiratory rotation on X-ray images, and 
automatic live X-ray enhancement to match the X-ray intensity histo
gram to that of DRR [13]. The most recent release in 2011 divided the 
tumor template into overlapping patches, registered the template 
patches independently to the live X-rays using normalized cross- 
correlation (NCC) similarity measurements, and used a weighted sum 
of 2D patches to calculate the overall registration for the whole tumor 
template [6]. However, both algorithms have specific limitations that 
restrict the broader applicability of CyberKnife in certain SBRT cases. 

Prior to treatment, a correlation model between internal XLT- 
measured tumor position and external optical surface marker position 
is built using a series 8–12 X-rays acquired at multiple phases of the 
breathing cycle. During the treatment delivery, the infrared signal 
combined with the correlation model is used to predict the internal 
target location 115 ms in the future, so that the radiation beam can be 
redirected to the actual target location in real-time with a 100 % duty 
cycle. Additional X-ray images are taken every ~60 s to verify and 

update the correlation model throughout the treatment [6]. 
Utilizing the stereoscopic X-rays at fixed angles, XLT has 2-view and 

1-view tracking modes. The latter is used when reliable and consistent 
tumor detection is unachievable in one of the two views. A larger 
planning target margin in the direction perpendicular to the 1-view 
plane is used to account for the out-of-plane tumor motion. A retro
spective analysis shows that the third-generation XLT algorithm ach
ieved 2-view and 1-view tracking for 64 % and 81 % of cases, 
respectively [6]. In other words, 36 %–19 % of lung cancer patients 
eligible for SBRT did not receive the full benefit of dynamic tumor 
tracking due to low tumor conspicuity in X-ray images, resulting in 
greater normal tissue or compromised tumor doses. It is, therefore, 
essential to advance algorithms for lung tumor detection and tracking of 
smaller and less conspicuous tumors. 

Emerging deep learning (DL) neural networks (NNs), including 
convolutional neural networks (CNNs), Transformers, etc., have revo
lutionized conventional medical imaging processing tasks, including 
classification [14], objection detection [15], segmentation [16], and 
template matching (TM) [17]. TM finds local matches in an image to a 
provided template image, essentially the lung tumor tracking problem. 
NNs are superior to their conventional counterparts in part attributed to 
their learning ability from large training datasets. In other words, DL- 
based TM frameworks are data-hungry [17,18], but the available data 
are often insufficient in both quantity and quality. The data scarcity 
challenge is exacerbated because of the data imbalance between normal 
anatomies vs. anomalies, e.g., tumors [19]. Providentially, recent 
research shows that an NN generator can capture low-level image sta
tistics for denoising, super-resolution, and inpainting tasks before 
training on domain-specific data [20]. 

To this end, we explore the feasibility of designing a training-free DL- 
based TM framework named Deep Match to improve the current 
CyberKnife XLT tracking. 

Methods and materials 

Data cohort 

The study was conducted under Institute Review Board (IRB) - 
approval (IRB # 20-32527) and included 10 de-identified patients (38 
fractions in total) who underwent lung SBRT with 1-view XLT between 
2015 and 2023. Detailed specification of the data cohort is listed in 
Table 1. Both seed X-ray images for building the correlative prediction 
model and treatment delivery are included. 

Data preparation 

Coordinate system transformation 
Although CyberKnife imaging apparatus has been previously re

ported, a description of details pertinent to the current study is essential. 
As shown in Fig. 1 (a), the two orthogonal X-ray sources installed on the 
ceiling and two amorphous silicon panel detectors tilted 45◦ from the 

Table 1 
Patient profiles in the data cohort.  

Patient Size range (mm3) Trackable view Fractions Total frames 

P1 > 153 B 5 263 
P2 A 5 344 
P3 (103,153) A 5 178 
P4 A 3 73 
P5 A 2 113 
P6 A 2 524 
P7 B 1 586 
P8 < 103 A 5 250 
P9 B 5 285 
P10 B 5 61 
Total   38 2661  

D. Xu et al.                                                                                                                                                                                                                                       
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floor consistute the main hardware components of the CyberKnife image 
guidance system. Although in modern CyberKnife systems the detectors 
are embedded horizontally in the floor, images are reconstructed in the 
45◦ geometry. Two CyberKnife coordinate systems related to the current 
work are illustrated – the three-dimensional patient coordinate system 
(3D-PCS) and the two-dimensional imaging coordinate system (2D- 
IMS). The 3D-PCS is based on a supine patient and has +X representing 
the inferior direction, +Y representing the left direction, and +Z rep
resenting the anterior direction. 3D-PCS is of millimeter (mm) unit. The 
origin of 3D-PCS is the machine isocenter, which coincides with the 
center of the imaging system. The 2D-IMS is used to define the geometry 
of the live X-ray and DRR images, which were generated in the Precision 
planning system for CK. 2D-IMS is of the absolute pixel unit. The origin 
of 2D-IMS is at the center of the detector/image. To transform 3D-PCS 
into 2D-IMS, coordinate projection, magnification, and unit trans
formation were provided. Coordinate projection is explained in Eq. (1) 
and Fig. 1 (c). X direction of 3D-PCS is Y′ in 2D-IMS, whereas X′ requires 
projection from Y and Z. Coordinate magnification is shown in Eq. (2) 
and Fig. 1 (b). Lastly, the CyberKnife X-ray detector has a detection area 
of 40cm × 40cm divided into 1024 × 1024 pixels with pixel spacing of 
0.39 × 0.39mm (Fig. 1 (d)). Unprocessed (1024 × 1024 pixels) and 
processed (512 × 512 pixels) live X-ray modalities are generated per 
treatment delivery, with processed having better imaging contrast. 
Thus, we chose processed X-ray as our image source, and our unit 
transformation follows Eq. (3). 

Y′ =
(
( − 1)n

• cos45◦

( − 1)n+1cos45◦
)
(

Y
Z

)

;X′ = X (1)  

n =

{
0,View B
1,View A  

where X,Y, Z represent 3D-PCS coordinate system and X′,Y′ represents 
intermediate transformation results to 2D-IMS. 

(
X˝

Y˝

)

=
SRC2ISOV + ISO2DECV

SRC2ISOV

(
X′

Y′

)

(2)  

where X″, Y″ represents intermediate transformation results to 2D-IMS, 
SRC2ISO refers to source to isocenter distance, ISO2DEC refers to iso
center to detector distance, and V refers to view A or B. SRC2ISOA, 
ISO2DECA, SRC2ISOB, ISO2DECB at our facility is specified at 2315.6 
mm, 1420 mm, 2319.1 mm, and 1419 mm. 
(

X″′

Y″′

)

=
LP

LD

(
X˝

Y˝

)

(3)  

where LP is the number of pixels on the detector and LD is the absolute 
length of the detector LP = 512, LD = 200mm in this case. 

Data processing 
DRR template is cropped from DRR images of size W × H = 512 ×

512 with tumor bounding boxes (BBoxes) provided from machine log 
files. BBoxe sizes are approximately 20mm × 20mm and are provided 
with 3D-PCS format. Coordinate system transformation is applied to 
BBoxes before cropping the template from DRR. 

Processed live X-ray images of size, W × H = 512 × 512 are selected 
as search inputs. Tumor locations generated from the CyberKnife Syn
chrony trackable view throughout treatment delivery are utilized as our 
template matching ground truth. Tumor coordinates (defined as the 
centroid of the tumor tracking volume) are stored in the 3D-PCS format 
in the ModelPoints.log file. Coordinate system transformation is applied 
to align the tumor coordinates with the live X-ray imaging system. 

Sanity check 
To verify the accuracy of our data preparation process, we tested our 

data processing workflow on 5 patients treated with Synchrony tracking 
based on a single fiducial. As exemplified in Fig. 2, the coordinates of the 
fiducial extracted from the ModelPoints.log file and converted into the 
imaging coordinate system agree well with visible fiducials on the live 
treatment delivery X-rays from both views, validating the correctness of 

Fig. 1. Diagram of CyberKnife imaging system. (a) A schematic of treatment setup. (b) Patient coordinate system geometry. (c) Coordinate transformation between 
the patient coordinate system and 2D imaging coordinate system (View A). (d) Definition of detector imaging regions. 
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Fig. 2. Data preparation sanity check on fiducial tracking case. Red circles are the image center, and white circles are the log recovered coordinates (circle diameter 
= 10 pixels/3.9 mm). The image center on DRR and live XR is calculated from the center of gross tumor volume on the DRR image. The DRR image center is then set 
as the origin for 2D IMS and the isocenter per treatment delivery. White circle on the fourth column is calculated via moving the log recovered fiducial coordinates 
from the origin (red circle on the third column). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. Illustration of the Deep Match algorithm.  
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model geometry. 

Deep match algorithm 

Inspired by Kim et al. [21], Deep Match, as shown in Fig. 3, is defined 
to localize the most similar patch within the live X-ray image at time t 
It ∈ Rw×h given DRR template T ∈ Rm×n generated per treatment plan
ning, where w and h represent the width and height of the image and m 
and n correspond to the width and height of the template. Deep Match 
has stages of NN feature extraction, similarity measurements and pro
posal generation, location refinement, and uncertainty level prediction. 
Deep Match is essentially a versatile pipeline, having each stage plug- 
and-playable. We will demonstrate this framework with VGG-16 [22] 
as a feature map extractor, a combined similarity metric of NCC and 
pattern intensity (PI) [12], and the swin window mechanism as proposal 
uncertainty level prediction. 

Deep neural network feature extraction 
The feature extractor in Deep Match directly uses ImageNet [23] 

pretrained weights to construct a data-efficient framework, without 
further task-specific model fine-tuning. Specifically, VGG-16 is used to 
extract feature maps from both the DRR template and the input images. 
While the pretrained VGG network may not grasp task-specific contex
tual information, it still captures crucial low-level statistics through 
local and translational invariant filtering operations inherent to any NN. 
These statistics effectively capture pixel neighborhood relationships at 
multiple scales, leading to improved template searching compared to 
using raw images [20]. Following Kim et al. [21], we designed our VGG 
network to be scale adaptive, where rescaling the template or images 
into a particular size as standard CNN methods is no longer needed. In 
this way, we avoid tumor deformation and degraded structural infor
mation caused by image rescaling. 

Similarity measurements 
As NCC is commonly used as a similarity metric in natural imaging 

matching, and studies show that PI is a strong artifact-insenstive metric 
for medical imaging registration [12]. We designed our similarity 
measurement to be a fusion of the two in the format shown in Eqs. (4)– 
(7). Since S is measured in feature map domain, we will back-project the 
BBox location found on feature map to that in the original image domain 
for proposal generation. 

S = αSNCC +(1 − α)SPI (4)  

SNCC =
< FT , F̃It >

|FT |

⃒
⃒
⃒
⃒F̃It

⃒
⃒
⃒
⃒

(5)  

ΔF(i, j) = F̃It (i, j) − FT(i, j) (6)   

SPI =
∑

i,j

σ2

σ2 +(ΔF(i, j) − ΔF(i, j − 1))2 +
σ2

σ2 +(ΔF(i, j) − ΔF(i − 1, j))2

+
σ2

σ2 +(ΔF(i, j) − ΔF(i − 1, j − 1))2 +
σ2

σ2 +(ΔF(i, j) − ΔF(i − 1, j+1))2

(7)  

where α is a self-defined hyperparameter (0.5 currently used), FIt and FT 
are the NN-processed feature maps of live X-ray images and DRR tem
plate, F̃It = FIt (i : i+hFT − 1, j : j+wFT − 1) is a feature map patch extrac
ted from FIt with a width of wFT and hFT equal to the size of FT, ΔF is the 
pixel intensity difference, and σ2 is a self-defined weight constant. Ac
cording to Fu et al. [7], 20 is used for σ2. 

Location refinement 
For more robust tracking, proposal refinement was conducted. First, 

to enable more precise proposal coordinates, a similarity layer-back- 
projected weighted sum of the original location in a 3 × 4 patch was 
applied to the proposal BBox coordinates, as shown in Eq. (8). Second, a 
user-defined search window was specified to exclude unreasonable BBox 
proposals generated. A range of 25 mm from the center of the image is 
currently used, which is wide enough to include irregular respiratory 
motions. 

(
x(i, j)
y(i, j)

)

=

∑1
u=− 1

∑1
v=− 2S(i + u, j + v) •

[(
x(i, j)
y(i, j)

)

+ v •
∏l− 1

k=1sk
]

∑1
u=− 1

∑1
v=− 2S(i + u, j + v)

(8)  

where sk is the stride of kth layer in the NN feature extractor (s = 2 for all 
layers), and l is the total layers. 

Uncertainty level prediction 
As shown in the second row of Fig. 3, we defined a “swin window” 

mechanism to determine localization confidence. The “swin window” 
mechanism performs repeated detection box shifts along the up/down/ 
left/right directions by half the box length. The more shifted window 
BBox proposals overlapped with the non-shifted BBox proposal, the 
higher prediction confidence. As shown in Fig. 3, L4 represents the 
highest level of confidence (four directional shifted regions are located 
by Deep Match) whereas L1 represents the lowest level (one directional 
shifted region is located by Deep Match). Considering the efficiency of 
the matching algorithm, we shifted windows in four directions – top/ 
down/left/right with four levels of confidence. 

Model evaluation 

CyberKnife Tracking System needs to register information from both 
views to determine tumor 3D motion. As mentioned, CyberKnife XLT 1- 
view tracking cannot determine motion perpendicular to the imaging 
plane. Live X-ray imaging geometry shows that the superior-inferior 
tumor direction, which tends to be the largest component of respira
tory motion, is detected in both X-ray views. Therefore, the superior- 
inferior target location in the trackable view was used as the ground 
truth for evaluation. The superior-inferior-difference (SID) between the 
target location proposed by Deep Match to the ground truth was 
calculated. We organized four evaluation metrics – 1.5 mm-Hit, 3 mm- 
Hit, 5 mm-Hit, and SID. The Xmm-Hit is a prediction accuracy metric 
that calculated the images with BBox predicted within X mm SID 
tolerance over total images. SID was evaluated in 3D-PCS, and the al
gorithm was evaluated patient-wise. 

Benchmark algorithm and model training 

Since XLT algorithms are close-sourced, we coded second and third- 
generation XLT (XLT 2nd Gen and XLT 3rd Gen) according to literature 
[6,7] for benchmark purposes. The performance of our implementation 
was validated against the commercial XLT. 

All the experiments are parallelly run on a 4 × RTXA6000 GPU 
clusters with a batch size of 4× 1. 

Results 

The comparison of our XLT implementations, Deep Match, and the 
commercial XLT, is shown in Table 2. On the trackable views, all the 
models can achieve >90 % of 3 mm-Hit and ~1.5 mm SID on most 
patients (except XLT 2nd Gen on P7), with Deep Match slightly out
performing the benchmark models - ~2% higher on 3 mm-Hit and ~0.2 
mm lower on SID. 

The results from nontrackable views are shown in Fig. 4 and Table1 
nontrackable view. From Table 2, we can observe that XLT 2nd Gen and 

D. Xu et al.                                                                                                                                                                                                                                       
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XLT 3rd Gen achieve 0 % 3 mm-Hit (P1, P3, P5, and P8) or over 5 mm 
SID margin (P2, P5, and P8), which is consistent with the fact that these 
lesions could not be tracked by the CyberKnife system during patient 
treatment. >80 % patients achieve 3 mm-Hit (except P2, P6, and P9) and 
100 % patients achieves <3 mm SID with ~1 mm standard deviation 
with Deep Match. Fig. 4 shows three representative patients – P2, P3, 
and P8. P2 has a tumor size >15mm × 15mm × 15mm and the target is 
superimposed with the spine. P3 has tumor size between 10mm ×

10mm × 10mm and 15mm × 15mm × 15mm and the target is super
imposed with cardiovascular structures. P8 has tumor size <10mm×

10mm× 10mmwith no anatomy overlapping issue. We can see that Deep 
Match can generate high confidence BBox proposal (L3, L4) on these 
patients. Although some images have more than one BBox proposal, the 
BBoxes with the highest confidence level proposal consistently agree 
with the ground truth position. 

Discussion 

Effective management of internal organ motion is of paramount 
importance in radiotherapy. The importance has elevated with 

Table 2 
Experimental results on Deep Match and replicated XLT second- and third-generation (XLT 2nd Gen and XLT 3rd Gen) algorithms. Trackable views refer to XLT 3rd 
Generation trackable views and vice versa for the category of nontrackable views. 1.5/3/5mm-Hit refers to the percentage of predictions within 1.5/3/5 mm superior/ 
inferior margin from ground truth.  

View Patient Deep Match XLT 2nd Gen XLT 3rd Gen 

1.5 mm-Hit 3 mm-Hit 5 mm-Hit SID(mm) 3 mm-Hit SID(mm) 3 mm-Hit SID(mm) 

Trackable P1  89.04 %  98.37 %  100.00 % 1.23 ± 1.05  96.55 % 1.32 ± 1.06  97.62 % 1.28 ± 1.05 
P2  92.00 %  95.00 %  100.00 % 1.19 ± 1.04  93.99 % 1.48 ± 1.11  94.86 % 1.37 ± 1.06 
P3  80.33 %  98.31 %  98.31 % 1.09 ± 1.03  96.07 % 1.36 ± 1.18  96.07 % 1.38 ± 1.17 
P4  90.55 %  91.94 %  92.57 % 1.08 ± 0.81  90.38 % 1.48 ± 0.43  91.94 % 1.53 ± 0.67 
P5  92.00 %  97.21 %  100.00 % 1.19 ± 1.25  100.00 % 1.13 ± 1.09  95.00 % 1.03 ± 1.22 
P6  91.25 %  94.86 %  99.37 % 1.41 ± 1.05  92.67 % 1.63 ± 1.21  93.04 % 1.60 ± 1.16 
P7  94.36 %  97.45 %  98.91 % 0.95 ± 0.80  88.54 % 1.01 ± 0.98  91.45 % 1.24 ± 1.05 
P8  88.26 %  98.25 %  99.37 % 1.36 ± 1.04  95.23 % 1.69 ± 0.95  96.58 % 1.74 ± 0.91 
P9  89.23 %  95.19 %  96.45 % 1.22 ± 1.01  93.33 % 1.37 ± 1.09  93.70 % 1.36 ± 1.22 
P10  91.32 %  97.61 %  97.61 % 1.26 ± 1.07  91.89 % 1.35 ± 0.67  92.57 % 1.44 ± 1.05 

Nontrackable P1  93.54 %  99.62 %  100.00 % 2.13 ± 1.38  0.00 % –  0.00 % – 
P2  31.34 %  66.79 %  80.00 % 1.96 ± 1.16  47.38 % 2.21 ± 2.04  48.89 % 2.59 ± 1.99 
P3  71.35 %  91.60 %  96.60 % 2.22 ± 1.41  27.00 % 10.66 ± 3.74  0.00 % 14.63 ± 1.55 
P4  87.50 %  95.83 %  95.83 % 1.67 ± 1.24  72.22 % 1.98 ± 1.78  1.38 % 4.91 ± 2.98 
P5  48.00 %  89.00 %  100.00 % 1.81 ± 1.24  27.00 % 4.37 ± 3.73  0.00 % 14.16 ± 3.22 
P6  30.66 %  52.93 %  83.40 % 2.40 ± 1.42  25.98 % 3.44 ± 1.92  38.67 % 3 .27 ± 1.93 
P7  66.36 %  90.00 %  97.63 % 1.32 ± 1.07  50.55 % 3.21 ± 1.89  47.82 % 3.39 ± 2.18 
P8  76.71 %  85.94 %  89.16 % 1.58 ± 1.20  0.00 % 13.40 ± 2.04  0.00 % 12.74 ± 0.81 
P9  37.69 %  70.90 %  83.58 % 1.80 ± 1.15  14.93 % 3.42 ± 4.08  29.10 % 3.09 ± 3.32 
P10  48.94 %  89.36 %  100.00 % 1.92 ± 1.24  76.60 % 2.48 ± 1.72  72.97 % 2.39 ± 1.07  

Fig. 4. Deep Match tracking results demonstration from three individual patients on 3rd Generation, patient #2 (P2), patient #3 (P3) and patient #8 (P8). P2 
represents the XLT patient group with tumor size greater than 15mm× 15mm× 15mm, P3 represents the XLT patient group with tumor size between 10mm ×

10mm × 10mm and 15mm× 15mm× 15mm, and P8 represents the XLT patient group with tumor size smaller than 10mm× 10mm× 10mm. 
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hypofractionation and SBRT, where high fractional doses and steep dose 
gradients are observed. Although surface markers can be correlated with 
internal organ motion for lung cancer, the correlation can be unreliable 
without periodic direct visualization of the lung tumor during treat
ment. Among the overwhelming majority of radiotherapy equipment, X- 
rays remain the only imaging method for real-time internal anatomy 
monitoring. While implanted fiducials can be accurately tracked, the 
implantation procedure is demanding and medically contraindicated by 
some patients. For robotic tumor tracking, fiducial-free X-ray tracking is 
attractive to exploit the intrinsic tumor lung parenchyma contrast. Yet, 
existing tracking algorithms based on raw imaging features are limited 
in locating small tumors and tumors obscured by dense overlapping 
structures in the X-rays [6]. The tracking performance could benefit 
from the recent DL revolution leading to numerous networks out
performing conventional image processing methods. However, most DL 
networks require large, annotated datasets to train, a condition that 
cannot be met for the specific study. 

Therefore, we proposed Deep Match in this work. Deep Match is a 
zero-shot versatile DL-based template matching pipeline consisting of 
four stages – NN feature extractor, feature map similarity measurements 
and tracking proposal, proposal refinement, and tracking confidence 
prediction. Each stage of Deep Match can be substituted by user self- 
definition. We demonstrate the effectiveness of Deep Match using 
VGG16 as feature extractor, PI and NCC fusion as similarity measure
ments, weighted local box proposal adjustments and respiratory motion 
margin defined searching window as local refinement, and swin window 
as prediction uncertainty level measurements. Deep Match is validated 
on a CyberKnife 1-view patient cohort with 10 patients with a total of 38 
fractions (2661 images). 

For all trackable views, Deep Match identified the SI target location 
within 1.5 mm of the ground truth location (1.20 mm average, range 
0.95–1.41 mm), which is below the overall system margin measured in 
end-to-end tests for motion tracking treatments [20]. 

For all non-trackable views, Deep Match identified the SI target 
location within 2.5 mm of the ground truth (1.88 mm average, range 
1.32–2.40 mm), which is below the target relative distance along the 
alignment center of the superior-inferior (SI) axis in the 2 projections 
(dxAB) threshold used clinically. The target dxAB threshold defines the 
maximum difference in the SI target location extracted from the two x- 
ray images. The default value is 2.5 mm. Large values of dxAB might 
indicate the presence of rotation in patient setup. 

For lung SBRT patients, a 5 mm planning target margin is typically 
used. The 1.5 mm-, 3 mm- and 5 mm-Hit were calculated to evaluate the 
prediction accuracy of Deep Match. Deep Match achieved an average 5 
mm-Hit of 98.3 % (range 92.6–100 %) on the trackable views and 92.6 
% (range 80–100 %) on the nontrackable views. 

With the introduction of Deep Match, 1-view-only patients are 
potentially eligible for 2-view tracking with a tightened treatment 
margin and reduced toxicity. Additionally, since Deep Match can detect 
smaller and obscured tumors and targets, patients previously excluded 
from XLT direct tumor tracking could benefit from fiducial-free SBRT 
[6]. 

Unlike most current DL medical imaging applications, Deep Match, 
requiring no network training, is data-independent. Essentially, any NN 
digests image I as a parametrization fθ(I) process with standard structure 
and alternating filtering operations (i.e., linear convolution, upsam
pling, nonlinear activation functions, etc). The local and translational 
invariant nature of convolutions and the sequential usage of such op
erators effectively capture the pixel neighborhood relationships at 
multiple scales. Without task-specific training and fine-tuning, the data- 
efficient framework constructed using ImageNet pretrained weights may 
not comprehend contextual information, such as lung tumor 
morphology. Albeitly, low-level statistics in NN processed feature maps 
contribute to an improved template searching task compared to using 
raw images [20]. Therefore, while Deep Match may sacrifice some 
performance compared to models trained and fine-tuned on specific 

data, it gains the advantage of being more generalizable and less prone 
to overfitting. Another distinct benefit of Deep Match is the ability to 
quantify the tracking uncertainty with a “swing window” mechanism, 
which is crucial for the safe clinical adoption of a DL product [24] by 
alerting the operator of reduced tumor tracking confidence for necessary 
treatment pauses. 

The current study is based on a specific robotic radiotherapy plat
form, but its applications are generalizable to other X-ray-based radio
therapy platforms, including the widely available C-arm gantry systems 
[9,25] with an X-ray onboard imager. One potential advantage of 
applying this method to C-arm is the additional flexibility of acquiring X- 
rays from different angles and avoiding dense overlapping structures, 
thus improving tracking of small tumors. 

Nevertheless, the current work can be improved and expanded in 
several areas. From the algorithm perspective, improved tracking may 
be attained with techniques such as rib or spine removal [26]. As a zero- 
shot method, Deep Match network parameters are not task-optimal. 
Better performance can be expected by fine-tuning the NN feature 
extractor based on chest X-rays for better precision in future work [27]. 
Lastly, improving soft-tissue visualization on x-ray images is an impor
tant aspect to consider, as the physician is ultimately responsible for 
verifying the correct target alignment by visual inspection of the live 
camera images and DRRs. For this purpose, dual-energy X-ray imaging 
has been proposed to enhance soft-tissue visibility and increase tracking 
accuracy, especially in small lung targets [28]. From the data perspec
tive, for validation, the current study is performed on the available 1- 
view tracking patients in the database, which is limited in both the 
data size and available ground truth dimension. Overcoming both 
challenges requires a larger dataset of patients with low lung tumor 
conspicuity, yet the ground truth tumor 3D coordinates are available. To 
curate such a database in future studies, one can conceivably perform 
imaging inpainting [29] to remove fiducials from 2 to view fiducial 
tracking patients without impacting the rest of thoracic anatomy. 

Conclusion 

An improved X-ray fiducial-less lung tumor tracking method – Deep 
Match – is tested on patients with small and obscured tumors. Markedly 
improved performance was observed compared with the commercial 
system using conventional object detection methods, achieving high 
tumor tracking accuracy on previously untractable targets. The pro
posed method may further push the current tractable tumor limit to 
below 15 mm, thereby broadening the patient cohort that stands to 
benefit from fiducial-free SBRT. 
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