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A Fast Lightweight Approach to Origin-Destination IP Traffic
Estimation Using Partial Measurements

Gang Liang, Nina Taft and Bin Yu

Abstract—In this paper, we propose an approach to esti- nodes that lie behind access routers. A general traffic matrix
mating traffic matrices that incorporates lightweight Origin-  can be defined at any level of granularity: the traffic sources
Destination (OD) flow measurements coupled with a computa- 5nq destinations could be hosts, groups of hosts, routers or
tionally lightweight algorithm for producing the OD estimates. .

There are two key ingredients in our method, called PamTram, even_ _POI_DS (@ Iarge_ collectlon of cp-locat_ed routers). The
for PArtial Measurement of TRAffic Matrices. The first is to  Specification of a particular traffic matrix requires the selection
actively select a small number of informative OD flows to measure of the level of aggregation. In a router-to-router traffic matrix,

in each estimation time interval. To avoid the heavy computation the traffic considered to be “sourced” at a given router includes
of an optimal selectlon_, we usea_heurlstlc based on intuition from all of the clients and peers attached to that router. Most
game theory. Randomized selection rules are developed based on .
the goals of reducing errors and adapting to traffic changes. We resegrch has focused on el_ther router-to-rquter or PoP-to-PoP
provide an algorithm for selecting a good flow to measure that Matrices, and we continue in the same vain, as these are the
is fast because it avoids the computations, such as integratingones ISPs are primarily interested in. For a network with

over past intervals, that are needed for optimal sglection. The edge (or access) nodes, the number of possible OD traffic flow
second key aspect of our method is an explanation and proof 155 js;,2. The OD matrix also has a timescale associated with

that an Iterative Proportional Fitting (IPF) algorithm can be it h ent . I level i
used to approximate the traffic matrix estimate when the goal It - each entry gives an average volume level over some time

is a minimum mean squared error and the optimization starts interval (1 min, 1 hour, 1 day, etc.). Traffic matrices should
from a maximum entropy initial estimate. be thought of as 3-dimensional matrices in which the third

In addition, we provide a one-step average error bound for dimension is time. Each OD traffic flow is actually a time
PamTram when the randomized selection rule is uniform and garjes and thus the entire matrix evolves over time. It has

no link counts are used. This bounds the average error for ) . . )
the worst case selection rule. Finally, we validate our method been shown ([2], [9]) that traffic matrices are quite dynamic

using data from Sprint's European Tier-1 IP backbone network. and exhibit strong diurnal patterns thus varying a great deal
Results show that our method generates average errors below within a 24 hour period.

the 10% carrier target error rate. Interestingly, we show that it Current approaches for obtaining traffic matrices can be
suffices to measure a single OD flow in each estimation interval, |assified into two categories: direct and indirect. A direct
which renders our partial measurement method very lightweight - - ) .
in terms of measurement overhead. approach is a pure measurement one in which the entire
traffic matrix is repeatedly measured over time via monitoring
technologies such as Netflow on Cisco routers. This software
can either be resident on routers or located on separate
monitoring equipment. In [2], the authors explicitly calculated
| INTRODUCTION the overheads of direct measurement using sFate—of-thg—art
o o : ) _ flow monitors. They showed that today’s solutions, which
Origin-destination (OD) traffic matrices are network profilegssentially mandate a centralized solution, are prohibitive in
that quantify the volume of traffic flow between all pairserms of communication and computation costs. They also
of nodes in a given network. The traffic represented is thstrated that by moving towards a more distributed approach,
demand as it captures the traffic that originates at one nqglg computation costs fall but the communications cost of full
and is destined for the other node. Such matrices serve gsasurement (albeit smaller) still remains high.
important inputs for a variety of network traffic engineering Tne indirect approach relies on alternative data that is more
tasks, including capacity planning, load balancing, and traffigagily available in networks, yet is incomplete. In particular,
provisioning; hence, the problem of estimating OD traffig,qo Simple Network Management Protocol (SNMP), supplies
matrices for backbone networks has recently attracted mughyisiics on links (such as total bytes seen in a given time
interest from both service providers [1], [2], [3] and th&yindow) and is widely deployed in today’s ISP networks.
research community [4], [5], [6], [7], [8]. _SNMP supplies the link load levels every 5 minutes in most
In communication networks, packets are forwarded by iRommercial networks. This is only partial information because

