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ARTICLE

Non-linear machine learning models incorporating
SNPs and PRS improve polygenic prediction in
diverse human populations
Michael Elgart 1,2,19✉, Genevieve Lyons 1,3,19, Santiago Romero-Brufau 3,4, Nuzulul Kurniansyah1,

Jennifer A. Brody 5, Xiuqing Guo 6, Henry J. Lin 6, Laura Raffield 7, Yan Gao8, Han Chen9,10,

Paul de Vries9, Donald M. Lloyd-Jones11, Leslie A. Lange12, Gina M. Peloso 13, Myriam Fornage 9,14,

Jerome I. Rotter6, Stephen S. Rich 15, Alanna C. Morrison 9, Bruce M. Psaty 16, Daniel Levy17,18,

Susan Redline 1,2, the NHLBI’s Trans-Omics in Precision Medicine (TOPMed) Consortium* &

Tamar Sofer 1,2,3✉

Polygenic risk scores (PRS) are commonly used to quantify the inherited susceptibility for a

trait, yet they fail to account for non-linear and interaction effects between single nucleotide

polymorphisms (SNPs). We address this via a machine learning approach, validated in nine

complex phenotypes in a multi-ancestry population. We use an ensemble method of SNP

selection followed by gradient boosted trees (XGBoost) to allow for non-linearities and inter-

action effects. We compare our results to the standard, linear PRS model developed using

PRSice, LDpred2, and lassosum2. Combining a PRS as a feature in an XGBoost model results in

a relative increase in the percentage variance explained compared to the standard linear PRS

model by 22% for height, 27% for HDL cholesterol, 43% for body mass index, 50% for sleep

duration, 58% for systolic blood pressure, 64% for total cholesterol, 66% for triglycerides, 77%

for LDL cholesterol, and 100% for diastolic blood pressure. Multi-ancestry trained models

perform similarly to specific racial/ethnic group trained models and are consistently superior to

the standard linear PRS models. This work demonstrates an effective method to account for

non-linearities and interaction effects in genetics-based prediction models.
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In the last few years, genetics-based trait prediction using
polygenic risk scores (PRS) have become increasingly popular.
PRS are calculated as weighted sums of allele counts for var-

iants that are associated with an outcome of interest and are used
to quantify the inherited susceptibility for a given trait or disease1.
Traditionally, genome-wide association studies (GWAS) are used
to identify the univariate relationships between single nucleotide
polymorphisms (SNPs) and a given phenotype. These univariate
relationships are then used to construct the PRS2.

The prediction models that use PRS are generally able to
explain only a small percentage of the observed variance for a
given trait2, which could be due to several factors. Because they
rely on univariate effect sizes derived from linear GWAS models,
standard PRS as defined above do not account for potential non-
linearities in the association between the genetic data and the
outcome of interest. Additionally, additive PRS models do not
account for interactions between SNPs, which are known to
exist3. One common strategy employed during the SNP selection
stage of PRS construction is clumping, to exclude SNPs within a
predefined distance of one another and levels of linkage dis-
equilibrium (LD). Potential interactions are not usually taken
into account by this approach—as in haplotypes4 or epistatic
effects5 both inside and outside the clumping region. Examples
of strong haplotypes effects that may not be captured by a clump-
and threshold approach are APOE (associated with Alzheimer’s
disease)6 and APOL1 (associated with chronic kidney disease)7

haplotypes. Many other haplotypes with lower effect sizes may be
yet unknown and harder to detect. In addition, clumping may
not select causal variants or optimally tag SNPs for the popula-
tion at hand. Other modern methods such as LDPred28 and PRS-
CS9 construct PRS while using GWAS results in combination
with an LD reference panel to estimate joint SNP effects, typi-
cally using many SNPs in LD with each other from a given
association region, potentially overcoming the above limitations
of the clumping-based approaches. However, such methods still
may not capture haplotype effects because haplotype inference
requires phased genetic data. Another limitation of PRSs is that
effect sizes based on summary statistics from a GWAS conducted
in one population may not be optimal for a different population.
Specifically, PRS performance is known to be affected by the
population in which the GWAS was conducted, and PRS may not
generalize well to different populations10–12.

Some of the challenges of PRS modeling can be addressed using
advanced machine learning (ML) methodologies. Many ML algo-
rithms such as random forests, gradient boosted trees, and neural
networks are explicitly nonlinear, and allow interaction between
features. Gradient boosted trees, for example, allow for the effect
size of a given SNP to vary depending on the presence of an allele of
a different SNP13. Accordingly, ML methods have been used suc-
cessfully to improve the prediction of complex phenotypes using
genetic data14. For example, a study employing random forests to
predict type 2 diabetes found that it outperformed linear models,
such as support vector machines15. Gradient boosted trees have
been used to predict breast cancer risk by first identifying nonlinear
SNP-SNP interactions using XGBoost or networks and then using
support vector machines for discrimination, which resulted in
increased mean average precision when compared to generalized
linear models16,17. Other studies have found that deep neural
networks outperform linear models for a wide range of diseases, but
not all18. Finally, while ML models do not explicitly allow for
generalization to non-sampled populations, we hypothesize that a
large and ancestry diverse cohort would improve genetic prediction
across populations.

Here, we explore the use of genetic data in prediction of
nine complex phenotypes: six established cardiovascular disease
risk factors (total cholesterol levels19, LDL cholesterol, HDL

cholesterol, triglycerides20, systolic blood pressure21, and diastolic
blood pressure), sleep duration, a phenotype of lower heritability
that is also associated with cardiovascular disease22,23, body mass
index, and height, a highly heritable and well-studied phenotype.
For each of these nine complex phenotypes, we develop ensemble
machine learning models for genetic trait prediction accounting
for interactions, trained on a multi-ethnic dataset from the
National Heart Lung and Blood Institute’s Trans-Omics in Pre-
cision Medicine (TOPMed) consortium24. We examine the
accuracy of the results to linear models with clump-and threshold
(C+ T) PRS (using PRSice), LDpred2 PRS, and lassosum2 PRS,
and then explicitly compare ML models that allow for interac-
tions and nonlinear effects to those that do not. Finally, we assess
the accuracy of the predictions for the ML models and the linear
PRS models among White, Black, and Hispanic/Latino race/eth-
nic groups.

