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DEDICATION

My grandfather, Late Mr. V.U.Lembodaran

I remember the old white car we drove,

I remember us walking through the narrow streets,

You in front, me right behind,

To buy the best things for me to take back home,

I remember all the good times we had,

The morning walk to temples, the stop at the flower-shop,

And the numerous five-rupee coins you gave me,

To seek the blessings of the Almighty,

I remember the countless people you introduced to me,

For almost everyone knew you on the streets,

As we were getting the daily newspaper on our way back,

You always had a genuine smile for everyone,

And would always stop to enquire their well-being,

I remember our countless visits to restaurants,

And all the dosas, vadas you bought for me,

Only for you to see me eat them,

While you slowly drank coffee, sipping on it from the saucer,
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I remember how you sat in your chair,

Injured physically but quietly hopeful on the inside,

As I walked away to chase my dreams,

I will forever regret not seeing you again,

And would give anything to have you back again,

For nothing in my life feels the same without you,

And every achievement without you unforgivably pyrrhic,

My prayers were not enough,

As you drifted away from me slowly,

But I know you are there with me in spirit,

Quietly walking ahead of me like we always used to.

This thesis is dedicated to the loving memory of my grandfather, Late

Mr. Lembodaran who was humble, unassuming, and caring towards everyone

around.
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ABSTRACT OF THE THESIS

Providing timing guarantees in software using Golang

by

Ashish Kashinath

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Rajesh K. Gupta, Chair

Guarantee of timing performance is key in realtime systems. Realtime

software that does not meet timing requirements is considered erroneous regard-

less of its functional correctness. Ensuring timing accuracy is challenging due

to differences in the notion of time between hardware, software and real-world

interfaces. In practice, this challenge is addressed by separating the program

development and runtime environments for realtime versus general-purpose (or

non-realtime) software. Typically, realtime operating environments are charac-

terized by simple process scheduling, minimal or no memory management, and

a fixed set of processes having static priorities. Thus, realtime software develop-

ment is disjoint from other forms of system software development.

xiii



This work focuses on developing an outline of a software platform for

writing realtime software. This platform is aimed for use in standard operating

systems and thus targets co-existence with non-realtime software. To accomplish

this goal, we use the Golang programming language and its runtime environment.

Golang is a type-safe and memory-safe systems programming language, designed

from the ground up as a ‘C for the 21st century’. Golang offers a rich runtime

environment that performs scheduling, memory allocation and cleaning and, syn-

chronization. We present initial experimental results of using Golang for realtime

applications.
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Chapter 1

Introduction

Time is a central concept in cyber-physical systems. The notion of time

may possibly vary among the hardware systems, the software systems, and the

interfacing between the system to the real-world. The key aspect of time is its

accuracy, rather than the speed of operation. Consequently, we need to ensure

that the timing is guaranteed in each part of the system, and that it meets

the system requirements. Real-time software is a class of software, in which a

deviation in the program execution from the expected time is viewed as a failure

irrespective of its correctness in terms of functionality.

Examples of realtime software include software running on pacemakers,

anti-braking systems in vehicles, and avionics systems.

In current software practice, the programming and program execution are

divided into two distinct phases. The first is the Compile-time environment that

provides support for static checks via the type system and program analysis. The

second is the Runtime environment that provides for loading of the compiled pro-

gram into memory and enables its interaction with the operating system(OS).

The runtime environment, enables a program written in a programming language

to run on the OS by implementing an execution model. The execution model

refers to the organization of the compiled program on the OS, which include

facilities for memory allocation/deallocation, synchronization, and garbage col-

lection.Thus, the runtime environment makes it easier for the running program

to interact with the low-level subsystem by switching into the low-level execu-
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tion model; it thus helps the OS in performing different tasks on the running

program.

Examples of runtime environment include virtual machines for java byte-

code such as Android Runtime, the bare CPU for native code, and the C++

runtime environment for C++ code.

1.1 Runtime Environments

Over the years, several runtime environments have been developed that

provide a specialized execution environment for programs on different CPU-

OS combinations. Some runtime environments focus on providing a parallel

programming interface such as Cilk, which enables a multithreaded programming

environment.[1] Another interesting example of a runtime environment is the

hypervisor which translates a guest OS application into an underlying host OS

operation. For instance, a network access on a guest OS uses a ‘virtualized

network interface card’(VNIC) to communicate with the host OS, thus providing

portability and a consistent interface. On the other end of the spectrum, a

runtime environment can be an API such as the POSIX threads(pthreads) which

furnish a parallel programming model for the user.[2]

Usually, changing the low-level OS properties such as stack space for a

method or changing the heap size threshold to trigger garbage collection requires

recompiling the OS kernel. This slowly gets complicated since there are numerous

applications, each requiring a separate view of low-level OS behaviour. Runtime

environment addresses this issue by providing APIs which call into the OS ex-

ecution environment. The Golang runtime enviroment performs multiple tasks

such as memory allocation and collection, managing stacks, goroutines, channels,

and reflection. With a rich set of functionalities provided by the runtime system,

the Golang runtime environment is a great test bed for programming.
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1.2 Writing Realtime Software

Systems programming typically requires a functionally correct piece of

software, be it a user-space application intending to upload images on the internet

or a kernel driver for a PCI device. The timing requirement for system software

generally allows for a margin of the order of tens of milliseconds as evident in

several Linux subsystem drivers which use timeouts such as msleep.

However, realtime systems require timeliness in addition to correctness

constraints. In particular, Realtime systems have the following properties:

• Realtime systems have both functional and timing constraints: Be-

ing ‘realtime’ means that if a set of tasks are schedule-able, then the tasks

are schedulable, honouring the priority, deadlines and worst-case execu-

tion time conditions. Thus, both functional correctness and timeliness are

equally key to a robust realtime system and one which fails to meet either

of the two correctness constraints is said to have a failure.

Timing Constraints have two components - Predictability & Low Latency.[3]

For Predictability, the following conditions should be met:

– The time for every method should be predictable and should be con-

stant irrespective of system load.

– Non-pre-emptible portions of methods should be short and determin-

istic.

– Interrupt handlers are scheduled and executed at appropriate priority.

– Interrupt latency is predictable and deterministic.

For Low Latency, the following conditions should be met:

– Software aims at reducing context-switch time, interrupt latency, and

synchronization time.

• Realtime software today requires specialized OSes for development:

Because of all the conditions mentioned above, writing realtime systems
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today require low-level support from the kernel containing specialized fea-

tures such as static priorities, fast and predictable interrupt latency and

pre-emption in the OS kernel. Static priorities are key to realtime schedul-

ing algorithms such as Earliest Deadline First(EDF) and Rate Monotonic

Algorithm (RMA) as these compute schedulability based on pre-assigned

priorities.

Conventional Unix did not support these and this motivated scientists to

come up with specialized kernels for Real-time software.

1.3 Reason for choosing Golang for this work

Golang was selected because of a number of reasons concerning its runtime

environment and language specifications such as:[6]

• Golang has features of a realtime programming language: Golang,

with its rich runtime has many features of a realtime OS such as the fol-

lowing:

– Golang runtime possesses its own timer infrastructure which allows for

programming execution time and deadlines for the tasks, as required

for realtime programs.

– Golang runtime has support for light-weight threading by means of

goroutines and userspace scheduling. This also allows fast and pre-

dictable context switching, a key requirement as far as realtime sys-

tems are concerned.

– Golang runtime has a work stealing scheduler.[7]In a work stealing

scheduler, the underutilized processors take the initiative to steal work

from other processors. This is in contrast with a work sharing sched-

uler, which always tries to distribute work among the different pro-

cessors. The advantage of a work stealing scheduler is minimal thread

migration, leading to lower communication complexity and space.[4]
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• Support for most CPU-OS combinations: The runtime environment

of the Golang programming language has support for most of the OSes and

CPU architectures in use today which could be used to converge realtime

software development with generic software development.[6]

• As of 2017, Golang is an emerging modern programming language for pro-

gramming cyber-physical platforms(CPS).[5]

1.3.1 Issues with Current Golang for Realtime Program-

ming

While there are a number of positives for choosing Golang, the stock

Golang cannot be directly used in a realtime setting, because of the lack of

realtime considerations in the runtime scheduler.

• No notion of static priorities: Golang runtime currently does not possess

programmability for the priority and all goroutines from the user program

have the same priority. Static priorities are important so that schedulability

tests can determine if the set of realtime tasks are permissible.

• No notion of deadlines: As seen in section 3.3.2, Golang has low latency

of context-switching which is promising as far as timing is concerned. How-

ever, missing deadlines is synonymous with failure in realtime software and

this idea is central to a realtime system.

• No notion of execution time: Realtime systems use the worst-case exe-

cution time to decide the next task to execute as it is a part of the schedu-

lability test. Golang runtime presently does not have a facility to program

execution times into the program. This is important for schedulability

tests to take into consideration and also since predictability is central to a

realtime system.
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1.4 Problem statement

In this work, I will describe the approach to develop a software platform

built on the runtime environment of Golang. This software platform is able to

execute realtime tasks on a commodity OS like Linux to support the co-existence

of realtime and non-realtime software components.

1.5 Contributions

This research makes two key contributions:

• A software runtime patch for Golang that orchestrates realtime task schedul-

ing on a standard Linux-based system. The primary insight that drives my

work is the run-time scheduler of Golang release 1.8, and can be used to

schedule realtime as well as non-realtime tasks

• An evaluation of the concurrent garbage collector in Golang to understand

the viability, implications and challenges of garbage collection in the real-

time setting.

1.6 Layout of Thesis

The reminder of the thesis is organized as follows: Chapter 2: Background

starts with the history of Golang and describes the key features which make it a

promising systems programming language. This chapter also gives an overview

of the entire software stack of Golang focussing on its powerful and rich runtime

environment. Chapter 3: The Golang Runtime Scheduler explains in detail

how goroutines are scheduled by the Golang runtime in coordination with the

OS scheduler and shows how it can be tweaked to include realtime programs.