ternal routers or switches according to a routing schemgnically the number of internal link constraints is much
The origin and destinations of these data packets are e ller than the number of OD pairs, thus creating an ill-
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network, the number of links is usually proportional to theufficient change has been detected so as to require them to
number of edge nodes,, which grows much more slowly thanbe activated again, for another period of 24 hours, in order
the number of OD pairs.?. The problem becomes severelyto recalibrate the underlying models. While these approaches
under-constrained even for a modest For instance, in a proved useful, the one we include in this study is far more
backbone networks, is is in the range of 20-40 at the PoRightweight. The measurement overhead in that study varied
level, and is on the order of hundreds at the backbone routeam 5-30% depending upon the particular scheme; using their
level. same overhead metric, our approach yields a measurement
Many approaches to tackle these problems try to find awerhead of 1-5%.
simple model for OD flows, introduce constraints to ensure Our contributions in this paper are multiple. First we intro-
the identifiability of the model, and then employ some formduce a simple model to capture the 1-step temporal transitions
of maximum likelihood estimation. Simple models, if they canf a traffic matrix. Although this model does not match the full
work, are attractive in that they limit the computations fron®D flow behavior, and is not as rich as the models in [8], we
becoming excessive. Vardi [5] proposed a Poisson model #dkistrate that it is sufficient for the purposes of accurate TM
suming iid (independent identically distributed) Poisson distreéstimation and enables the use of less intensive computations.
butions for the OD traffic byte counts. Based on LAN networecond, we propose a methodology that iterates over two
data, Cao et. al. [4] revise the Poisson assumption to propasseps. In one step we propose a mechanism to select the one
a Gaussian model coupled with an assumption of a power-l&@D flow that will be measured in each interval, and in the
relationship between the mean and variance of an OD flosecond step we compute an approximation to the minimum
Vaton and Gravey [6] propose an empirical Bayesian meth&dllback-Leibler divergence estimate to populate the traffic
and an iterative algorithm is used to learn the prior distributiomatrix. To select which flow(s) to measure we employ a game
In [10] the authors proposed the use of gravity models féineoretic randomization scheme to choose informative OD
determining initial conditions for optimization methods (sucpairs. Different OD flows will be measured in different time
as maximum likelihood estimation) to avoid local minimantervals and the choice of which flows to measure is based on
problems. In Zhang et. al. [1], a tomogravity model is proposeatevious estimates. Intuitively speaking, our choice of which
to regularized the gravity parameter estimate such that thair to measure is based on the probability that an OD flow
final estimate is also faithful to the SNMP link counts. Thavill generate large errors. The benefit of this approach is that
computation of these methods is usually very high. Lianigpermits adaptation to dynamic changes in the traffic matrix.
and Yu [11] propose a pseudo likelihood method to spe&dhen changes in particular OD flows occur, those flows are
up the parameter estimation for general network tomograplikely to generate larger errors; as our method progresses in
problems. time, it eventually catches these changes. We contend that the
A key question regarding the indirect approaches is to whatiginal ill-posed problem can be substantially improved even
level of accuracy can the hidden OD traffic be recovered sinf-only a tiny fraction of OD pairs are measured in each time
ply from aggregated link traffic counts? Most of the indirednterval.
methods achievaverageerrors in the range 20-30%. However Third, we prove that the iterative proportional fitting (IPF)
carriers are hoping for error rates to fall below the 10% barriealgorithm can be used for our two critical computational steps:
In order to achieve lower error rates, recent research seélst approximates the minimum Kullback-Leibler divergence
to obtain yet more data (referred to amle informationin estimate (as used in [1], and (ii) can also be used to implement
statistics) to bring into the problem. Nucci et. al. [9] proposeur game for selecting which OD flow to measure. Because
to use routing changes to obtained more information abd&é~ can be used inside these two steps of our methodology,
the underlying OD traffic. Zhang et. al. [10] use SNMP dataur overall procedure yields an efficient and fast algorithm that
not only from inter-router links (as in the traditional problem)is thus practical to implement. To handle the practical issue
but also from access and peering links in order to populate thiedisseminating a command from a centralized station to a
gravity model. router instructing it to take a measurement, we consider the
In this paper we propose the approach of using partial Qissibility of delayed execution of our OD flow measurement
flow measurements as a good type of side information to briogoices. We demonstrate that even with 24 hours delay, our
into the problem. The idea is to measure a small number sfthemes are very effective. Fourth, we compute a bound on
OD flows (e.g., one) directly using a flow monitor, in eaclthe 1-step error (the error of each successive estimate) and
measurement interval, and then to vary the flow(s) measuiiéidstrate that the errors drop very quickly after a few iterations.
over the course of time. This idea was originally proposdeinally, we validate our methods on real data from a Tier-1
in [12]; however in that short paper neither the theoreticaberational backbone.
foundation for this approach nor any validation using data This paper is organized as follows. In Section I, we briefly
was carried out. We do both of those herein. Three partisthte the OD traffic estimation problem. In Section I, we
flow measurement approaches were proposed and evaluaeglain our approach to partial measurement and introduce a
in the comparative study done in [8]. The notion of partidew minimax randomization selection schemes for selecting
flow measurement in those approaches is different becatisese traffic matrix elements to measure. We prove that the
they all propose to turn flow monitors on at all routers, folPF procedure can be used to approximate both a minimum
a period of 24 hours to measure the traffic matrix throughootean squared estimate and to execute our game theoretic
its diurnal cycles. All flow monitors are then turned off untilselection scheme. We also discuss the evolution of errors



and derive a bound on the error from one interval to thmeasurement. In both cases, the communications cost (infor-
next. The above methods are evaluated on a real netwanktion being shipped to a central Network Operations Center)
dataset in Section IV. We evaluate a number of performanamains very high. For this reasons, it is interesting to consider
metrics, including temporal and spatial errors, adaptabilitpore lightweight uses of direct OD flow measurement. Our
and overheads. In order to understand how well our minimapproach of measuring one, or a small number, of flows in
type schemes perform, we compare them to an oracle-basedh measurement interval is indeed very lightweight.
scheme in which full knowledge about which pairs are most A recent discovery illustrated that seemingly high dimen-
informative is assumed. We conclude our paper in Sectionsibnal network OD traffic actually lives in a much lower

and provide proofs of the theorems in the Appendix. dimensional space [15]. This provides compelling intuition for
an active partial measurement approach, since it implies that
Il. OD TRAFEIC ESTIMATION PROBLEM there is potential to learn a great deal about all the flows by

only measuring a few of them. In practice, it is challenging
to get a low rank representation because the network traffic
is volatile; hence, the representation changes over time. Our
v ) -~ proposed partial measurement approach is to use only a few
i-th OD flow (for a total of I OD pairs). The OD wraffic .46 measures to obtain some vital information to explore
matrix X has been aligned into a vector for the convenience Qfis |ow dimensional space dynamically. We contend that

mathematical manipulation. As in [S] and [4] there is a linegfe original ill-posed problem will become more well-posed
relationship between the unobserv&dand observed”: even if only a tiny fraction of OD flows are selected to be

Y = AX, 1) measured directly at each time point and the measured OD
flows from previous time points also help due to the often
where A is anJx/ routing matrix, determined by the networkpresent smoothness of the OD traffic.
topology and the routing protocol. Mostly, elements/bfake
on the value o) or 1 where A4;; = 1 if OD pair i traverses B. Modeling
link j, and A;; = 0 otherwise. The elements ol could ]
take on fractional numbers when traffic splitting is allowed. T0 model the OD flows, some previous efforts have chosen
Such Markovian routing schemes are discussed in [5]. In ti® assume that an OD flow is either Poisson or Gaussian.
paper, we assume the network routing is fixed during eaHh this work we focus on the conditional random variable

We denote the SNMP link counts & = (Y1,...,Y))
for a network withJ links. Let X = (X1, .-, X;) be the
vectorized version of the traffic matrix whergé; denotes the

Since at each time point, a traffic matrix is also naturallVe definer shortly.)
represented using two dimensional arrays, we will sometimes X(t+1)|X(t) N N(X(t)7n(t)diaqu(t)D). @)