Results
We used a multi-ethnic dataset from TOPMed containing 29,063
genotyped individuals from eight distinct cohorts (JHS, FHS,
HCHS/SOL, ARIC, CHS, MESA, CFS, and CARDIA) to train
nonlinear polygenic risk prediction models in diverse populations
for nine complex phenotypes: triglycerides, total cholesterol, LDL
cholesterol, HDL cholesterol, systolic blood pressure, diastolic
blood pressure, sleep duration, body mass index, and height.
Table 1 characterizes these phenotypes and covariates across the
pooled and race/ethnicity-stratified training dataset based on
unrelated individuals. We evaluate the models on an independent
test dataset of 5009 individuals (Supplementary Table 1). Results
based on a training dataset that included related individuals (and
still being unrelated to the test dataset) were similar. Summary
statistics for this dataset are provided in Supplementary Table 2
and results are provided in Supplementary Table 3.

PRSice, LDpred2, and Lassosum2 linear PRS results. We
compared the percentage variance explained (PVE) of the best-
performing PRSice-based PRS to the best-performing LDPred2
and lassosum2 PRS in linear PRS models. Measured in relative
PVE increase, LDpred2 performed better than PRSice for four
of the nine phenotypes: height (13% higher), sleep duration
(25% higher), systolic blood pressure (30% higher), and dia-
stolic blood pressure (183% higher). Lassosum2 was superior to
LDpred2 and PRSice for two phenotypes: triglycerides (12%
higher than PRSice PRS) and body mass index (15% higher than
PRSice PRS). PRSice performed better than LDpred2 and las-
sosum2 for the remaining three phenotypes: HDL cholesterol
(33% higher than LDpred2), LDL cholesterol (67% higher than
LDpred2), and total cholesterol (121% higher than LDpred2)
(Fig. 1).

For the PRS calculated with PRSice, the results were relatively
invariant to the changes in the hyperparameters, rarely differing by
more than 1%. The best-performing model for seven out of nine of
the phenotypes had a clumping R2 value of 0.1 and a clumping
window of 500 kb. For the PRS calculated with LDpred2, however,
the model was very sensitive to both the SNP selection and the
method of LDpred2-inf compared to LDpred2-auto and LDpred2-
grid. LDpred2-auto was superior to LDpred2-inf and LDpred2-grid
for seven out of nine phenotypes; and using the top 1 million SNPs
was superior to using the clumped SNPs for all nine phenotypes
(Supplementary Fig. 1).

We selected the best-performing PRS (PRSice, LDpred2, or
lassosum2) in the training dataset, and we used this PRS for
purposes of comparison to XGBoost as well as included it in the
XGBoost as a covariate in another model.
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XGBoost outperforms linear models for the prediction of
complex phenotypes. We constructed four models of increasing
complexity for each of the nine phenotypes (Fig. 2). Each phe-
notype was adjusted for the covariates and the residuals were
rank-normalized. Each model was then fine-tuned to predict the
residuals from genetic SNP data. The four models employed in
this study were a linear model using the best-performing PRS
(PRSice, LDpred2, or lassosum2), LASSO, XGBoost, and
XGBoost with PRS. The number of SNPs selected for each
algorithm for each phenotype listed in Table 2. The hyperpara-
meters selected for each model through cross-validation are listed
in Supplementary Table 4.

Figure 3 depicts the PVE across different prediction models
and phenotypes. The linear PRS model usually outperformed the
LASSO model, except for total cholesterol and LDL cholesterol,
even though the LASSO model used only 19% and 12% of the
SNPs used by the PRS for total cholesterol and LDL cholesterol,
respectively. The XGBoost algorithm trained directly on SNPs
(XGBoost alone), outperforms linear PRS models for almost all

phenotypes. The notable exceptions are body mass index and
height; for these phenotypes, it substantially underperformed
from the best-performing PRS model.

Supplementary Table 5 provides results from the secondary
analysis comparing linear PRS model using SNPs with p
value <10−4 to the XGBoost alone model. This comparison more
directly assesses the effects of non-linearities and of potential
overfitting of the XGBoost model, as the two compared models
contain the same set of candidate SNPs. The results were
qualitatively similar to those in the primary analysis: in most cases,
the XGBoost alone model outperformed the linear PRS model, but
not for BMI, height, and HDL cholesterol. The latter two had a
larger number of SNPs, likely leading to overfitting (Table 2).

We performed two experiments to test the benefit of using
LASSO to select SNPs prior to the XGBoost model. In
Supplementary Table 6, we report results from random SNP
selection as a baseline for four phenotypes (total cholesterol,
triglycerides, LDL cholesterol, and HDL cholesterol). LASSO-
selected SNPs are superior to random selection in the XGBoost

Table 1 Summary statistics of phenotypes used in the training dataset.

Characteristic Black (N= 7601) Hispanic/Latino (N= 7320) White (N= 14142) Overall (N= 29063)

Sex
Male 3066 (40.3%) 3088 (42.2%) 6432 (45.5%) 12586 (43.3%)
Female 4535 (59.7%) 4232 (57.8%) 7710 (54.5%) 16477 (56.7%)

Age
Mean (SD) 50.6 (16.9) 48.2 (14.3) 50.2 (16.4) 49.8 (16.1)
Median [Min, Max] 52.0 [2.00, 93.0] 49.0 [5.00, 86.0] 51.0 [3.00, 98.0] 51.0 [2.00, 98.0]

Triglycerides
Mean (SD) 106 (69.1) 135 (96.0) 125 (82.2) 124 (84.2)
Median [Min, Max] 90.0 [16.0, 1930] 113 [20.0, 1670] 106 [17.0, 1600] 103 [16.0, 1930]
Missing 2598 (34.2%) 1316 (18.0%) 3073 (21.7%) 6987 (24.0%)

Total cholesterol
Mean (SD) 198 (41.8) 200 (43.2) 205 (39.2) 202 (41.0)
Median [Min, Max] 196 [74.0, 450] 197 [62.0, 526] 202 [77.8, 594] 199 [62.0, 594]
Missing 2598 (34.2%) 1316 (18.0%) 3073 (21.7%) 6987 (24.0%)

Systolic blood pressure
Mean (SD) 127 (20.9) 121 (17.2) 118 (17.1) 121 (18.5)
Median [Min, Max] 123 [73.0, 246] 119 [77.0, 218] 116 [67.0, 227] 118 [67.0, 246]
Missing 1944 (25.6%) 1589 (21.7%) 2972 (21.0%) 6505 (22.4%)

Sleep duration
Mean (SD) 6.50 (1.51) 7.73 (1.52) 7.09 (1.16) 7.15 (1.44)
Median [Min, Max] 6.00 [1.00, 16.5] 7.79 [2.00, 13.4] 7.00 [1.00, 16.0] 7.00 [1.00, 16.5]
Missing 2352 (30.9%) 411 (5.6%) 4468 (31.6%) 7231 (24.9%)