Chapter 4: The Golang Garbage Collector explains how Golang’s garbage

collection works and studies the implication of garbage collection in a realtime

environment. Chapter 5: Conclusion discusses the key contributions of this

research, lessons learnt and the future work in this space.
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Chapter 2

Background

2.1 Introduction to Golang

Golang was first launched in the year 2009 by three Google engineers

Robert Griesemer (known for the Java Hotspot Virtual Machine), Rob Pike

(known for Plan 9 and Unix at Bell Labs), and Ken Thompson (known for Unix

and C at Bell Labs).

Golang is an open-source language, distributed with the BSD license. In

syntax and form, Golang bears a similarity to the C programming language. In

addition, the syntax is made more intuitive, concise, and clean. For its con-

currency primitive, Golang is influenced by Erlang, which was based on Tony

Hoare’s idea of communicating sequential processes (CSP).[10]

Since May 2010, Golang has been used in production at Google for back-

end infrastructure, e.g. writing programs for administration of complex environ-

ments.

This chapter will give an overview of the language with an emphasis on

the runtime environment that forms the cornerstone of my thesis.

8
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2.2 Goals of Golang

There are two prevalent trends in software industry today. First, the

number of cores in CPUs are on the rise. Second, high-performance software

is written in a language such as C++, which is a very complexlanguage with a

detailed specification running to over a thousand pages.[9]

It is in such an environment that Golang has been developed by its design-

ers. The core goal is to combine the efficiency, speed, and safety of a strongly-

typed language(such as C++) with the ease of programming of a dynamic lan-

guage (such as Python or Ruby). The second goal of Golang is to cater to the

recent trend of distributed and multicore computing by providing support for

networking, concurrency, and parallelism. The third goal is to decrease time

taken to compile software, to combat long test-develop cycles endured by C++

developers at Google.

Furthermore, Golang also targets the execution speed of C/C++ when it

comes to executing native code. While C++ has provides bare minimal memory

management and expects the developer to manage it in his code, Golang manages

memory in its runtime environment.

2.3 Characteristics of Golang

• Golang is an imperative (procedural, structural) language built with

concurrency in mind. Golang is not object-oriented in the traditional sense,

as it does not have the concept of classes or inheritance. In turn, Golang

treats functions as first-order objects, supports interfaces and higher- order

functions.

• Golang is statically typed, thus a safe language, and compiles to native

code, which provides very high execution speeds. However, it also has

support for dynamic typing, via automatically determining types for an

interface (called static duck typing), which appeals to Python, Ruby, and

Perl programmers.
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• Golang has support for cross-compilation, which enables it to be compiled

on a host of operating systems for a wide variety of processor architectures.

• Golang also exhibits some selected features of a functional languages such

as closures and iterators. However, it omits some features of functional

languages such as maps and generics.

2.4 Where is Golang used?

Being a systems programming language at heart, Golang is used in high-

end distributed computing, such as web servers, storage area networks, and even

for multi-player game development where massive parallelism and concurrency

is common.

Golang is also used in complex event processing applications, which are

used for data analytics in Internet-of-things applications. Furthermore, Golang

can also be used for general software development, such as text processing, script

writing for data analysis, and front-end development. A number of companies

other than Google have also moved onto Golang for their back-end software

development.[8]

2.5 Brief overview of Golang

In Golang, as in any other programming language, one builds large pro-

grams from small set of basic constructs. There are variables that store data

values, and there are data types that are used depending on the specific data

and program. Golang has operators, such as addition and subtraction, which are

used to chain simple expressions into larger, more complex expressions. These

expressions can be used in control flow statements (i.e. if) or in looping struc-

tures (i.e. for) to redirect the flow of the program. Several program statements

are grouped into functions for isolation and reuse. Functions are combined into

source files, and many such source files are present in a single package. Pack-

ages in Golang serve a purpose similar to that of libraries or modules in other
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languages.[2]

Golang offers a variety of ways to organize the data, and its data types fall

into four categories: basic types, aggregate types, reference types, and interface

types. Basic types include numbers, strings, and booleans. Aggregate types com-

bine basic types into a larger entity. Examples of aggregate types include arrays

and structs. Reference types, as the name suggests, are defined such that the

when an operation is applied to one reference type, the change is applied to all

the copies of that reference. Examples of reference types include pointers, slices,

maps, and functions. Lastly, interface types express generalizations or abstrac-

tions about the behaviours of other data types. This adds to the flexibility of the

language since functions written this way can be redefined and re-implemented.

Finally, concurrency is the expression of a program as a composition of

several autonomous activities. Golang has inherent support for concurrency

using its primitives of goroutines and channels.

Golang enables two styles of concurrent programming.[2; 3]

• Using goroutines and channels, which are inspired from Hoare’s idea of com-

municating sequential processes (CSP), a model of concurrency in which

values are passed between independent activities(goroutines). These form

a part of the language specification.[10]

• Using mutexes and waitgroups, which are derived from the traditional

method of shared memory multithreading. The support for these are part

of the sync package.

2.6 Background in Golang

Golang has its a C-like syntax and has constructs such as channels and

goroutines.The simplicity of Golang makes writing programs very easy compared

to other systems programming languages. We will discuss some of the constructs

with an example, and note the features of the language with it.
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Hello World

Golang organizes the programs into packages, and has import statements

at the top of the program. Also, Golang flags redundant imports as an error;

for example, if we were to import the OS package in the hello world program, it

would be an error. By restricting imports, the program becomes very efficient.

package main

import " fmt"

func main ( ) {

fmt . P r i n t f ( " he l l o , world\n" )

}

Listing 2.1: Hello World in Golang

There are two methods to run a go program such as the one shown in

Listing 2.1 :

1) Using the go run command:

go run hello_world.go

2) Building and running an executable:

go build hello_world.go

./hello_world

Multiple Return Values

Golang offers support for multiple return values from a function. This

can be used in scenarios, such as opening a file wherein we can return the error

value and the file handle in one statement. An example is shown in Listing 2.2.

Goroutines

Goroutines are primitives in Golang that enable support for concurrency.

By default, functions will not run as a goroutine, unless we invoke it specifi-
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cally using the go keyword, such as go f(). The benefit of using a goroutine is

that it executes concurrently with the calling functions as is shown in Listing 2.3.

package main

import (

" fmt"

" os "

)

func main ( ) {

fmt . Pr in t ln ( "Going to open a f i l e . . . " )

f , e r r := os . Create ( " sample . txt " )

i f e r r != n i l {

fmt . Pr in t ln ( "Could not c r e a t e . Going to

panic " )

panic ( e r r )

}

byte_array := [ ] byte {1 ,2 ,3 ,4 ,5}

g , e r r := f . Write ( byte_array )

i f e r r != n i l {

fmt . Pr in t ln ( "Could not wr i t e in to the f i l e

. Going to panic " )

panic ( e r r )

}

fmt . P r i n t f ( "Wrote %d bytes in to the f i l e \n" , g )

}

Listing 2.2: Using An Example showing the use of Multiple Return Values in Golang
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package main

import (

" fmt"

" time"

"math/rand"

)

func f (n int ) {

for i := 0 ; i < 10 ; i++ {

fmt . Pr in t ln ( "Goroutine : " , n , " i t e r a t i o n : " ,

i )

amt := time . Duration ( rand . Intn (250) )

time . S leep ( time . Mi l l i s e cond ∗ amt)

}

}

func main ( ) {

for i := 0 ; i < 10 ; i++ {

go f ( i ) // run i t in the background

// f ( i )

}

var input s t r i n g

fmt . Scanln(&input )

}

Listing 2.3: An Example showing asynchronous nature of goroutines and the concurrency model

When we run f as a goroutine, the runtime environment interleaves the

execution of the different goroutines. The execution order of the various gor-

outines is decided by the runtime scheduler. In the case shown in Fig 2.3, the

goroutines do not block and run asynchronously.
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Channels

Channels allow two goroutines to communicate with one another and

synchronize their execution to achieve Synchronization by communication. In

the program shown in Listing 2.4, we have two sender goroutines (ping and

pong) and one receiver (goroutine printr). For a successful execution, the printr

must be present to receive when ping tries to send a message. The ping waits (is

blocked) until printr has successfully received the message, before pong attempts

to send the next message.

Channels can be directional

The direction for a channel can be specified when it is used as a function

parameter. This increases type-safety of the program. The program in Listing

2.5 shows an example of passing a message through a set of two channels.[7]

package main

import (

" fmt"

" time"

"math/rand"

" s t r i n g s "

" st rconv "

)

func ping ( c chan s t r i n g ) {

for i :=0; i < 10 ; i++ {

i s t r := st rconv . I t oa ( i )

s t r := [ ] s t r i n g {"ping " , i s t r }

c <− s t r i n g s . Join ( s t r , " : " )

}

}
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func pong ( c chan s t r i n g ) {

for i :=0; i < 10 ; i++ {

i s t r := st rconv . I t oa ( i )

s t r := [ ] s t r i n g {"pong" , i s t r }

c <− s t r i n g s . Join ( s t r , " : " )

}

}

func p r i n t r ( c chan s t r i n g ) {

for {

message := <− c

fmt . Pr in t ln ( message )

time . S leep ( time . Mi l l i s e cond ∗ time .

Duration ( rand . Intn (250) ) )

}

}

func main ( ) {

var c chan s t r i n g = make( chan s t r i n g )

go ping ( c )

go pong ( c )

go p r i n t r ( c )

var input s t r i n g

fmt . Scanln(&input )

}

Listing 2.4: An Example showing the use of channels to achieve synchronization in golang’s

concurrency model.
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Channels Plus Goroutines: Select

select is a very unique feature of Golang. In the example in Listing 2.6,

we receive a value from each of the two channels and select is used to receive

them simultaneously as it arrives. Once the values arrive, we print them. Note

that the execution time is same as the execution time of the longest duration

channel operation, being 2 seconds for this example.

/∗ The Channel Arrangement i s as fo l l ows :

−−−−−−−−− −−−−−−−−−

"passed message" −−−−> channel 1 −−−−> channel 2

−−−−−−−−− −−−−−−−−−

∗/

package main

import " fmt"

func ping ( r e c e i v e on l y chan<− s t r i ng , message s t r i n g ) {

r e c e i v e on l y <− message

}

func pong ( sendonly <−chan s t r ing , r e c e i v e on l y chan<−

s t r i n g ) {

mesg := <−sendonly

r e c e i v e on l y <− mesg

}

func main ( ) {

channel1 := make( chan s t r ing , 1 )

channel2 := make( chan s t r ing , 1 )

ping ( channel1 , " passed message" )

pong ( channel1 , channel2 )

fmt . Pr in t ln(<−channel2 )

}

Listing 2.5: An Example showing the use of directionality in channels. Note that the channels

used in the example are buffered. This is done to enable a store-and-forward mechanism.



18

Channels Plus Goroutines: Select

select is a very unique feature of Golang. In the example in Listing 2.6,

we receive a value from each of the two channels and select is used to receive

them simultaneously as it arrives. Once the values arrive, we print them. Note

that the execution time is same as the execution time of the longest duration

channel operation, being 2 seconds for this example.

/∗ s e l e c t i s used to wait and receive from both

channels simultaneously

∗/

package main

import (

" time"

"fmt"

)

func main ( ) {

channel1 := make( chan s t r i n g )

channel2 := make( chan s t r i n g )

/∗Anonymous Functions∗/

go func ( message s t r i n g ) {

time . S leep ( time . Second ∗ 1)

channel1 <− message

}( " f i r s t mesage" )

go func ( message s t r i n g ) {

time . S leep ( time . Second ∗ 2)

channel2 <− message

}( " second message" )

for i := 0 ; i < 2 ; i++ {

s e l e c t {

case msg1 := <−channel1 :
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fmt . Pr in t ln ( "Received " , msg1 )

case msg2 := <−channel2 :

fmt . Pr in t ln ( "Received " , msg2 )

}

}

}

Listing 2.6: An Example showing the use of select statement

Another scenario where select is useful is to implement timeouts in Golang.

Inside a select statement, we can use the time.After(timeout) to kickstart a

timer which will send values to a channel after the timeout has elapsed. If the

operation we care about completes before this timeout elapses, we say that the

operation has succeeded. If on the other hand, the operation takes longer than

the duration specified in the time.After call, the operation has timed out and

we take appropriate action. An example of implementing timeouts using select

statement is shown in Listing 2.7. [7]

/∗ s e l e c t i s used to timeout here

The f i r s t function c a l l takes 2 seconds , which

timesout since the s e l e c t picks the f i r s t

value that i s ready .

The second function c a l l takes 2 seconds , which

i s printed since the timeout threshold i s

3 seconds

∗/

package main

import (

" time"
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"fmt"

)

func main ( ) {

channel1 := make( chan s t r ing , 1)

go func ( ) {

time . S leep ( time . Second ∗ 2)

channel1 <− " F i r s t Ping"

}( )

s e l e c t {

case r e s u l t := <−channel1 :

fmt . Pr in t ln ( r e s u l t )

case <−time . After ( time . Second ∗ 1) :

fmt . Pr in t ln ( " F i r s t Ping : Timed out" )

}

channel2 := make( chan s t r ing , 1)

go func ( ) {

time . S leep ( time . Second ∗ 2)

channel2 <− "Second Ping"

}( )

s e l e c t {

case r e s u l t := <−channel2 :

fmt . Pr in t ln ( r e s u l t )

case <−time . After ( time . Second ∗ 3) :

fmt . Pr in t ln ( "Second Ping : Timed out" )

}

}

Listing 2.7: An Example showing the use of select statement to implement timeouts
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2.7 Golang runtime environment

Similar to C’s glibc and Java’s Java Virtual Machine(JVM), Golang has

a library known as the runtime library, which supports in running the program.

The runtime library is located at src/runtime in the source code of Golang,

and contains files managing a plethora of tasks for Golang programs, such as

scheduling, stack management, garbage collection and interaction with the OS

via system calls. The architecture of the runtime environment is shown in Fig

2.1.[4; 5]

Figure 2.1: Block diagram of the runtime environment and its interactions with the OS

In this thesis, we will study the runtime environment of Golang, with a

focus on the runtime scheduler, and leverage it to attain the desired realtime

properties.

2.8 Benchmarking Timing of Golang Applications

Benchmarking and Profiling are two methodologies used to measure the

performance of a specific program. While the two terms provide similar infor-

mation, the methodologies are distinctive. Simply put, benchmarking provides
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the relative performance of a program in relation to a baseline, whereas profiling

is the objective and absolute measurement of the program performance.

Benchmarking is the practice of stress-measuring the performance of a

software, wherein the stress test is static and deterministic.[8] For example, an

OpenGL benchmark on a smartphone, such as Taiji®, can be used to mea-

sure the 3D graphics performance of the Android OS on any embedded device.

In Golang, a benchmark is a special function that is prefixed with the word

Benchmark and takes b *testing.B as arguments. The benchmark functions

are typically defined in a separate file from the program that they are evaluat-

ing. For example, the Golang runtime source code has a separate file named

stack_test.go that contains the benchmark and test functions to benchmark the

file stack.go.

In contrast, profiling is measuring the absolute speed and efficiency and

is commonly used to find out critical regions in code which could mean that

they consume more CPU cycles or use too much memory.[2] Profiling commonly

involves sampling a number of events by sending the signal SIGPROF to the

program being profiled. Signals, we recall, are used by the OS to communicate

with the application process. In our specific case of Golang runtime, the signal

is sent by the userspace to the runtime and the runtime has a function handler

func sigprof(pc, sp, lr uintptr, gp *g, mp *m) defined to handle this at

proc.go on line 3180.

As Golang researcher Dave Cheney covered in his talk at the Golang UK

Conference 2016[8], there are 7 ways of profiling Golang programs:

1. GNU/Linux time command

2. Runtime Environment variable GODEBUG

3. Runtime Environment tool runtime/pprof

4. Tracing Facility go tool trace

5. For debugging server applications, debug/pprof

6. GNU/Linux Perf

7. Flamegraph

We used the first four techniques for analyzing the scheduler but found runtime/
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pprof and go tool trace to be the most useful as it invokes the execution tracer

in the runtime environment to give detailed traces at a very high resolution.

Time Command

We can use the GNU/Linux command /usr/bin/time -v <command_to_

be_timed> to give us (1) the timing details of the system at a high level, clas-

sified as real, user, and system times; and (2) other statistics, such as context

switches and page faults. There is also the less powerful shell built-in command,

which gives us only the time spent in the system, user, and real modes. The

GNU/Linux manual states that the precision of this command is unspecified,

but is sufficient to express the clock tick accuracy. In Fig 2.2, we have an ex-

ample execution of the time command for go fmt operation. go fmt std is a

command to perform recursive directory traversal, and to format the *.go files

in accordance with Golang stylistic guidelines.[1]

Figure 2.2: Example execution of the time command for go fmt operation.

We note that the time command gives us a precision of a 1 millisecond for

measuring time. time gets the timing information from underlying GNU/Linux
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timeval structure and performs truncation and/or rounding but modifying pre-

cision of time requires recompiling the kernel infrastructure. Thus, we can can

use this tool to obtain an overall diagnosis of the program timing, but to obtain

fine-grained information of timing, we need richer tools, as will be described in

the following sections.

GODEBUG

GODEBUG is an environment variable, which is used to capture the user

code interactions with the runtime environment such as goroutine scheduling,

garbage collection, and memory allocation/deallocation. The package runtime

documentation describes flags that can be used in conjunction with the GODE-

BUG environment variable.[6] As an example, we have a test code containing

two functions. One is the main function, which spawns ten goroutines, each of

which counts to 10 billion in the second function, and calls done to signal its

completion back to main function. The scheduler traces are displayed in Fig 2.3.

Using GODEBUG, we can study status of the goroutines, worker threads,

and contexts in terms of their state transitions, as well as their interactions with

the garbage collector. Here, we collect the scheduler traces every 1000ms from

the runtime. scheddetail is a switch used to emit detailed multiline information

every 1000ms. The most precision we can get of timing from the scheduler

runtime variable GODEBUG is 1 millisecond, which is identical to the tools we

have seen so far.

pprof

pprof is a tool derived from the Google Performance Tools suite, and is

built into the Golang runtime.[4] pprof works in tandem with go test tool. As

noted in the documentation, go test tool has built-in support for three styles of

profiling:

1. CPU Profiling: This is used to find the critical code that consumes the most
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CPU time. It is captured using a command similar to go test -cpuprofile

= prof.cpu, which essentially compiles all the *_test.go files in the current

directory, and writes the CPU profile to the file cpu.out.

2. Memory Profiling: This is used to find the critical code that consumes

the most memory. Like CPU profiling, memory profiling is captured using the

flexible command go test -memprofile=prof.mem.

3. Block Profiling: Block profiling is a very unique form of profiling, and

is used to find and debug situations, such as a goroutine waiting for a long

time on a value from a channel or any synchronization primitive (i.e. mutexes or

semaphores). Like CPU and memory profiling, timing profiling is captured using

the command go test -blockprofile=prof.block. Block profiling can be

very useful for determining concurrency bottlenecks in the application, because

it can show us when a large number of goroutines were blocked when they should

have made progress.[8]

The files cpu.out, mem.out, and block.out can be used by a tool, such as

pprof, to give additional insight on the profile. pprof is commonly referred to in

the Golang research community as the Swiss Army Knife of all the performance

tools. The complete commands used are as shown in Fig 2.4. The benchmark

chosen is in src/runtime/proc_test.go and the go test command is run inside the

src/runtime directory to create a file runtime.test. runtime.test and the profile

file prof.cpu is used by the pprof tool to interpret the data.

Example of a Benchmark: Parallel Goroutine creation

Parallel Goroutine is similar to the pthread_create() and the pthread_

join() in C++. We spawn GOMAXPROCS number of goroutines, each of which

communicates its completion by writing true to a boolean channel, which is

unbuffered. In other words, the sending goroutine is held blocked until the

receiving goroutine is present, and vice versa. The pprof tool can also be used

to visualize the runtime callgraph, as shown in Fig 2.5. From the callgraph, one

can quickly identify the goroutine that is consuming the most CPU time, based

on the box size and time stamps.
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Note that the Parallel Goroutine creation is an example of a benchmark.

A benchmark is a special type of function that is placed in a file ending with

*_test.go, and it is run using the go test tool. Benchmarks and test function are

run using the testing/ framework located in src/testing directory of the Golang

source, and do not require a main() function.

On the other hand, to profile user programs with a main(), we can use

the go tool trace command. Lastly, we note that the time command gives us

a precision of a 1 nanosecond for the timing information. This high resolution

makes pprof a valuable tool for debugging issues related to performance and

timing.

go tool trace

go tool trace provides a lot of visual information to the user, but is not

very well documented apart from a couple of talks by Dimitry Vyukov and Rhys

Hiltner. [11] We can start capturing the trace using runtime/trace package by

adding trace.Start(<file>) and trace.Stop(<file>) statements around the points

of the code we want to analyze. Note that this requires importing the os package

as well since we need to write the traces to a file. An example code snippet is

shown in Fig 2.13 and the output is shown in Fig 2.6.

package main

import (

" os "

" runtime/ t r a c e "

" sync"

" time"

)

func main ( ) {

// trace . out i s the f i l e that w i l l contain our



30

trace

f , e r r := os . Create ( " t r a c e . out" )

//Error handling in case the returned f i l e

scr ip tor returned i s inva l id

i f e r r != n i l {

panic ( e r r )

}

de f e r f . Close ( )

//Start the tracing f a c i l i t y

e r r = t r a c e . S ta r t ( f )

i f e r r != n i l {

panic ( e r r )

}

//Stop the tracing when main ex i t s

de f e r t r a c e . Stop ( )

//WaitGroup wg waits for goroutines to f i n i s h

var wg sync .WaitGroup

wg .Add(10)

for i := 0 ; i < 10 ; i++ {

go work(&wg)

}

//wait for Done from each of the goroutines .

wg .Wait ( )

// Sleep so that the f low does f a l l out of main()
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before the goroutines return

time . S leep (3 ∗ time . Second )

}

func work (wg ∗ sync .WaitGroup ) {

time . S leep ( time . Second )

var counter int

for i := 0 ; i < 1e10 ; i++ {

counter++

}

wg . Done ( )

}

Listing 2.8: Using the go tool trace facility to log the tracing output to trace.out. We can

then view the output using go tool trace trace.out

The tools perf, flamegraph and debug/pprof can also be used to obtain

similar type of insight into the runtime environment.

2.9 Conclusion

In this chapter, we saw an overview of the Golang programming language

and studied the different features of the language. Furthermore, we also saw some

tools which can be used for performance evaluation in Golang which is key in

timing measurement. This sets the stage for exploring the runtime environment

beginning with the scheduler in the next chapter.
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Chapter 3

The Golang Runtime Scheduler

Process is the abstraction used by the Operating System(OS) for man-

aging tasks; in turn, process scheduling is the methodology used by the OS to

compute and complete those tasks through execution. The tasks may be thought

of as the smallest executable unit of a user program. Process scheduling is about

partitioning the finite resource of time that a CPU has into executing different

tasks, so that each of the the task meets its goals.

The concept behind a scheduler is simple. If there are tasks that are ready

to run, and there is an idle CPU, then the CPU should be executing the task.

Conversely, if there are more runnable tasks than CPUs in a machine, then some

of the tasks will be waiting to run. The primary job of a scheduler is to select

the next task to be executed among a set of runnable tasks.

The first section of the chapter deals with the concepts used in scheduling,

and how scheduling is carried out in the Golang runtime environment. The

section is followed by an evaluation of the process scheduler used in Golang v1.8

by running benchmarks using the test utility. We then define realtime scheduling,

and explain how Golang’s runtime environment may be tweaked for providing

realtime scheduling. We call this new runtime environment Realtime Golang.

We conclude the chapter with the details of Realtime Golang, a runtime system

aimed at realtime task management.

Note that this chapter will be interchangeably using the terms ‘process’

or ‘task’. If at any point of time, the distinction becomes important, it will be

34
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called out. Furthermore, we will be using the terms ‘CPU’ and ‘processor’ to

refer to a blackbox that can execute instructions in any user program.

3.1 Introduction to Scheduling

Scheduling is an interdisciplinary science drawing inputs from Mathemat-

ics, Computer Science and Engineering. The discipline of queuing theory and

schedule-ability helps model the tasks in a system, and quantitatively analyze

the effect of executing different tasks at different times. We will go over some de-

sign decisions and scenarios affecting scheduling as it will lead us to the changes

that are required for making Golang realtime.

3.1.1 Scheduling Terminology

Multitasking is defined in the Oxford Dictionary as to execute more

than one program or task simultaneously. On a computing level, a CPU

is a resource, which can execute one instruction at a time. However, in an

OS that supports multitasking, the CPU can execute a task for a finite period

of time (called a timeslice), save its progress (called context) into the stack,

and context-switch to another task. This process of interleaving multiple task

executions onto a timeline gives the user the illusion of simultaneous execution

of multiple tasks (called concurrent tasks).

Parallelism is another term that is interchangeably used with concur-

rency, although both are strictly different. Parallelism is actually executing

multiple tasks at an instance of time. In computing terms, parallelism can be

achieved with multiple CPUs. On the other hand, concurrency is more about

the programming model to give the illusion of multitasking.

On a Uni-processor (single CPU) machine, we can have concurrency

but no parallelism. We can also say that parallelism degenerates to concur-

rency on a Uni-processor machine. On the other hand, on a Multi-processor

(multiple CPUs) machine, we can have concurrency and parallelism, which

can be differentiated by the scheduler.[5]
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Tasks may be classified as either I/O-bound or CPU-bound. I/O-bound

tasks spend much time submitting and waiting on I/O requests, such as disk

I/O or network I/O. Therefore, such tasks are runnable for only short durations.

Examples of I/O-bound tasks include graphical user interface (GUI) applica-

tions that often wait on user interaction (even if a user is typing fast or moving

the mouse as quick as he can, it is still an eternity for the processor in terms

of scheduling). Conversely, CPU-bound tasks spend much of their timeslice

performing computations using the CPU. An example of CPU-bound task is

computing the prime factors of a large number.

Note that the given definitions of tasks are not mutually exclusive. A

composite program may have CPU-bound parts, as well as I/O-bound parts.

For example, the game, Angry Birds®, is I/O-bound when waiting for the user’s

input, and is CPU-bound when it performs pixel-by-pixel calculation of the bird’s

next location.

Thus, the scheduling policy in a system must attempt to satisfy two con-

flicting goals: fast process response time (low latency) and maximal system

utilization (high throughput).[9] While providing the highest throughput and

the lowest latency simultaneously is impossible, it is possible to engineer a trade-

off among the two, and skew the OS towards favouring one over the other. The

default scheduler in the Linux OS, known as the ‘Completely Fair Scheduler’

favours I/O-bound tasks over CPU-bound tasks, as the OS is tailored to usage

in a desktop environment.

One way the Linux OS overcomes the conflicting tradeoff is by achieving

modularity through the concept of scheduler classes. Scheduler classes enable

various pluggable algorithms to coexist, with each algorithm scheduling its own

type of processes. Each scheduler class has a priority. The base scheduler code,

which is defined in kernel/sched.c, iterates over each scheduler class in order of

priority. The highest priority scheduler class that has a runnable process wins,

and selects who runs next.

In the Linux 4.10.14 mainline kernel, we have six scheduling classes:

SCHED_RR, SCHED_NORMAL, SCHED_FIFO, SCHED_BATCH, SCHED_
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IDLE, and SCHED_DEADLINE. Each thread in Linux has a scheduling policy

and a static scheduling priority. The classes are defined at include/uapi/linux/

sched.h and are defined their man pages as follows:

• SCHED_FIFO: First in-first out scheduling policy without any timeslices.

When a SCHED_FIFO thread becomes runnable, it will be inserted at the

end of the list for it priority.

• SCHED_RR: Round-robin scheduling which is a special case of SCHED_

FIFO with the added notion of timeslices. When a SCHED_RR thread

runs for a duration equal to its timeslice, it is put at the end of the list for

its priority.

• SCHED_NORMAL: Default Linux time-sharing scheduling which is in-

tended for all general-purpose threads in the OS. These threads use the

notion of dynamic priority which is based on the nice values.

• SCHED_BATCH: Batch scheduling policy is similar to SCHED_NORMAL

except that the scheduler assumes threads are always CPU-bound. This

changes the wakeup behaviour of threads but is commonly used in non-

interactive workloads.

• SCHED_IDLE: Very low priority job scheduling policy which is used only

at static priority. Nice values have no meaning when this scheduling policy

is used.

• SCHED_DEADLINE: Sporadic task model deadline scheduling which is

based on the global earliest deadline first(GEDF) algorithm and constant

bandwidth server(CBS). This makes assumptions that the threads do not

communication with one another and uses an admissibility test to deter-

mine schedulability. The parameters that this scheduler uses can be set

using system calls. SCHED_DEADLINE is the class having highest prior-

ity among all the classes.
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Table 3.1: Process State Codes used in standard Linux System
D uninterruptible sleep (usually IO).
R running or runnable (on run queue).
S interruptible sleep (waiting for an event to complete).
T stopped by job control signal.
t stopped by debugger during the tracing.
W paging (not valid since the 2.6.xx kernel).
X dead (should never be seen).
Z defunct ("zombie") process, terminated but not reaped by its parent.

3.1.2 States of a Task

A task on its way to submission to the scheduler can be in one of many

states. On a running Linux system, the command ps -el is used to view the

different tasks running on the system as shown in Figure 3.1. The second column

refers to the state of the particular task, which can be any of the possible states

enumerated in Table 3.1.

Figure 3.1: Example Screenshot of tasks in an Operating System.
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3.1.3 Scheduling Types

Broadly speaking, OSes rely on scheduling to enable multitasking. De-

pending on how scheduling is implemented, Multitasking OSes are classified into

two types: Cooperative Multitasking and Preemptive Multitasking. Coopera-

tive Multitasking, as the term suggests, relies on two tasks to cooperate to give

one another a timeslice to the processor. This process is called yielding, and is

completely under the control of the task. The OS plays no role in determining

the duration of a task timeslice; the downside of this approach is that poorly

programmed or malicious tasks can monopolize the system. Preemptive Multi-

tasking, on the contrary, relies on the OS to decide how long a particular task

can use the CPU. In particular, it is the process scheduler that decides the times-

lice allotted to different tasks. This process is often predetermined, and enables

the OS to make global scheduling decisions more effectively. Most of the modern

OSes, like Linux and Windows use Preemptive Multitasking, the only exceptions

being Mac OS 9 (and earlier) and Windows 3.1 (and earlier).[9]

Scheduling can also be classified based on the timing requirements of tasks.

Tasks that do not have stringent timing characteristics are grouped into the

SCHED_NORMAL scheduler class, and the corresponding schedulers are termed

non-real time schedulers. Tasks of realtime schedulers, on the other hand, are

grouped into three scheduling classes - SCHED_DEADLINE, SCHED_RR, and

SCHED_FIFO. Realtime scheduling policies in Linux provide soft realtime be-

haviour, wherein the OS attempts to schedule applications within timing dead-

lines, but the kernel does not guarantee success. The other type of realtime

scheduling behaviour is called hard realtime, wherein the OS makes guaran-

tees to schedule applications within the designated timing requirements. The

Realtime scheduling policies in Linux provide only ‘soft realtime’ behaviour.

In this thesis, we will analyze the Golang runtime scheduler, and use it

to simulate realtime behaviour from the runtime environment.
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3.2 Scheduling in the Golang runtime environment

The Golang runtime environment has its own scheduler to distribute

ready-to-run goroutines over worker threads. The scheduler is based on a ran-

domized work-stealing algorithm and is partially pre-emptive.[13]

3.2.1 Why does scheduling have to be done at the user-level

runtime environment?

Before we look at the scheduling strategy employed in the Golang run-

time environment, we need to understand why we need scheduling in the first

place. We need to justify the need for a scheduler in the userspace when there is

already a scheduler in the OS kernel, which is an ever-increasingly mature piece

of software. In this regard, let us have a look at the relative merits and demerits

of user-level and kernel-level threads.

When the system uses kernel-level threads, the kernel knows about and

manages the threads, and we no longer need a runtime system. The kernel has a

thread table that keeps track of all the threads in the system in addition to the

existing process table. This leads to the following merits and demerits:

Merits of Kernel-level threading

1. As the kernel knows everything about the threads, the kernel may decide

to give more time to a process having the higher number of threads.

2. For applications that block, kernel-level threads are favourable. This is

because the kernel is aware of threads that are idle threads or I/O bound

threads. This way it can make an intelligent decision to schedule them.

On the other hand, user-level threads are not visible to the kernel and the

kernel can end up scheduling a user-level thread that is waiting on a disk

or network I/O.
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Demerits of Kernel-level threading

1. The kernel-level threads are slow and inefficient, because of the overhead

associated with system calls while context-switching.

When the system uses User-level threads, on the other hand, they are

managed entirely by the runtime environment. The kernel is agnostic to the user-

level threads and treats them like single-threaded process. User-level threads are

small and fast, each thread being represented by a PC, register, stack, and a

small thread control block.

Merits of User-level threading

1. User-level threads can be implemented on an OS that does not support

threads.

2. Unlike Kernel-level threads, User-level threads do not add clutter to the

kernel code.

3. Thread switching is fast and efficient and is similar to a procedure call.

4. With User-level threads, it is possible to have multiple threads per CPU

and we have full control of when they are scheduled.

Demerits of User-level threading

1. User-level threads require a thread manager that communicates to the ker-

nel so that it can help the OS avoid making poor decisions. These poor

decisions would include scheduling a process with idle threads, or blocking

a process whose one thread initiated an I/O even though the process has

other threads that can run.

2. Since there is a lack of coordination between the threads and the operating

system kernel, the process as a whole gets one time slice whether it has

five threads or five million threads. This leaves the threads to coordinate

among themselves for CPU time.
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3. User-level threads require a non-blocking system call, which means that

the kernel should be multi-threaded. Otherwise, if for example, one thread

causes a page fault, the process is blocked.

Let us look at the threading model in Golang to understand the implica-

tions of the design decision between user-level and kernel-level threading.

3.2.2 Golang’s Threading Model

In the previous section, we saw that userspace scheduling is appropri-

ate for the Golang programming model. There are three models for userspace

threading.

N:1 In this approach, several userspace threads are run on one OS thread.

The advantage is that context switch is seamless, but the shortcoming is that

there is poor utilization with respect to multi-core machines.

1:1 In this approach, we have a one-on-one correspondence between one

userspace thread and an kernel thread. In other words, every userspace thread

maps onto its own OS thread. This style gives us the reverse benefits of the N:1

approach; that is, it takes advantage of all the cores on the machine, but the

context switching is slow, as it has to trap through the OS via two system call

overheads for every context switch.

M:N Golang takes the middle ground in this regard and uses a M:N

scheduler. It schedules an arbitrary number of goroutines(M) onto an arbitrary

number of OS threads(N). While this takes advantage of multi-cores and amor-

tizes the system call overhead (since we need to pay for context switch only when

they correspond to different OS threads), there is considerable complexity added

to the runtime scheduler.

The runtime scheduler needs to maintain enough OS(worker) threads ac-

tive so that it can use the CPU parallelism. If the runtime scheduler uses more,

then parking-unparking worker threads could be a problem whereas if the run-

time scheduler uses less, then it is frequently starting and stopping a new worker

thread that adds to the overhead making the scheduler less power-efficient which

is key in cyber-physical systems.
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In summary, we can conclude that the runtime (user-level) environ-

ment can make more informed decisions about scheduling than the OS kernel

for the Golang threading model because the runtime scheduler handles the

interplay between goroutines, processor contexts and the worker threads.

3.3 Structures in the Golang runtime scheduler

This section covers the major abstractions and data structures used by the

Golang runtime environment to perform scheduling of goroutines. In the Golang

v1.8 runtime source code located at src/runtime in the release, the scheduler and

its data structures are defined as follows:

• proc.go : Implementation of the Golang scheduler.

• runtime1.go : Parsing of the environment variables passed to the runtime

environment, as well as the implementation of the tracing facility supported

by the runtime environment.

• runtime2.go : Definition of the different data structures used by the run-

time environment. This file also contains the different valid states and

transitions supported by the scheduler.

There are three key structures used in the Golang scheduler - G, M, and

P. A G is a goroutine, an M is a OS thread also called a worker thread in the

code comments and, P is the rights and resources(also called context) required

to execute the G. In order to clearly denote the three structures in diagrams, it is

customary in the Golang research community to denote these with standardized

notation: G is denoted by a circle, M by a triangle, and P by a square (Fig 3.2).

Each of these structures maintain crucial pieces of information to execute the

program, and these are indicated in Figs 3.3-3.5.

It is to be noted that there can be many Goroutines, Worker threads, and

Processor Contexts in a single program. The only restriction imposed by the

runtime environment is that the number of contexts is bound by the runtime
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Figure 3.2: Different entities used in the Golang runtime scheduler

environment variable runtime.GOMAXPROCS. Typically, this is equal to the num-

ber of cores in a machine. The number of worker threads can be much higher

than runtime.GOMAXPROCS since some of the worker threads may be blocked in

a syscall. runtime.GOMAXPROCS does not take the blocked threads into account.

Although there are no fundamental restrictions, the maximum settable

value of runtime.GOMAXPROCS is capped at 256.

Furthermore, the worker thread structure behaves very similarly to the

standard POSIX thread that is typical in a machine running GNU/Linux. Lastly,

there is no restriction on the number of goroutines.

Goroutines and Processor Contexts transition through different states as

they pass through the execution cycle. The different states of a goroutine are

indicated in Table 3.2 and the different states of a context structure are indicated

in Table 3.3.

Finally, we have a global structure called schedt that maintains the over-

all status of the runtime environment by holding pointers to the global runnable

queue, the worker threads waiting for work, the goroutines waiting to be exe-

cuted, etc.

We will discuss how the scheduling of goroutines is carried out starting

with the initialization of the runtime environment.

3.3.1 Initialization of the Runtime Environment and Sched-

uler startup

The initialization of the runtime environment is coded in src/runtime/

asm_<architecture>.s depending on the type of architecture. For example, the
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Table 3.2: Possible states of a goroutine and their definitions
Gidle Just allocated and has not yet been initialized.
Grunnable On a run queue. It is not currently executing user

code. The stack is not owned.
Grunning May execute user code. The stack is owned by this

goroutine. It is not on a run queue. It is assigned an
M and a P.

Gsyscall Executing a system call. It is not executing user code.
The stack is owned by this goroutine. It is not on a
run queue. It is assigned an M.

Gwaiting Blocked in the runtime. It is not executing user code.
The stack is not owned.

Gdead Currently unused. It may be just exited, on a free list,
or just being initialized. It is not executing user code.
It may or may not have a stack allocated.

Gcopystack Goroutine’s stack is being moved. It is not executing
user code and is not on a run queue. The stack is
owned by the goroutine that put it in _Gcopystack.

Gscanrunnable GC is scanning the stack. The goroutine is on a run
queue, not executing user code, and the stack is owned
by the goroutine that set the _Gscan bit.

Gscanrunning Same as _Grunning except that the goroutine is scan-
ning its own stack

Gscansyscall GC is scanning the stack. The goroutine is executing
a system call, and the stack is owned by the goroutine
that set the _Gscan bit. The goroutine is not on a run
queue, but has an M assigned to it.

Gscanwaiting GC is scanning the stack. The goroutine is blocked
in the runtime. It is not executing user code, and the
stack is not owned

Table 3.3: Possible states of a context and their implication
Pidle The P is just allocated and has not yet been associated

with an M.
Prunning The P is assigned an M and is holding the context for

a running goroutine..
Psyscall The G associated with the P is executing a system call

and is no longer using the CPU. The P can be handed
over to another M to be used by it.

Pgcstop The P is at a safe point to be scanned by the GC.
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runtime environment initialization is in src/runtime/asm_amd64.s for a 64-bit

CPU (Fig 3.6). The process of the OS invoking the runtime environment, boot-

strapping, involves the following steps:

• Initially, the per-goroutine and per-machine registers are set up, which

means that the thread local storage(TLS) is stored in the BX register.

Then, the runtime environment performs a check to ensure the store and

jump operations are successful.

• The addresses of the first goroutine (g0), and the first worker thread (m0),

are stored in registers CX and AX, respectively. g0 is a goroutine used to

schedule other G’s on the m0.

• The association of g0 and m0 are made by assigning m→g0 = g0 and g0→m

= m0. The code means that the goroutine g0 will be running on the worker

thread m0, and is the first association of a G struct to an M struct.

• The arguments to the runtime environment, also called argc and argv, are

copied at locations SP and SP+8. The arguments are set up, and the

goroutine is prepared to execute.

• Two methods in the runtime environment are called in order. The first

is osinit(), followed by schedinit(). osinit() is used to obtain information

from the OS on the physical pagesize and the number of CPUs on the

machine. schedinit() is used to further set components in the execution

environment such as the stack, the signal masks for the g0, malloc arena,

and the garbage collector.

• A new goroutine is created to start the program given by the user, and is

put on the queue of G’s waiting to be run, by using the function newproc()

in proc.go.

• The mstart() function is called, which in turn calls schedule(). schedule() is

used to find a runnable goroutine using the work-stealing algorithm, which

is implemented in the findrunnable() method. Now, the program starts
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and will never return. We can say that the main goroutine is locked onto

the main OS thread

ok :

// se t the per−goroutine and per−mach " reg i s t e r s "

get_t l s (BX)

LEAQ runtime . g0 (SB) , CX

MOVQ CX, g (BX)

LEAQ runtime .m0(SB) , AX

// save m−>g0 = g0

MOVQ CX, m_g0(AX)

// save m0 to g0−>m

MOVQ AX, g_m(CX)

// convention i s D i s always l e f t c leared

CLD

CALL runtime . check (SB)

// copy argc

MOVL 16(SP) , AX

MOVL AX, 0(SP)

// copy argv

MOVQ 24(SP) , AX

MOVQ AX, 8(SP)

CALL runtime . args (SB)

CALL runtime . o s i n i t (SB)

CALL runtime . s ch ed i n i t (SB)

// create a new goroutine to s ta r t program

MOVQ $runtime .mainPC(SB) , AX // entry

PUSHQ AX
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PUSHQ $0 // arg s i z e

CALL runtime . newproc (SB)

POPQ AX

POPQ AX

// s tar t t h i s M

CALL runtime . mstart (SB)

MOVL $0xf1 , 0 xf1 // crash

RET

DATA runtime .mainPC+0(SB) /8 , runtime . main (SB)

GLOBL runtime .mainPC(SB) ,RODATA, $8

Listing 3.1: Snapshot of runtime environment initialization in the Golang v1.8 source tree at

src/runtime/armamd64.s

After the initialization process is completed, the runtime schdeduler is up

and running and is ready to execute goroutines.

3.3.2 Working details of the Runtime Scheduler

The previous section covered details of the major structures used in the

runtime scheduler. This section will dig deeper into the scheduling process and

explain the inner workings of the runtime scheduler.

Overview of the Scheduling Process

The entry point of the scheduler is the main() function, which sets up the

runtime environment and enables the garbage collector.

At the beginning, we have a single goroutine g0 and a single worker thread

m0 in the runtime environment. For every worker thread M, there is a spe-

cial goroutine g0 called the system goroutine. g0 carries out the scheduling of

other ‘normal’ goroutines on the worker threads. It also orchestrates the task
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of creating and managing the different queues of goroutines, worker threads and

processor context structures and handling their state transitions. An example

is the race condition when the transition of a worker thread from spinning to

non-spinning transition coincides with the submission of a new goroutine.

The lifecycle of a goroutine is as shown in Fig 3.6. Note that this is a

simplified representation and does not consider interactions such as system calls,

channel blocking, and pre-emption by the garbage collector.[1; 2]

The scheduling shown in Fig 3.6 is a simplistic view of scheduling, and

it becomes more involved when garbage collection, system calls, and system

profiling interact with the scheduler. The process of managing the different

queues and handling synchronization with garbage collection makes the scheduler

code very involved and long running (over 4500 lines).

The scheduler tries to maintain a dynamic equilibrium between the num-

ber of worker threads and the CPU utilization. If the number of worker threads is

too few, then we are wasting the hardware parallelism; if the number is too high,

then the worker threads spend a considerable portion of their lifetime parking

and unparking themselves.

Goroutine, Worker Thread & Context : Scheduling perspective

This section revisits the three key structures of the scheduler with regard

to the scheduling process and describes the details of their interaction.

The goroutine G maintains information about the goroutine. Essentially,

it contains elements like program counter of the statement that created the gorou-

tine, stack information, status (as listed in Table 3.2).The goroutine also contains

a pointer to the worker thread that is assigned to execute the goroutine. This

helps the scheduler to keep track of the goroutine in the runtime.

The worker thread M also maintains information about the current run-

ning goroutine, and the attached context structure for executing Golang code

apart from signals, and profiling statistics.

The processor context P maintains a list of runnable goroutines, scheduler

ticks, and a cache of goroutines that are free or on a waiting list. In other words,
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the context structure has a local list of goroutines which are waiting for CPU

time. [4; 7]

Furthermore, there is also the global struct called schedt, which maintains

statistics of scheduling across the system. schedt has a global list of idle worker

threads waiting for work, a global runnable queue of goroutines, and another

global cache of goroutines on wait lists.

Lastly, the delicate dance between these structures (while executing or

waiting on a condition) comes down to the following properties:

1. M needs an associated P to execute Golang code.

2. M can be blocked or in a syscall without an associated P.

3. The scheduler state is distributed. In other words, there are per-P workqueues

and a global workqueue of G’s. The scheduler uses a randomized work-

stealing algorithm is used to ensure that there is a fairness between the

different workqueues.

4. When a goroutine becomes ready, an additional worker thread(M) is un-

parked if and only if there are no spinning worker threads and there is an

idle P.

Work Stealing Algorithm

The scheduler in Golang v1.8 uses a version of work stealing algorithm

known as the Randomized Work Stealing algorithm. It is called so because

this algorithm goes through per-context workqueues in a randomized fashion.

The enumeration of the different P’s are based on the following number theoretic

relation between pseudorandomness and prime numbers:

Theorem: If a and b are coprime and i is any integer, then (a + i) mod

b is a pseudorandom sequence for different values of i.

Randomized work-stealing helps to ensure fairness among the different

contexts in the runtime environment. This is shown to be provably efficient in

terms of time, space, and communcation for multithreaded computation.[14]
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The implementation of work stealing is in the function runqsteal() in

src/runtime/proc.go. Here, if one of the per-context workqueues becomes empty,

it steals half of the goroutines from the local runnable queue of another context.

If there is no context to steal from, the depleted context relies on the global

runnable queue to obtain a batch of runnable goroutines as implemented in the

function globrunqget() in proc.go.[13]

Corner Case of Work-stealing: If there is a runnable goroutine Gb
that is ready’ied by the presently running goroutine Ga, then Gb is stored in the

variable runnext of the context struct running Ga and Gb inherits the remaining

time in the timeslice, if any, that was remaining after the execution of Ga. The

authors of the Golang scheduler claim this reduces the scheduling latency for a

set of goroutines in the communicate-and-wait pattern.[13]

3.4 Golang and Realtime Programming

Realtime programming requires timeliness rather than raw performance.

In other words, a realtime system provides timing guarantees and also respects

priority of the tasks. Realtime systems also need to respect the static priorities

of the tasks which are periodically executing. When we consider Golang, there

are few characteristics which make it a worthy candidate for building a realtime

system as outlined below.

3.4.1 Viability of Realtime Programming Using Golang

• Userspace scheduling via the runtime uses goroutines which provide low-

latency in context switching. This means if we could map realtime user

functions to goroutines, we can enable low scheduling latency.

• The style of userspace scheduling in Golang uses a partially pre-emptive

scheduling. Specifically, there are predefined points called safe points.

This makes pre-emption very fast.

• Golang has mark-and-sweep garbage collector(GC). Usually, GC is known
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for stopping the user program in a stop the world operation leading to

missed deadlines. This can affect timing guarantees. In Golang, because

of a fixed number of pre-emption points by design, the GC stops the user

program during the mark phase for ≤ 2 milliseconds and Golang v1.9 aims

for sub-millisecond pause time.[6]

We highlight the above points in a study of scheduling latency as com-

pared to stock Linux Desktop and in the next chapter, we also characterize the

low latency of the garbage collector in the Golang runtime.

3.4.2 Study of Scheduler Latency

One of the key aspects in scheduling is the latency. At the limit of con-

currency, latency is manifested in context switches. At a high level, we can infer

that if the latency of a context switch is more than the duration of the process

(or goroutine), then the system cannot support so many goroutines. Finally,

Realtime systems require predictable latency to ensure correct and consistent

decisions regarding schedulability.

Characterization using perf tool in Linux

The stock Linux Desktop Ubuntu OS comes with the perf tool, which

can be used to study the hardware and software performance points by extract-

ing information from performance counters. It also provides software counters

for calculations such as throughput and latency. The benchmark includes a file

sched-pipe.c. sched-pipe is used to benchmark the pipe ipc(inter-process com-

munication) mechanism in the OS and provides a means to measure context

switching.The first thread writes to another thread via a pipe, which reads from

the pipe. The second thread does this back and we measure time in the original

thread. The time taken includes two context switches, and was measured to be

around 4µseconds per operation, as shown in Fig 3.7.
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Figure 3.7: Using the perf tool to measure the context switching time

Characterization the Golang runtime scheduler using channels

Since Golang uses userspace scheduling, it gives less time to context switch

between two goroutines. The corresponding ipc(inter-process communication)

mechanism in Golang can be simulated using the program shown in Listing 3.2.

The comparison of the data is shown in Table 3.4.

package main

import (

" fmt"

" t e s t i n g "

)

func main ( ) {

fmt . Pr in t ln ( " sync" , t e s t i n g . Benchmark (

BenchmarkChannelSync ) . S t r ing ( ) )

fmt . Pr in t ln ( " bu f f e r ed " , t e s t i n g . Benchmark (

BenchmarkChannelBuffered ) . S t r ing ( ) )

}

func BenchmarkChannelSync (b ∗ t e s t i n g .B) {

ch := make( chan int )

go func ( ) {

for i := 0 ; i < b .N; i++ {

ch <− i

}

c l o s e ( ch )
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}( )

for _ = range ch{

}

}

func BenchmarkChannelBuffered (b ∗ t e s t i n g .B) {

ch := make( chan int , 128)

go func ( ) {

for i := 0 ; i < b .N; i++ {

ch <− i

}

c l o s e ( ch )

} ( )

for _ = range ch{

}

}

Listing 3.2: Two goroutines communicating with one another for measuring context switching

time. [8]

Few observations follow from Table 3.4:

1. The context switching time via the kernel scheduler is approximately 8-10x

times worse compared to userspace scheduling.

2. As expected, the context switching time for unbuffered channels is lower

compared to buffered channels because unbuffered channels block goroutine

to be ready to send or receive whereas, buffered channels are non-blocking

and return immediately, exhibiting lesser switching time.
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Table 3.4: Context Switching Time (Scheduling Latency): Golang runtime Vs. Linux
Linux OS with pthreads 4090 nanoseconds
Go runtime with Buffered Channels 265-350 nanoseconds
Go runtime with Unbuffered Channels 735-800 nanoseconds

3.5 Realtime Golang

The runtime environment, which runs the work-stealing algorithm, is the

focal point where we integrate the realtime features into the system. This setup

is advantageous because:

1. The runtime layer, being higher up than the OS in abstraction, has

the advantage of being able to relay the timing information to the OS, while

offloading some of the tasks such as memory management(garbage collection)

from the OS.

2. The changes in the runtime does not require recompilation of the

OS every time we need to change a mechanism or a policy parameter. The

installation of the runtime environment is considerably simpler compared to a

fresh kernel, and the compilation takes under 30 seconds, as noted in Chapter 2.

The changes to the runtime environment are centered around adding the

realtime ability to a goroutine. To this end, we modify the goroutine struct to in-

clude deadline, worst-case execution, priority, and period. This modification also

requires changes while switching between goroutines, and in inter-process com-

munication using channels. Realtime Golang requires changes to the following

files in the runtime environment:

• runtime2.go

• proc.go

• select.go

In runtime2.go, the definitions for the different scheduler structures G,

M, and P are present. First, in a goroutine, we add four parameters - deadline,

worst-case execution time, priority, and period. These four parameters give the

goroutine the realtime characteristics. For simplicity, we have assumed deadline
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to be same as the period and have assumed all the realtime goroutines to have

the same priority. The observations without priority can be extended to priority-

enabled realtime scheduling as well. Furthermore, we also add two fields - isrt

bool, and scheduler_time int64, the former is used to indicate if the goroutine

under consideration is a realtime goroutine. Second, in the worker thread, we add

a field iscurgrt to indicate if the worker thread is presently executing a realtime

goroutine. Next, in P, we add special queues for processing realtime goroutines

and also a cache of realtime goroutine ids. Finally, in the schedt structure as

well, we add a global queue of runnable realtime goroutines.

proc.go contains the implementation of the work-stealing scheduler. The

scheduler’s job is to match up a goroutine (the code to execute), a worker thread

(where to execute it), and a context (the rights and resources to execute it).

When a worker stops executing user Golang code, for example by entering a

system call, it returns its context to the idle context pool. In order to resume

executing user Golang code, for example on return from a system call, it must

acquire a context from the idle pool. All G, M, and P objects are heap allocated,

but are never freed, so their memory remains type stable.[13]

Paths affecting timing performance

There are 3 possibilities for a goroutine to block. These have the maximum

impact on the timing performance of Golang.

System Calls such as file or disk I/O: When a goroutine(G) invokes a

system call, it does not need the context (P) and is waiting on the operating sys-

tem worker thread(M). So, the goroutine releases the context, and remains run-

ning on the worker thread. The state of the goroutine is changed to _Gsyscall.

In the runtime, there is a background thread (another M), called sysmon() that

checks for runnable goroutine and available contexts. It does this on a periodic

polling period of 20µs to 10ms. When sysmon() sees this criterion being met, it

wakes up a sleeping worker thread or starts a fresh worker thread and associates

the goroutine and context structure with this.

When the system call is finished, the goroutine needs the context structure
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back. So it reacquires the context structure. If a context is not available, the

goroutine is marked as runnable and added to the global workqueue(then the

work-stealing to kick in when a context looks in the global workqueue for work).

Unbuffered channel Operation Unbuffered channel operations are block-

ing. For a sender goroutine needs a receiver goroutine to receive the value through

the channel for it to finish and vice versa. When a goroutine is blocked on a

channel operation such as waiting for the send or receive to complete, the worker

thread looks for a runnable goroutine, since the blocked goroutine is not runnable

now. If the worker thread is not able to find a runnable goroutine, it releases

the context and goes back to sleep. If worker thread is able to find a runnable

goroutine, it runs the goroutine (as it already has a context).

When the channel operation finished, the original goroutine which was

blocked is now runnable. The channel checks for available contexts (since a

blocked goroutine lose its context structure). If there are available contexts, the

channel wakes up a worker thread to run the goroutine. If there are no contexts,

the runnable goroutine is again added to the global workqueue.

Garbage Collection Stop the World The GC stops the user program

when it is in its mark phase. During this (short) time, the GC stops all the

running goroutines and puts all the worker threads to sleep. When GC’s mark

termination phase is over, it waked up all the worker threads. The worker threads

find a runnable goroutine and if it manages to find one, acquires a context and

continues program execution.

Modification to Queues

In Golang realtime, we use a list to implement a heap data structure. The

min-heap is used to sort the pushed goroutine according to the deadline param-

eter when a fresh goroutine is added to the list or removed from the list. This

implementation draws inspiration from the timer infrastructure in Linux OS. In

the realtime heaps, we implement the earliest deadline first algorithm similar to

how timers are implemented in Linux. The heaps are arranged according to a

min-heap criterion based on the deadline of the realtime goroutine.



62

Change in runqget()

runqget() is a function used to get a goroutine from a local runnable

queue. In Realtime Golang, we check for any goroutines in the realtime heaps

prior to checking the local runnable queues. When a goroutine Gb succeeds Ga,

the inheritance of the remaining timeslice from Ga is carried out in an identical

fashion to the stock implementation of the scheduler.

Realtime Work-stealing

runqgrab and runqsteal are the central functions implementing the work-

stealing algorithm over the per-context workqueues. In fact, runqsteal uses run-

qgrab under the hood to grab half of the routines. The modified versions of

runqgrab and runqsteal uses the per-context realtime queues against the per-

context goroutine queues. Likewise, we also perform similar changes to globrun-

qputbatch, globrunqget, runqput, and runqslow.

Modules in Golang vs. Realtime Golang

Module Standard Golang Realtime Golang
Compiler Default gc Same as Standard

Golang
Runtime Scheduler Work-Stealing Sched-

uler
Work-Stealing Sched-
uler with Realtime
queues

Runtime Structures Default G, M, P, and
schedt

G, M, P, and schedt
with Realtime fields
added

Supports Realtime
Properties for User
Program

No Yes

Garbage Collector Concurrent Mark &
Sweep

Same as Standard
Golang

Issues while tracking goroutines

While programming user goroutines(G) with realtime parameters is just a

minor change to the runtime environment and the user program, we are presently
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facing issues with goroutine management in the runtime, partly because in addi-

tion to user goroutines, the runtime maintains additional goroutines(called g0)

associated with the each of the OS threads(M).

It looks like the goroutine for which we programmed the params is either

exiting or being blocked in a syscall or there is thread (M) migration happening

and while starting a new thread, work-stealing is triggered leading to us losing

state of the goroutines. This is currently under debug and for now, we are setting

the parameters manually in the runtime to overcome this issue.

3.6 Conclusion

This chapter outlines the userspace scheduler used in the Golang program-

ming language and the different tools used to benchmark the Golang runtime

scheduler. It also gives an overview of the changes in the runtime which can be

used to provide realtime guarantees.

An outline of the changes required for making Golang realtime are:

• In each goroutine, we add 4 realtime fields: Deadline, Worst-case Execution

Time, Period, and Priority. and a variable to track the time a goroutine

has been in running state in the scheduler.

• In each worker thread, we add a boolean field to indicate when the currently

executing goroutine on it is realtime.

• In each context structure, we add 3 separate queues to maintain realtime

goroutines: One is the queue of runnable goroutines, second queue of re-

altime goroutines on a waiting list, and a third queue of goroutines which

are dead.

• Add the realtime implementation of runqgrab and runqsteal, which deal

with realtime runqueues.

• For every submission of realtime goroutine to the list of goroutines in all-

gadd, we arrange the goroutines according to the deadline using heap sort
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algorithms. We do the same when a goroutine is removed from the list.

• For select timeout implementation, on the channel receive, we override the

timeout when there are realtime goroutines in the queue and the normal

goroutine queue is empty. Similar idea is used on the send side as well.

• Lastly, we have modified the goroutine submission and readying functions

to include realtime queue as well.

• Finally, we have a function that the user program uses to set realtime

parameters into the runtime. This requires changing the user program to

call this function.

Finally, we note that the development is still a work in progress, and we

can use the runtime scheduler changes as a starting point to develop Golang as

a realtime programming language.
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Chapter 4

The Golang Garbage Collector (GC)

Garbage collection is widely touted as the bane of realtime computing.

This chapter explains the garbage collector (GC) used in the Golang runtime

environment, and studies the timing performance of the GC used in Golang v1.8

to benchmark its viability for realtime programming.

The key idea in realtime garbage collection is to trade throughput for

latency. In such a case, the original program may be allowed to run slower, but

only to a negligible extent, at the expense of providing a timing guarantee.

4.1 Overview of Garbage Collection

Garbage collection is the way of optimizing the amount of memory the

program uses. In particular, garbage collection is the process of removing the

objects that the program does not need at the moment.

In general, when any program is compiled and run, it is loaded onto

the primary memory (also called RAM). In the RAM, the memory footprint of

the program can be split into several regions, each of which serve a particular

purpose. Typically, a program’s memory usage can be split into the following

regions: code segment, data segment, heap, and the stack. The code segment

contains the compiled machine-code of the program. The code segment is typi-

cally read-only. The data segment contains the data used by the program, and

can be modified. The data segment may be thought of as consisting of two

67
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sub-segments: the BSS, which contains uninitialized objects declared outside

functions as well as uninitialized static local variables; and the ESS, which con-

tains the initialized objects in a program. The heap is used by the runtime for

dynamic memory management, which is typically used by the Golang runtime

layer to allocate and deallocate space transparently. The stack, like with other

languages, contains local variables and function arguments. Similar to the heap,

the stack changes in size over the course of execution of the program.

4.2 Garbage Collection Internals

Golang’s GC is based on the tricolor algorithm by Dijsktra circa 1978.[1]

The GC is concurrent and performs according to the mark-sweep algorithm.

Dijkstra called the running program a mutator, since the program changed the

state of the memory for the GC.

The GC views a heap as a connected graph of objects. The objects are

either white, grey or black - the three colors of the tri-color algorithm as described

in the table below:

Color Definition Garbage Collected?
White Set of objects that are going to

be garbage collected
Yes

Black Objects which are i) reachable
from the root, and ii) having no
outgoing references to any white
object

No

Grey Objects which are i) reachable
from the root, and ii) yet to be
scanned to check for references to
white objects

No

At the start of a garbage collection cycle, all of the objects are marked

white. Then, the GC scans for accessible items, such as globals and local vari-

ables, and marks them grey. If the GC finds a new reachable white object during

the second scan, it turns the white object into grey. Finally, the GC chooses a

grey object, blackens it, and then scans it for pointers to other objects. [9] This
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is done till the there are no more grey objects. At this point, unreachable white

objects and their corresponding memory may be reused for other purposes.

The GC and the running program maintain the invariant that black ob-

jects in the heap never hold a reference to white objects. Furthermore, the state

of the color of an object changes from white to grey and grey to black. This rule

is ensured by the runtime by using a write barrier, which makes sure that any

changes made by the mutator is ‘seen’ by the GC.

4.3 Memory Allocation in Golang runtime

Golang’s garbage collection was originally based on the TCMalloc tool.[8]

TCMalloc was so called because it assigned each thread a thread-local cache,

and small allocations, less than 32 kilobytes, were made from these thread-local

caches as needed. TCMalloc is a refinement of glibc’s malloc, which was also

called ptmalloc2. Large allocations, on the other hand, were directly taken from

the central heap using a page-level allocator, a page being 4K-aligned region of

memory. Periodically, garbage collections were used to migrate memory back

from a thread-local cache into the central data structures.

4.3.1 Advantages of TCMalloc over standard malloc

Golang was designed for speed and concurrency, and thus, the designers

of Golang were not content with the speed of standard malloc.

• Speed: glibc’s malloc took 300 nanoseconds to execute a malloc/free on

a 2.8GHz processor, whereas the TCMalloc took a meagre 50 nanoseconds

for the same set of operations.[8]

• Memory Usage: TCMalloc also reduces lock contention for multi-threaded

programs. For small objects, there is virtually zero contention. For large

objects, TCMalloc tries to use fine grained and efficient spinlocks. ptmal-

loc2 also reduces lock contention by using per-thread arenas, but there is

a big problem with ptmalloc2’s use of per-thread arenas. In ptmalloc2,
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memory can never move from one arena to another. This can lead to huge

amounts of wasted space.

In Golang, memory allocation has diverged quite a bit from TCMalloc,

but the notion is kept essentially the same. Memory allocation works in runs of

pages, each page being 8kB in size, and allocations can be done in multiples of

page sizes as well. Small allocation sizes, up to and including 32kB, are rounded

to one of about 70 size classes, each of which has its own free set of objects of

exactly that size. Any free page of memory can be split up into a set of objects

of one size class, which is then managed using a free bitmap.[3]

4.3.2 Data Structures Terminlogy in Memory Allocation

The allocator uses the data structures, which are defined as follows:

• fixalloc is a free-list allocator for fixed-size off-heap objects, used to manage

storage used by the allocator.

• mheap is the malloc heap which is managed at page granularity.

• mspan is a run of pages managed by the mheap.

• mcentral collects all spans of a given size class.

• mstats maintains the allocation statistics of the memory.

• macache the cache of worker threads maintained by each context structure.

4.4 Analyzing the Garbage Collection in Golang

We study the timing characteristics of Garbage Collection in Golang to

understand the implication of having garbage collection in a realtime setting.

We do this by considering two benchmarks - one is a large binary tree traversal,

and another is a package parser for Golang. In the first case, we see the GC

pause time is well-within the realtime realm whereas in the second case, the GC

pause time shows much higher variance.
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4.4.1 Binary Tree Benchmark

The benchmark consists of generating a balanced binary tree of depth 16,

and traverse them starting from a depth of 4, going all the way till the maximum

depth of 16.[7] At each element, the value of a tree is calculated. The value of a

tree is defined as the algebraic recursive sum of (value of root + value of left child

- value of right child). Clearly, in this case, the tree can be garbage collected

at lower depths before going onto the deeper sections of the tree. The value

of a tree at a higher depth does not require the lower depths and those can be

garbage collected. Naturally, the collector will be triggered to satisfy allocation

requests. The go tool trace output of this tree generator is shown in Fig 4.1.

We see that for the vast majority of time, the main goroutine is running

on Proc0, whereas when the GC is triggered, the Proc0 switches to running the

garbage collector goroutine. The GC cycle lasts for slightly over 2 milliseconds,

which is acceptable to most of the realtime applications.

4.4.2 Golang Package Parser

Another example of garbage collection is parsing the list of Golang pack-

ages repeatedly.[3] This is a more generalized version of the first benchmark. In

the loop parsing a directory, non-overlapping directories can be garbage collected

and the unused objects would be discovered at the end of the mark phase. The

trace output for this is shown in Fig 4.2.

As expected, the garbage collection time here varies, since the size of

garbage at each point varies. For instance, while collecting garbage from directo-

ries containing more number of files, it is expected to take more time compared

to collecting garbage from directories containing fewer files. The garbage collec-

tion pause times in this case range from 5 milliseconds to 130 milliseconds with

a standard deviation of approximately 35 milliseconds. This is a higher number

than what we were hypothesizing but gives us a measure of the latency we can

expect to see in such a usecase.
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4.5 Conclusion

In this chapter, we went through the garbage collection mechanism used

in Golang and studied the timing characteristics of the runtime garbage collector

to correlate it to timing information in Chapter 3. We see that from the timing

analysis of the garbage collector that it is inconclusive for it to be used directly

in a realtime scenario.
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Chapter 5

Conclusion

This thesis provides an outline of the strategy to formulate Golang as

a realtime programming language by studying the timing characteristics of the

scheduler and garbage collector. We analyzed the different paths of the sched-

uler which are critical to timing and propose a software patch on the runtime

scheduler. This approach is aimed at saving the user from the task of migrating

to a realtime operating system to run realtime tasks.

We used this patched runtime scheduler along with the concurrent garbage

collector of Golang v1.8 to benchmark garbage collection times.
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