use the notationX, 4 to denote the specific OD traffic from
origin nodeo to destination nodéd. The total traffic originated Note that the same power mean-variance relationship Gaussian
at nodeo is represented by, ., and X. 4 captures the total distribution was used in [4] and [11], and recently verified in
traffic destined for nodé. It should be clear from the context[16]. Here, instead of on the marginal distributionXf*), we
when the vector and matrix notations are used. have it on the conditional distribution of *+1) given X®),
Since in the systent’ = AX, A is known andY is and the unknown parameteft) characterizes the variability
observable, the goal of the traffic matrix estimation problewf the network traffic at time. Then*) varies over time, and
is to recoverX. Typically A is not full rank with J < I, we assume that they are bounded by a consjant 0, that
so the estimation of the distribution oX is an ill-posed is, () < 5. Empirical studies based our dataset in Section
inverse problem. Constraints have to be introduced to ensiivesuggest small values af(* (cf. Fig. 4 (c)). Equation (2)
the identifiability of the model. Statistical modeling can baccounts for the phenomenon that large flows have large
viewed as introducing constraints by taking characteristics wdriations, and this linear mean-variance relationship will be
network traffic dynamics into account. There is a rich literatunealidated in the experimental section. The covariance matrix of
in statistics ([13], [14]) devoted to this topic from the point ofhis conditional distribution is diagonal, implying that all OD
view of regularization. flows are independent of each other: it is an approximation to
the real network traffic. The absolute value in the covariance
1. M ETHODOLOGY matrix is introduced to ensure mathematical accuracies. In
reality, the OD flowX (V) is always non-negative; as will be
seen below in our approach the estimateXdf) based on the
On of the central ideas in our method is that of couplinmodel is always guaranteed to be non-negative.
the inference activity with the direct measurement of a small The motivation for this conditional model is to introduce a
number (possibly just one) OD flow. To do this, it wouldime series structure between consecutive OD flows. In this
be necessary for flow monitors to be universally deployamhper, we are interested in monitoring network OD traffic
throughout a network. One might ask, if flow monitors areontinuously such that there is one traffic matrix (TM) estimate
deployed everywhere, why not just measure the traffic matrwailable at each time interval. This conditional model enables
entirely? In [2] the authors outline the overheads involveas to combinepast traffic matrix estimates and the current
for both centralized and distributed versions of full diredink counts together to produce an estimate ofcuarrent

A. Partial Measurement



traffic matrix. There are many ways to incorporate previowmy additional entries contain the measured OD flows. In this
estimates, such as using it as an initial condition for gwaper,k, the rank of M is preset, i.e., the number of OD
optimization procedure. To populate our traffic matrix weairs to be measured is determined. It is possible to treat it
will use an estimate based on the expectation of the currest a tuning parameter in different scenarios, however we find
random variable conditioned upon the link constraints arekcellent performance wheh = 1 and hence there is little
the additional measurements we obtain, given the immediat®tivation to explore other values (at least for the dataset we
previous estimate. study).

In this approach, the transitions of the traffic matrix from Equation 3b is now replaced so that our new system
one time interval to the next is controlled by the parameterequations, with the measurements incorporated, are given by

and smally’s imply that these transitions are not excessive. 1 . .
Clearly the validity of non-excessive transitions depends upon XD = X0 4 /| X®)]e® (5a)
the time scale the matrix intends to be used for. In our case, 7+ — o x (t+), (5b)

we make estimates of a traffic matrix every 10 minutes. Our
model is intended to captutecal behavior, that is, "local” in ~ Given this system we will populate our traffic matrix with
a temporal sense (over a short window of time). We realiee estimate
that our model would not be an accurate description of traffic XD = p(x )| x® = X0 70) (6)
over long timescales such as many hours or days. However, ’
our intent is to capture the transitional behavior of a TM from
one (short) interval to the next. Even though this model Blgorithm 1 Summary of the PamTram approach
coarse, it nevertheless works quite well for the purposes of|,itialization: SetX, =1
TM estimation, and retains the advantage of being simple. {5, each time intervat do

This modelling assumption has an alternate interpretation 1 pMeasure OD pairs selected at step 1
as a state-space model, which is used to describe internal 5 Ectimatex® based on dat@®, .-, Z® as in (6);
unobservable states that evolve over time. The relationship 3 petermine OD pairs to measuretat 1.
between the observable and unobservable variables is usuallynq for
specified as linear functionals typically with noise terms:
In terms of state-space system notations, our model can b
rewritten as follows:

Our proposed PamTram approach is summarized in Algo-
rithm 1. In this method, the initial traffic matriX (©) is set
X+ — x(@©) 4 ‘X(t)|€(t) (3a) to be component-wise vectdr. This initial choice of traffic
matrix is not very important as the algorithm will quickly
adjust itself to the right region. We could start with any
where the observable link traffi’® < RY is a linear Constant vector, and this is equivalent to a maximum entropy

function of the unobservable OD traffi¥® ¢ R! at time e€stimation in the following sense: after normalization by the

t. The routing matrix4, relating the unobservable states anfPt@l OD traffic (which is naturally done during IPF), the OD
observations together, is a known sparse matrix (i.e., wiiffic problem can be viewed as finding the best projection
many zero entries). The erroe§?) are identical independent© the linear space of probability distributions specified by the
distributed normal random variables: link equations in terms of CsiszarEprojection [17]. Any

constant vector thus corresponds to a uniform distribution
) ~ N(Om(t)), (4) starting point to be projected. This is intuitively appealing
. ) . because a maximum entropy estimate implies that we start
where, as discussed earligf?) (< 1) is a unknown parameter

quantiing the dynarmics of the underying OD trafc, ej[Ccl BRANS S0 L8 OEE B B SRR Sl
would like to comment that there is no need to estimatés P P P

in the OD flow estimation and selection because they Onrlnatr]x estimation. Many Of. the previous methods. could be
plied here. We will provide a fast implementation of an

serve as scalers irrelevant to the final estimate. It will become.” . ) . . .
: ) : : existing method. The challenge in step 3 is to determine which
clear by the equations in the following sections.
. : . OD flows to measure.
The partial measurements can be incorporated into our

model as follows. Lef\/ ) be the measurement matrix at time In the subsequent sections, we will explain how we carry

t, andZ(® be the new vector of observations. We appaii out steps 2 and 3 of this method. Before doing so we first
t;elow the routing matrixd according to ' introduce our error metric because minimizing this error is the

objective of our optimization problem in step 2, and because
o — ( A ) these errors are also used in step 3 to assist in selection of

y ) — Ax ¢+, (3b)

M®) which OD flow to measure. The intuition is to select flows

. . . . . hat will r rrors.
whereM ) is ak x I matrix in which each row is a unit vector:t at educe errors

it containse/ if X"’ measured. The matrig() now describes _

the relationship between the OD flows and link counts. This EfTor Metric

Z® = cXx® js the total observation available at time  In this paper, we propose to use a variant of the mean square
The first.J entries in this vector contain the link counts whileerror (MSE) as the error metric to assess the performance of



an estimator. LeX be an estimate of the unknown OD trafficalgorithm to populate the traffic matrix. This IPF algorithm
X, then the MSE ofX is defined as was used first by Cao et al. [4] as a post-processing step in
their OD estimation algorithm based on a Gaussian OD traffic
model. We describe IPF in the framework Bfrojection in

One drawback of the MSE metric is that it is very sensitive &€ space of probability distributions.

large traffic flows’ errors which are usually large in absolute I-projection, first studied by Csiar [17], gives a geometric
scale. Model (3) postulates that the variance is proportional W to minimum Kullback-Leibler (KL) divergence inference
the mean (conditionally on the previous traffic flow) and thigroblems, where the KL divergence plays the role of squared
relationship is used to devise the following scaled metric fauclidean distance. Given a probability functigrminimizing

MSE(X, X) = || X — X||%.