Height
Mean (SD) 168 (10.4) 163 (9.24) 168 (10.3) 167 (10.3)
Median [Min, Max] 168 [85.7, 207] 162 [116, 194] 168 [94.0, 203] 166 [85.7, 207]

Diastolic blood pressure
Mean (SD) 109 (44.2) 90.5 (36.7) 88.4 (36.2) 94.3 (39.5)
Median [Min, Max] 85.5 [18.0, 267] 76.0 [40.0, 256] 74.7 [18.0, 246] 77.0 [18.0, 267]
Missing 236 (3.1%) 9 (0.1%) 308 (2.2%) 553 (1.9%)

HDL cholesterol
Mean (SD) 52.4 (14.9) 49.1 (13.3) 52.1 (16.0) 51.4 (15.1)
Median [Min, Max] 50.0 [15.4, 162] 47.0 [13.0, 141] 50.0 [9.63, 143] 49.0 [9.63, 162]
Missing 328 (4.3%) 7 (0.1%) 710 (5.0%) 1045 (3.6%)

LDL cholesterol
Mean (SD) 123 (38.1) 122 (36.7) 125 (36.1) 124 (36.8)
Median [Min, Max] 120 [11.6, 435] 120 [23.8, 417] 123 [13.8, 505] 121 [11.6, 505]
Missing 376 (4.9%) 143 (2.0%) 877 (6.2%) 1396 (4.8%)

BMI
Mean (SD) 30.0 (7.19) 30.1 (6.29) 26.3 (4.99) 28.2 (6.25)
Median [Min, Max] 28.9 [12.7, 91.8] 29.1 [14.9, 70.3] 25.6 [11.6, 66.6] 27.2 [11.6, 91.8]
Missing 6 (0.1%) 9 (0.1%) 8 (0.1%) 23 (0.1%)

Mean, Median, and percent of missing data for the phenotypes and covariates (sex and age) used in this study. Most missing values for systolic blood pressure, total cholesterol, and triglycerides are due
to medication use. All the phenotypes are presented for the whole database as well as stratified by race/ethnicity (Black, White, and Hispanic/Latino). Summary statistics for the test dataset are
provided in Supplementary Table 3.
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Alone model, with relative PVE increase of 20–175%. For XGBoost
with PRS, the increase from LASSO is more attenuated, at only
7–21% higher than random selection. In Supplementary Table 7, we
report results from using SNPs selected into lassosum2 PRS for
LDL cholesterol. The test EVR for the XGBoost model with the
lassosum2-selected SNPs was 9.0% compared to 13.3% when using
the LASSO SNP selection model.

We performed three additional sensitivity analyses to test the
stability of our results. First, we trained our models on clumped
SNPs rather than all SNPs. Supplementary Table 8 shows that
clumping prior to running the LASSO and XGBoost model does
not meaningfully change our results. Second, we tested the use of
the genetic PCs as covariates by removing them from the training
data prior to training the models. Supplementary Table 9 shows
that the test set PVEs are slightly lower than those of the PRS
model that does include the genetic PCs as covariates. Finally, we
performed cross-validation for the optimal regularization term
with respect to the LASSO loss function, rather than the joint
training scheme with XGBoost. Supplementary Table 10 shows
that, for the LASSO model, the results are slightly improved;
however, they are not directly comparable to the XGBoost models
as they include different variants.

Modeling of non-linearities and interactions among SNPs
improves the prediction of complex human phenotypes. The
nonlinear XGBoost algorithm outperforms the linear LASSO
when trained on the same SNP set (Fig. 3 gray vs teal) for all
phenotypes. The improved performance may stem either from
modeling nonlinear genetic effects or interactions between SNPs,
or both, since both of these are addressed by the algorithm13.
However, both XGBoost and the LASSO sometimes under-
performed relative to the linear PRS models based on genome-
wide SNPs, likely because the PRS was able to combine infor-
mation from more SNPs. Notably, for height, the XGBoost alone
model had only 8.8 PVE while the PRS had 19.8 PVE. This could
also be due to overfitting to the training dataset. To combine the
advantages of a genome-wide PRS and of the XGBoost
accounting for non-linearities and interactions, we constructed an
additional, XGBoost with PRS, model that included both the
individual SNPs as shown in Fig. 2, and also the best-performing
PRS (PRSice, LDpred2, or lassosum2). Indeed, we see that this
model substantially outperforms the linear PRS and LASSO
models, as well as XGBoost alone, for all phenotypes, providing a
strong indication for nonlinear effects and/or genotype by gen-
otype interactions. Substantial improvements are observed for all
phenotypes. Specifically, compared to the linear PRS baseline, the
XGBoost with PRS showed a relative improvement to the PVE by
22% for height, 27% for HDL cholesterol, 43% for body mass
index, 50% for sleep duration, 58% for systolic blood pressure,
64% for total cholesterol, 66% for triglycerides, 77% for LDL
cholesterol, and 100% for diastolic blood pressure.
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Fig. 1 PRSice, LDpred2, and Lassosum2 Linear PRS results. Best-performing PRSice (gray) compared to best-performing LDpred2 (orange) and best
Lassosum2 (brown) across the hyperparameters tuned using the training data.

Fig. 2 Flow chart of ensemble model structure. The model relies on jointly
training the LASSO and XGBoost model to identify the optimal value for the
L1 regularization parameter and the number of boosting steps. CV indicates
cross-validation, α refers to the regularization parameter, and Ɵ is the
number of boosted trees for XGBoost. The optimal values for these
hyperparameters were selected using threefold CV for the mean squared
error of the XGBoost model.
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Notably, even our best model falls short compared to the
estimated heritability obtained from a linear mixed model that
considers all SNPs via the kinship matrix (Fig. 3 inset). For example,
we achieved ~2.3-fold better results for height (24.1% vs 56.6%
PVE) and ~6.5-fold better results for systolic blood pressure (4.0%
vs 25.9% PVE) with linear mixed models. These results indicate that
much of the effect is distributed among a large number of weakly-
correlated SNPs.

