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Evaluating Environmental Impact of Traffic Congestion in 
Real Time Based on Sparse Mobile Crowd-sourced Data 

EXECUTIVE SUMMARY 

Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and 
threatens the public health. Conventionally, air pollutants are monitored by sparsely-
distributed Quality Assurance Air Monitoring Sites. Sparse mobile crowd-sourced data, such as 
cellular network and Global Positioning System (GPS) data, contain large amount of traffic 
information, but have low sampling rate and penetration rate due to the cost limit on data 
transmission and archiving. The sparse mobile data provide a supplement or alternative 
approach to evaluate the environmental impact of traffic congestion.  
 
This research establishes a framework for traffic-related air pollution evaluation using sparse 
mobile data and traffic volume data from California Performance Measurement System (PeMS) 
and Los Angeles Department of Transportation (LADOT). The proposed framework integrates 
traffic state model, emission model and dispersion model. An effective tool is developed to 
evaluate the environmental impact of traffic congestion for both arterials and freeways in an 
accurate, timely and economic way. The proposed methods have good performance in 
estimating monthly peak hour fine particulate matter (PM 2.5) concentration, with error of 2 
ug/m3 from the measurement from monitor sites. The estimated spatial distribution of annual 
PM 2.5 concentration also matches well with the concentration map from California 
Communities Environmental Health Screening Tool (CalEnviroScreen), but with higher 
resolution. The proposed system will help transportation operators and public health officials 
alleviate the risk of air pollution, and can serve as a platform for the development of other 
potential applications. 
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1. Introduction 

1.1 Background 

Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and 
threatens the public health. In many areas, vehicle emissions have become the dominant 
source of air pollutants, including greenhouse gas (GHG), carbon monoxide (CO), volatile 
organic compound (VOCs), nitrogen oxides (NOx), particulate matter (PM), and polycyclic 
aromatic hydrocarbons (PAH) [1]. As of the high concentration of air pollutants adjacent to the 
urban arterials and freeways, the drivers, commuters and individuals living and working near 
major roadways appear to have an excess incidence of air pollution associated morbidity and 
mortality, including higher rates of asthma, cardiovascular disease, pre-term and low-
birthweight infants, childhood leukemia, and premature death [3]. In California where pollution 
levels have been regulated for decades, there is still a surprisingly high level of deaths 
attributable to dangerous particles from vehicle emissions. According to the estimation from 
California Air Resources Board [3], about 9,200 people in California die prematurely every year 
as a result of the exposure to Fine particulate matter (PM 2.5). The traffic-related air pollution is 
also a social justice issue as low income and minority populations are disproportionately 
impacted by air pollution related health risks [4]. 
 
Under the deteriorating situation of traffic congestion and air pollution today, there is a strong 
need to develop a high-resolution vehicle emission and dispersion monitoring and visualization 
system. The individuals receive accurate air pollution information from this system, then decide 
whether they would travel or stay at home, and plan a healthier path with less exposure to air 
pollutants. This system also provides timely feedback on the environmental impact of traffic 
control strategy, signal plan and road construction. The traffic operators would then make quick 
response to alleviate the road congestion and air pollution at certain hot spots. In a long run, 
this system also provides invaluable guidance on community livability and environmental 
justice evaluation, land use development and transportation planning. The emission 
information is also the foundation of many other research, such as eco-routing and eco-signal 
timing which incorporate environmental factors to the current time-oriented navigation and 
traffic control systems. 
 
Conventionally, the air pollutant concentration is monitored by fixed-site quality assurance air 
monitoring stations. However, these stations are usually sparsely distributed and work on the 
average air quality of a certain region [4]. As shown in Figure 1, there are five air monitoring 
stations in Greater Los Angeles Area, and only two stations in Los Angeles City. It is difficult for 
traffic operators to timely investigate the specific reason for high pollutant concentration and 
effectively solve that accordingly. The unequal health risk of people who live, work or study 
near high traffic roadways is not addressed in the region-level measurement. To link the air 
quality with the traffic state measurements, well-established macroscopic/mesoscopic 
emissions estimation methods [5, 6] are frequently applied to non-bottleneck freeway 
segments, but may no longer be effective for freeway bottlenecks and signalized arterials. On 
freeways, vehicle may stop and go frequently in front of the on/off ramp, work zone and 
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incident area. At signalized intersections, the traffic signals and pedestrians bring large 
turbulence to the traffic flow. For vehicles with the same average speed, the driving profiles on 
signalized arterials can be drastically different from these on freeway segments, resulting in 
significantly different fuel consumption and emissions [7].  
 

 

Figure 1. Quality Assurance Air Monitoring Sites in Los Angeles, CA 
 
Mobile crowd-sourced data, such as probe vehicle data, taxi/fleet data, cellular network data 
and smartphone GPS data, provide real time large-scale vehicle location and speed information, 
which can be served as a substantial source for traffic condition estimation. Then the on-road 
vehicle emissions and air pollutant concentration can be accurately and timely estimated using 
emission and dispersion model such as EMFAC [8] and AMS/EPA Regulatory Model (AERMOD) 
[9]. However, the sparsity of real world GPS data, i.e. low sampling frequency and low 
penetration rate, brings new challenges when evaluating the environmental impact of traffic 
congestion.  
 

1.2 Project Scope 

In this research, we aim to develop a traffic-related air pollution evaluation system based on 
sparse mobile crowd-sourced data. To tackle the low frequency problem of mobile sensing 
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data, the previously developed stochastic arterial trajectory estimation model is extended to 
freeways. Unique features of freeway driving modal activity is considered. For the low 
penetration problem at freeways traffic, we incorporate the sparse mobile sensing data to the 
California Performance Measurement System (PeMS). The PeMS data provide reliable real time 
traffic volume count and truck ratio under free flow condition. At freeway bottlenecks, the 
mobile sensing probe will better help track the stop-and-go behavior and estimate accurate 
average speed. For urban arterials, traffic count data from Los Angeles Department of 
Transportation (LADOT) also provide intersection-based traffic volume information to support 
the emission and dispersion estimation.  
 
The expected contribution of the proposed research is summarized as follows: 

1) This research will establish a framework for vehicle emission and dispersion estimation 
using both sparse mobile sensing data and existing traffic volume data. The proposed 
framework integrates traffic state model, emission model (e.g., EMFAC) and dispersion 
model (e.g., AERMOD). 

2) The proposed model is applicable to varying traffic conditions and multiple transport 
modes on either urban arterials or freeways, and adaptable to multiple mobile and 
fixed- location data source. 

3) The proposed emission and dispersion system will provide suggestions to the 
transportation operator and public health officials to alleviate the risk of air pollutant. It 
could serve as an essential supplement of sparsely-distributed Quality Assurance Air 
Monitoring Stations. 

4) This research will provide a platform for other applications, such as eco-routing 
application which help reduce the driver and pedestrian’s exposure to air pollution, and 
connected vehicle based eco-signal timing. 

 

1.3 Methodology Overview 

As shown in Figure 2, the proposed traffic-related air pollution evaluation includes three key 
components: 

1) Mobile data→Traffic condition. We estimate the traffic state, e.g., link average speed 
and traffic volume, using both sparse crowd-sourced mobile data and fixed location 
sensing and survey data.  

2) Traffic condition→Emissions. The link-based traffic state information is considered as 
the input to EMFAC model to estimate the based traffic related vehicular emissions.  

3) Emissions→Dispersions. The traffic-related emissions of each air pollutant type are 
applied to AERMOD to estimate the air pollutant concertation estimation. The results 
are visualized in the concertation contour map in ArcMap.  
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Figure 2. System Architecture 
 
Typical information provided by the mobile sensors include time, position and speed, but the 
data sampling frequency may vary significantly from tenth of a second up to a couple of 
minutes. Due to the high cost of data storage and transmission, most mobile sensor data are 
collected at a relatively low sampling frequency (e.g., every 20 seconds). This, however, will 
pose a challenge in vehicle dynamic state estimation, since the location, speed, and modal 
activity of the vehicle (i.e., cruising, acceleration, deceleration, or idling) in between may have 
changed significantly because of the sparsity. 
 
Another problem is that the mobile sensor data have low penetration rate, and may be 
collected by different companies and public agencies. They are archived and transmitted with 
different format, and difficult to access. As most of the traffic flow is hidden, we cannot obtain 
accurate aggregated measures, such as traffic volume or occupancy, from mobile sensors. For 
this reason, the overall emissions of the entire traffic are hard to reveal, even when we know 
the second-by-second trajectories of sample vehicles. To tackle this problem, we also collect 
traffic volume information from fixed location sensing and survey data such as California 
Performance Measurement System (PeMS) [10] and Los Angeles Department of Transportation 
(LADOT) traffic count data [11]. 
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The traffic state information for certain time intervals are applied to EMFAC model to estimate 
vehicular emissions. For freeways, traffic volume and truck ratio records collected from PeMS 
are also incorporated to the model to solve the data sparsity issue. For arterials, the traffic 
volume information is acquired from either historical manual count or flow estimation 
methods. In AERMOD, we estimate the short-range dispersion of air pollutant emissions. The 
pollutant emission and dispersion are visualized in ArcMap. 
 
The rest of this report is organized as follows: Section 2 presents the methodology and 
numerical validation for traffic state estimation method. Section 3 and 4 present the 
emission/dispersion estimation methods and results for freeways and arterials respectively. 
Section 5 applies the proposed method to the City of Los Angeles and visualizes the air pollution 
in ArcMap. The last section summarizes this report with discussion of future direction. 
 
 

2. Traffic Condition Estimation 

2.1 Problem Statement 

For mobile crowd-sourced data, the sample rate is usually 10s – 60s, so only 1% - 6% of each 
entire speed/acceleration rate profile is revealed. It is a challenge to accurately estimate 
arterial link average speed based on sparse mobile sensor data. If a vehicle passes two or more 
links between a pair of Global Positioning System (GPS) data points, it is difficult to distribute 
the travel time into each link as the speed is varying during this process. The proposed vehicle 
trajectory estimation method can solve this problem by finding an optimal vehicle trajectory 
under an optimal modal activity sequence. The link average speed can then be calculated based 
on the trajectory segments on each link. 
 
To investigate the traffic state behind the sparse data, we first determine the spatial-temporal 
trajectory of each vehicle. Given the starting and ending state of the vehicle, there are many 
possible shapes of vehicle trajectories. For vehicles on urban arterials, a modal activity-based 
stochastic model was developed in [12] to investigate the possible scenarios behind the sparse 
mobile sensor data, and to quantify the likelihood of each possible modal activity sequence. 
This model created a sampling pool of all possible vehicle dynamic states. A detailed vehicle 
trajectory can be reconstructed using the optimal modal activity sequence which maximizes the 
likelihood. 
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Idling Acceleration Cruising

Acceleration

Deceleration

Cruising

Idling

Idling Acceleration Cruising Deceleration Idling

(a) Vehicle activity assumption on arterial road

(b) Vehicle activity assumption on freeway
 

Source: [13] 

Figure 3. Vehicle driving modes assumption on different types of road  
 
 
The arterial model proposed in [12] adopted modal activity sequence assumption that the 
driving modes of a vehicle must evolve with a certain pattern, i.e. idling (1) → acceleration (2) 
→ cruise (3)→ deceleration (4) →idling (1) →…periodically in Figure 3(a). It is reasonable when 
a vehicle is traveling on an arterial road with frequent stop-and-go maneuver at traffic signals 
and during congestions. For the freeway traffic, the vehicles may stop frequently in a short 
period at the bottleneck, and may travel at low speed after a significant deceleration [13]. As 
shown in Figure 3(b), the vehicle may keep its speed for a while within the acceleration or 
deceleration process (i.e., acceleration→ cruising → acceleration or deceleration → cruising → 
deceleration). Under heavy traffic, the driver may control the speed to avoid stop-and-go 
maneuver. The vehicle may decelerate early, cruise at low speed and then accelerate to catch 
up leading vehicles. In general, the vehicle may cruise at any speed below speed limit, including 
zero if we regard idling mode as a special cruising condition.  
 
Based on the relaxed assumption for freeways, we identify the type, time and distance of each 
modal activity based on the location and speed information of a GPS pair with certain sampling 
rate. Two major issues are discussed in this section: 1) identification of inflection speed point 
which is defined as the inflection point in the trajectory between an acceleration and a 
deceleration process or vice versa; and 2) determination of modal travel time and distance. 



 

 
7 

Time (seconds)

S
p
ee

d
 (

m
/s

)

u2

u1

Part Ⅰ Part Ⅱ

AccelerationDeceleration Cruising

v̂

 

Figure 4. Problem formulation of vehicle trajectory reconstruction 
 
As shown in Figure 4, for a certain GPS data pair, the starting speed (u1), ending speed (u2), time 
interval ( t ) and total traveling distance ( d ) are given. The key objective in trajectory 
estimation is to identify modal activity sequence and assign appropriate travel time and 
distance to each mode. We assume that there is at most one inflection speed point ( v̂ ) 
between a data pair based on observations. The value of the inflection speed point should be 
identified before estimating times and distances that the vehicle takes under acceleration and 
deceleration modes. The remaining time and distance are distributed to one or multiple 
cruising mode segment. The crucial challenge is to estimate the time and distance for each 
cruising segment and assign them to the adequate position of the vehicle trajectory. 
 

2.2 Modal Activity Based Vehicle Dynamic Model for Freeways 

For a modal activity based trajectory estimation problem, the vehicle dynamic state is an 
essential bridge between sparse GPS data and estimated second-by-second trajectories, as it 
includes all key information for trajectory reconstruction. For an arterial problem, the vehicle 
dynamic state is determined by the modal activity sequence (i.e., M), free flow speed (i.e., U), 
along with the travel time (denoted as Ti) and distance (denoted as Xi) of each mode. The free 
flow speed is important for the arterial case as it is always considered as the average speed of 
cruising mode, the starting speed of deceleration mode, ending speed of the acceleration 
mode. For the freeway scenario, as the mode transition may happen at any speed below the 
speed limit, we relax that assumption. A modal transition speed vector V is introduced to 
substitute U. The first element of V is the starting speed (u1) of the GPS data pair, and the last 
one is the ending speed (u2). The elements in between are the speeds at all modal transition 
sequentially.  Apparently, V has one more element than M. 
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As shown in Figure 5, the assumption on mode activity sequence is also relaxed for freeway 
cases. Some sequences, such as deceleration → cruising → acceleration, are allowed in the 
freeway model. However, we ignore some sequences that are statistically trivial in real world to 
simplify the model because of the extremely low probability of occurrence, such as acceleration 
→ cruising → acceleration or deceleration → cruising → deceleration. For example, statistics on 
NGSM US101 dataset [14] shows that if the sampling time interval is 10s, almost all cruising 
processes occurs at the start / end of a time interval, or between acceleration and deceleration 
modes at the inflection speed point. The percentage of an intermediate cruising process within 
the process of acceleration (i.e. acceleration → cruising → acceleration) is 2.7%. For 
deceleration, the percentage is only 0.6%. Based on that assumption, modal transition only 
happens at the starting speed, ending speed and inflection speed with ten seconds time 
interval, as shown in Figure 5. Values of the three elements in the modal transition speed V can 
only be u1, v̂  and u2.  
 

Time

S
p

ee
d

 

CruisingCruisingCruising Deceleration Acceleration

Time interval

u2

u1

Distance

v̂

v

 

Figure 5. Modal transition assumption 
 
For a given vehicle trajectory, there exists a certain vehicle dynamic state {m, v, t, x}. For the 
example case in Figure 5, M = [3,4,3,2,3]T and V = [u1,u1, v̂ , v̂ ,u2,u2]T. T and X are the time and 
distance for the five modal activities in M respectively. Similar as the arterial model in [12], we 
assume a truncated normal distribution for the acceleration/deceleration pace (i.e., the 
reciprocal of the average acceleration rate). We also assume the distance under 
acceleration/deceleration mode follows another truncated normal distribution factored by the 
modal travel time and speed. For the cruising or idling mode, the modal travel time and 
distance are assumed to be uniformly distributed. Note that in this study idling is regarded as a 
special cruising driving mode. Furthermore, to a certain driving mode, travel time and distance 
could be equal to zero. 
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The vehicle dynamic state (M) is dependent on the relationship among u1, u2 and v  (average 
speed /v d t  ). Note that if the vehicle only experiences a single acceleration or 
deceleration process in a certain time interval, the average speed must fall between the 
starting and ending speed. Therefore, if the value of v  is not between u1 and u2, i.e. 

max 1 2max( , )v u u u  or min 1 2min( , )v u u u  , there must be an inflection speed point. On the 

contrary, if the value of v  is between u1 and u2, the existence of the inflection speed point is 
undefined. In this research we simply assume that the probability of M is equally distributed 
when there is no extreme speed point. Obviously, if there is an extreme speed, the length of M 
(M=[mi1]m×1) is 5; and the length of M is 3 when there is no extreme speed. Probabilities of M 
are shown in Table 1. 
 
Table 1. Probability of different modal activity sequence 

P(M=m) maxv u  minv u  min max[ , ]v u u  

M = [3,4,3,2,3]T 0 1 0.25 

M = [3,2,3,4,3]T 1 0 0.25 

M = [3,2,3]T 0 0 0.25 

M = [3,4,3]T 0 0 0.25 

 
After determining vehicle dynamic states (m), the lengths of v, t and x could be also 
determined. Then probability of V could be calculated using (1). The prior probability of the 
extreme speed v̂  will be explored in the next subsection. 

 
ˆ( ), 5

|
1, 3

P v K
P

K


 


V = v M = m                                                       (1) 

Furthermore, to a certain vehicle state, the traveling time and distance are independent of the 
time and distance of other modes. So the general form of the conditional probability density 
functions for Ti and Xi are: 

1

1

( | , ) ( ; , , )

( | , ) ( ; , , , )

i i T i i i i

i i i i X i i i i i

P T t f t v v m

P X x T t f x t v v m





 

  

V = v M = m

V = v,M = m
                              (2) 

Finally, the probability of a vehicle dynamic state can be reformulated as the product of 
probabilities of multiple independent events: 

 

       

   , , ,

| , | , |i i i i i i

i i

P

P X x T t P T t P P

  

      

M m V = v T t X x

V = v,M = m V = v M = m V = v M = m M = m    (3) 

However, to a valid vehicle dynamic state {m, v, t, x}, time constraint and distance constraint 
must be satisfied. Besides, the elements of v, t and x are not less than zero because of 
nonnegative matrixes. That are 
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 

 
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1 2 1 1 2

1

1
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T K

X K

v v u v v u v K or
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x x K or


   

    

    

   

t

x

v

                                  (4) 

,i it t x d                                                                     (5) 

Based on the constraints above, Equation (6) is used to calculate the probability of a valid 
vehicle dynamic state. 

max max

1 1

, , , ,

K K

i i

i i

P T t X x
 

      
 
 
 

 M m V = v T t X x                                            (6) 

Based on statistics from the training data, it is reasonable to assume that all the cruising time 
and distance happen in the speed locations of u1, v̂  and u2.  
 
To a certain vehicle dynamic state {m, v, t, x}, the distance error   can be calculated using 

equation (7). For a valid vehicle dynamic state,   should be less than 5 feet when it t  . 

ix d                                                                            (7) 

Obviously, there may be some optional traffic states with the same values of probabilities. The 
reason is that for the cruising mode, the modal travel time and distance are assumed to be 
uniformly distributed. Therefore, we select the valid vehicle dynamic state with the least 
distance error. Even if the values of the distance errors are the same, we select a valid traffic 
state randomly. 
 
Based on the optimal modal activity scenarios, we reconstruct the most probable vehicle 
trajectories corresponding to the mobile data. The estimated trajectories are then grouped into 
each link to estimate link travel time and link average speed, which is the key measure for 
traffic state. Even when the starting point and ending point of a mobile data pair are not in the 
same link, the proposed method can find the most likely split on link travel time. 

 

2.3 Model Calibration 

In this section, we calibrate the distribution parameters for the trajectory estimation model 
proposed in Section II. Before calibration, we first present a robust driving mode segmentation 
method to divide the observed vehicle trajectories into four driving modes. Then, the historical 
data and ground truth modal activity are used for calibrating the distribution parameters of 
travel time and distance during an acceleration or deceleration process. In this research, we use 
Next Generation SIMulation (NGSIM) US101 data [14] with the second-by-second trajectories 
from 8:20 to 8:35 as the training set to learn the distribution parameters. 
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2.3.1 Probability Estimation of Inflection Speed Point 

As stated in Section 2.2, inflection speed point identification is a primary problem for trajectory 
estimation on freeways. In this section, we focus on modeling the prior probability distribution 

of the inflection speed v̂ . Based on NGSM US101 data, we generate the ten seconds time 

interval data pairs and find that the gap between inflection speed v̂  and average speed v
implies a bimodal distribution. Figure 6 shows the observed frequency distribution of speed gap 

v̂ v (denoted as  ). Two peaks are found in the plot, with the values of -1.54m/s and 1.11m/s 

respectively. The minimum and maximum values of   are -4.82m/s and 5.01m/s respectively.  

 

 

Figure 6. Observed frequency of the values of  = v̂ v  

 

A Gaussian Mixture Model (GMM) is then adopted to learn the probability of  . The probability 

density functions of   and v̂  are formulated as follows: 

1

( ) ( | )
G

g

g

P P g  


                                                                (8) 
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

                                                    (9) 
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where g is the index of Gaussian distributions; 
g  is the weighting factor associated with the g-

th Gaussian distribution ( ( , )g gN u  ) and 
1

1
G

g

g




 . Based on the observation from Figure 6, we 

set G = 2. Then maximum likelihood method was applied to calibrate the values of 
2, ,g g gu  . 

1

max log( ( | , ))
G

g i g g

i g

N u  


                                                       (10) 

Expectation Maximization (EM) algorithm was used to solve Eq. (10). The parameters for the 
GMM are listed in Table 2. As shown in the table, the weight of component 1 is greater than 
that of component 2. Both of the absolute mean values are about 1.5m/s. The standard 
deviation of component 1 is less than the standard deviation of component 2. 
 
Table 2. Parameters for proposed Gaussian Mixture Model 

Component Weight Mean Standard Deviation 

Component 1 0.5798 -1.5515 0.5854 

Component 2 0.4202 1.5186 0.7028 

 
 

Distribution Parameters of Acceleration/Deceleration 

Table 3. Parameters for acceleration and deceleration 

Acceleration Pace (s2/ft) Mean Standard Deviation 

Acceleration 0.3312 0.0969 

Deceleration 0.2605 0.0691 

Deviation Factor Φ Mean Standard Deviation 

Acceleration 0.5037 0.0257 

Deceleration 0.5001 0.0286 

 
In Section 2.2 we assume the acceleration pace (i.e., 1/acceleration) follows Gaussian 
distribution, so the travel time t that a vehicle has spent under the acceleration mode is the 
product of speed variation ∆v multiplied by a Gaussian multiplier.  

~ ( , )
t t

t
N

v
 


                                                                       (11) 

According to [12], after partitioning the speed profile, we can record the mode travel time and 
speed variation during acceleration/deceleration mode based on the training data. So 
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parameters of tu  and t  of the Gaussian distribution N(μt,σt
2) could be estimated via 

maximum likelihood estimation. 
 
To uniformly acceleration motion, the distance could be calculated using ( ) 0.5s ed t v v    . 

Due to the real world driving behavior, we assume the distance d that a vehicle travels under 
the acceleration/deceleration mode follows 

( )
s evd t v                                                                        (12) 

where vs and ve are the instant speed at the start and end of the acceleration/deceleration 
mode respectively. The Gaussian multiplier Φ~N(μd,σd

2) measures how far the acceleration 
process is deviated from the constant acceleration motion. All the parameters in Eq. (11) and 
Eq. (12) can also be obtained using the Maximum Likelihood Estimation (MLE). Table 3 shows 
the parameters of acceleration and deceleration process used in this study.  
 

2.4 Numerical Experiments 

2.4.1 Model Validation 

The proposed probabilistic model is validated using NGSIM US101 dataset, but with a different 
time period from the training set. We use the data from 8:05 to 8:20 as the test set. The raw 
data are processed into the mobile sensor data form, with ten seconds as the sampling interval. 
There are totally 2017 vehicles and 18860 data point pairs in the test set. 
 

 

Figure 7. Result of a vehicle trajectory estimation 
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Figure 7 shows the estimation result of one typical trajectory using our proposed model. The 
total absolute speed error for this vehicle trajectory estimation using our model is 63 mph. The 
estimated trajectory from our probabilistic model captures the driving modes exhibited in the 
ground truth in a good manner. 
 

 

Figure 8. Results of vehicle location-time trajectory estimation 
 
We plot the observed and estimated time-space trajectories of five vehicles to illustrate the 
distance error, as shown in Figure 8. The solid curves represent the estimations, and the dotted 
curves represent the observations. Results show that two curves match well for all of times. 
For the entire test dataset, the proposed probabilistic model is successfully applied to all data 
point pairs. The mean absolute error (MAE) on the second-by-second location estimation is 
4.56 ft, and the MAE on the second-by-second speed estimation is 1.05 mph. 
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2.4.2 Average Speed Estimation Using Sparse Mobile Data 

 

Figure 9. The coverage of mobile data in Los Angeles, CA 
 
In this research, we apply the proposed method to a large-scale network in Los Angeles, 
California. This dataset contains about 5 million GPS data records on more than 177,000 links 
for a period between June 2011 and August 2013. The coverage of mobile data is shown in 
Figure 9. In this dataset, most vehicles are sampled every 20 seconds, but some of them have 
smaller or larger sampling intervals. As the GPS data have already been well map-matched with 
road network from NavTeq (now Here) 2011 geographic database [15], we directly input them 
into the proposed model to estimate the vehicle trajectories between data points. A dictionary-
based method is used to deal with the large-scale dataset efficiently. We group the estimated 
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trajectories into each link to estimate link average speed, which is a key input for emission and 
dispersion modeling in following tasks. 
 
Based on the results from traffic state estimation, we visualize the average link speed using 
different colors in Figure 10. To match the link average speed with the road map, we get the 
corresponding longitude and latitude information for each data point using link id as indicator. 
We then calculate the average speed for each link by taking weighted vehicle average speed of 
the trip number. Using the centroid of each link as representative, we plot the average link 
speed (in mph) along with color map. As shown in the figure, traffic is more congested around 
the downtown and the coastal area (the average speed is lower than 20 mph), and less 
congested in the other zones. 
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Figure 10. Average link speed in downtown LA 
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3. Emission and Dispersion Estimation for Freeways 

3.1 Emission Estimation using Mobile and PeMS data 

The previous section validates that sparse mobile crowed-sourced data can be utilized as a 
reliable source for traffic state estimation. In this section, we apply EMFAC and AERMOD to 
evaluate the air pollutant emissions and dispersion on freeways using traffic information 
acquired from mobile source and fixed location sensors. 
 
The EMFAC model issued by the California Air Resources Board (CARB) is widely used in project-
level air quality modeling in California [8]. It provides a quick and convenient way to obtain 
emission factors in terms of the vehicle fleet, speeds, area and environmental conditions. The 
EMFAC model requires average speed or speed distribution as the main input for traffic level 
information, which can be satisfied by link average speed estimate from mobile data. On the 
other hand, the traffic volume information is also important to emission estimation as total 
emissions per mile per hour is the product of emission factor and traffic flow rate. Although 
mobile sensor could work solely in traffic flow estimation under relatively high penetration rate 
[16][17], for sparse mobile data, the fixed location sensing and survey data have inherent 
advantage in capturing the aggregate characteristics of traffic flow. 
 
For freeways in California, California Performance Measurement System (PeMS)[10] provides 
real time and historical traffic flow performance measures, such as traffic volume, average 
speed and truck ratio, at specific locations, but due to the relative spatial sparsity of detection 
stations, the traffic information between stations is unavailable. Especially at congested 
freeway bottlenecks during the peak hour, PeMS data may fail to capture the low speed and 
the stop-and-go behavior of vehicles. Figure 11 shows an example of the inconsistence between 
PeMS data and sample vehicle trajectories at freeway bottlenecks at SR-91. As shown in this 
figure, the PeMS speeds fit well with the vehicle speed at free flow sections. When the speed is 
around 40 mph, the probe speed curve oscillates around the PeMS station speed.  For the 
heavy congestion area, the speed detection of PeMS stations may have large error to deal with 
the stop-and-go behaviors. In this case, mobile data would be an essential supplement to 
evaluate the traffic states at higher spatial resolution, and provide high-dimensional inputs for 
the following emission and dispersion models such as EMFAC and AERMOD. 
 
In this research, the freeway traffic volume count and truck ratio for the same location and 
same time interval are collected from PeMS detection stations. Figure 12 shows the locations of 
PeMS stations in downtown, Los Angeles. This area is surrounded by I-110, US-101 and I-10 (a 
shared segment with I-5). The locations of vehicle detection stations (VDS) are also plotted in 
this figure as colored circles. As the traffic volume counts at detection stations are affected by 
the number of lanes and detector type (e.g. Main line or HOV), we take vehicle miles traveled 
(VMT) as a more reliable measure in PeMS to describe the traffic amount for a certain time 
period. For each freeway corridor in this area, we query the VMT and truck VMT given starting 
and ending post-miles. We then associate the PeMS data with the link average speed data in 
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the geographic database by identifying link series for each freeway corridor, e.g. I-110, US-101 
and I-10. 
 

 

Figure 11. Speed trajectory of a probe vehicle and speeds at vehicle detection stations at SR-
91 
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Source: PeMS website [10] 

Figure 12. Study area and PeMS station locations in downtown, Los Angeles  
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3.2 Freeway Air Pollutant Visualization in ArcMap 

 

Figure 13. PM 2.5 emissions per freeway link under PM peak traffic in August 2013 
 
The traffic speed and volume data are applied to EMFAC2014 Web Database for emission 
estimation. As the sparse mobile data are collected between June 2011 and August 2013, we 
select the average traffic condition of PM peak hour (i.e. 5pm) in August 2013 as an example 
input. The calendar year and season in EMFAC are set to 2013/summer accordingly. We then 
configure the region to Los Angeles (MD) and generate the emission rate sheet for different 
speed intervals and different vehicle types. The air pollutant emissions are therefore calculated 
by pairing the emission rate sheet with average speed and volume data. Figure 13 shows the 
Fine particulate matter (PM 2.5) emissions for totally 439 link segments using different colors 
under PM peak traffic in August 2013. As the traffic condition of two directions of the freeway 
usually varies, the right hand side and left hand side of each freeway link have different colors 
in the figure. 
 
In AERMOD, we estimate the short-range dispersion of air pollutant emissions. First, the 
meteorological and terrain condition are defined in AERMET and AERMAP respectively as the 
background information. As emissions in this each link segment are treated as stable link 
source. The traffic-related emissions estimates from EMFAC are then spread out throughout 
each link in AERMOD to estimate the air pollutant concertation estimation. We finally plot the 
concertation contour map of each type of air pollutant in ArcMap [18]. Based on the freeway 
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emission source, we illustrates the PM 2.5 concentration of downtown LA in Figure 14. This 
figure clearly shows the high concentration around freeway corridors (especially interchanges) 
and visualizes the spatial dispersion of air pollutant. Note that only emissions from freeway 
traffic are taken into account in the Task. In the following task we will evaluate the impact of 
arterial traffic in emissions and dispersion. 
 

 

Figure 14. PM 2.5 concentration in downtown LA for PM peak traffic in August 2013 
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4. Emission and Dispersion Estimation for Arterials 

4.1 Emission Estimation for Arterials 

In previous section, we developed air pollutant emission and dispersion models for freeways 
based on mobile data and Caltrans Performance Measurement (PeMS) data. That approach 
cannot be applied directly to urban arterials as most of the loop detector data is not available 
currently. Although mobile sensor could work solely in traffic flow estimation under relatively 
high penetration rate, the performance is not as good for sparse mobile data. The fixed location 
sensing and survey data have inherent advantage in capturing the aggregate characteristics of 
traffic flow. To find the alternative data source, we acquire Los Angeles traffic volume count 
data from LADOT database website. The traffic count data were collected manually or 
automatically by 2011-2013 from 2011 to 2013. The manual/automatic traffic count data cover 
most major intersections (highlighted by blue dots) in City of Los Angeles, especially in the 
downtown area as shown in Figure 15. Unfortunately, the count data for each single 
intersection only show one or two days’ daily volume based on 6-hour peak period count, so 
the emission and dispersion estimation results only represent the average level of air pollution 
in Los Angeles during 2011-2013. In addition to the count data, the sparse mobile crowd-
sourcing data are used to 1) estimate average speed for each arterial link, and 2) estimate the 
distribution of traffic volume in a day to find the hourly volume for certain time of day. 
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Figure 15. Intersections with manual/automatic traffic counts in downtown, LA 
 
We then match the traffic count data with geographic database using the road name as the key 
words. Then, the estimated emissions for each link segment can be calculated by multiplying 
the average emission factors (considering the fleet composition and speed distribution) by the 
hourly volume in EMFAC. Finally, the dispersion impact at downwind locations of the arterials is 
derived by AMS/EPA Regulatory Model (AERMOD) and visualized in ArcMap. 
 
Based on the traffic count and mobile crowd-sourcing data, we apply EMFAC model to estimate 
the link-based vehicular emissions for urban arterials. Figure 16 shows the Fine Particulate 
Matter (PM 2.5) emissions for more than 3000 freeway and arterial link segments using 
different colors under PM peak traffic in August 2013. As the traffic condition of two directions 
of the freeway usually varies, the right hand side and left hand side of each freeway link have 
different colors in the figure. 
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Figure 16. PM 2.5 emissions per link under PM peak traffic in August 2013 
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4.2 Dispersion Estimation for Arterials 

Based on both arterial and freeway emission source, we divide the research area into 57x71 
grids and calculate the PM 2.5 concentration in AERMOD. Figure 17 illustrates the PM 2.5 
concentration of downtown LA. This figure clearly visualizes the spatial dispersion of air 
pollutant. Air pollutants usually concentrate around freeway corridors (especially interchanges) 
and some busy arterials. The maximum PM 2.5 concentration rate for downtown LA area may 
reach 140 μg/m2 during the PM peak hour. For most links, the PM 2.5 concentration rate is 
below 30 μg/m2.  
 

 

Figure 17. PM 2.5 concentration under PM peak traffic in August 2013  
 
We then compare the estimated concentration with field measures from Quality Assurance Air 
Monitoring Station. As circled in Figure 17, there is one air monitoring site named as Los 
Angeles-North Main Street Station in the study area. The estimated PM 2.5 concentration is 
around 15 μg/m2 (colored as yellow) as this station is relatively far from high PM 2.5 
concentration freeway and arterial network. We then query the ground truth from EPA AirData 
as shown in Figure 18, which indicates that the average daily mean PM2.5 concentration in 

Los Angeles-North Main Street Station
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August 2013 is about 13 μg/m2. As the peak hour concentration is usually higher than the daily 
mean, the numerical results show that the proposed system have good performance in air 
pollutant concentration estimation. This figure also shows that the Quality Assurance Air 
Monitoring Station may not well represent the surrounding area in measuring the air condition 
due to the sparsity of the stations and high diversity of the concentration rate. 
 
 

 

Source: US EPA AirData [19] 

Figure 18. Daily Mean PM2.5 Concentration for Los Angeles-North Main Street Station  
 
 
Similar approaches are applied to other types of air pollutants. Figure 19 shows the 
concentration of Carbon monoxide and Figure 20 shows the concentration of NOx. In Section 5, 
the research team applied the proposed model to the broader area in the City of Los Angeles to 
investigate the impact of vehicular emission on different area of the city. 
 

 

  



 

 
28 

 

Figure 19. CO concentration under PM peak traffic in August 2013 
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Figure 20. NOx concentration under PM peak traffic in August 2013 
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5. Air Pollution Visualization for Los Angeles 

The proposed traffic condition, air pollutant emission and dispersion estimation method have 
been validated in the freeway and arterial network in the downtown area in Los Angeles. In this 
section, we extend the study area to the entire City of Los Angeles to evaluate the performance 
of the proposed method. Before visualize and analyze the final result, we briefly summarize the 
estimation and visualization method. Based on the process below and algorithms developed for 
this project, one can efficiently figure out the air pollution level of any area that is covered by 
the mobile sensing and traffic count data. 
 

5.1 Summary of the Estimation and Visualization Method 

Software 
ArcMap 10.5 
MATLAB R2017a 
AERMOD 
 
Data Source 
Mobile sensor data (GPS trajectories) from Beat The Traffic 
NavTeq GIS data  
Caltrans Performance Measurement (PeMS) 
LACITY, traffic count data 
LADOT traffic volume count 
EMFAC vehicle emission data 
LA weather data 
 

Emission and Dispersion Estimation and Visualization Method 

1. Process the mobile data to calculate the average speed for each link, save as 

“link_speed.csv”, 

2. Use PeMS data to calculate the traffic volume for each freeway link. Save as 

“link_volume.csv”. 

3. Use the LACITY and LADOT traffic count data to calculate the traffic volume for each arterial 

and highway link. Save as “link_volume.csv”. 

a. The LACITY traffic data is counted at intersections. For each line of the logged data, 

the main street count is used. 

b. Links on the same street is set as the average of the adjacent intersection links. 

4. Use the formula to calculate the emission rate (g/m2/s) for each link, here we treat each link 

as an area source. (Instead of a line source. Since we consider the road width. Store the 

result in “link_emission.csv”. We calculated the link emission rate of 5 air pollutants: PM2.5, 

PM10, CO, CO2, and NOx. Their emission factors are collected from the EMFAC online 

dataset. 
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Emission_rate [g/m2/s] = volume [veh/hr] * emission_factor [g/mile/veh] / road_width [m] / 
1609.34 [m/mile] / 3600 [s/hr]. 

5. Combine “link_speed.csv”, “link_volume.csv” and “link_emission.csv” into one file 

“link_info.csv” by “Link_ID”. 

6. Use ArcMap to visualize the link average speed, link emission rate. 

a. Import NevTech GIS data to ArcMap. (Add data) 

b. Import “link_info.csv”. (Add data) 

c. Join “link_info.csv” to NevTech data by “Link_ID”, only keep the matched links. This 

step helps us to keep the links with sufficient data. Save the joined-data layer as 

shape file “LA_links.shp”. 

To visualize link emission rate on the map, double click the “LA_links” layer in ArcMap, 
select “Symbology” -> select “Quantities” in the left “Show” window -> select 
“Graduated colors” -> change “Value” to an air pollutant (PM2.5, PM10, CO, CO2, NOx) -
> click classify for detailed settings. It is the same set of operations to visualize the link 
speed or the link volume. (See Figure 21)  

 

 

Figure 21. Layer properties settings in ArcMap 
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7. Pre-process the link emission data for Aermod and use Aermod to model the emission 

dispersion. 

a. In ArcMap, search “project” to find the Data Management Tool “Project”. Project 

the “LA_links” layer to “UTM Zone 11” Coordinates System.  Name the projected 

layer as “LA_links_projected”. 

b. Search “add xy” to find the tool “Add Geometry Attributes”.  Use the inputs shown 

in the figure below to add the start, middle and end point to each link. (Add to the 

table as attributes.) 

 

5.2 Visualizing Air Pollution Level of Los Angeles 

Based on the method summarized in Section 5.1, we visualize the annual peak hour air 
pollutant emissions and concentration for City of Los Angeles and its surrounding areas based 
on mobile data and traffic count data from 2011 to 2013. In Figure 22, we compare the PM2.5 
concentration estimated from the proposed method (on the right) with the ground truth value 
from CalEnviroScreen 2.0 [20] (on the left). The CalEnviroScreen figure shows the PM2.5 annual 
mean monitoring data extracted from the monitoring sites from CARB’s air monitoring network 
database. Different colors represent the estimated concentration of the center of the ZIP code 
based on interpolation method. For both figures, the PM2.5 concentration has similar spatial 
distribution:  

1) As one of the most polluted city in California, Los Angeles has high PM2.5 concentration 
in all of its ZIP codes;  

2) The concentration is very high in the downtown area, and decreasing gradually in the 
surrounding region; and  

3) That decreasing trend goes faster for the northwest direction. If we compare two 
locations with same distance to the downtown, the one in the southeast have higher 
concentration.  
 

In addition, the PM2.5 concentration figure based on proposed method has higher resolution 
than the one in CalEnviroScreen. Instead of the average concentration of the whole ZIP code, 
the environmental impact of the congested links can be more clearly visualized by the proposed 
method. Figure 23 and 24 present the high definition version of the PM 2.5 emission map and 
concentration map. We also show NOx emission and concentration in Figure 25 and 26, along 
with CO2 emission and concentration in Figure 27 and 28. 
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Figure 22. PM2.5 concentration comparison between CalEnviroScreen and proposed method 

Los Angeles Area



 

 
34 

 

Figure 23. Annual peak hour PM2.5 emissions in Los Angeles 
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Figure 24. Annual peak hour PM2.5 concentration in Los Angeles 
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Figure 25. Annual peak hour NOx emissions in Los Angeles 
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Figure 26. Annual peak hour NOx concentration in Los Angeles 
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Figure 27. Annual peak hour CO2 emissions in Los Angeles  
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Figure 28. Annual peak hour CO2 concentration in Los Angeles 
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6. Conclusions 

In this research, we develop a traffic-related air pollution evaluation system based on sparse 
mobile crowd-sourced data. To tackle the low frequency problem, the previously developed 
stochastic arterial trajectory estimation model is extended to freeways. Unique features of 
freeway driving modal activity are also considered. In response to the low penetration problem, 
we fuse the sparse mobile data with PeMS and LADOT traffic count data, which provide reliable 
real-world traffic volume information. The traffic state information for certain time intervals 
(e.g., peak hours) are applied to EMFAC model to estimate vehicular emissions. For freeways, 
traffic volume and truck ratio records collected from PeMS are also incorporated to the model 
to tackle the data sparsity problem. For arterials, the traffic volume information is acquired 
from either historical manual count or flow estimation methods. In AERMOD, we estimate the 
short-range dispersion of air pollutant emissions. The pollutant emission and dispersion are 
visualized in ArcMap.  
 
We further compare the estimated air pollutant concentration with the measurements from 
the air quality monitoring sites. It shows that the monthly peak hour PM 2.5 concentration 
matches well with the ground truth value, with error of 2 ug/m3. The estimated spatial 
distribution of annual PM 2.5 concentration is also similar to that from CalEnviroScreen. Due to 
the relatively sparsity of the air quality monitoring sites, CalEnviroScreen only provide average 
concentration of the whole ZIP code based on interpolation method. The proposed method can 
better visualize the environmental impact of the congested links with higher definition. 
Further improvement on the sparse mobile crowd-sourcing data-based air pollution evaluation 
method may include: 

1) Currently, the mobile data source limits the effectiveness and timeliness of the 
proposed method. We will explore more updated and reliable mobile crowd-sourcing 
database (potentially with mobile air quality measurements) to validate the models and 
provide accurate air pollutant emission and concentration information. 

2) We will further localize the air pollutant concentration down to each community, and 
investigate its livability by incorporating other pollution factors such as diesel particle 
matters and toxic releases from facilities. 

3) This research will serve as a platform for other potential applications, such as eco-
routing application which help reduce the driver and pedestrian’s exposure to air 
pollution, and connected vehicle based eco-signal timing. 

4) The research team will further improve the computational efficiency in estimating the 
air pollutant emission and concentration and visualizing them in ArcMap. 
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Appendix I: Acronyms and Abbreviations 

 
AERMOD  AMS/EPA Regulatory Model 

AMS    American Meteorological Society 

CalEnviroScreen  California Communities Environmental Health Screening Tool  

CARB   California Air Resources Board 

EMFAC   EMission FACtors Model 

EPA   Environmental Protection Agency 

GPS   Global Positioning System 

LADOT   City of Los Angeles Department of Transportation 

MAE   mean absolute error 

NOx    nitrogen oxides 

NGSIM   Next Generation SIMulation 

PeMS   California Performance Measurement System 

PM   particulate matter 
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Appendix II: Glossary 

Sparse mobile sensor data: In this research, mobile sensor data represent the GPS data 
collected from the mobile devices. As the commercial GPS data usually have low sampling rate 
(collected 1 data point every 10-60 seconds) to limit the cost on data transmission and 
archiving, we can only have sparse mobile sensor data other than second-by-second GPS traces. 

Vehicle trajectory: From the GPS logs, one can derive the vehicle’s spatial-temporal trace, 
which would indicate the movement of that vehicle. That trace is called vehicle trajectory. 

Modal activity: The driving mode of the vehicle, including acceleration, deceleration, cruising, 
and idling. 

Modal activity sequence: The sequence of all model activities in a certain time period, e.g. 
deceleration- idling- acceleration. In the proposed models we search for the “optimal” modal 
activity sequence which is the most probable one in a stochastic model. 

Vehicle dynamic states: The vehicle’s location and speed in each second for a certain time 
period, 

A prior probability distribution: In Bayesian statistical inference, a prior probability distribution, 
often simply called the prior, of an uncertain quantity is the probability distribution that would 
express one's beliefs about this quantity before some evidence is taken into account. (from 
wiki) 

Gaussian Mixture Model: A Gaussian mixture model is a probabilistic model that assumes all 
the data points are generated from a mixture of a finite number of Gaussian distributions with 
unknown parameters. (from wiki) 
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Appendix III: Publication 

 
A conference paper based on the proposed research was presented in The 5th Annual IEEE 
Conference on Technologies for Sustainability (SusTech 2017) in Phoenix, AZ on November 12-
14, 2017. The full paper is attached in this appendix. 
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