mitigate the problem of MSE: KL divergence over the first argument
: X = X[P (& - Xi) p = argmin D(p|lq)- (7)
sMSEX, X) = == . peL
X1 > 1 Xl

n be viewed as a problem of projectipgnto a convex set
of a probability distribution space. Linear constraints are
R special cases of convex sets. Algorithmically, this geometric
ReI—Error(X- X)) = | X — X view suggests that an alternating minimizing type of algorithm
v X [17] is useful for solving the minimization problem (7) if the

It has been shown that in real networks, roughly 95% of tH:E([;)nstraint set’ is the intersection of a series of convex con-
' r

total load in the traffic matrix is carried by less than 1/2 or 1 aint sets{£; : L=1,.--, L} Several iterative algorithms
of the flows [9]. Moreover, the volume of flow in these O 18], [19], [17] have been proposed to solve problem (7) with

pairs can span several orders of magnitude. Hence there %%’ linear constramts_. ct) .

typically very small traffic flows that generate extremely large Th? oD f_IOW eSt'mE_‘teX IS component-wise non-
relative errors but are essentially irrelevant. Our scaled Mé@gqt've’ S0 it can be viewed as a probab_|I|ty function after
metric avoids this drawback, and works well as a performan§ aling, and the IPF pr-ocedure, which applles Whem@) .
metric for both large and small flows. We point out that irﬁa e only 0-1 valyes, is most relevant in OD trafﬂc.matrlx
practice, the relative error is a useful measure to netwo'lnljerence' Below is the pseudo code of the IPF algorithm:

operators as it is intuitively appealing; thus we also report

Other error metrics have been used in the past (e.g., [1@”‘;
a common one is the relative error defined as :

on this metric in the results section. Algorithm 2 IPF Algorithm

Since we will use this SMSE error metric for assessing Giveny = X~ andY = AX®);
performance, we can also use it as our objective function insidefor £ = 1,--- , K or till convergedo
the optimization of step 2 in our method. It is important to  for j =1,---,J do
note that the scaling factor is a quantity that does not involve o= 1a, =1 i/ Y;
X, hence in effect, minimizing the scaled MSE is the same pi = pi/o for all ¢ with A;; =1
as minimizing the MSE metric. end for

Based on the model we are using, we can derive a boundend for
on the expected scaled MSE error. Suppose for a moment thateturn .
X® were known and we take no measurements. Then using
X® as a sensible estimate far*+1), the average error would
be

There are several appealing properties for IPF: 1) it is easy
to implement; 2) it converges in exponential rates (cf. Liang et.
al. [12]), and is thus very fast in practice. The IPF algorithm

This indicates that the expected error will be closeyts, Can Pe run satisfactorily in the order GI(1J) with a preset

which quantifies the variability of the traffic (according to oufinite number AO(ft_ltlt;:‘ratlons. ‘The starting point at timeis
model) if we start from the previous true OD flo ). In determined byX , the estimate obtained from the previous

practice, two factors are at play. On one hand, we do not knGjeP: It iS reasonable to expect the starting value to be in a
X(® but only its estimateX(. On the other hand, we canSMall neighborhood of the OD traffiE () to be estimated; this

add measurements to better the parameter estimation. The fIHgf_}?r spheeds upfthe c?nverr]gence ;late. Further, Tr]leorem 1
expected error metric will be influenced by both factors, JuStifies the use of IPF for the OD flow estimation from a
statistical viewpoint.

Theorem 1:For the network dynamic model (3), condition-

D. IPF and Minimum Mean Square Error Estimation ing on X(*=1) | if the mean vectop (i.e., X*~1) is assumed

We now state the algorithm, and its properties, for estimatnown, then the IPF estimate of (!) is approximately the
ing OD traffic when both link traffic counts and some direaminimum MSE estimate.
measurement information are gathered (Step 2 in Alg. 1).This implies that the iterative proportional fitting (tHe
Since our goal is to estimate the traffic matrix on the order pfojection estimate) approximately gives the minimum MSE
once every 10 minutes, we seek a fast online solution. In thistimate wherpy = X(*=1 is known. In a real problem,
paper, we propose to use the iterative proportional fitting (IPE)(*~1) is unknown hence replaced by the previous estimate

B (SMSEX®, X)) ~ 5 <.



X (=1 Another advantage of the algorithm is that the resulBut this approach is not attractive because the computation of
ing OD flow estimate is positive, which is not guaranteed by®), involving integration over all past observations, is too
the minimum MSE error estimate. costly. Neither can we use
The true minimum MSE estimate df (*) is the conditional © | vel) _ $0-1) o)
expectation ofX *) given all observations: Var (X ‘X =X,z )
7). Z(t)> as an an approximation to the conditional covariance (8)
B ’ because in generdlar(D) = Var(E(C|D))+ E(Var(C|D)),
The computation of such a quantity is very high: it involvegnd it is difficult to approximate
an integration over all past data points. In order to avoid such .
(E(X“>Z“hxﬁ—ﬂzaxﬁ—ﬂ>’Z“hn-,zw>.

E® — (X(t)

high computational cost, an approximation is use instead ~ Var

E® =E (E (X(t)|X(t_1)’ Z(t)) ’2(1)7 e Z(t)) Since usingz(® to choose the optimal OD flow to measure

~ B(X 0| X0, 70y, is too computationally intensive, we develop instead heuristic
’ randomization schemes motivated by game theory. Consider

As stated in Theorem 1, the IPF algorithm can be used fir a moment a uniform randomization scheme in which
compute this conditional expectation approximately startirgach OD flow is picked to measure at next step with equal

from X (-1, probability 1/1. The following theorem bounds the one-step
error performance (the error made from one interval to the
E. Measurement Selection Scheme next) assuming uniform random sampling of flows.

. (t—1)
We now address the issue of how to select the OD flows toTheorem 2:Letw be the scaled MSE error at stepl,

measure in each time interval (Step 3 in Alg. 1). The idea is W= — sMSE(X(t—l),X@—l)) .
to choose a scheme that will select the most informative of the )
unobservable flows. Clearly, the choice has to be made baé&gume no link measuremeritsare made, and only one OD
solely on the observable variables. We focus on selectingP@l" is selected for measurement by uniform random sampling,
single OD flow because even just measuring one OD flow péen the expected value afl"), the error metric ofX (), is
interval provides excellent performance. Our ideas here co@gproximately bounded by
be generalized to selecting a few flows, although we don't I-1 I-1 (_
believe there is much motivation to do so. E(w(t)) = Tw(t Vo < Tw(t U