Race/Ethnicity associates with model performance for multiple
phenotypes. Our dataset included participants with self-
reported race/ethnicity (7601 Black, 14142 White, and 7320
Hispanic/Latino), with phenotype characteristics provided in
Table 1. We compared the performance of the linear PRS model
with the XGBoost model that includes the PRS as a feature,
trained on the combined dataset, for the prediction of the dif-
ferent phenotypes on the ethnicity-specific datasets (Fig. 4). The
hyperparameters selected for each race/ethnicity-specific model
through cross-validation are listed in Supplementary Table 11,
and the race/ethnicity-specific heritability is displayed in Sup-
plementary Fig. 2.

The XGBoost with PRS model usually improves PVEs over the
linear PRS model in the White and Hispanic/Latino groups, but
less so in the Black group. Surprisingly, for a few phenotypes

(systolic blood pressure, triglycerides, LDL cholesterol, HDL
cholesterol, and total cholesterol), the PVEs were better in
Hispanics/Latinos compared to Whites, even though the GWAS
contained more data from Whites than Hispanic/Latino partici-
pants. However, it is important to note that many Hispanic/
Latino individuals have substantial European genetic ancestry,
and our study does not differentiate between Hispanic/Latinos
with different levels of European genetic ancestry. Unfortunately,
most models performed poorly in Black individuals.

Ethnic diversity is crucial for model training. Figure 5 compares
XBoost models trained within race/ethnic group to the multi-
ethnic model. For the Black group, the multi-ethnic model per-
formed best on the held-out test datasets, consistently out-
performing the race/ethnic-specific models – even those trained
and tested on the same race/ethnic group. However, for the
Hispanic/Latino group, the multi-ethnic model was sometimes
inferior to the race/ethnic matched model (for sleep duration,
HDL cholesterol, and body mass index). For Whites, the race/
ethnic matched model improves upon the multi-ethnic model for
almost all phenotypes (except LDL cholesterol, body mass index,
and height). This may be due to the larger sample size available in
the multi-ethnic training dataset, compared to the Black and
Hispanic/Latino datasets.

Table 2 Number of SNPs selected through cross-validation for the PRS and XGBoost Model.

Phenotype XGBoost alone LASSO XGBoost with PRS PRS Lassosum2

Sleep duration 35 35 36 1M 140,507
Diastolic blood pressure 297 297 298 1M 197,039
Systolic blood pressure 38 38 27 1M 249,700
Triglycerides 186 186 109 6799 8035
LDL cholesterol 727 727 429 5825 2056
HDL cholesterol 6746 6746 168 7694 10,651
Total cholesterol 1181 1181 84 6258 4340
Body mass index 44 44 51 1M 51,133
Height 4807 4807 559 1M 59,714

Displayed are number of SNPs selected for each of the phenotypes in the four models in this study: PRS (best-performing PRS from PRSice, LDpred2, or lassosum2), XGBoost alone, LASSO (which has
the same number of variants as in the XGBoost alone model, because the LASSO selected the variants used by XGBoost), and XGBoost with PRS.
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Fig. 3 Nonlinear model consistently outperforms linear ones for prediction of multiple complex phenotypes in multi-ethnic dataset. Linear (PRS-pink),
linear-regularized (LASSO—teal), and nonlinear (XGBoost—gray, purple) models were employed to predict the harmonized phenotypes from SNP data
from TOPMed following adjustment for covariates. Two versions of the XGBoost algorithm are shown with the first model employing only the SNPs as
features (gray; XGBoost alone) and a second model which had the PRS as one of the features as well (XGBoost with PRS). The LASSO algorithm (teal) was
trained on the same set of SNPs as the XGBoost. The inset (gray) depicts estimated heritability for same phenotypes in the same database using the REML
approach with error bars of 95% confidence intervals estimated through restricted maximum-likelihood estimate.
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Discussion
The aim of this study was to investigate the application of
machine learning algorithms to polygenic trait prediction, spe-
cifically algorithms that allow for non-linearities and interaction
effects between SNPs, and to compare their performance to linear
PRS models, and LASSO methodologies that do not account for
such effects. We chose nine complex phenotypes with varying
levels of heritability across a large, multi-ethnic dataset including
White, Black, and Hispanic/Latino participants.

Across all phenotypes in the validation dataset, we found the
highest PVE by combining the XGBoost model with the PRS. The
relative increase in PVE varied across the phenotypes, with up
to 100% for diastolic blood pressure and 77% for LDL cholesterol.
The impressive increase in the performance of the XGBoost
model relative to linear PRS model and LASSO with the same
SNPs as those used by the XGBoost points toward interactions
between genetic alleles and/or nonlinear contributions of SNPs to
phenotypes. In all cases, the XGBoost algorithm alone (without
including the PRS) outperformed the linear LASSO model that
used exactly the same SNPs. In half the phenotypes, however, the
linear PRS performed better, likely because it could account for
more weakly associated SNPs. Combining the ML model with the
PRS (as a feature) achieved high prediction performance by both

accounting for the large numbers of weakly associated SNPs
(linearly through PRS), in addition to some of the non-linearities
and interactions (through XGBoost).

We chose to employ the XGBoost implementation of gradient
boosted trees due to its strong performance in prediction tasks,
explicit handling of interactions, and ability to capture nonlinear
effects. The large number of potential SNPs precluded their direct
inclusion into the XGBoost model, as it is extremely computa-
tionally expensive and prone to overfitting with high dimen-
sionality. Thus, we developed an ensemble model that used the
LASSO algorithm as a feature selection tool to optimize the
XGBoost performance while performing a cross-validation for the
hyperparameters of both LASSO and XGBoost. The inclusion of
both PRS as well as XGBoost allows for direct comparison
between the models, with the PRS representing the linear additive
genetic contributions to the trait, allowing XGBoost to optimize
the nonlinear and interaction effects.

Several studies that compared linear effects PRS models to ML
models allowing for more complex genetic effects reported that
linear PRS models outperform ML models. One study found that
a linear Elastic Net model usually outperformed ML models that
allow for nonlinear and interaction effects for prediction of gene
transcripts25. Another study found that linear PRS models out-
performed support vector machines for psychiatric phenotypes26.
Our study differs from these prior studies by use of very large and
diverse training and testing datasets (prior studies were often
limited to a few thousand individuals). Our datasets also had
high-quality deep sequencing and joint allele calling, as well as
harmonized phenotypes across the combined dataset, which likely
improved our ability to validate ML models across training and
testing datasets. Also, our ensemble approach to guarding against
overfitting, in addition to including the standard linear model
PRS within the XGBoost model, utilized the strengths of both the
linear and the nonlinear approaches in complementary ways.
Specifically, this approach leveraged the ability of the PRS to
capture the linear additive effects from a large number of SNPs,
and the XGBoost to capture nonlinear effects and SNP-SNP
interactions.

