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A Proof of the Asymptotic Radiance l-bpothesis*
Rudolph W. Prelsendorfer
Scripps Institution of Oceanography, University of California
La Jolla, California '
I. Introduction. The asymptotic radiance hypothesis was first for-
mulated in the field of experimental radiative transfer dealing with
the penetration of natural light into the oceans and deep lakes., It
may be stated as follows: The form of the angular distribution of

Llight (radiance, specific intensity) about a point in an optical

medium approaches, with increasing depth, a characteristic form which

is independent of the external lighting conditions at the upper boun-

dary of the medium and which depends only on the inherent optical

properties of the medium. Some relatively recent references to the hypo- -
thesis may be found in the experimental papers of Whitney [1] , [2],
and Lenoble [3] o Some recent theoretical discussions for particular

' . cases may be found in Lenoble [h] , and Poole [5] o Subsequently,

the mathematical problem underlying the hypothesis took on meaning

in a wider set of contexts such as astrophysical optics and neutron
ltransport theory. The statement of the hypothesis for these contexts
is essentially the @e. o

# Contribution from the Scripps Institution of Oceesnography, New ' - ,

Series No, o This paper represents research which has

been supported by the Bureau of Ships, U. 8. Navy,
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In thi§ x"lottla‘a proof of the hypothesis is giyen for a rather

wide clasé of inhomogeneous spaces known as gventually separable spaces,

a term which is defined in detail below, The discussion is designed

so that the main resuits are also aiaplicable to the astrophysical and

noutron contexts. The approach used is direct in the sense that it is

based on a study of the equation of transfer itself rather than first

solving the equation for ‘particular cases and then inspecting the

properties of the resulting soluticns. Furthermore, the quantitics

introduced in the study are for the most part directly observable quan-

tities, a feature which reflects the experimental origins of the pro-

‘ blem and which keeps sight of possible practical applications of the

asymptotic radiance ﬁypothesis. In this way the discussion complements

a different approach to the problem, namely the formal-solution

approach initiated by Chandrasekhar [6] and extended by Ku¥¥er

[7] in the radiative transfer context, and also considered, for

" axample s by Davison | [8] in the neutron transport context. In par-

”ticular, the present discussion shows in terms of directly observable

quantities that when an asymptotic radiance distribution exdists in

a medium, it is ropresented by a formal-solution distribution and is

approached in a continuous way by the natural distributions in the

medium, Two illustrations of this fact are given. One is based on

tables compiled from theoretical calculations made.in the neutron

. transport context, the other is drawn from an e&cppi-ment which docu-

mented the light field in a hatural'tvdrbsola : |
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The practical consequences of the asymptotic radiance theorem
are many. They take on especial utility in the field of geophysical
optics, While an exhaustive discussion of these consequences is out
of place here, we should obscrve that the classical two-flow equationg .
of the light field [9] ’ [10] » are accurate and become exact
with increasing depth whenever the hypothesis holds. This results in,
an enormous simplification of the standard experimental procedurcs
dealing with the determination of the optical properties of natural
hydrosols, Finally, the present method allows a means of estimating,

with repect to a given preassigned criterion, the optical depth at

- which the asymptotic distribution has been attained.

2, Preliminary Definitions. We begin with the general ecquation of
transfer for tho radiance (specific intensity) function N.on a general
space -X.x = . .88 used in geophysical optics [11]

n‘(,

T p[na.g, n/n'csu] /Dt = — o NG, SE) Ny (2, §,4) +N,< 58

(1) ' :

’ // l ’ \
and reccast it into a fornm which will be most suitable for the present '
discussion, and which will insure the widest domain of applicability

of the present results to related fields such as astrophysical optics |

and neutron transport theory. Here,

Nyt 5,0 = [ ouzis; 53 N L) dOE)
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defines the path function N, . @ is the volume scattering function,
and = is the unit sphere of direction vectors: £ . N, is the
emission function, ot the volume attenuation function, N is the
index of refraction function, ¥ tho speed of light function, DL-1/Dt
the Lagrangian derivative éperator on X*x= , 4 denotes time, and