We realize that in practical systems, since the flow monitQfhere 7 is the number of total OD pairs. Whengoes to
is attached to a link when we turn it on, we will in fact CaptUrgsfinity, .75 is an upper bound of the expected error.
all the flows sourced at that link. If the source node is a router This theorem is a comforting result in the sense that using a
and we turn a flow monitor on at all the links of this routeryniform randomization scheme is not going to lead to an error
then again, we will obtain more OD flow measurements thafetric that can grow without bound. All of our alternative
one (in fact, we would obtain one row of the traffic matrix)randomization schemes produce errors less than the uniform
However, in this paper we study the case of measuring onlyndomization scheme hence this bound on the average error
a single OD flow to understand the impact of this idea. Igppears to be a worst case bound. In the theorem, the expected
practice since we have more than one OD flows the emgfgjye of the next step error metric is bounded by the sum of
will be lower than we calculate using only one OD flowyyo parts: the first is the reduced previous error metric due
Our methodology for selecting which OD flow to measurg, the randomized measurement, and the second payt is
remains the same whether or not just one OD flow is used gt is due to the intrinsic uncertainty of the network dynamic
all elements of the corresponding OD row are used. system. Whent grows, the expected error will be bounded

First, let us consider what an optimal solution would e”taillegardless where we start. This is an appealing property of
SupposeX is a multivariate random variable (not necessakfe randomized measurement approach.
normal) with: E(X) = p, andVar(X) = X, where bothu |5 practice, link measuremerit () is obtained, then the
and X are known (or can be estimated). Then the minimupsigual of the parameter estimate at titie
MSE predictor forX is just u with the MSE error

E||X — p|? = trace3).

Hence ideally, we would like to select an OD pair such that tHg order to reduce the scaled MSE (or equivalently the MSE),
resulting conditional covariance matrix given all observatior@e should measure the OD pairs with the largest absolute
residual(s). NoteX *—1) is only an estimate. The picking the
ARNEE aZ(t)> (8) large residual can be viewed as a game between the nature
has the smallest trace. In other words, to determine tgge netvxiork) ar_ld us, in which the nature sets th_e _starting
value X *—1) against us. Suppose our goal is to maximize the

observation matrixd/®) such that the trace of the conditional . L . .
variance is minimized probability of picking the largest residual, i.e.,

MW = arg min traces®) L(X(tfl),i) =1 <R§t) = max Rﬁ”) .
M®

gw:Xm_E(Xm

ﬂtnzxaqyw)

ﬁ”:w%xw

J



The next theorem shows that theiform is in fact the mini- then
max rule, which guards ourselves against the worst scenarios. X® - 2A(A2A) T AXY — Ap) —p (11)
Theorem 3:The uniform random sampling (i) = 1/1) is
the minimax decision rule of the pick-largest-random-numb
game with a 0-1 payoff (loss) function.
It is arguable that the network is an intelligent adversar}’ﬁ'
hence, choosing OD pairs uniformly will likely give relativeh
poor results because the information in the previous traffe€

I a mean zero multivariate normal random variable with
covariance matrixA(Y). But (11) requires the inversion of the
atrix AX(® A’, which is expensive computationally. Again,
e result from Theorem 1 shows that the IPF algorithm can
used to approximate

estimate is not exploitedt.ilzikely((f—'l) will be close to the X0 S A (ASA)HAXD — Ap).
true state of the natur& (‘-1 — that is, we can guess pretty _ _ _
well the move of the nature (network). If we assui€—1) = It can be solved approximately by applying IPF algorithm to
X1 thenR® is a mean zero normal random variable witistarting fromX ®) to fit the link constrainty’ = Au. Thus a
variance (independent af(*) maxen randomization algorithm can be devised as follows:

AW =50 — 5 A (AR A) 7T ASO), (9)  Algorithm 3 Maxen Randomization Algorithm
where X = 5 diag(X (-1}, and the probability ofz”  Letp=X® andy = Ap;
being the largest residual in absolute value is 1. GenerateX ~ N(u,n"diag(p));

2. ProjectX onto {X|y = AX} to getX using IPF;
Q(i)="P (Rgf)| = max R§-t)|> ] (10) 3. Pick thejth OD flow if j = argmax; | X; — ;.
J

So a sensible randomization scheme is to pitk OD flow Note that the parametef?) is actually irrelevant in the above
with probability Pnazen(i) = Q(i) in the above equation formulation because it only serves as a scaler.
exactly. It is well know that it is the maximum entropy |n summary, the total computational cost of PamTram is at
solution, which minimizes the negative log loss function ifost two IPF algorithm costs. The IPF computation is light
the distribution is assumed to be known: and scalable to larger networks. Furthermore, there are other
. benefits of the proposed wMaxen selection rule. First, since
_ . , QU _ o , i
Prazen = arg min — Zlog P(i) log : Q it is a random scheme, wMaxen is not very sensitive to the
P - P(i) . . e .
i estimation of the probabilities in Maxen and still works well
Hence, we call this randomization schemaxen even if our model estimation is a bit off. Second, the dynamics

The uniform and maxen randomization schemes approaththe network traffic may exhibit many dramatic changes
the measurement selection from two different points of viewccasionally, as shown in Fig 2(b). Our dynamic model is not
On one hand, the uniform scheme ignores the knowledge abBtnd to predict sudden traffic changes, but rather to adapt
the network from previous time intervals. On the other hanép them as quickly as possible in conjunction with a small
the maxen randomization scheme is based on the rationgnber of partial measurements. Since the wMaxen scheme
that the system will not change much and exploits the existi?’zbased on our model estimation, it inherents this adaptivity.
estimated OD traffic to its advantage. However, the netwoltoreover, because the wMaxen rule keeps a balance between
doesn't always behave the same way as before and the uniféR@asuring of large and small traffic flows, it works effectively
scheme gives opportunities to depart from the existing mod@gainst sudden large traffic pattern changes.

Hence we combine these two schemes to produce a more
efficient randomization scheme. Let € (0,1). A weighted @
minimax randomization is defined as:

&)

Pwl\lazen = aPuniform + (]- - a)Pmazen~ PoP2

Here we assume that the parameteis preset and can be

tuned to adapt the network traffic pattern. We usually set it as

a relative small number, such @2, to favor more the existing

estimated models. In the experiment section, we will discuss

the performance difference of various randomization schemes. (pop10 p11)
For these randomization schemes, the uniform is easy to

realize, but the implementation of the maxen randomizatidig- 1. The Sprint European PoP network topology.

rule is difficult because the probabilities defined in (10)

are hard to obtain. Instead of computing these probability

explicitly, the maxen scheme can be implemented if we V. EXPERIMENTS

can generate multlvarlet.e niormal random numbers with the 1o pata

covariance matrix specified in (9). Let= X*~1 and

In this section, our proposed PamTram approach is validated
X® ~ N(p,n®diag(p)), using data from a real operational IP backbone. The data
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Fig. 3. Exploratory data analysis. (a) and (b): Q-Q plotdJgf; within two chosen 5-point time windows: the first one is based on the time window 1-5
and the second time window 1601-1605; (c) Estimajéd over time.

customers, or the removal of previous customers.