Because we compared a nonlinear ML model to a linear PRS
model, we included a step where we constructed PRSs using
multiple methods: clump-and threshold approach implemented
using PRSice, and model-based LDPred2 and lassosum2. This is
an important comparison as it is not yet clear what is an
optimal approach for PRS construction when using summary
statistics from GWAS based on a population with different
ancestral make-up compared to the target population. PRSice-
based PRSs were relatively robust to the selection of clumping
parameters, however, for most traits PRSice PRSs were inferior
to the best PRSs from other approaches when evaluated on the
held-out test dataset. In contrast, LDPred2 performance varied
substantially when using its various implementations: inf, auto,
and grid. LDPred2-auto had better performance than its
counterparts. Possible explanations are that the grid imple-
mentation overfitted (the best-performing parameter combina-
tion in the training dataset may not have been ideal for the test
dataset), and that the inf model is misspecified. Lassosum2
tended to have superior performance compared to other PRSs.
We note that while lassosum2 approximates a LASSO regres-
sion, the results when using lassosum2 are different than the
results when using LASSO. This is likely due to two reasons,
First, the selection of SNPs used: because standard LASSO
implementation cannot handle, computationally, too many
SNPs, we implemented it using SNPs with p value < 10−4 and
further divided into five sets of SNPs. In contrast, lassosum was
implemented using 1 M SNPs with the lowest p values in the
summary statistics (and that were also available in our dataset),

Fig. 4 Model performance differ by group, with XGBoost consistently
outperforming PRS. Performance of the PRS (pink) and XGBoost+PRS
(purple) models trained on the combined dataset when applied to the
prediction of the 5 phenotypes in separate race/ethnicities. Panels a, b, and
c refer to White, Black and Hispanic/Latino groups, respectively.
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without clumping. Second, the lassosum model assumes that
the marginal SNP effect sizes are as supplied by the GWAS
summary statistics, while the LASSO model does not have such
an assumption and it only relies on the available individual-
level data.

We compared multi-ethnic and race/ethnicity-specific models
and found that multi-ethnic-trained models on large datasets
had different performance across race/ethnic groups. In our
analyses, the multi-ethnic models had better performance in the
White and Hispanic/Latino groups than in the Black group.
Models trained using the same race/ethnic group and the multi-
ethnic trained model had similar prediction performance,
despite a substantial decrease in training sample size in the
multi-ethnic model. Overall, the PVE for the studied phenotypes
was consistently lower for Black participants than for White or
Hispanic/Latino participants. The difference in PVE varied by
phenotype, usually between 1.3–2.1 times lower for Black par-
ticipants compared to White participants. There are several
possible explanations for these findings. First it may be that the
combined models predominately use European ancestry-specific
genetic effects. Both the White and the Hispanic/Latino groups
have substantial European ancestry, while Black individuals have
lower European ancestry. Specifically, across Hispanic/Latino

background groups reported in the Hispanic Community Health
Study/Study of Latinos, on average 40-80% have European
ancestry27 while in the Jackson Heart Study, Black individuals
are estimated to have 16% European ancestry on average28.
Where possible, we used multi-ethnic GWAS analyses to select
candidate SNPs for analysis. However, most GWAS participants
are still White29. Therefore, the choice of SNPs is more optimal
for groups with substantial amount of European ancestry, so that
SNPs with small effects or low minor allele frequencies (MAF) in
European ancestry populations and larger effects or higher MAF
in African ancestry populations were not discovered in the
GWAS and were therefore not selected to be used in the trained
prediction models. This limitation has been shown to reduce PRS
performance in African and African Americans populations in
multiple studies30–32.

There are some limitations to this study. First, while the
TOPMed cohort is diverse, White participants are over-
represented. Second, as noted above, although the GWAS ana-
lyses that we relied upon were multi-ethnic (other than sleep
duration and height GWAS which were based European ancestry
samples), it seems likely that important variants for these phe-
notypes among a Black population do not achieve the required
p value level (<10−4) to be included, given limited sample sizes

Fig. 5 Multi-ethnic XGBoost model performs on par with the race/ethnic-specific models. XGBoost with PRS models were trained either on the
combined dataset containing all participants, (pink) or on each race/ethnic group separately (teal, gray and purple). The models were then evaluated on
each of the groups (a Black, b Hispanic/Latino, and c White).
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for Black participants in these prior GWAS analyses. Similarly,
we have not considered the interactions between non-GWAS-
selected SNPs, which may lead to some important variants with
interaction effects being excluded. Third, much of our ensemble
algorithm relies on feature selection. This may be overly
restrictive and does not allow for variants with very small effect
sizes to be included (as noted in the results for Height). It is also
possible that SNPs selected through LASSO may not be prior-
itized based on nonlinear or interaction effects, even though we
model them using the nonlinear XGBoost. A promising area of
future research could be using XGBoost on the full set of can-
didate SNPs to perform feature selection, and then use LASSO
(or another algorithm) for prediction of classification, while
potentially including interaction terms and other SNP models
(dominant, recessive) as features. A limitation of our current
computational infrastructure and the size of the dataset is the
inability to run XGBoost on many hundreds of thousands of
SNPs, which, if ameliorated, would allow us to use XGBoost for
feature selection, as some other studies have done16–18. Fourth,
we used self-reported race/ethnicity. An alternative grouping
would use genetically determined ancestry groups. We chose
self-reported grouping to better approximate clinical settings and
to potentially account for gene-environment interactions, in
which people who share self-reported race/ethnicity may have
more similar environmental exposures, compared to individuals
outside the group. Fifth, we use ML as a tool to model the
interactions and non-linearities. However, this approach does
not explicitly identify individual interactions or non-linearities
nor quantifies the contributions of each.

Finally, due to the high complexity of the XGBoost model and
pre-filtering of SNPs, highly polygenic traits (such as Height)
suffer in performance when compared to less complex pheno-
types. The XGBoost models performed less well in traits that had
a large number of candidate SNPs selected by LASSO, likely due
to overfitting. A potential approach to address this is to force the
ensemble model to select less SNPs into the XGBoost model by
applying LASSO over a smaller set of SNPs by imposing a stricter
p value threshold on the SNPs provided to the LASSO step, or by
considering a narrower range of potential penalization para-
meter values for LASSO, corresponding to less selected SNPs. It
is a topic of future work to assess such approaches, and to
evaluate the potential trade-off, ideally in simulation studies,
between the included proportion of potential SNPs used in the
prediction model and prediction accuracy, while accounting for
potential overfitting.

Overall, this study uncovers strong evidence for contributions
of nonlinear genetic effects and interaction between alleles to
complex phenotypes. Additionally, our findings re-iterate one
of the largest hurdles for better performing, robust genetic
prediction models across diverse individuals—namely the lack
of well-powered GWAS for different race/ethnic groups and
subpopulations33. This work opens up promising avenues for
future research, such as: creating a generalizable tool that would
allow ML PRS to be deployed on other studies; estimating the
individual contributions of interactions and non-linearities; and
developing approaches to prioritize SNPs for inclusion in the
ML model that would increase predictive ability in Black and
other non-White populations.

Methods
Study population. The study sample included 34,072 unrelated (3rd degree or
less) TOPMed participants from eight U.S. based cohort studies: Jackson Heart
Study (JHS; n= 2504), Framingham Heart Study (FHS; n= 3520), Hispanic
Community Health Study/Study of Latinos (HCHS/SOL; n= 6,408), Athero-
sclerosis Risk in Communities study (ARIC; n= 6197), Cardiovascular Health
Study (CHS; n= 2835), Multi-Ethnic Study of Atherosclerosis (MESA;
n= 3949), Cleveland Family Study (CFS; n= 1182), and Coronary Artery Risk

Development in Young Adults Study (CARDIA; n= 2468). Study descriptions
are provided in Supplementary Note 1. Phenotypes were harmonized by the
TOPMed Data Coordinating Center (DCC)34, and included age, sex, race/eth-
nicity, study (used as covariates), phenotypes of interest, and medications, which
were used to adjust measures of relevant phenotypes (Supplementary Table 12).
Note that sex was self-reported and verified by chromosomal sex, and therefore
biological sex and gender identify in these analyses are the same. Thus, we refer
to this variable as “sex”. The dataset included 7601 non-Hispanic Black parti-
cipants, 14,142 non-Hispanic White participants, and 7320 participants of
Hispanic/Latino descent. The dataset was divided such that 20% of the data was
held out as a validation set. A secondary analysis used a larger training dataset
that included related individuals but in which all individuals in the training
dataset were still unrelated to those in the test dataset. Sex-stratified analyses
were not performed due to limited sample size.

Ethical regulations. Participants from each of the studies contributing to the
TOPMed consortium provided informed consent, and all studies were approved
by IRBs in each of the participating institutions. In detail, the HCHS/SOL was
approved by the institutional review boards (IRBs) at each field center, where all
participants gave written informed consent, and by the Non-Biomedical IRB at
the University of North Carolina at Chapel Hill, to the HCHS/SOL Data
Coordinating Center. All IRBs approving the study are Non-Biomedical IRB at
the University of North Carolina at Chapel Hill. Chapel Hill, NC; Einstein IRB
at the Albert Einstein College of Medicine of Yeshiva University. Bronx, NY; IRB
at Office for the Protection of Research Subjects (OPRS), University of Illinois at
Chicago. Chicago, IL; Human Subject Research Office, University of Miami.
Miami, FL; Institutional Review Board of San Diego State University. San Diego,
CA. The Framingham Heart Study was approved by the Institutional Review
Board of the Boston University Medical Center. All study participants provided
written informed consent. The ARIC study has been approved by Institutional
Review Boards (IRB) at all participating institutions: University of North Car-
olina at Chapel Hill IRB, Johns Hopkins University IRB, University of Minne-
sota IRB, and University of Mississippi Medical Center IRB. Study participants
provided written informed consent at all study visits. All CHS participants
provided informed consent, and the study was approved by the Institutional
Review Board of the University Washington. All MESA participants provided
written informed consent, and the study was approved by the Institutional
Review Boards at The Lundquist Institute (formerly Los Angeles BioMedical
Research Institute) at Harbor-UCLA Medical Center, University of Washington,
Wake Forest School of Medicine, Northwestern University, University of Min-
nesota, Columbia University, and Johns Hopkins University. All CARDIA
participants provided informed consent, and the study was approved by the
Institutional Review Boards of the University of Alabama at Birmingham and
the University of Texas Health Science Center at Houston. The JHS study was
approved by Jackson State University, Tougaloo College, and the University of
Mississippi Medical Center IRBs, and all participants provided written informed
consent. The Cleveland Family Study was approved by the Institutional Review
Board (IRB) of Case Western Reserve University and Mass General Brigham
(formerly Partners HealthCare). Written informed consent was obtained from
all participants.

Genotype data. We used whole genome-sequencing data from TOPMed35 Freeze 8,
without restriction on sequencing depth, which contains 705,486,649 variants. The
dataset includes samples sequenced through the National Human Genome Research
Institute’s Centers for Common Disease Genomics (CCDG) program, where the
sequence data for all TOPMed and CCDG samples were harmonized together via joint
allele calling. The methods for TOPMed WGS data acquisition and quality control
(QC) are provided in https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-
methods-freeze-8. Principal Components (PCs) and kinship coefficients were com-
puted for the genetic data by the TOPMed DCC using the PC-Relate algorithm36

implemented in the GENESIS R package37. In this work, we used 5 PCs computed via
the GENESIS R package PC-Air algorithm38 to adjust for global ancestry. Based on the
kinship coefficients, we identified related individuals and generated a dataset in which
all individuals were degree-3 unrelated, i.e., all kinship coefficients were lower than
0.0625. We extracted allele counts of variants that passed QC from GDS files using the
SeqArray39 package version 1.28.1 and then further processed using R and Python
scripts. After QC and filtering variants with MAF < 0.01 (with MAF being computed
based on the multi-ethnic TOPMed dataset), we had 12,482,699 variants in the
TOPMed data. For all variants, we set the effect allele to be the minor allele.

Heritability estimation. Let K denote an n × n kinship matrix, having twice the
kinship coefficient between the ith and jth participants in its I, j entry. For an
outcome y, we assume the linear model:

yi ¼ Xiβþ ϵi;

cov ϵð Þ ¼ σ2ϵIn ´ n þ σ2kK
ð1Þ

where ϵ ¼ ϵ1; ¼ ; ϵn
� �T

is the normally-distributed vector of errors across the

sample. We estimated the narrow-sense heritability ĥ
2 ¼ σ̂2k=σ̂

2
k þ σ̂2e using the
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Restricted Maximum-Likelihood approach as implemented in the GCTA40 soft-
ware (version 1.93.2). Confidence intervals at the 95% level are provided using
standard errors (SEs) approach and based on the assumption of an asymptotic
normal distribution (estimate ± 1:96 ´ SE).

Phenotypes. We trained genetic prediction models to predict sleep duration,
diastolic blood pressure, systolic blood pressure, triglycerides, LDL cholesterol,
HDL cholesterol, total cholesterol, body mass index, and height; and we used
sex, study, race/ethnicity, and age as covariates. For reproducibility, Supple-
mentary Table 12 provides the coded names of each of the phenotypes and
covariates used in the analysis and describes in detail transformations and
exclusions.

For each of the phenotypes of interest, we excluded outlying individuals defined
by phenotypic values above the 99th quantile and values below the 1st quantile for
the phenotype, computed over the multi-ethnic dataset. Values of systolic blood
pressure in individuals using antihypertensive medications were set to missing, and
similarly, values of triglycerides and total cholesterol levels of individuals using
cholesterol medications. Triglycerides and total cholesterol values were log
transformed to obtain an approximate normal distribution. Values of diastolic
blood pressure in individuals using antihypertensive medications were increased by
10 mmHg. Then, each phenotype was regressed on age, sex, study, and race/
ethnicity. The residuals were extracted and rank-normalized. Subsequent analyses
used these rank-normalized residuals as the outcomes41, and we refer to them
henceforth as adjusted phenotypes.

Summary statistics from published GWAS. We used summary statistics from
published GWAS to select SNPs and their weights to construct PRS, as well as to
select SNPs to include in the ML models. The GWAS used for each of the nine
phenotypes are described in Table 3. When possible, we used multi-ethnic GWAS.
We lifted over the coordinates to our genome build GRCh38/hg38 using the
LiftOver tool from the UCSC genome browser42. For about half of the phenotypes,
90% or more of the variants in the GWAS were found in the TOPMed data. For the
other half, 60–70% were found (Supplementary Table 13).

Polygenic risk score (PRSice, LDpred2, and lassosum2). We calculated the
standard PRS using the classic clump-and-threshold methodology (PRSice PRS)2.
We used PRSice 2 software version 2.3.143 to calculate the genetic score. SNPs with
ambiguous alleles were removed using the PRSice software. We calculated PRS
using two clumping regions (250 and 500 kb) on each side of the index SNP and
three clumping R2 values (0.1, 0.2, 0.3). We considered p value thresholds of 0.5
through 1e−10. For each adjusted phenotype and each PRS defined by clumping
region, clumping R2 value, and p value threshold, we fit a linear model including
covariates, the PRS, and genetic PCs to account for population structure44. We
selected the PRS where the PRS model minimized the mean squared error in the
training dataset. We assessed the percentage of variance explained (PVE) by the
PRS models using the methodology described below.

We also calculated the PRS using LDpred245 (LDpred2 PRS). We used the
entire multi-ethnic TOPMed data to perform clumping with PRSice and to
compute SNP weights using LDPred2. We used R package bigsnpr version 1.9.10 to
calculate the genetic score with LDpred2-inf, which utilizes the infinitesimal model,
LDpred2-grid which uses a grid of values for the hyperparameters, and LDpred2-
auto, which is an automatic estimation of the proportion of causal variants (p) and
the SNP heritability (h2) from the data, without any tunable hyperparameters.
Because LDpred2 can compute joint weights for up to ~1 million SNPs, we used

two approaches to select SNPs: (a) we pruned SNPs using pruning parameters
R2= 0.1 and distance= 500 kb; and (b) the top 1 million SNPs with respect to their
association p value in the summary statistics (and that overlapped with the
TOPMed dataset) to train the model. Following the recommendation provided by
LDPred2 manuscript, we used the bigsnpr R package to correct the estimated effect
sizes for the winner’s curse prior to applying LDPred2.

Finally, we calculated PRS via penalized regression on summary statistics,
lassosum246. We used the lassosum2 implementation in R packages bigsnpr v1.9.5
and bigstatsr v1.5.647, using the default hyperparameters as described in detail in
Preivé et al.48, including the top 1 million SNPs from each GWAS.

All methods (PRSice, LDPred2, and lassosum2) require reference panel for LD
inference used for clumping (PRSice) or for tuning SNP effect sizes (LDPred2,
lassosum2). We used the multi-ethnic TOPMed dataset as an LD reference panel.

After calculating the C+T PRSice PRS, LDpred2 PRS, and lassosum2 PRS, we
selected the best-performing PRS in the training set for the purposes of comparison
between linear PRS models and XGBoost.

LASSO and Gradient Boosted Trees (XGBoost) ensemble. Figure 2 describes
the construction of an ensemble ML model for polygenic risk prediction. We
considered for inclusion in the models all SNPs having p value < 1 × 10−4 in the
corresponding GWAS and used them to develop an ensemble prediction model. In
brief, the ensemble model included two steps: (1) a LASSO penalized regression for
filtering candidate SNPs; and (2) an XGBoost prediction model allowing for
nonlinear interactions. In detail, gradient boosted trees are a widely used machine
learning technique that creates an ensemble of weak decision trees (i.e., limited in
depth or interactions) by iteratively optimizing an objective function at each
boosting step in which new trees are optimized based on the residuals of the
previous boosting step. XGBoost is an optimized implementation of gradient
boosted trees that is highly efficient in distributed computing environments13.
However, the set of candidate SNPs is very large for most of the GWAS listed in
Table 3, and boosting is prone to overfitting with high dimensionality49. LASSO50

is a commonly used model for feature selection that can mitigate overfitting by
encouraging parsimony through L1 regularization. We trained an ensemble model,
jointly training LASSO and XGBoost models in order to prevent overfitting due to
the high dimensionality of genetic data (through LASSO) while simultaneously
exploiting the nonlinear relationships and interaction effects (through XGBoost).

The ensemble model was trained as follows. For each given regularization
hyperparameter α 2 f0¼ 1g we fit LASSO on the training dataset using a 10-fold
cross-validation scheme (and the MSE loss). The LASSO model included linear SNP
effects and unpenalized covariates, and, to reduce required computational resources,
it was separately fit using the same α on 5 sets of SNPs, each including all SNPs from a
few chromosomes, set so that the number of SNPs is roughly equivalent between
models. Next, we filtered to SNPs with non-zero coefficients from the LASSO model.
Using these selected SNPs, we fit the XGBoost model via 3-fold cross-validation
applied on the training dataset, allowing up to 10,000 boosted trees with early
stopping after 10 rounds of boosting without improvement in the threefold cross-
validation loss (see Table 2 for details). Based on this threefold cross validation, we
selected the number of trees θα that minimized the mean squared prediction error
(MSE), resulting in a set of parameters ðα; θαÞ. We selected the optimal ðα; θαÞ pair
that minimized the MSE of the threefold cross-validation step across all values of α.
For XGBoost, we always used a learning rate of 0.01, maximum depth of 5, column
sample by tree of 90%, minimum child weight of 10, and subsample of 50%. Finally,
we performed LASSO regression using the same variants that were selected in this
process, to explicitly compare the results of a nonlinear model allowing for
interactions to a linear model without interactions.

Table 3 Description of published GWAS used to identify summary statistics.

Phenotype GWAS Study population Participants

Height, BMI Meta-analysis of genome-wide association
studies for height and body mass index in
~700,000 individuals of European ancestry54

UK Biobank and the
GIANT consortium

693,529 (European ancestry)

Total cholesterol, LDL
cholesterol, HDL
cholesterol, triglycerides

Genetics of blood lipids among ~300,000 Multi-
ethnic Participants of the Million Veteran
Program55

Million Veteran
Program

297,626 (72.4% non-Hispanic Whites, 19.3%
non-Hispanic Blacks, 8.3% Hispanics)

Systolic blood pressure,
diastolic blood pressure

Trans-ethnic association study of blood pressure
determinants in over 750,000 individuals56

Million Veteran
Program

318,891 (69.1% non-Hispanic Whites, 18.8%
non-Hispanic Blacks, 6.7% Hispanics, 0.77%
non-Hispanic Asians and 0.85% non-Hispanic
Native Americans)

Sleep duration Genome-wide association study identifies
genetic loci for self-reported habitual sleep
duration supported by accelerometer-derived
estimates57

UK Biobank 446,118 (European ancestry)

GWAS source, study population as reported by the manuscript reporting the GWAS, and number of participants used to generate summary statistics for a given phenotype.
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We performed this process individually for each of our nine adjusted
phenotypes using a distributed cluster computing environment. This was a
regression task. All models included the ancestral PCs, and some models used the
best-performing PRS as a variable. We assessed the PVE of the genetic machine
learning models using the methodology described below and compared the results
with the best-performing linear PRS model. Analysis was conducted using Python
3 and the scikit-learn51 and xgboost packages13.

Secondary analysis comparing the ensemble model with a standard linear
PRS model using the same potential SNP set. Because we limited the SNPs used
by the ensemble model to those with p value < 10−4 in their discovery GWAS, in a
secondary analysis we compare the performance of the ensemble models to linear
PRS models with C+T PRS that use the p value < 10−4 threshold for SNP selection.
Thus, the two models rely on the same set of candidate SNPs.

Secondary analyses studying SNP selection into the XGBoost model. We
performed two experiments to test the benefit of using LASSO to select SNPs prior
to the XGBoost model. Each experiment considered a different way to select SNPs
into the XGBoost model. In the first experiment, we selected SNPs at random as a
baseline for four phenotypes (total cholesterol, triglycerides, LDL cholesterol, and
HDL cholesterol). We used the same number of SNPs as the number selected by
LASSO in the respective XGBoost Alone and XGBoost with PRS models. We have
performed this experiment for four phenotypes (total cholesterol, triglycerides,
LDL cholesterol, and HDL cholesterol), by (1) randomly selecting SNPs in the
same size as the LASSO selected SNPs for those phenotypes, 92) running the
XGBoost model with and without PRS, (3) repeating 100 times, and (4) averaging
the result. In the second experiment, for LDL cholesterol we used the SNPs with
non-zero weighting in the lassosum2 PRS as the selected SNPs in the XGBoost
model. We used a limited set of phenotypes for these experiments due to com-
putational limitations.

Race/ethnicity analysis. We first trained the models using the combined, multi-
ethnic dataset (multi-ethnic model). We then trained the models on the subset
of the sample containing only White, Black, and Hispanic/Latino participants.
This resulted in four models that were each trained on different race/ethnicity
groups: Multi-Ethnic, White, Black, and Hispanic/Latino. For each of these four
models, we assessed the PVE among the participants of each race/ethnicity in
the held-out test set.

Model evaluation in the held-out test set. We quantify model performance as the
variance explained (sometimes referred to as the adjusted R2). Let y0i ; i ¼ 1; ¼ ; n
denote the adjusted phenotype. Varðy0Þ estimates the total baseline model variance.
For a given model m, let ŷi

m denote the predicted (adjusted) phenotype value for the
ith person. We estimate the percent variance explained by model m as:

PVE ¼ 1� varðy0 � ŷmÞ
var y0
� �

 !
´ 100%: ð2Þ

We compute the relative PVEs between various models as the relative
percentage increase, i.e., (PVE2 − PVE1)/PVE1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TOPMed freeze 8 WGS data are available by application to dbGaP according to the
study-specific accessions: FHS: phs000974.v4.p3, JHS: phs000964.v1.p1, MESA:
phs001211.v3.p2, CARDIA: phs001612.v1.p1, CFS: phs000954.v3.p2, CHS:
phs001368.v2.p1, HCHS/SOL: phs001395.v1.p1, ARIC phs001416.v2.p1. Study
phenotypes are available from dbGaP from parent studies accession: FHS:
phs000007.v32.p13, JHS: phs000286.v6.p2, MESA: phs000209.v13.p3, CARDIA:
phs000285.v3.p2, CFS: phs000284.v2.p1, CHS: phs000287.v7.p1, HCHS/SOL:
phs000810.v1.p1, ARIC: phs000090.v7.p1. Instructions to generate PRS that were used in
this manuscript, i.e., SNP identifiers (chromosome and positions in genome build hg38)
and alleles are publicly available in a figshare repository52 https://doi.org/10.6084/m9.
figshare.20304135.v1. Ensemble ML models for each of the phenotypes trained over both
multi-ethnic and race/ethnic groups are publicly available in a figshare repository53

https://doi.org/10.6084/m9.figshare.20301423.v1. Supplementary Data 1 provides the
source data behind the figures in the manuscript and behind the supplementary figures.

Code availability
Code used for the analyses in this manuscript is provided on a dedicated GitHub
repository https://github.com/genevievelyons/MachineLearning_PolygenicRiskScore,
https://doi.org/10.5281/zenodo.6964364. We used SeqArray39 package version 1.28.1,

GCTA40 software version 1.93.2, PRSice 2 software version 2.3.143, R package bigsnpr
version 1.9.10, Python 3 and the scikit-learn51 and xgboost packages13.
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