), is the solid angle measure on = .,

The present problem is meaningful only in the steady state case,
and is most immediately concerned with emission-free arbitrarily styati-
fied plane-parallel media with constant index of refraction, Adopt-
ing these conditions and applying them to (1); the resgltant. simple

form is obtained:

dwiz, o4 (@

=50 S = - ol(2)NIZ,0,#) + Ny (2,6,4) ,
2

where 1 is the unit outward normal to the plane-parallel medium
= ; where Z 1is a copy of the non negative real._nﬁmbera.
Furthermore, © = atccos (§°n) s 80 that $e= =  maybe
represented as usual by a"pair of Sdg;éa (8, ) e =, |
Finally, we adopt the pararheters ; '

M=5r,
and

S
Ter = S‘acz’)dz’ ,
(-]
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L3

and observe that the phase function 40 as used in astrophysics 1s

f

related to ¢ by
, . p= 4 0"'/6(.

With these notations, (2) takes the fom

M LISV TIL NCT p, €)= Ng(Tp, ) )
dr T
where

NgCo/é) = Z'is AT p 8 )N(T B dp'dd’

defines the equilibrium radiance function Ng « Thus (1) reduces,
under the above assumptions —- which will be considered in force in
the sequel -- to the standard form for the ecquation of transfer in

~

plane-parallel media,

The discussion will require consideration of the scattering-order

decomposition of (3):

/

/ | (4)

. dNicr 'd): R . .
where
)
(& -
(5)

o _
Nz('rl/';¢) = 4_‘[5

[

pcr;ﬂ,s‘;ﬂ:wlv_"ﬁ'(/wsw) dptdg’,
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and where N" and N{ are positive valued functions on ZEx =
which refer to radiant flux which has been scattered precisely
times, so that -

. ’ m

Netp8) = - Nitop,¢é) . (6)

J<o

As outlined in the introduction, the present discussion employs,
whenever possible, directly observable quantities. From the point of

view of the exper‘.imenter, the depth dependence of the radiance distr:l.-

" bution N(r «, %) on = y T=O » is most conveniently

studied by means of the associated functions K(z,- ,¢) on =

defined by

- dN(mu #) | .
K (r,p,8) N('l’._,)l, T | )]

The present discussion will also: require consideration of the function

KgTs® ) ) on = , T= O, defined by

, — e et m—a—— - .ﬂ' 0
Kgtep ¢)"- NgComb) *iwd.r c

(8)
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Simllarly, we define

=L dNius)
b

Kicc o) = —
W N3t p, ) dr

(9)

1‘50)',-.., r’o’

and '

; -1 d N;j r,p, #) ‘
K% (T,}ll ﬁ) = N{C?:)‘:d’)' dt - ‘ (10)

jst,a,..._, T>O0,

Finally, | corresponding to

n . ,
Ngeome) = Z Nficnpe), (11)
. qal ' '
we define
N ‘. N n . . .
K (t",)l,ﬂ = __“__‘\______ »d__fon:(r,/.«,é) - % N{a;,:,ﬂ K;(',}'ﬁ) (12)
. 1 N(i"(.r)/’,é) ' dt . . . 4. ‘ . Lo
- E Nl
= : L
where, of coufrse,
o NT (T8 = N5/ 6) . (13)

The equations which govern the behavior of the K -functions play

\

a central role in what follows, The equations have the cutward appearance
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of Riccati differential equations, and it will actually be possible to
use to advantage some of the well-known propertios of such difforen-

tial equations,
It is easy to verify the following formula with the help of (3)

and the definitions of K and K, :

dK.(T,)mH
qtr N

= [kemp - iqmae][kape) + T, W
. |

Furthemmore, from (4) and the definition of K7 and Kg

“‘. LA g N . .
dK ;Tn}‘ld’) o [k‘(ﬂ/’)*’ - K;(T,)‘,#)][chr‘}),ﬂ -+ 'i')"] , 'J'- I,Z,...l t>o(.15) .
r ]

We now can give the motivation for the adoption of the K ~functions

in the present approach to the asymptotic radiance problem, Suppose" I

there is some depth To in the medium.below which the functions
Kty 3 +), T=1 *  are constant functions on = , and
whose values are equal to a fixed number /&a, . Then we'méy write,

forall T=T, s

' Te ‘ ' T e
- ¢ ’ ] 4 .
NCT 0 #) = Nioyp,d) exp {‘Somr'./"ﬂdt-' - ‘(nkc.t’_,‘mdr } .
‘:/ 4 ’ ' ‘ .

= N(n,ﬂ.f)‘f‘exp{-“‘.m"?e}

'
.
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Thus if we set ' : )

%(}‘,.{,) = N(To,u,d) exp { Toﬁb}

we have the following equivalent way of representing the distributions:

NCTp,#) = gin#) exp {~TRal. (26)

Relation (16) is the starting point of the formal procedures which

'lead to the determination of a specific radiance distribution g on = .

.From the point of view of the present approach, however, (16) is an

incidental end rather than a means. That is, we will be concerned with

the determinaticn of a class of spaces in which the radiance distri-
© butions tend continuously to a2 structure of the kind surmarized in

(16), and thus as a matter of course, determine a class of spaces in’

which such a formal procedure for the asymptotic radiance distribu-

tion is meaningful,

The preceding heuristic argument leading to (16) supplies the
motivation for the foi}owing definition, of an asymptotic radiance
distribuﬁion: An asymptotic radiance -distribution is said to exst
1f (1) Ko (po#) = Im o KT, M,¥) exists for ecach (y,#)e¢ = and

(i) Ka(+, ) is a constant function on = .

It is quite possible for condition (i) of the preceding defi-
nition to hold, while condition (ii) does not hold. This state of

f

-



affairs is encountered, for example, in spaces in which Wet) >
A@)fxT)=0for all T= 0(4tT)=foce;uid'smé)dp'df’) 4e,, in
purely abgorbing media, However, such spaces are clearly trivial

from the present point of viéw.

\

3. Formulation of the Problem., In order to keep the usual operaticns

on .o meaningful, we will assume, as a matter of course, that o is
piecewise continuously differentiablc with respect to € , and that g
is continuous on = x = for each T=O o Fbrthemox"e, we
will require that the boundary radiance function N©9(Q,*, °)

on = be a non negative vaiued , non trivial integrable func-
tion with reébect to the measure L), . Here =_ ={§ : J0= O} =
=f(p,#): —1spso) Inaddition, we define =, as tho complement

of = _ with respect to = .

A separable medium is one in which the phase function is inde-

pendent of position. The term ¥separable! is used to suggest the
4mu1tiplicative uncoupling of position and directional dependence that

T undergoes in such spaces: O(X; E;§')= 4" X)) alf; k' ). o
: Separable media form a class of harnlessly inhomogeneous spaces.
From the point of view of the equatlon ‘of transfer (3), such spaces -
are homogeneous., The present discussion can be carried out in a

rather wide class of non-separable spaces which we will call

eventually separable¢ - We will say that a semi-infinite stratified

plane panallél medium is eventually separable if, (i) the phase func-

tion £ on Z X = X has the form g (t; hé;p\¢) = palpb;p.d) +
+ g b ple)
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such that @, is independent of T and not idemtically zcro on
X = , and (ii) 95-—-70 (the zero function) uniformly on

M

XE-_: » aa T-)w )

M

We can now state the main result:

An asymptotic radiancc distribution exists in every plano-parallel
medium if and only if the medium is eventually separable, This state-

ment is understood to hold in media whose equation of transfer is

given by (3), and whose boundary conditions are given as above, All

I of the effort below will be devoted to proving the sﬁfﬁciency of the
eventually separable condition. Simple counterexamples show that if

a space is nof eventually separable, the asymptotic radiance distribution:

necossarily does not exist.,

We close this preliminary discussion by making some obscrvations C
on the K-functions which will be required below, First we observe
that from (3), if /ll==o ; then N(€,0,@) = Nz(r,o,é) . Hence, for

all T>0, K(T,0,$)= Kq(T,0,8) .. Secondly, for
cach T>0, NCT,¢,»)  is bounded away from gero, is continuous '
on the conpact set = , and hence is uniformly continuous

on = and = _ . A similar observation holds for N.: (v, °, -)’
=12, .. . It follows that Kg(T,*;*) and K{(t,- ,0)
aro uniformly cor}tinuous on' = and = _. forall T =>o !
“and § =1, 2, oo . . Finally, from (3) and (4) and the definitions

of K. and"Kj'é .