The conditional linear mean-variance relationship is an
important assumption in the dynamic network traffic model.
Under the assumption, we have

S ANAATUNANAANS | Usi = (XPX?‘“)/\/X}“” ~ N(0,7®).

Even thoughy*) varies over time, it is reasonable to assume
(@) (b) that it is continuous, then we can estimate its value within

Fig. 2. Two sample PoP level OD traffic flows. each small moving window. Fig. 3 shows two QQ-plots at two

different time points, and a time plot of thg?) estimation.

Because usually small OD traffic elements do not conform to
comes from Sprint's European backbone that constitutes fh& mean-variance relationship well, only the up@@¥ of the
Points of Presence (PoPs) and 18 inter-PoP links. Fig. 1 shavegfic load are used to generate all three figures. On the other
the topology of the Sprint network at the PoP level. Theand, the small traffic flows are less important. The Q-Q plots
network OD traffic information was collected by turning orare produced based on dll, ; within a 50-minute window,
Netflow (version 8) on all the Cisco routers. This version dfe., 5 intervals. These two Q-Q plots are chosen because of
Netflow uses a sampling scheme of monitoring 1 out of evetleir representativity; data in other time windows show similar
250 packets. The data was aggregated into PoP level flowgezftures. Fig. 3(a) is drawn based on data points in the time
a time granularity of 10 minutes (i.e., average number of byt@sndow 1-5, and (b) within the time window 1601-1605. From
sent between PoP pairs during each 10 minute window). Theéth plots, we can see that tihg ; is very close to a normal
data collection interval of 10 minutes was chosen to mitigatstribution but with a longer tail. Fig. 3 shows the estimated
possible measurement errors. To avoid inconsistencies betwgéh over time. Becausé#, ;’s have a longer tail than normal,
the link traffic and OD traffic, the link measurement data arg robust estimate of(*) based on absolute moment is used:
derived from the flow level measurements this guarantees

2
that the traffic matrixX, the routing matrixA and the link At) <Zi Uil > ’
traffic countsY are all in agreement with each other. This 0.799 x I
approach is well justified in [10]. where E(|V|) = 0.799 for V ~ N(0,1). From the plot,

We now show some behaviors of this OD traffic data thae can see that the values gf!)’s mostly oscillates around
although they have been pointed out before, are included hgreyhich is very small given that a medium network traffic
for completeness. Fig. 2 (a) and (b) show two time serigsay take a value of several hundreds or thousands. There
plots of selected OD traffic flows. These two OD pairs argre occasional spikes in the figure — the most obvious one
chosen because they represent common behaviors. The figjtesponds to the sudden traffic changes occurring around
one shows strong periodicity (very common among all ORqy 11. Other than this single point, th&) is well bounded.
pairs [15]). The strong periodicity of OD traffic also inducegerall, we have shown that the conditional linear mean-

strong periodicity in almost all observed link traffic. Theariance relationship is a good approximation to the raw data.
period of the traffic is exactly one day, while weekly period

can also be seen over a longer time frame. The second one

illustrates that sharp changes (day 11), different from i Partial Measurement Schemes

diurnal cycles and from the local noise, can occur. These carlWe tested PamTram using various partial measurement
occur for reasons such as router failures, the addition of neshemes to the Sprint PoP network data. The first three
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Fig. 4. Two selected time plots for estimated results of all PamTram schemes: (a) The inital portion; (b) The portion with the sudden traffic changes. In all
panels, the solid line represents the true OD traffic.

are uniform, maxen, wMaxen. For the wMaxen, the weight Latent(wMaxen), and oracle. In each case, we measure only
parametery is set ag).2: we chose to make this number smalbne OD flow in each 10 minute measurement interval.

to favor the maxen randomization scheme. Our experiments

show that the scheme is not very sensitive to the choice
a. Furthermore, in order to better evaluate the performance
these randomization schemes, we also implementestaite Several performance measures are used to assess and com-
scheme. In this scheme, the oracle has full knowledge of thare all partial measurement methods. We look at both tem-
true OD traffic and thus the largest residual can be precisglgral errors (using the scaled MSE and relative error metric)
selected. In other words, we select the flow that results in taed spatial errors. We will see how our error evolves over time
smallest scaled MSE error in the next parameter estimate. W illustrate how these schemes adapt to unexpected traffic
can do this since we have the measured traffic matrix at gtranges. We compare our results to some previous results. We
disposal. Although this cannot be done in practice, it provideéscuss the tradeoff our method implies: the performance gain
us a means of assessing how far our schemes are from a eeraes due to additional measurement overhead. We will show
of optimal (full knowledge) behavior. It is comforting that ourthat the overhead incurred by PamTram is more lightweight
schemes perform close to the oracle one. than previously proposed partial measurement schemes.

In a real IP network, there is a practical problem with our Time plots. We start assessing the performance of PamTram
scheme. The centralized node collecting the measurements @sigimators by viewing some raw time plots of OD flow
computing the estimates, needs to inform individual routeestimates as shown in Fig. 4. Both figures are blown up in
as to when to turn on a flow monitor to collect the choseprder to show more details. Because the network traffic is very
OD flow measurement. Such a command needs to be shippetitile and hard to visulize, the smoothing spline method is
across the network and the schedule loaded into the portusied to remove unnecessary spikes of the true traffic while
the relevant flow monitor. We assume that it would not bieeping the trend faithful. The same method is applied to
practical to do this every 10 minutes, however it is clear thastimated OD flows as well. Fig. 4(a) shows the initial trace
selecting the measurement schedule a few hours in advant@n OD flow (after smoothing) along with their estimates,
would provide the network ample time to disseminate arahd (b) shows a smoothed trace where a sudden change
schedule the monitoring activities. We thus consider anothegcurs. With only one additional measurement, all PamTram
version of our randomization scheme is which the OD flowapproaches adapt to the true OD traffic quickly. Below we will
to measure are selected 24 hours in advance. The idea is titnpare these schemes in various perspectives.

a flow selected for measurement at 2:10pm on one day, isScaled MSE errors. First we consider temporal errors.
actually measured at 2:10pm the next day. The rational By temporal errors we mean that at each moment in time,
such an approach comes from both the observation of stromg compute our error metric over all the flows giving a
daily periodicity (as in Fig. 2) which shows that traffic isrepresentative error for that timepoint. The ensemble of all
generally similar from one day to the next at a particular timguch time points yields the temporal errors. Fig. 5(a) shows
of the day, and from [2] in which the authors illustrate thithe scaled MSE plot along time for all six randomization
notion more precisely using fanouts. In our implementatiomethods. Overall, all partial measurement approaches drive
the first day is special such that the OD chosen by the previdbe estimation error very low, even with only one OD flow is
data point is used. measured each time interval. We see that the majority of the

The latent scheme is a scheduling approach that needs teebers are below 5%. This breaks new ground in terms of low
combined with a randomized selection rule. In our experimermgror rates.
two latent schemes are implementddtent(maxen) and La- Evolution of Errors. In Fig. 5(b) we have blown up the
tent(wMaxen). In total, six randomization rules are appliednitial portion of Fig. 5(a) by including only the first 150
to this dataset: uniform, maxen, wMaxen, Latent(maxemgstimation intervals. Overall, the scaled MSE decreases over

%‘; Experiment Results
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Fig. 5. The scaled MSE time plots: (a) the full scaled MSE plot; (b) the starting region; (c) the region with a large sudden traffic change.

time starting from the maximum entropy estimate 60 flow over its lifetime. The ensemble of these errors illustrates

for all methods. As expected, thmiform performs worst and the different errors experiences by different flows. In order

the oracle performs best. These plots illustrate that withito have a comparison with several other methods, we use the

1 or 2 hours, we our errors drop below the 10%, and thaeighted L2 norm proposed in [8] to measure the spatial error:

within 3 or 4 hours, then can drop to below 5% (frequently). po
: ! Y )

Although it takes a few hours to bring the errors down, this is oatial(i) = Z (Xi,(t) B X,@) /Z(Xi(t))Q'

t

not a lot considering that most operators will rarely start this
procedure over from scratch; instead they will always have
an old traffic matrix at their disposal that can be used asFig. 6 shows the ensemble of spatial errors across large OD
starting point. This illustrates much less of a dependence upgtws. The OD flows in the plot are sorted in decreasing order
the starting point than previous approaches [16]. For this figgcording to their total traffic volume. The OD flows included
day themaxen, wMaxen, Latent(maxen) and Latext(wMaxen) in the plot constituted9% of the total load. The two verticle

all produce fairly similar behavior due to our implementatioRars represent the0% and 95% cut-off points respectively

(of how we handle the latent schemes on the first day). (i.e., all the flows to the left of the bar constitute 90% or
95% of the load). We see in this plot that OD flow with
Rmaller average size tend to have larger errors. This is a well

Ch‘iﬂgz onddaty deltev?r?. V\f now I(:e_xarrsune h%/]v (-;acthﬂ:)ftt own phenomenon and is consistent with results in almost
methods adapted to this change (Fig. 5(c)). The fact tha I"?previous traffic matrix estimation papers. More importantly,

oracle method essential_ly recovers immediate!y.implies th%e observe very small spatial errors for the majority of the
our approach of selecting the OD flow to minimize EIMOMRaffic. All of these partial measurement schemes perform

is sound. Theuniform scheme is strongly affected by this.o o0 closely to the oracle one. For all schemes, except

) 0 )
rraffic change as the errors grow to around 40% and it tak{-ﬁ Latent(maxen) andLatent(uniform), the weighted L2 norm
many hours to return to lower error rates. The performance atial errors are mostly below0%. For comparison, we

maxen and wMaxen is comparable and good (the errors righ{, )\t the average spatial errors #6¢% of the total load.

to no more than 10-15% and recovery is quick). mterpreﬁr]_gatent(maxen) has the worst average spatial ert8ri%
the performance ofatent(wMaxen) andLatent(maxen) sheds uniform 16.8%, Latent(wMaxen)14%, and both maxen and

fr? me “g::t as to—;;; advantage an(fj dlsadvan;[a%e of SO”_‘t axen around 3%. For the same dataset, the methods in [8]
€se schemes. teni(maxen) performs poorly because I have average spatial error ranging fra@ —45% depending

is dependent upon yesterday's choices of which OD flows 1 the scheme. Specifically, the tomogravity method [1] has a

measure. Since there has been a big change, these choice \%%ge spatial error @fr%. For other methods, the PamTram

noFfout of dadte apd tt.hus Ielss :glevant. I: thF')S ca_?e, adtdlr;)g Iln roaches also generates better results with less measurement
unitorm randomization selection permits Fam ram 10 b€ 1€gga heaqy which we will also discuss later. Since we include

depende_nt upon out Of. date choices t_hus_ yielding lower €195 of the traffic in the plot, there are numerous small flows
gh's valld_tate”s thefwe|ght$d {e_mdomﬁatlém sc?emaa?(.en ¢ till included in the set of flows presented here. These are
ecause it allows for practical issues to be met (requiring fien disregarded in traffic matrix estimation because they are

use of aLatent qpproagh) whﬂe s_lmultanequsly meeting th"?ess important and hard to estimate. This thus shows that our
needs of a traffic matrix estimation technique to be able Fﬂethods can handle some of the small flows as well

adapt to major traffic changes. Relative Errors We now look at the instantaneous relative
Spatial Errors. The spatial errors give a different viewerrors, summing neither over time nor over space, but instead
of the errors in OD flow estimation. By spatial errors wgust assembling the errors achieved at each interval for each
mean that one error is computed per flow since the summifigw. Fig. 7 shows the cumulative distribution function (CDF)
operation is done over time. This gives a summary error pef the absolute values of relative errors. With such an error

t=1

Adaptability. Recall that in Fig.2(b) we observed a shar
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TABLE |
AVERAGE RELATIVE ERROR SCALED MSE AND RUNNING TIME OF
DIFFERENT MEASUREMENT SCHEMES

Avg(relError)  Avg(sSMSE) Time (sec)
Oracle 4.4% 0.42 N/A
Maxen 7.5% 1.57 0.31
wMaxen 7.5% 1.45 0.28
Latent(maxen) 9.2% 3.35 0.27
Latent(wMaxen) 7.9% 1.79 0.245
Uniform 9.4% 3.50 0.145

the average relative errors for large OD traffic flows. The
percentage of total traffic we choose is 90%, i.e., the reported
average relative errors are based on OD traffic flows which
constitute the to0% of the total traffic load. The average
scaled MSE is the simple average of all the scaled MSEs
at each time interval. These results show that in general
all the PamTram approaches perform well in estimating the
fyue network OD traffic. The performance oehaxen and
wMaxen are comparable, while theeMaxen is more robust.
The Latent(wMaxen) method retains similar performance and
thus yields a practical way of implementing PamTram.

Overheads.Table | also reports the run-time or computation
time for our proposed randomization methods. The compu-
tation of the PamTram is very light; it is a very appealing
property of the proposed approach, especially important for the
implementation of such online algorithms. The Sprint dataset
is processed on a 3.2GHZ computer using the R package [20].
It takes maxen approximately0.31 seconds to generate one
traffic matrix estimate per 10 minute window. This includes
two iterations of the IPF algorithm (one for selecting which
flow to measure and one to approximate the minimal MSE
estimate). In totalmaxen takes572.58 seconds to process the
total 1842 time intervals (more than 12 days worth of data)
in the Sprint PoP dataset. Thaiform scheme approximately
further cuts the running time by half because only one round
of the IPF procedure is needed in each time interval because
the flow selection is simple for the uniform scheme. This is
fast because the complexity of an IPF algorithmdéI.J).
t avoids matrix inversion as is needed by many maximum
likelihood estimation or regularization approaches.

The PamTram is lightweight not only computation-wise,
but also in terms of measurement overhead. The strong

metric, the very small traffic matrix elements can generagerformance of PamTram’s partial measurement approach
extremely large relative errors. To discount the effect of suelves not come for free; we are using flow monitors to
small traffic matrix elements from misrepresenting overadichieve such performance levels. Thus we should assess the
performance, each relative error is assigned a weight proppreasurement overhead in order to understand the tradeoff
tional to the true OD traffic count. This weights the errorbetween performance and measurement. In [8] the authors
by their relative importance. Large flows are considered moiretroduced a measurement overhead metric. Their metric was
important as they are the ones that count for capacity planniggfined aszle D(i)/(NumDays« NumLinks), where D(i)
and link weight selection algorithms. Thus our resulting CDiwas the number of days that linkwas turned on for flow
plot focuses on the larger OD traffic pairs. Again, we see thafeasurement. This metric, with unitslofk-days made sense
our Maxen, wMaxen andLatent(wMaxen schemes all perform in their context because each time a flow monitor is turned
well and aren not far off from theracle. Note that the y-axis on it remains on for 24 hours. The idea was to count the
on these plots begins at 70%. With these methods, more th@nount of time a flow monitor is on over many links and days,
80% of OD flows experience an error less than 10%. and to create a ratio so as to compare it to the case of full
Summary. Table | reports the average relative errors, amleasurement when all flow monitors are on all the time. The
average scaled MSE for all partial approaches. We only repareasurement overheads in [8] ranged from 5-30% depending
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upon the scheme. Our scheme is equivalent to the case whtso like to thank Antonio Nucci, Dina Papagianaki, and
one flow monitor is on all the time because at any moment waukool Lakhina for preparing the dataset and many helpful
have one flow being monitored. Hence in terms of this metridiscussions. Partial support to Bin Yu and Gang Liang is
the overhead of PamTram 191 or roughly 5% since we have gratefully acknowledged from the National Science Founda-
a network with = 18 links. This is the overhead when a flowtion (CCR-0106656 and FD01-12731) and the Army Rearch
monitor is turned on and collects everything on the link t@ffice grant (DAAD19-01-1-0643).

which it is attached. If the flow monitor could be configured to

monitor only a single OD flow, then the measurement overhead V1. APPENDIX

would drop tol /169 (one over the number of OD pairs) which

is less than 1% measurement overhead. This is so lightweight
that the tradeoff of measurement versus performance gain idt iS €asy to show that the conditional expectation

immaterial. E(X|Y) =pu—SA(ASA) Y Ap - Y).

V. DISCUSSIONS ANDFUTURE WORK BecauseY is a diagonal matrix proportional tg, the co-

In this paper, we propose a partial measurement approa&fficient  cancels out and does not appear in the above
for OD traffic matrix estimation. There are two key ideas iequation. This conditional expectation is also the solution to
this approach. The first is to use partial flow measurement irilee weighted least-square estimate with square root weights in
lightweight fashion by only measuring one flow per estimatiodhang et al. [1]
time interval. We couple this with a dynamic traffic model .
that allows us to incorgorate past inforrr):ation into the current i Zi(Xi — i)/ i subject toAX =Y.
estimate. Such an approach is successful in achieving excelteRgn similarly, we may borrow the argument pointed out by
performance with minimal measurement cost. There is Bfang et. al.[1] that
magic in this approach. One OD flow at one time is only a
little extra information, but all the measurements accumulate D(X/N||u/N) ZiXi/N(l — Xi/ ;)
over time via the dynamic network model. Our second ke
contribution is the il):ustration that an IPF algorithm can bg ~ 1/Nzi(Xi = i)/

used both for approximating an MSE error and for selectinghereV is the total traffic. The first approximation is a linear

which OD flow to measure. Because the IPF algorithm is fagkpansion of logarithm function, and the second approxima-
and we only measure one OD flow per time interval, PamTraian due to our assumption that, i =~ N.

is lightweight both in computation time and in measurement
overhead. We thus believe that PamTram has potential to é)e
considered for deployment in operational networks. '

Our intent was to use the dynamic network model (5a) Let K denote the index of the OD pair to be measured,
to capture short-term network dynamics. The model itself fignce, we havé’(K = k) = 1/1. Under the assumption that
flexible and can be easily extended to accommodate additioR@l any link measurement is obtained, we have

Proof of Theorem 1

Q

Proof of Theorem 2

information. For instance, a natural extension of the model is x® it Kk
to install an auto-regressive term for each OD XM )Tk -
) o F X1 otherwise
XY = BXY 4+ /B X®W, (12a)
imi inex (t+1)
where B; is a polynomial function of the backward operator.SIm"arly' we defineX as

can be incorporated through the autoregression formula, result-
ing better OD traffic estimates. Such an extension does bring
in an additional layer of complexity. The major challenge ighich is the parameter estimate if we start from the true value.
how to determine the order the autoregression terms and howrix X =1 and X~1) at first, then the expected value of
to update them in a dynamic way. We defer all these questidhe scaled MSE is
as future research. 5 (¢ S (0112 S (¢ 112
Other interesting directions for future research include using E (HX( : }g l ) ~ E|IX (51())H

more advance traffic monitoring and estimation capabilities to > Xi > X
develop dynamic traffic profiles. This can be useful for security E||IX® — X®|]2 + E||X® — X®)|2
applications and to provide enhanced performance for subsets  — ) x&=D 13)
of the total traffic belonging to specific applications (such v
as \olIP) that may have its own performance and robustngdie first approximation is obtained by the delta method, and
requirements. the second equality holds because

Kzl@X,i”)) :

The periodicity and more fine structure of the network traffic £ X,St) if K=k
b X,gt_l) otherwise
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Note givenK =k and X,gt), X® — X(® are determined, and [6] S. Vaton and A. Gravey, “Network tomography : an iterative bayesian

X® — x(® js a mean 0 multivariate normal random variable.__ analysis” inProc. ITC 18 August 2003.
[7] G. Liang and B. Yu, “Pseudo likelihood estimation in network tomog-

The cross terms disappear after expanding the square term: raphy,” in IEEE Infocom 2003San Francisco, April 2003.

For each term in (13), we have [8] A.Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci,
R - M. Crovella, and C. Diot, “Traffice matrices: Balancing measurement,
E||IX® — x®)2 modeling and inference,” iMCM SigmetricsJune 2005.
1) [9] A. Soule, A. Nucci, E. Leonardi, R. