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Rapid Rotation of Hi’iaka
Preprint typeset using LATEX style AASTeX6 v. 1.0
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ABSTRACT

Hi’iaka is the larger outer satellite of the dwarf planet Haumea. Using relative photometry from the

Hubble Space Telescope and Magellan and a phase dispersion minimization analysis, we have identified

the rotation period of Hi’iaka to be ∼ 9.8 hrs (double-peaked). This is ∼ 120 times faster than its

orbital period, creating new questions about the formation of this system and possible tidal evolution.

The rapid rotation suggests that Hi’iaka could have a significant obliquity and spin precession that

could be visible in light curves within a few years. We then turn to an investigation of what we learn

about the (presently unclear) formation of the Haumea system and family based on this unexpectedly

rapid rotation rate. We explore the importance of the initial semi-major axis and rotation period in

tidal evolution theory and find they strongly influence the time required to despin to synchronous

rotation, relevant to understanding a wide variety of satellite and binary systems. We find that

despinning tides do not necessarily lead to synchronous spin periods for Hi’iaka, even if it formed

near the Roche limit. Therefore the short rotation period of Hi’iaka does not rule out significant tidal

evolution. Hi’iaka’s spin period is also consistent with formation near its current location and spin up

due to Haumea-centric impactors.

Keywords: Kuiper belt objects: individual (Haumea) — planets and satellites: dynamical evolution
and stability — planets and satellites: individual (Hi’iaka) — techniques: photometric

1. INTRODUCTION

The dwarf planet Haumea stands out from the rest of its Kuiper Belt counterparts. It has the shortest known rotation

period (Prot = 3.9154 hrs) of objects its size (Rabinowitz et al. 2006). Haumea is also known to have two regular

satellites, Hi’iaka and Namaka (Ragozzine & Brown 2009), and a collisional family of smaller objects associated with

it (Brown et al. 2007). These family members share many unusual properties with Haumea including strong water ice

spectra (Schaller & Brown 2008; Trujillo et al. 2011; Carry et al. 2012), high albedos (Elliot et al. 2010), and possibly a

more rapid mean rotational period of 6.27±1.19 hrs compared to a mean rotational period of 7.65±0.54 hrs (Thirouin

et al. 2016) for other Kuiper Belt objects (KBOs), in addition to their dynamically clustered orbits (Marcus et al.

2011; Lykawka et al. 2012; Volk & Malhotra 2012). All of these properties point to formation by a major collision

which can impart rapid spin to Haumea and generate the satellites and family.

Existing formation hypotheses cannot self-consistently explain all the properties of Haumea’s formation (Ortiz et al.

2012; Campo-Bagatin et al. 2016). For example, models which invoke a slow impactor to keep the Haumea family

very tightly clustered (Leinhardt et al. 2010) are improbable (Levison et al. 2008; Campo-Bagatin et al. 2016). These
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mechanisms might be reconciled if Haumea and possibly other large KBOs were near-equal size binaries that were

eventually destabilized, potentially due to three-body dynamical effects of the Sun (Marcus et al. 2011; Porter &

Grundy 2012; Brown et al. 2012). Though this can create a slow impactor without relying on a low-probability

heliocentric impact, whether it is more plausible than other hypotheses requires further study.

One avenue for improving our understanding of the formation of Haumea is to study its two moons. Their nearly

circular and coplanar orbits suggest that they formed as a direct consequence of the same event that spun up Haumea

(though it is not impossible that this was a different event from the formation of the family (Schlichting & Sari 2009)).

Therefore, their physical and orbital properties may contain important clues.

Hi’iaka and Namaka have nominal masses of ∼0.5% and ∼0.05% of Haumea’s mass (MH), where MH = (4.006 ±
0.040)×1021 kg, and nominal radii of 150 and 75 km, respectively (Ragozzine & Brown 2009). Due to uncertainties in

density and brightness measurements, these values may have uncertainties on the level of tens of percent. The satellites

have large semi-major axes, orbiting at 35.7 and 69.5 Haumea radii (RH), where we use the volumetric Haumea radius

of RH ' 715 km (from 495 x 770 x 960 km estimated in Lockwood et al. (2014)). The smaller inner satellite, Namaka,

orbits with an eccentricity of 0.2 and an inclination of 13◦. The larger outer satellite, Hi’iaka, has a less excited orbit,

with an eccentricity of 0.05 and an inclination of ∼2◦ (Ćuk et al. 2013). A deep search essentially ruled out additional

regular satellites as small as ∼10−6 of Haumea’s mass (Burkhart et al. 2016).

The larger satellite, Hi’iaka, orbits with a period of 49.462 ± 0.083 days (Ragozzine & Brown 2009). At this point

in Hi’iaka’s orbital evolution, it is expected to have been tidally despun and therefore rotating synchronously (or

potentially in a higher-order spin-orbit resonance) with its orbital period. Assuming standard tidal theory, the large

semi-major axis and low eccentricity of Hi’iaka would take much longer to achieve than despinning of a small satellite.

In many tidal histories, the despinning of a small satellite is often considered to be effectively instantaneous due to

the short timescales involved.

We present observations of Hi’iaka that clearly show that it is rotating ∼120 times faster than the expected syn-

chronous spin period (Sections 2 and 3). Such a configuration is unusual for a regular satellite, as other regular satellites

in the solar system are tidally despun, although it mirrors the recent discovery of rapidly rotating small moons of Pluto

(Weaver et al. 2016). We then consider the implications for this rapid rotation in Section 4 by considering two end-

member possibilities for Hi’iaka’s formation: formation near the Roche limit of Haumea in a standard post-impact

disk (Section 4.1) or formation near the present-day location (Section 4.2). This instigates an extensive discussion on

the validity of using standard tidal “timescales” which suggests that initial conditions are very important, even for

extensive tidal evolution, as demonstrated by numerical integration. We also consider the case of spin up by a recent

impactor (Section 4.3). We then draw conclusions and suggest future investigations in Section 5.

2. DATA

As the goal is to identify Hi’iaka’s light curve shape and period, only relative photometry is required. This simplifies

the analysis considerably since our observations come from different telescopes under different observing conditions.

Our primary data comes from Hubble Space Telescope (HST) observations on February 4, 2009 and June 28, 2010

and Magellan observations on June 1, 2009.

The HST observations of the Haumea system comprised 5 HST orbits worth of 100-second exposures of the Wide

Field Planetary Camera 2 (Program 11971) and 10 HST orbits worth of 44-second exposures of the Wide Field

Camera 3 (Program 12243). Hereafter, we will refer to these as the ”2009” and ”2010” HST data, respectively. The

2009 observations were collected in an attempt to observe a possible mutual event between Hi’iaka and Namaka. They

were well separated from Haumea, whose PSF was removed. These satellites were too close to resolve at this epoch, so

simple aperture photometry with a 4-pixel radius circular aperture was used to determine the light curve. We return

to the implications for Namaka later, but for now assume that the light curve is due entirely to Hi’iaka.

For the 2010 HST data, all three objects are resolved for the first four orbits. Triple PSF-fits were performed as

described in Ragozzine & Brown (2009) and Burkhart et al. (2016) to identify the exact locations of Haumea, Hi’iaka,

and Namaka and to remove Haumea’s PSF from the images. In the last six orbits, Namaka is too close to Haumea

to resolve (these observations were chosen to capture a Haumea-Namaka mutual event, so this is unsurprising), and

double PSF-fits are used. In either case, Hi’iaka was far from Haumea and easily resolved. Simple aperture photometry

was collected using a 4-pixel radius circular aperture, which is sufficient for our purposes. The PSF fits were designed

for astrometry and do not return as reliable photometry. For more details on these observations see Burkhart et al.

(2016). Several tests confirmed that the variability was real and centered on Hi’iaka. For example, investigation of the

light curve of an identical aperture located opposite to Hi’iaka showed no significant variability. A few observations

were significant outliers (due to cosmic ray hits) and were removed from our data; contamination from cosmic rays
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Figure 1. Unphased light curve for the 2010 HST data showing a strong repeated variability. These data only have Hi’iaka in
the aperture. Investigations of other regions at the same Haumea-centric distance show no sign of variability. The error bars
are estimated from photon noise. Gaps in the light curve are due to Earth occultations.

was also the primary motivation of the choice of aperture size. Gaps due to Earth occultations are a larger concern,

but do not preclude the 2010 data from showing a strong repeated variability which we illustrate in Figure 1.
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This system was also observed on the night of UT June 2, 2009 with the Baade Magellan telescope at Las Campanas

Observatory in Chile. We used the Raymond and Beverly Sackler Magellan Instant Camera (MagIC). Observations

were taken from the beginning of the night until it was unobservable, for a total of ∼5 hours. We centered the system on

one of the four quadrants defined by the instrument’s four amplifiers. The seeing was constant during the observations

and consistently close to 0.5′′, smaller than Hi’iaka’s separation of 1.4′′. The SITe CCD detector has a pixel scale of

0.069 arcsec per pixel. We set the exposure times at 120 seconds to avoid saturation and optimize readout time. The

filter selected was Johnson-Cousins R. Standard calibrations were taken at the beginning and end of the night. The

telescope guiding system ensured the pointing was constant to within a FWHM over the course of the observations.

Standard routines were used to trim, bias-subtract, and flat-field the images. Each exposure was then registered

using the ISIS package (Alard 2000) to PSF match and subtract a template. The template image was the combination

of the twenty sharpest images, using an average with sigma rejection on each pixel. Ordinary aperture photometry

was then applied on the subtracted images to Haumea and two comparison stars of similar brightness in the field of

view using the DAOPHOT II package (Stetson 1987, 1992). To remove the influence of Haumea on photometry at

Hi’iaka’s location, a two-dimensional Gaussian that was the best-fit to Haumea was subtracted from the images.

For all of our observations, we can be confident that Hi’iaka’s photometry was not affected by Haumea’s variability

because we see no sign of Haumea’s large amplitude (∼25%) 3.9-hour rotational light curve. While it is possible that

very minor contamination remains, it is far exceeded by the highly significant variations in Hi’iaka’s light curve and

does not affect our conclusions.

Each dataset has been normalized to the respective maximum Hi’iaka brightness (all three go through a maximum),

in order to provide relative photometry. We also investigated HST data from 2008 (Program 11518) and 2014-15

(Program 13873) with this rotation period. These data are composed of single-orbit investigations separated by weeks,

have larger systematic errors, multiple filters, and much lower cadence (∼15 minutes). However, they showed the same

types of trends as seen in the higher cadence light curves: within an orbit, Hi’iaka’s brightness could change by roughly

±10%. Other datasets are thus consistent with our conclusions.

Due to the different observation times, the Hi’iaka-observatory distance changes significantly, introducing light-travel

time variations. Therefore, all times are converted to “HaumeA-centered Julian Date” (AJD), a clock local to the

Haumea system and therefore mutually self-consistent. Table 1 presents these relative normalized photometry inferred

from our observations.

Table 1. Normalized Relative Photometry of Haumea

AJD Normalized Flux Normalized Errors Observing Program

(d)

2454867.136 0.9898 0.0103 1

2454867.138 0.9797 0.0102 1

2454867.157 0.9101 0.0099 1

2454867.159 0.9124 0.0099 1

2454867.161 0.9222 0.0099 1

2454867.163 0.9136 0.0099 1

2454867.203 0.8352 0.0095 1

2454867.205 0.8360 0.0095 1

2454867.207 0.8253 0.0094 1

2454867.209 0.8397 0.0095 1

Note—Table 1 is published in its entirety in the machine-readable format. A
portion is shown here for guidance regarding its form and content. AJD is the
HaumeA-centered Julian Date of the observations, after light travel time cor-
rections. The normalized flux and errors are derived from relative photometry
measurements from HST Program 11971 on February 4, 2009 (1), Magellan obser-
vations on June 1, 2009 (2), and HST Program 12243 on June 28, 2010 (3). The
photometry was normalized by dividing each individual dataset by the maximum
value of flux from that dataset.
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3. ANALYSIS AND RESULTS

3.1. Period Analysis

The raw HST relative photometry given in Table 1 showed an extremely significant variability with a periodicity

near 5 hours and all three datasets indicated a similar sawtoothed shape. To identify a specific period, we employed

phase dispersion minimization (PDM) using the IDL routine PDM2 (Marc Buie, personal communication). PDM

typically involves minimizing the dispersion of the data at a given phase (Stellingwerf 1978), but PDM2 seeks instead

to minimize the reduced χ2 statistic in order to determine the best period (Buie & Bus 1992). We searched periods

from 2 to 20 hours to find a period that produced a self-consistent phased light curve. We note that the different

observation geometries due to the heliocentric motion of Haumea and Earth (and any precession of Hi’iaka) only span

∼5◦ in viewing angle, so secular changes in Hi’iaka’s light curve would be minimal and PDM remains an appropriate

technique.

The resulting periodogram from PDM2 is shown in Figure 2. There are clearly two regions that are favored, trial

periods of ∼ 4.9 and ∼ 9.8 hours, which correspond to the single-peaked and double-peaked light curves, respectively.

The rotation period would correspond to the single-peaked light curve if it were caused by albedo variegations, but this

is atypical for objects the size of Hi’iaka. We therefore identify the 9.8-hour period as the rotation period of Hi’iaka,

with the double-peaked light curve resulting from variable projected cross-sectional area of a rotating non-spherical

body.

The trial periods with the lowest reduced χ2 values were used to make a series of phase folded plots. These were

inspected by eye, as PDM2 only minimizes phase dispersion and does not invoke a smoothness criterion that is more

consistent with a light curve. The phase folded plot that was determined to be best is shown in Figure 3. This

plot corresponds to the trial period with the second lowest reduced χ2 value (9.79736 hours), but was considerably

smoother than the plot for the lowest value (9.71141 hours).

The PDM2 results show a forest of peaks corresponding to integer full rotations between our three disparate datasets.

While additional work could potentially identify a more precise rotational period, this limited dataset establishes that

Hi’iaka has an unexpectedly rapid rotation rate that is ∼120 times faster than the 49.5-day orbital period.

3.2. Implications for Hi’iaka’s Shape

From Figure 3, we can see that the brightness variation is 19 ± 1%, with a possible additional ∼1% systematic

error due to our assumptions in producing the normalized relative photometry. The sawtooth shape indicates an

irregularly-shaped body, but without additional observations, we choose to approximate the shape of Hi’iaka as a

tri-axial ellipsoid with semi-axes a > b > c. The three (degenerate) parameters that control the light-curve amplitude

of a tri-axial ellipsoid are b/a, c/a, and θ, the angle between the line-of-sight and the rotational pole. The relationship

between these parameters and the amplitude of the brightness variations in magnitudes (∆m) is (Benecchi & Sheppard

2013):

∆m = 2.5 log
a

b
− 1.25 log

(
a2 cos2 θ + c2 sin2 θ

b2 cos2 θ + c2 sin2 θ

)
. (1)

If Hi’iaka is nearly equator-on, then θ ≈ 90◦ which gives a maximum value of b/a of approximately 0.81 for Hi’iaka.

Another approximation to help break the degeneracy would be to limit b/a and c/a to values common for real solar

system objects. We investigated ∆m as a function of θ for objects presumed to be of similar size to Hi’iaka (150

km radius), using Equation 1. The objects considered were Eugenia, Psyche, Camilla, Eunomia, and Hyperion.1 For

these objects, θ between roughly 55-70 degrees results in the brightness change observed in the Hi’iaka light curve

(∆m ' 0.23). Hi’iaka has certainly experienced a different formation and evolution environment than these objects,

but if it is roughly similar in shape, then this would imply that perhaps θ ≈ 60◦ at the time of these observations.

3.3. Implications for Namaka’s Light Curve

Recall that the 2009 observations actually contain both Hi’iaka and Namaka in our aperture. (They are unresolved

as the purpose of these observations was to detect a satellite-satellite mutual event.) We assumed that variability was

due to Hi’iaka, which we now revisit.

Due to the near-commensurability between Hi’iaka’s spin period and HST’s orbital period (seen in Figure 1 for

the 2010 data) and an unfortunate phasing, the 2009 and 2010 data provide almost exclusive coverage of Hi’iaka’s

1 These five objects were determined by investigating https://en.wikipedia.org/wiki/List of Solar System objects by size for
objects with volumetric radii near 150 km. When performing calculations based on these bodies, we assume they are represented by
tri-axial ellipsoids with parameters as listed in this webpage. Thisbe, Phoebe, and Hektor also had similar sizes, but their shapes are very
inconsistent with the observed Hi’iaka light curve and are not used.
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Figure 2. PDM periodogram for the Hi’iaka light curve data. The minimum reduced χ2 values correspond to the most likely
rotation periods for Hi’iaka. The two regions of minima at 4.9 and 9.8 hours correspond to the single-peaked and double-peaked
light curves, respectively. The double-peaked period has the lowest reduced χ2 value and is preferred because Hi’iaka’s significant
variability is most likely due to the variable projected cross-sectional area of a rotating non-spherical body.
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Figure 3. Phase folded light curve for Hi’iaka relative normalized photometry. Black diamonds correspond to HST data from
February 4, 2009 (Program 11971); blue triangles correspond to Magellan Observations on June 1, 2009; and red squares
correspond to HST data from June 28, 2010 (Program 12243). The data has been folded over a period of 9.79736 hours, but
several plots with periods near 9.8 hours are similar. We conclude that the rotational period of Hi’iaka is approximately 9.8
hours with an amplitude of 19 ± 1%.
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phase curve. Therefore, it is not possible to rigorously compare the 2009 mutual event data with the “true” Hi’iaka

light curve inferred from lightcurves at other epochs. The light curve is reasonably smooth, but this is partly by

construction. Therefore, it is difficult to say for certain what effect Namaka’s light curve or the possible mutual event

had on the photometry.

Even if Namaka’s light curve is entirely constant over this time interval, it would create a ∼20% dilution of Hi’iaka’s

light curve, even in normalized photometry. This may be visible in Figure 3 near a phase of 0.2 where the February

2009 data are systematically brighter than the June 2009 Magellan data. Near 0.7 in phase, perhaps the true light

curve of Hi’iaka is deeper than portrayed. In any case, the shape and structure of the light curve is preserved and our

inference of a rotational period of 9.8 hours for Hi’iaka is not affected.

Inspection of Figure 3 suggests that major variability on short timescales beyond Hi’iaka’s light curve is unlikely.

Namaka is ∼4 times fainter than Hi’iaka in this filter, so a lack of variability at the ∼5% level would suggest that

Namaka is not more than ∼20% variable. Given Namaka’s size, it is likely to be aspherical like Hi’iaka (or more so).

So, an apparent lack of Namaka’s light curve would suggest either a slow rotation (much longer than 10 hours) or a

face-on orientation (which would require significant obliquity, since Namaka’s orbit is very nearly edge-on). We note

that Namaka has not shown significant variability in other single-orbit HST data. The 2010 data was obtained near

a Haumea-Namaka mutual event and no robust variability is detected, but Namaka is close or within Haumea’s PSF,

so this does not provide a strong constraint. Altogether, the data hints that Namaka’s spin period is longer than

roughly a day. Whether or not the data indicate a slowly rotating Namaka, it is worth noting that for orbital periods

longer ∼1 day, Namaka’s high eccentricity would likely result in a chaotic rotation due to spin-orbit resonance overlap

(Dobrovolskis 1995; Murray & Dermott 2000).

A Hi’iaka-Namaka mutual event (shadowing and/or occultation) would last up to 100 minutes and could result in

a ∼25% drop in flux. An event this strong is not detected. Grazing events that are shorter than about 30 minutes

would be too weak to detect. In between is a wide range of possibilities but the combined light curve does not seem

to contain any obvious mutual event. This does not entirely rule out a mutual event as it could have occurred during

Earth occultation. The lack of a mutual event has weak implications for the possible orbits of Hi’iaka and Namaka

which are beyond the scope of this work.

3.4. Implications for Haumea System Photometry

Haumea has been the subject of significant photometric study, often without resolving Hi’iaka. Since Hi’iaka is ∼5%

as bright as Haumea and has a ∼20% light curve, failing to account for Hi’iaka in unresolved photometry can introduce

a ∼1% error in understanding Haumea. As Haumea has a ∼25% intrinsic variability (Rabinowitz et al. 2008), Hi’iaka’s

effect will only be important for precise measurements.

Reviewing the observations for Haumea’s “Dark Red Spot” (Lacerda et al. 2008; Lacerda 2009), we do not believe

that Hi’iaka’s light curve has any effect on these conclusions, which are spread over multiple nights (and therefore

would average out Hi’iaka’s effect) and stronger than 1%.

On the other hand, Ragozzine & Brown (2009) predicted that Haumea and Namaka would undergo mutual events

and several ground-based measurements were obtained by multiple teams. These mutual events are only a few percent

in amplitude and Hi’iaka’s light curve did provide some confusion. With the phase curve provided in Figure 3, it

should be possible to minimize the confusion from Hi’iaka’s orbit, although this requires fitting Hi’iaka’s spin phase

until future work identifies Hi’iaka’s spin period and phase more precisely.

3.5. Precession of Spin Axis

The process of satellite despinning is directly connected to the evolution of satellite obliquity (the angle between

the satellite’s spin vector and the primary-satellite orbit vector). As Hi’iaka is rapidly rotating, then there is a chance

that it has retained a significant obliquity. Indeed, Pluto’s small satellites have very high obliquities (90-120 degrees

Weaver et al. 2016) and a measurement of Hi’iaka’s obliquity will similarly provide information on the formation and

evolution of its spin. Hi’iaka’s obliquity cannot be discerned in a single epoch, but Haumea’s mass will cause Hi’iaka’s

spin vector to precess which would manifest itself as changes in the light curve shape over time.

Without information about the shape and obliquity of Hi’iaka, we seek here to provide only an approximate sense

of how precession affects the spin axis direction. We average over the “fast angles” that describe Hi’iaka’s spin and

orbital orientation and assume a circular orbit for simplicity. In this case, the obliquity (φ) remains constant and the

precessing angle is known as the equinox. The precession period is given by

PPrecession = −2

3

P 2
orb

Pspin

C

C −A
1

cosφ
(2)
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where C and A are the standard moments of inertia (C > B > A) and the spin, orbital, and equinox precession periods

are labeled (e.g., Stacey & Davis 2008). For a tri-axial ellipsoid of uniform density, the moments of inertia are

A =
M

5
(b2 + c2) (3)

C =
M

5
(a2 + b2) (4)

Since C/(C −A) for Hi’iaka is unknown, the median value of the previously mentioned Hi’iaka-sized objects (2.34) is

used for illustration.

The minimal precession period occurs when the obliquity is zero (φ = 0, i.e., alignment of the spin and orbit axes)

which gives PPrecession ' 26 years. This first-order estimate indicates that Hi’iaka’s spin precession could be visible

within only a few years, as only a fraction of the precession cycle is required to provide observable changes in the light

curve.

Larger obliquities produce larger light curve changes, but also have slower precession periods. To illustrate this, we

assume a simple linear precession of the equinoxes and calculate θ (the angle between the line-of-sight and Hi’iaka’s

spin axis) as a function of time. Without a more sophisticated model, we approximate Hi’iaka’s orbit as fixed at epoch

HJD 2454615.0 (Ragozzine & Brown 2009) and do not include small (.3◦) changes in the orbital viewing angle.

The results, which are only illustrative, are shown in Figure 4. For an obliquity of zero, Hi’iaka’s spin is nearly

equator-on (since the orbit is nearly edge-on at the fixed epoch). Increased obliquity leads to more pronounced

changes, but also slower evolution, in accordance with Equation 2.

Based on our earlier sense from the shapes of Hi’iaka-sized objects, a present-day value of θ ≈ 60◦ would require an

obliquity of &20◦. Such a configuration suggests a precession rate of a few degrees per year. Zero obliquity is only

possible if Hi’iaka is more spherical than other objects of similar size. By investigating objects with the full range of

plausible shapes, only the most extreme objects could have θ . 45◦ at the present epoch. This does not rule out any

particular obliquity, since we do not know the phase of the equinox precession cycle.

We find no significant evidence in our observations of a change in amplitude in the light curve due to the precession

of the spin axis, but we present this as something to look for in future observations of the Haumea system. In the

tri-axial approximation using shapes from objects similar in size to Hi’iaka, the light curve amplitude can change by

∼0.01 magnitudes per degree of change in θ. Combined with a precession rate ranging from 1-10 degrees per year and

that our observations are from ∼7 year old data, if Hi’iaka has a significant obliquity, it seems very likely that the

light curve would be detectably different in new observations. New observations can confirm precession, but uniquely

solving for the shape and obliquity of Hi’iaka would likely require sampling the light curve at multiple distinct epochs.

In particular, the sawtooth shape of Hi’iaka’s light curve (Figure 3) indicates that a tri-axial ellipsoid is not a perfect

model and Hi’iaka may be more angular.

Our precession timescale estimates are sensitive to poorly known shape parameters, so the timescales could easily

vary by tens of percents from what has been presented here. Still, observations of Hi’iaka spread over ∼10 years should

be able to put valuable constraints on Hi’iaka’s obliquity.

For comparison, we also calculated the precession periods of the small moons of Pluto using Equation 2, using

dimensions and obliquity values assuming tri-axial ellipsoids with the parameters from Weaver et al. (2016). This

yields precession periods of approximately 23, 3.0, 5.6, and 31 years for Styx, Nix, Kerberos, and Hydra respectively,

though there is some uncertainty. The effect of Charon complicates their spin dynamics (Showalter & Hamilton 2015;

Correia et al. 2015), but hopefully long-term observations can provide information on these moons as well.

4. FORMATION HYPOTHESES

The newfound result that Hi’iaka has a rapid rotation rate and potentially a significant obliquity helps provide

insight to the formation and evolution of this moon, the Haumea system, and the Haumea collisional family, which we

now explore in detail.

Hi’iaka is orbiting in a low eccentricity, low inclination orbit at ∼70 primary radii, which, combined with Namaka’s

similar orbital state, cannot be explained through known capture mechanisms (Ragozzine & Brown 2009). Thus,

Hi’iaka formed around Haumea. There are two major end-member explanations for its present dynamical state: 1)

Hi’iaka mostly formed near the Roche limit and dynamically evolved outward to its present location or 2) Hi’iaka

mostly formed near/at its present location.

At first glance, neither of these mechanisms is fully satisfying, even before considering the origin of Hi’iaka’s rapid

rotation. Some theories for the formation of the Moon include additional satellites (e.g., Canup et al. 1999) potentially
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Figure 4. Plot of the angle between the Earth line of sight and the spin axis direction (θ) over 50 years. Each line is a different
obliquity (φ), starting at 0◦ (black horizontal line; no precession), followed by 5◦ (purple) and then 10◦ (dark blue). The
obliquity is then incremented by 10◦ until 80◦ (red). The y-axis ranges from θ = 0◦ (sub-Earth point at Hi’iaka’s pole) to
θ = 90◦ (sub-Earth point on Hi’iaka’s equator), where values larger than 90 degrees are “reflected” since the effect on the light-
curve amplitude (Equation 1) is symmetric. As shown in Equation 2, larger obliquities are associated with longer precession
periods. The light curve amplitude of Hi’iaka suggests the present value of θ around 60 degrees, with values less than 45 degrees
unlikely. For clarity, the precessing equinox angle starts at the same value for each curve, but in actuality, the present day
Hi’iaka could be anywhere in the precession cycle. Therefore, we cannot rule out any particular obliquity.
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long-lived (e.g., Stacey & Davis 2008) and Haumea’s satellites are in a broadly similar regime. However, dynamical

evolution to its present location through tides seems to require extreme tidal parameters for Haumea. Using the

volumetric radius, estimated physical parameters, and standard tidal equations requires unreasonable tidal parameters

(Ćuk et al. 2013). Recent work by Quillen et al. (2016) shows that including the non-spherical nature of Haumea only

gives a factor of 2 boost to the tidal evolution, overturning the argument of (Ragozzine & Brown 2009) that this might

be important. Although these first-order estimates fall far short, Quillen et al. (2016) admits that additional analysis

and an improved understanding of Haumea’s size (which is still unknown), shape, and geophysical parameters may

allow for such extensive tides to move from unrealistic to plausible. Even if strong tides can be invoked, for some values

of the masses of the satellites, maintaining dynamical stability between interacting satellites with such significant tidal

interactions is another major drawback to this hypothesis (Ćuk et al. 2013).

Formation at the present location avoids issues with tides, but prompts the question of why the proto-satellite disk

extended to such a large semi-major axis, well beyond the regular satellite region of known bodies. Interactions with

other objects (including Namaka) or the proto-satellite disk could have pushed Hi’iaka outward. In the case of Pluto,

collisional expansion of the disk (or of multiple generations of satellites) can cause significant semi-major axis evolution

(Walsh & Levison 2015; Bromley & Kenyon 2015). These simulations included massive Charon, which is presumably

a key component of the formation of Pluto’s small moons, so these results are likely not relevant to the Haumea

system. The most plausible hypothesis for such an extended disk around Haumea is that it formed subsequent to

a collision onto a previous satellite (called the ur-satellite) of Haumea (Schlichting & Sari 2009). Ćuk et al. (2013)

explore this hypothesis in detail and find that it is mostly plausible. Further work is required to explain why this

disk results in two widely-separated moons (at ∼35 and ∼70 primary radii), though once near this configuration,

Ćuk et al. (2013) suggests that resonant dynamics and standard tidal evolution can potentially reproduce the present

eccentricities and inclinations. A downside to this hypothesis is that it removes any connection between the unusually

rapid rotation of Haumea (caused by the initial impact) and the formation of a tight dynamical family, as the latter

is independent of the former. Leinhardt et al. (2010) point out that SPH simulations cannot reproduce the creation

of a rapidly-spinning primary and a relatively large ur-satellite, which suggests that this model may not be entirely

self-consistent. Alternatively, since the formation of Haumea and the ur-satellite can occur early in the outer solar

system when collisions are common, perhaps there are a reasonable set of collisions that form the ur-satellite and

then spin-up Haumea (without destroying the binary). Even if forming a rapidly-rotating Haumea and an ur-satellite

is reasonably probable, this formation hypothesis proposes that the spin-up event is effectively independent of the

ur-satellite collision that forms the family. The combination of these two low probability events seems unreasonably

low (Campo-Bagatin et al. 2016); it is not clear why the only detectable collisional family in the Kuiper Belt would

happen to form around the fastest spinning large body in the solar system.

A full examination of these formation hypotheses is beyond the scope of this work, but we do investigate how

Hi’iaka’s rapid spin would fit into both of these end-member models.

4.1. Formation Close to Haumea and Evolved Out

If Hi’iaka forms close to Haumea (near the Roche limit) and then evolves out, an initial expectation is that despinning

tides would have slowed its rapid rotation early in its history when it was much closer to Haumea.

The effect of despinning tides on Haumea can be parametrized in many ways. New models that explicitly include the

expected frequency dependence of tides have been applied to some spin-orbit problems (e.g., Efroimsky & Williams

2009; Makarov & Efroimsky 2014; Ferraz-Mello 2015). Many second-order effects could be important such as solar

interactions (e.g., Porter & Grundy 2012), interactions with the other satellite2 (Ćuk et al. 2013), spin-orbit resonances

and chaos (e.g., Wisdom et al. 1984; Dobrovolskis 1995), and other potential issues. To simplify the problem into a

tractable one and for comparison to previous work, we begin by using a simplified technique that can identify important

dynamical results to approximately first order. Hence, we elect to use the “classic” constant Q models of Goldreich &

Peale (1968), keeping in mind that they are, at best, just approximations to a more complex history.

In these models, the rate of change of the spin frequency ω is given by:

ω̇ = sign(ω − n)
3

2

k2s

Qs

1

Cs

(
Mp

ms

)(rs
a

)3 GMp

a3
(5)

where n is the mean motion, k2 is the order two tidal Love number, Q is the tidal quality factor, M and m are masses,

2 It is worth noting that the tidal dynamics of the Haumea system are unique among objects in the solar system. It has large dynamically
interacting satellites like the giant planet satellite systems, but these evolve very slowly in semi-major axis due to weak tidal dissipation in
gas and ice giants (Q & 104). Among terrestrial/icy primaries with large dissipation, Haumea is unique in having two known moons which
are both relatively massive and strongly interacting.
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r is the radius, a is the semi-major axis, and G is the gravitational constant. In our case, the primary (“p”) is Haumea

and the secondary (“s”) is Hi’iaka.

4.1.1. Initial Rough Quantitative Estimates

In order to provide very rough quantitative estimates for the evolution of the Haumea-Hi’iaka system, we follow the

method of Murray & Dermott (2000) for estimating k2 (see also Quillen et al. 2016):

k2 =
3

2(1 + µeff)
(6)

where µeff is the effective rigidity given by

µeff =
19µ

2ρgr
(7)

where µ = 4× 109 N m−2 is the assumed rigidity for an icy body , ρ is the density, r is the radius, and g is the surface

gravity. We take µ from Murray & Dermott (2000), however the appropriate rigidity for tidal analyses could easily be

off by orders of magnitude.

Table 2. Key Parameters for Planetary Satellites

Object Satellite Mass Radiusa Density a Porb Pspin k2
b g τω

c Ref

(kg) (km) (kg m−3) (km) (days) (days) (m s−2) (years)

Haumea 4.006 × 1021 715 2600 · · · · · · · · · 0.03 0.3 · · · 1,2

Haumea Hi’iaka 2 × 1019 150 1000 49880 49.462 0.408 0.0004 0.06 2 × 1010 1,3

Haumea Namaka 2 × 1018 75 1000 25657 18.2783 · · · 0.00007 0.02 2 × 109 1,3

Pluto 1.304 × 1022 1187 1860 · · · · · · · · · 0.05 0.6 · · · 4

Pluto Charon 1.59 × 1021 606 1700 17540 6.3872 6.3872 0.01 0.3 9 × 105 4

Pluto Styx 1.0 × 1015 5.2 1700 42656 20.1616 3.24 0.0000009 0.002 3 × 1012 5,6

Pluto Nix 5.1 × 1016 19 1700 48694 24.8546 1.829 0.00001 0.009 4 × 1011 5,6

Pluto Kerberos 1.5 × 1015 6.0 1700 57783 32.1676 5.31 0.000001 0.003 1 × 1013 5,6

Pluto Hydra 6.5 × 1016 21 1700 64738 38.2018 0.4295 0.00001 0.01 2 × 1012 5,6

Earth 5.9722 × 1024 6371 5515 · · · · · · · · · 1 9.8 · · · 7

Earth Moon 7.3459 × 1022 1738 3341 384400 27.322 27.322 0.3 2 5 × 107 7

Eris 1.66 × 1022 1163 2500 · · · · · · · · · 0.09 0.8 · · · 8,9

Eris Dysnomia 2 × 1020 342 1000 37350 15.774 · · · 0.001 0.1 2 × 108 8,10

Makemake 4.4 × 1021 715 2300 · · · · · · · · · 0.04 0.6 · · · 11

Makemake MK2 (4%) 2.8 × 1018 87.5 1000 21000 12.4 · · · 0.00008 0.02 2 × 109 12

Note—Key parameters and results from tidal despinning calculations.

a Radii for Haumea and the small satellites of Pluto are the volumetric radii, calculated using R =
3√
abc.

b Value of k2 calculated using Equation 6.

c Despinning timescale in the current position of each satellite, calculated using Equation 8 and Q = 100.

References— (1) Ragozzine & Brown (2009) (2) Lockwood et al. (2014) (3) Ćuk et al. (2013) (4) Stern et al. (2015) (5) Showalter & Hamilton
(2015) (6) Weaver et al. (2016) (7) Stacey & Davis (2008) (8) Brown & Schaller (2007) (9) Sicardy et al. (2011) (10) Santos-Sanz, P. et al.
(2012) (11) Brown (2013) (12) Parker et al. (2016)

After assuming a value for the classic tidal dissipation parameter Q and, implicitly choosing a frequency dependence

and rheology for the body (Efroimsky & Williams 2009), we can arrive at the classic estimate for the tidal despinning

timescale:

τω =
ω

ω̇
≈ 2

15π

Qs

k2s

(
ρs
ρp

)3/2 (
a

Rp

)9/2

Porb (8)

Similar calculations result in the timescale for changes in the orbital frequency n:

τn = −2

3
τa = − 2

18π

Qp

k2p

Mp

ms

(
a

Rp

)5

Porb (9)

where Mp is the mass of Haumea and ms is the mass of Hi’iaka.

We find below that calling these “timescales” is inappropriate. However, starting with these equations results in

estimates for tidal properties and timescales shown in Table 2. This initial rough analysis indicates that Hi’iaka’s
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despinning timescale is longer than the age of the solar system. However, this conclusion requires many simplifying

assumptions which we now explore in greater detail.

4.1.2. Time Evolved Numerical Solution

The standard equation for the despinning “timescale” (τω) evaluated at the present location of Hi’iaka is a poor

approximation of whether Hi’iaka could have despun. Under the assumption of active tidal evolution, the semi-major

axis of the satellite has changed significantly. As the despinning tides are strongly dependent on a (τω ∝ a6), τω is

certain to be an overestimate of the time required to despin a satellite. Furthermore, the initial spin period (which

nominally determines the number of despinning timescales required for synchronization) is not known and could cover

quite a range.

To explore the actual tidal evolution, we developed a simple numerical model that calculates the time-evolution of

the spin frequency during semi-major axis expansion. We continue to make the assumption of a simplified tidal model,

no spin-orbit resonances or chaos, and neglecting outside influences (e.g., Namaka).

Equation 9 implies that the semi-major axis evolution has the form a(t) = (af − a0)(t/T )2/13 + a0, where T is

assumed to be the age of the solar system3, a0 is the initial semi-major axis, and af is the present semi-major axis.

At every timestep, the appropriate value of a was then used to determine how the rate of change of the spin frequency,

ω̇, changes with time. The spin is evolved following Euler’s Method: ω(ti) = ω0 +∆tω̇(ti−1) where ω0 is the initial spin

frequency, i is the iteration number, ∆t is the time step, and ω̇(ti−1) is the rate of change of the spin frequency for the

previous iteration, calculated from Equation 5. In order to resolve the evolution which is orders of magnitude more

rapid at the beginning of the simulation, we use exponentially increasing values of ∆t so that the iteration timesteps

ti are evenly spaced logarithmically. We checked many different values for the number of iterations and there were no

issues with convergence. Under certain assumptions (always supersynchronous or subsynchronous, always reaching af
at time T , and retaining a0 and ω0), the evolution equations can be solved for analytically and these results exactly

confirmed the numerical simulations.

Our nominal runs used the parameters given in Table 2 and Qs = 100. Multiple a0 and ω0 values were tested and

the results of one of these tests, with a0 = 2000 km (just outside Haumea’s Roche limit), is shown in Figure 5. It is

clear that the initial spin period is an important variable in determining whether or not Hi’iaka would be synchronous

at the present time. Simulations with other values of a0 are similar, but demonstrate that a0 is also an important

variable.

We investigated whether it was possible to determine analytically the time needed to despin given actual semi-major

axis evolution and retaining a0 and ω0 in the solution (even though common practice is to neglect these). The result

is a quartic polynomial in the despinning time to the 1/13 power with no path to a general solution. Furthermore, the

analytical results were nearly as time-consuming to calculate as simply propagating the motion numerically. Hence,

the numerical technique is preferred.

For understanding how Hi’iaka’s rapid spin rate affects our understanding of its formation, time evolution assuming

certain parameters is only a first step. The more relevant question is: for what tidal parameters (e.g., k2s

Qs
) does Hi’iaka

despin in the age of the solar system, as a function of the initial semi-major axis and spin period? We combined our

numerical technique with a bisection search in order to answer this question. Specifically, we calculate the value of Z,

such that k2s

Qs
= Z 0.0004

100 leads to despinning within a few percent of the age of the solar system, where the numerical

values are the nominal values listed in Table 2.4 The semi-major axis evolution of Hi’iaka starts at a0 and ends at the

present position in the age of the solar system, as before.

Slight changes in the parameters (a0, w0, and Z) led to very large differences in the time needed to reach synchronous.

This sensitivity is due to the strong dependence on semi-major axis, which is evolving rapidly. This is reflected in

Figure 5 by the sharp down-turns in the computed spin evolution (even on a log-log plot). If synchroneity is just

missed at an early epoch then it can take a very long time to “catch up.”

We show the value of Z in a contour plot in Figure 6. Despite the strong dependence on parameters, Z is approx-

imately proportional to a0w0. This is consistent with an analytical investigation of the dependence of Z on these

parameters. We have included a0 ' af as a prelude to the discussion below where Hi’iaka does not undergo tidal

evolution.

As the actual effective tidal parameters of Hi’iaka are uncertain by orders of magnitude, Z is highly uncertain as

3 In this hypothesis, where Hi’iaka is coeval with the Haumea family, we rely on the results of Ragozzine & Brown (2009) and Volk &
Malhotra (2012) that the family is ancient with an age comparable to the age of the Solar System.

4 Equivalently, Z could modify the unknown physical parameters, such as the radius of Hi’iaka.
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Figure 5. Results of the time evolved tidal despinning for Hi’iaka. Physical and tidal parameters from Table 2 were assumed
along with an initial semi-major axis of a0 = 2000 km were assumed. Nine initial spin periods were tested (dashed lines) and
compared to the evolution of the orbital period of Hi’iaka (solid line). Analytical solutions (not shown for clarity) match exactly
those models. According to this tidal model, it is only possible for Hi’iaka to despin for longer initial spin periods. For initial
spin periods comparable to the current value, the despinning cannot keep up with the orbital period and Hi’iaka never despins.
A more detailed picture of the tidal parameters needed to despin Hi’iaka is shown in Figure 6.
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Figure 6. Contour plot of Z, the scale factor by which the nominal k2s
Qs

= 4 × 10−6 must be multiplied in order for Hi’iaka

to despin after ∼4.5 GYr under our assumed tidal model. We find that the initial semi-major axis and initial spin period are
important with an approximate relation of Z ∝ a0ω0. Uncertainty in tidal parameters allows for a wide range of plausible
Z values, making Hi’iaka’s evolution unclear. If despinning tides are 100 times stronger than this estimate, then Hi’iaka can
despin for any initial conditions including formation at its present location. If tidal despinning tides are 10 times weaker than
the nominal estimate, then Hi’iaka would not despin for any initial conditions, including significant tidal evolution.
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well. These results show that, if k2s

Qs
is 100 times larger than the nominal value, then Hi’iaka will despin in practically

any circumstance (no tidal evolution and initial very rapid rotation). If k2s

Qs
is 10 times smaller than nominal, then

Hi’iaka would not despin in the age of the solar system, even if it started interior to the Roche lobe with a very slow

spin rate. The wide variation in outcomes based on a relatively small uncertainty in tidal parameters is frustrating,

but these results clearly indicate that Hi’iaka need not tidally despin.

That a highly tidally evolved regular satellite could avoid despinning seemed contrary to our initial understanding.

The common assumption for regular satellites is that, since the despinning timescale at the Roche limit is so small,

the satellites quickly synchronize. And, once in a synchronous state, only “small” corrections are needed to maintain

synchroneity as the satellite evolves outward due to tides. This then implies for a separate of timescales between the

satellite synchronization and longer-term evolution of the semi-major axis that is often assumed (e.g., Gladman et al.

1996; Goldreich & Sari 2009). Thus, such satellites are expected to be synchronous, even if the despinning timescale

at the present position is longer than the age of the system.

We have identified significant issues with this common story. In particular, satellites of terrestrial planets experience

significant tidal evolution (since Qp is so small, compared to gas giants). It is therefore plausible that semi-major axis

evolution (or, more precisely, the evolution of the mean motion) is so fast that despinning tides simply cannot keep

up. If satellite tides are weak enough compared to primary tides, there must be a regime where despinning cannot

keep up with orbital expansion and the satellite does not remain synchronous. This is an arguable proposition even

if our models for tides are incorrect compared to newer models based on appropriate geophysics. While our estimates

of time-averaged approximate tidal parameters and corresponding timescales may be off by orders of magnitude, it

remains the case that supersynchronous regular satellites like Hi’iaka could be explained by despinning rates that are

slower than semi-major axis expansion.

As an example of how despinning tides could be weak, we consider the recent analysis by Efroimsky (2015) which

proposes that the tidal dissipation rate of small bodies is controlled by viscosity (η), not strength (µ). Using η ≈ 1015

Pa·s for warm ice (Ojakangas & Stevenson 1989), which is probably a strong (1-5 orders of magnitude) underestimate

for the viscosity of Hi’iaka/Namaka, we find that Equation (65) in Efroimsky (2015) shows that the dissipation rate

k2/Q in these small bodies is in the regime where it is proportional to 1/(ηχ) where χ is the related to the spin

or orbital frequencies (' 10−4). Using a quadrupole approximation (l = 2) and values from Table 2 suggests that

the effective k2s/Qs in this geophysical model is 4 × 10−6. This is 100 times weaker than our estimates based on

the classical rigidity model above and would prevent Hi’iaka from despinning under any reasonable initial condition.

Considering that cold5 ice would have a much higher viscosity, the effective k2s/Qs could potentially be as low as 10−9!

These geophysical arguments would be sufficient to weaken tidal despinning of Hi’iaka to the point where it cannot

keep up with synchronous and would maintain any rapid initial spin.

Another issue with the common story is the assumption that satellites quickly despin since their despinning timescales

are so short (e.g., due to formation near the Roche limit). This can ignore the also rapid semi-major axis evolution;

if the despinning timescale changes from 100 years to 1000 years due to semi-major axis expansion that happens in

50 years, then synchroneity is not an inevitable outcome. Furthermore, the “despinning timescale” at any semi-major

axis is not an effective way to estimate whether a satellite is despun, since it ignores the major influence of a0 and w0.

Numerical simulations are more self-consistent.

The idea that the satellite near-instantly evolves to a synchronous state also oversimplifies the effects of spin-orbit

resonances and associated chaos. It is likely that small regular satellites experience chaotic spin evolution due to

overlapping spin-orbit resonances as long as the spin period is within a factor of several times the (changing) orbital

period (Wisdom et al. 1984; Dobrovolskis 1995; Murray & Dermott 1999). While Hi’iaka is spinning much too fast

for chaos now, when the orbital period was tens of hours it could have been in the chaotic regime and therefore not

seriously affected by despinning tides. For despinning tides to succeed as satellites slow down, they must be able

to pass through this chaotic barrier. Our results in Figures 5 and 6 suggest that if the Hi’iaka ever reaches a spin

period as rapid as ∼10 hours, then despinning tides would not succeed at synchronization (with the nominal tidal

parameters). A chaotic regime early in its evolution could have readily imparted such a rapid spin state.

Together, these results suggest that the common assumptions that imply inevitable synchronization of regular

satellites do not hold up to more detailed investigation. In particular, Hi’iaka’s rapid spin (either 9.8 or 4.9 hours) is

not inconsistent with formation near the Roche limit followed by semi-major axis expansion to its present location.

5 At present, the tidal dissipation in Hi’iaka is approximately 1 Watt for the whole body, indicating that tidal heating is not a significant
source of heat; in a body so small, retained primordial heat would be minimal.
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4.1.3. Comparison to Other Systems

One way of roughly validating our understanding of despinning is to check whether our model would match observa-

tions in other systems. For comparison, the numerical solutions described in Section 4.1.2 were also tested on Namaka

and the Earth-Moon system using the parameters given in Table 2. Though these methods do not include spin-orbit

resonance or chaos and require major assumptions about tidal properties, the results of these tests are consistent with

observations. The results for the other systems listed below follow from Table 2 and Equation 8.

• The Moon and Charon are able to despin, as expected.

• Namaka despins for reasonable initial spin periods (all tested initial periods except for 1 hr).

• Styx, Nix, Kerberos, and Hydra do not despin in the age of the Solar System.

• Dysnomia has likely despun.

• Makemake’s recently discovered moon, MK2, has likely despun.

We note that the classification as “despun” really means that the current rotation rate is within the regime where low-

order spin-orbit resonances are important. Understanding whether the moons reside in a resonance (not necessarily

synchronous) or a regime afflicted by spin-orbit chaos will require additional observational and theoretical investigation.

Furthermore, this assumes the nominal tidal parameters; as we saw for Hi’iaka, changes within the orders of magnitude

uncertainty can lead to substantially different outcomes.

Since the small satellites of Pluto are known to be supersynchronous like Hi’iaka, we discuss their results briefly here.

The formation of these moons is not well understood. Although matching detailed simulations is problematic (e.g.,

Lithwick & Wu 2008), the near-resonant locations suggest that these moons may have been pushed outward during

Charon’s orbital evolution (e.g., Ward & Canup 2006). As Charon is much larger than these moons, it evolves much

more quickly, potentially reaching its current position in only ∼10 MYr (Dobrovolskis et al. 1997; Cheng et al. 2014).

Resonant expansion with Charon would have resulted in rapid semi-major axis expansion for these moons, orders of

magnitude faster than their expected despinning timescales. As with Hi’iaka, even if these moons used to be much

closer to Pluto, their semi-major axis expansion could have been so rapid as to stifle tidal despinning, leaving them

with their observed rapid rotation rates and high obliquities.

4.1.4. Conclusions for the Tidal Evolution Hypothesis

A detailed investigation into the tidal despinning hypothesis shows that regular satellites need not despin if they had

moderately rapid initial spin rates and despinning tides that are weaker than rapid semi-major axis expansion. For

reasonable parameters and classic tidal models, this is fully consistent with the rapid spin states observed for Hi’iaka

and Pluto’s moons. Hence, the supersynchronous rotation rate for Hi’iaka does not suggest that Hi’iaka was never

close to Haumea. Hi’iaka’s spin rate does not weigh against the hypothesis that Haumea’s satellites formed close to

Haumea and experienced significant tidal expansion.

Similar processes that control the spin rate of Hi’iaka also affect its obliquity on comparable timescales. Obliquities

are also affected by the final tail of collisional formation and complex dynamics, such as Cassini states (e.g., Fabrycky

et al. 2007). Hence, we expect the same results to hold for Hi’iaka’s obliquity: tides may not have affected it, even if

it formed very near to Haumea. Whether, and how, Hi’iaka’s obliquity affects our understanding of how it formed is

beyond the scope of this work.

We note that the standard models for eccentricity tides have similar dependencies on semi-major axes as despinning

tides. Therefore, the importance of including semi-major axis evolution is also applicable to eccentricity tides. One

additional complication is that both the primary and secondary contribute to eccentricity tides and often in opposite

ways, as discussed by Ćuk et al. (2013). Depending on the tidal model, rapidly rotating Hi’iaka could actually result

in eccentricity pumping even by the secondary (e.g., Mignard 1980). Most of the concerns expressed above about

inappropriate assumptions for despinning tides apply similarly to eccentricity tides. Yet, in most models, satellite

despinning should occur more rapidly than satellite circularization. The rapidly rotating Hi’iaka then could be strong

evidence that Hi’iaka’s eccentricity was not lowered due to satellite tides. As with the spin rate, resonances – this

time mean-motion resonances with Namaka – preclude us from drawing conclusions about the initial state of Hi’iaka’s

orbit, as discussed extensively in Ćuk et al. (2013).
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4.2. Formation Far Out

In the hypothesis where Hi’iaka forms near its present location, different considerations are needed to understand

its current spin state. Figure 6 shows that, if Hi’iaka was always near its present location, it would only despin if

the initial rotation period was long (&100 hours) or the tidal parameters several times larger than the nominal value.

Hi’iaka’s current spin period could be comparable to its spin period after formation far from Haumea. In this sense,

it is similar to irregular satellites that are also unlikely to despin (Melnikov & Shevchenko 2010).

Unfortunately, there is little detail about what we might expect for the initial spin period of Hi’iaka in the hypothesis

where Hi’iaka forms far from Haumea. As the inclination of Hi’iaka, Namaka, and Haumea’s equator are all highly

consistent, this requires formation in a proto-satellite disk with damped inclinations and eccentricities (Schlichting &

Sari 2009; Ćuk et al. 2013). An impact with an ur-satellite that creates Hi’iaka, Namaka, and the collisional family

would initially create a huge cloud of debris that then participates in a collisional cascade which creates the low-

inclination disk. At the frigid temperatures of the Kuiper Belt, the coagulation into satellites should follow entirely

gas-free solid-body formation by accretion. In this case, the spin and obliquity of the final Hi’iaka is controlled by the

last few stochastic collisions (see also Section 4.3.2). This suggests that the initial spin period and obliquity cannot

be reasonably inferred. In particular, Hi’iaka’s rapid spin is also consistent with the hypothesis that it formed near its

present location.

It is important to recognize that we have considered the end-member possibilities; a case where the satellites form

far from the Roche limit but also experience significant semi-major axis evolution is also possible. In any of these

models, despinning tides might somewhat slow an initially more rapid spin to the present 9.8-hour period.

4.3. Other Possible Spin Up Explanations

As shown in Figure 6, if despinning tides are ∼100 times stronger than the nominal estimate given in Table 2, then

both formation hypotheses may predict in a near-synchronous rotation rate for Hi’iaka. Given the orders-of-magnitude

uncertainty in tidal parameters, we also briefly consider other possible explanations for recently spinning up Hi’iaka.

Based on Hi’iaka’s physical and orbital properties, we can immediately rule out gravitational effects from the Sun

(except perhaps as would be relevant for Cassini states) as well as radiation effects like Yarkovsky and YORP. Namaka

is too small and too far away to exert a significant influence, except to contribute mildly to spin-orbit chaos.

Haumea has the largest quadrupole moment of objects of its size and a rapid rotation rate. Hence, it is a candidate

for considering whether some kind of spin-spin resonance was important (Batygin & Morbidelli 2015; Showalter &

Hamilton 2015). However, even in this extreme case, it seems unlikely that spin-spin resonances are a dominant

effect on Hi’iaka (Batygin & Morbidelli 2015). This is emphasized by the fact that Hi’iaka’s spin period is 9.8 hours

compared to Haumea’s 3.9 hours. While potentially close to the 5:2 spin-spin resonance, it is very unlikely that there

is an important dynamical influence from this weak resonance, particularly at the present distance of 70 primary radii.

The apparent resonance could easily be due to the fact that any two periods will be coincidentally somewhat near

some ratio of small integers. Future work that identifies a more precise spin rate of Hi’iaka can compare it to the

known precise spin rate of Haumea (Lockwood et al. 2014) to be sure.

Another potential explanation for Hi’iaka’s spin rate is a recent collision. Even if tides had despun Hi’iaka to a

synchronous rotation rate, a collision can potentially reset the spin. The collision only needs to be as “recent” as a few

despinning timescales at the present location of Hi’iaka (measured in GYr, but with significant uncertainty). Pluto’s

satellites (Weaver et al. 2016) show impact craters and certainly Hi’iaka is also subject to collisions.

We do not consider explicitly the probability of any particular collision, but focus instead on identifying what kind

of collisions are even plausible with the observed properties of Hi’iaka. The collision must provide a significant spin

up without destroying Hi’iaka or significantly perturbing its near-circular orbit, which would gain a much higher

eccentricity than observed (0.05) with a velocity change of only ∼10 m s−1. It turns out that this limits the range of

plausible impactors, even when considering simple conservation of momentum and angular momentum.

We considered several types of collisions which had a possibility of spinning Hi’iaka to its currently observed rotational

rate. The two possible options were a small heliocentric impactor and a Haumea-centric satellite (now part of Hi’iaka).

We considered two different scenarios for each case. For each scenario we created a simulation in MATLAB using

Monte Carlo methods. A given simulation would randomly determine a number of parameters within reasonable

ranges and, using conservation of linear and angular momentum, determine the result of a collision on Hi’iaka’s spin

and eccentricity. These simulations ignore a large host of known physical and geophysical effects of impacts, but their

only goal is to identify whether there are any collisions that can possibly conserve momentum and angular momentum,

spin up Hi’iaka, and leave it on a nearly circular orbit.
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4.3.1. Heliocentric Impactors

The heliocentric impactor case was tested using a ”bullet” impactor with a mass between 1014 and 1016 kg, 0.001%

to 0.1% the mass of Hi’iaka. This impactor collided with a velocity between 300 and 2500 m s−1, consistent with

heliocentric impactors given Haumea’s orbit. The first heliocentric scenario tested involved a cratering impact in which

a uniform cone of material was ejected perpendicular from the impact direction (which may not be perpendicular to

the surface of Hi’iaka). We found that in collisions which resulted in a rotational period of less than ten hours, the

impactor was capable of imparting velocity changes of well over 1000 m s−1, and it was impossible to impart any

velocity kicks of less than 100 m s−1. This magnitude of a velocity change would drastically change the orbit of Hi’iaka

(orbiting at ∼75 m s−1), effectively ruling out this scenario.

The second heliocentric scenario involved one of the same impactors hitting with a very high impact parameter in

a “hit and run” type collision, in which the impactor rebounds perpendicular to the impact location and continues on

with some fraction of its original speed, imparting both a linear and angular kick to Hi’iaka. This type of collision was

able to impart the observed spin rate with linear kicks of less than 10 m s−1. However, these results were contingent

on an impactor just barely clipping the surface of Hi’iaka and bouncing off at the same very low angle, usually leaving

with only a quarter of its initial velocity. This type of collision is unlikely and physically, the bounce is improbable,

so we conclude that this type of collision most likely was not the cause of Hi’iaka’s present state.

Although not surprising, we feel these results are sufficient to rule out heliocentric impactors as origins for Hi’iaka’s

spin.

4.3.2. Haumea System Impactors

We also consider the possibility that Haumea had three satellites, one of which collided with Hi’iaka to spin it up. For

the Haumea-centric impactor case, we considered two smaller satellites moving at lower speeds, with relative velocities

at infinite separation ranging from zero (co-orbital) to 300 m s−1. We first considered a merging event of the two

small satellites. For purposes of modeling how the angular momentum is related to the final spin, the satellites were

modeled as spheres, and the merging simply as the two spheres sticking together. The merging simulations were able

to generate rapid spins while imparting linear kicks of less than 10 m s−1 which would preserve Hi’iaka’s eccentricity.

The final scenario involved a Haumea satellite, proto-Hi’iaka, more than half the mass of today’s Hi’iaka, being

struck by a smaller satellite, a “rubble pile,” a loose collection of rock and ice held together by its own gravity. In this

scenario, the smaller impactor collides with proto-Hi’iaka with some impact parameter, resulting in a shear in which

part of the impactor is removed, joining proto-Hi’iaka, while the rest continues on unaffected. This simulation also

yielded positive results, with a wealth of collisions which imparted the necessary spin with low linear kicks.

While we did not evaluate the probability that Haumea-centric impactors yielding the present day Hi’iaka, the wide

ranges of acceptable impacts suggest that this is a possible mechanism, though much more detailed simulations would

be necessary to truly assess their plausibility. So, another hypothesis for Hi’iaka’s spin is that it was despun, but a third

satellite recently (within ∼ τω) collided with Hi’iaka to produce the observed spin. Given that the other hypotheses

can also reproduce Hi’iaka’s spin, Occam’s razor would suggest that we need not invoke a previous third satellite.

These results also confirm that, wherever Hi’iaka formed, impacts with other Haumea-centric bodies in the formation

disk could have readily provided a rapid spin while preserving its low eccentricity and inclination.

5. CONCLUSION

In summary, our work has led to the following conclusions.

• Observations show that Hi’iaka has a clear light curve with a sawtooth shape and amplitude of 19 ± 1%. The

three datasets with sufficient information are consistent with a double-peaked rotation period of about 9.8 hours.

Thus, Hi’iaka is rotating ∼120 times faster than its orbital period.

• Hi’iaka may also have a significant obliquity that would be imminently detectable as changes in light curve shape.

• Despinning tides do not necessarily produce synchronous regular satellites. The time needed to despin a satellite

depends on the initial semi-major axis and rotation rate. Considering likely initial spin rates and rapid semi-

major axis expansion allow for Hi’iaka to maintain its highly supersynchrnous rotation, even if it formed near

the Roche limit for nominal tidal parameters. Therefore Hi’iaka’s spin rate does not rule out significant tidal

evolution.

• Hi’iaka’s spin rate is also consistent with a formation near its present location.
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• Heliocentric impactors cannot spin up Hi’iaka without destroying it or severely affecting its orbit. However,

Haumea-centric impactors can readily provide the observed spin.

Unfortunately, Hi’iaka’s spin does not provide a strong discriminator between different formation hypotheses, partic-

ularly given the large uncertainty in possible tidal parameters. Thus, we suggest that future work to identify better and

more self-consistent models for the formation of the Haumea system and family should primarily focus on explaining

other observations.
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