KT o 8) + -:—;<o , - an
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\<‘cn/‘.-¢) + T'f <O, 4§=00..., . (18)

for all  (p.¢) € =_ and all T>O ., Properties (17)
and (18) are particularly useful in conjunction with (14) and (15).
For example if K(T,/‘)ﬁ) § Kt('r;/‘»ﬂ,then by (14) and (17) it
follows that dK(r, 1#)/dt Z O , showing that in general K always
tends toward the equilibrium function K1 . This i% a barticularly
useful fact in practice, Whether or not K-> K'l as T—> o |
depends on the relative sizes of Kt(ﬂ,¢)=’ lm oy KT AS), Tt follows’
directly from the properties of the Riccati equation [12] , that |
K— mm{KZ(}’;ﬂ ’ “f,‘} assuming of course that Kzl}hﬂ exists, A

similar set of remarks holds for (15) and (18).

4o The Functions P, Q, and.R, In order to insure that the main sequence

of arguments is uninterrupted by the development of certain required
auxiliary relations, theee amxiliary relations. are gathered here for
ready reference, : . N
| ‘ //’.
The first relation peeded below gives the connection between the
downwelling § -scattered flux at level T >0 and the upwelling .
scattered flux at level T K

N,'*'(T)}l' ¢) - _’1’_ j P('t.’/“'¢;/":¢')N"(T,}l':él)df"dd' (19)
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for all (p.#) & =, , and where
| A ® . ' / J ’
P psiuté) = 1= L«P“'S/’ﬂ‘i/’.’,#') exp{-(TLt)[.;,L-p.]}dt ,(20.),

If the space were separable, i.e., 42 were independent of T (or, in

the present case, =0 ) then (20) reduces to . : ,

Yl
M- p

PQ(/’I#;/,,él) = :4%1' 'ﬂo(/’r‘,’ :¢,) ) ‘ (a)
where.C}t.f)e =4, Wé)e =_ . | . , o

We observe that for eventually separable spaces,

CdPCE byl ) | |
him dPCimbsmsdt o (22)
T >00 d.c
uniformly on =, x ‘_—-‘__ » and that

|lm.t.,m PG sme;p,d') = P Cot,# 5 #14)

uniformly on =, x =_ and finally, that:

, , _L_ P(r;y,d»;/l:#)N;(t,/zd') K‘C?,/ojd’)dp'd#’ '
o | , , ‘ - . |
hmt»o K™ o0 ﬁ)‘ = h'm't\bw - _ - : .
| . o - Paypti e Nenpi e dyrdpe

T \ (@)

~———————

for (/’;#) L E+ a
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A similar expression holds for K{“(r,/. #) s which follows from

\

(5) and (10):

S A Gipss L  NiCT i) KT pi 80 dprd!

'S
'lmt’w KI (?l}’lé) o= l""t-no ’ (2“)

S__ LT85 408 NocTpld) dpdg’

. The next relation required below makes use of the forms of the
‘principles of invariance ir_x generally non-separable media, in'particular,

:

use will be made of:

.
-
— -

Nl = [ Reuwsugiule’) NCEuLE) dudg! - (25)

where (/.1‘) Tt =, and R(V@; +» ;5 .) on =X =
is thé diffuse reflectance function associated with the subset of Er=
"below level T =0 ’ [ 13] « If the medium were separable, then

for all pairs (%, T:) of depths,
RCTy, @ 50,9 jp'8') = RCTr, @304 5 4,¢) .
In the present case it is easy to verify ( [13] , equation I') that .

| dRCT, @ p,8;5p, ')
'mT4w dr

uniformly on =, X —=. - , and that

— = -
Imcoa R(T®;5 0,850 6) = Re (Pt s p087)

uniformly on =, X =_ , where R, on = ¢ X = _ is defined

~ by the phase function - S
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Finally, the integral operator

§_ @meind; pe) [ T dpds’ ()
will be used., This operator maps the function N(T, ¢ ,-) on =_
into the function N‘l (t,*,*) on = _ . The kernel O is the form:

: ) 4 .4 ’ dp’
QUr,o;5 p ¢ 0, 8') = Lz p450,47) + g__:*'ﬂ"r’ﬂoﬁ/‘}'fﬁ")R('C-""i/"/' i/"“ﬁd"'-

* _ ‘ .
The operator (26) is a positive operator . From the definition of Q,

/

it follows ( [13] , equation I') that

" dqQ (ryw; p,6; p14') o
de

hm T+w

and that
Qu(pibipld) =

lim g, @T10; ;004 = 4:.,(/)4 ;/:é')+jg.pc;f¢ M IRACH S 104 H7) %’d&’
. -t .

—

both uniformly on = _ x = .

- "5, The limit of Kq (*,M¢) . We now begin the main steps

of the proof, The object of this section is to show that the function

© Kgleypd) on Z defined by .

Ky (pd) = lime g, |<z(z-,/:,¢)

exists and is continuous almost everywhere on. == . The discussion

begins with some observations on the functions K3 ’ K; ) K « In

4
particular, we observe that for (p,$)&€ = and every T = O

(n)

9

¥ For the present discussion, an operator T is said to be positive if
Tf=o0 (the zero function) implies F is the zero function, where
is a non negative valued function on =_. , and the vanishing of # is
taken in the sense of Lebesgue (cf., e.go, [14] , po 25)0 -
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K% (’f.}‘u¢) =

{j;pcr.p. SRLEINC (TP ) "—"’— de’ + 53_4’_01/"4*:/54') N pié') de'}.

S_ pleiptipiéy Noce, pi o) dp'dd!
- o : (27)

where »fl/denotes the derivative of 2 with respect to T . The function
N (T, - )" ) on = _. is related to the boundary radiance distri-

\

bution by
N°CT, 2, 8) = NO(O M P) e
Hence each intégrand in (27) is integrable on = - , so that
[} . . Lt
KI (T;/_‘:'f", exists and is well defined for every =<w=o0 and I
(pé4)e = . Furthermore each integrand in (27) satisfies the hypothesis

of Lebesgue's bounded convergence theorem, so that by (24)

K3 () = hmt_,_mK opd) - ,(28)'

/

exists for every (/1,4:) € = and in fact K{l( ‘" ) " is

continuous and therefore bounded on = . The values of 'K: (°,°)

!

are readily determinablé for specific choices of N°(0,+,¢) . For
example, if we adopt ‘the standard discrete boundary radiance distri-

bution defined by -

N°(O,p,4) = N° S(u=ple) S(b-4) , ~Is po <0,
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then

KL p#y= -0y (ud) e =, (29) -

Slightly more generally, if -

N°Co, p, $) = Z NC(p) SCu-p:) S($-4) | -l</t,<o

=0

and if
/ua' = min {/,J"‘.‘ 1’-0,(,.‘-._,lﬂs.
then
Kl dl= =& 5 (ué)e = :
g utl=s T, 0 Uhele =, (30)
Other simple examples of N°(0,+,-) may be given, such as v

step-function representations, various simple continuous functions on

but (29) and (30) will suffice/to illustrate the general pro-

cedure. In particular they help to 1llustrate the use of (15) which
is required in the next step of the proof and which runs as follows'

' By means of (15) and (28), we see that for each (pu, ¢ € = _.such that

'(31)

<|-

Ki(/‘o*) > -



' —_ i
on = _ . Observe also that K‘Z (=, =) - does not generally
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we have
||n'|t._’m Ki():.¢) = "-};
Since K?'i(',") © is bounded, the subset of WV's for which
(31) holds is a relatively open Subsetlof [o, 1] eicluding 04 ‘
Finally, fram (15) ‘and (28), for each (p, &) € E__ such that

1 ~
Ke (el = T

we have

mesem Kifpe) = K (pme),

Hence the function “Ki (+,°) on = defined by

Kq;i ()"é) = "mT—-w Ki(.t))" ¢)
exists for all (¥, $) € =_ and is continuous on = _ . A

particular illustration of a I(,,i (-,-) is given by means of (29),

The main observation to make at this point is the following: in
addition to being bounded on =". , the function Ké’ ( ," ) has the
property that ' '

;-

l<f¢/*»<°\$“—-'p S '.(32)

/

!

1
have this property. The discussion of Ko (e ) ) is completed by
showing that it exists and is'continuous.on = - This is done oo

by applying the prechifzg aréuments to (23). As an example; one may
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. * |
consider (29) once again, which yields KQ}(/,¢)= "D for all

( /.M E =,
We now consider the general inductive step, that is, assume that
100 .Y, — e ;- \
Ko €* ),j?l is continuous on =  and in particular, K (#¢) S e

for every ()1,4’) € =_ ., Then by means of (2,) and the previously cited

convergence arguments, we find that.

K:;H (}1.99) = '.mr_’a K{" (1",/’,’4-) . _(3‘&)
exists for every (/1,4’) E = . | » and K{"(;', ) is continuous '
on = _ ; and in particular*, '

. l P - . "

KNk s -5, () e =_ o (3%)

Furthermore, by (15), - - ' o

/

K:H ();,36) = larm_r___’w K'I;Hltt;}‘.#’)": K.‘;“ (/-‘{ 4’")

i

(36)

# Implicit usc has boen made of the fact that if Fex) =[ Atnacx) + B beul/
/[A¢§)+ B(x)7] , and if we have a(x) — a(x.)=< Qo along

with B¢x) = O(R(J)) ag X+ Xo , then F(X) — a(x.) =0 a8 X-»Xo.




. Z, such that for every (/},4:) € =
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on X _ . Finally, from (23) Ko e ) exists and is can-
tinuous on = and moreover,
3+

o (f19) < “-"3 y (pmé) € E.'c

\

Since the induction hypothesis is true for j':.-l s the conclusions

(34) = (37) then hold for all integers { = 1, 2, «v. . It follows

. from (12) and the preceding results that

exists and is continuous on = ,

(37)

‘Now consider the function 3""( *,Jb$) on Z defined for every

— 9

(M

)/’¢)=13 ’

masa %

(39)

C}’ Pre= W <
- - -N(i,(ts/"d’) '
m ©oa N=s |,2,¢00
G (o) = Ng (T #) ? '
//“ '
Clearly { 3,;",(0) },,4.); " is an increasing sequence of functions on’



¢
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the unit function on &, From this and the definitions of Kim
and K‘l » we conclude, first of all, that the sequence { Kfm( ., ﬂ,#)}

of functions converge in ‘the mean to K%( 3 M #) . onZ . This in

turn implies that the convergence to Ky (- M $) ‘  is almost
uniform on Z for some subsequence { l({""’ (1 /) 4) j . Hence
for every €>0 | ’

(")

,lmn"_>m 'lmr_’w K{"N) ( T,/‘)¢) = hmr*m ,'mng-)wKz ('C"}l, +)
= llm-r_‘w k(r,)c,¢) o .
on Z'=Z-2, 5 where fz dt'< g . Tt follows that '
\ , , , v

the function KK, (+,+) on = , defined by

[
the) |, - |
K? ()‘;4’] = lm’\-c_,m K? (Q/"i#) = ‘Imn“’w KZ(" (P) ¢) < ‘F (l&o)_

, exists on = , Finally, from (2), (15), (23), and (12), (in that
order) we establish the fact that' {Kt‘"’(. ’.)} is a sequence of '

continuous functions whose essential suprema form a non increasing

sequence of real numbers. It follows'/that { M{MC,‘ ,-)i . converges'
uniformly a.e, on = to Kz ('}“) , and that l<z'(',')- is E
continuous on = - =, .. ‘where - = o . is a subset of =

1

such that (L (=) = 0.

i
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6. The limit of K(*, #:¢) . The proof is now concluded by showing

that K-, 0, ¢) satisfies the definition of asymptoticity. By
(14) and the result sunn‘n::i«r'lzed in (40), we have '

Km(}‘o‘b) = \"MT-)w .KCT,}h#) = KZ(/,#) . (l#l)

for all (p,¢) €= . Let (., $,)  be determined by

the condition

.';K;f(/.,'«#.)’— inf {K., (me) A: () € E'-j"

then set
. (T ¢)
3 ('r ,/" 4;) - _N.__——z'_,__.— ,
. N er/”) 4’0)
and observe that 3 ton = _ defined by

Jipb).= limese JCTHA¢E)
'is at least bounded and measﬁrable ( hence‘integrable) on = - o

Then, by means of the operator defined in (26), we have

- L Quntip 41 g 80 ko (s ) dprd )
| _Qalpeipl e gt #) dptdg’

il

Y —
=
© -

for all (p,4) € . . In particular, (41) holds for (u,,d) e = ,

!

\
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Using (41), (42) may be rewritten as:

g Q“("’bli}“') ¢‘] 3 (/j‘l) ¢') [ Kw (}"lél) ~'<cl’ (/‘l)¢n)] dp'dél‘

This operator, as that in'(26), being a positive operator, requires that

the non negative valued function

Kal*,") = Ko (1, ¢)

on = be the gero function, i,e.,

Ko (/’,‘*l = Ko (fl',)‘+l) E/&w

for all (/J,ft’) & =_ « An application of (25) to the definitions

of KcT,p,é) ~ and Ko (m4) s yields the result that
Ka ()’14’) 4&&
on =, s so that K, (-,-). isa constant function on | = .« .

This concludes the proof, We observe finally, that, by means of the

gefinition of N‘l and (8),
Kyhd) = Ka(pb) = B .

on = °
t

7. Notes, (i) The physical significance of ,Q,, is readily e
determined, We observe that the scalar irradia_nce mnction hon Z -

defined by
h(rl ==j N(T H, ] dpdqb

'has, in analogy to N s 8 K-ﬁmctlon defined as:

=1 dho
,Qct)= ho dt !
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which is represented in terms of K(x,.,.) " by the formula:

S_r N(T,/h&) K(‘ﬁ/’)#’) dpd¢
/&(t) - — *

{_ N ¢y dpdé

From this and the preceding results, we see that:

B L__ G p,¢) K(p,4) dpdé
'lmt_.w /&'L’c) = — - — = ’ﬁeo .
f? g ¢\ dudé¢

24

Hence }., is the 1imit,as- Tww , of ,Q(-) , the K -function for scalar

irradiance, The function h is related to the radiant energy density

function ® by h =vu# .P(ii) The equation of transfer (3) may be

written in terms of K(T,*,°)  as follows:
. NqCT @)
th)/‘l +) = |+ /4"((?|/"|+)

7.

which is the canonical form of the equation of transfer for the slab

geometry, The limit of the canonical form as T-»e is, by the

 preceding results,

3(}’“‘) =

F .(—__: Lol p,¢) g (u'ie’) dpide!

|+ M B

9

which is the general form used in thc formal-solution procedures dis-

cussed in the introduction. The real number ,&p now takes on the

additional significance of being an eigenvalué of a non-linear eigenvalne

problem associated with the above integral equation'for? on = 4.

For the kind of boundary conditions adopted in the present paper -

which as we have noted before, stem from the geophysical origins of

’
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the asymptotic radiance problem -~ the resultant values of j.,

are non negative, and in fact, 0= B,< | (cf. (17) and the def, of? )e
(iii)- Figure 1 shows the depth dependence of K(+,#, ¢) for several
directions (}),d’) E = "+ The associated medium is an hypothetical

. separable half-space, irradiated by normally incident collimated neu-

tron flux, in which scattering is isotropic and &@o= 0.9. Thesc plots

arc based on theoretical computations of N(T,nm,¢) (fqr neutron

flux) compiled in [15] « The plots show clearly that asymptoticity

has been essentially attained at T=1|0,for at this depth the function -

—r

K(0,*,+) is essentially constant on = ,

Figure 2 shows the depth dependence of K (-, ¢ %)  for several
directions (p,4)€ = . The associated medium is a natural hydrosol,
namely Lake Pend Oreille,Idaho, which at the time of measurcment of K
N(T,/),v}’) (for photon flux)’was irradiated by light from a clear sunny
sky (angle of sun from zenith was about hOc,)- hence the associated
,Ll°=-0.77); scattering was found to be highly anisotromic and &o ()
approached with increasi}lg T a constant value of about 047, indi- |
cating the medium was eventually separable, Thése plots are based on
experimental determinations of N(T.}‘nf) by J. E. Tyler of Scripps
" Institution of Oceanography [16] . A1l N -measurcments were made : v~
at 478 millimicrons, The plots show that asymptoticity is b_eing .
approached at depths T = 30, The azimuth angle ¢ has been fixed at
0° » which denotes the vertical plane thrdugh the sun. Plots for
95 # 0° indicate similar trends to asymptoticity for depths at T = 30. | '

The vertical K-scale has been exaggerated (relative to that of

Figure 1) in order to more clearly show the details of the transition

to asymptoticity,

\
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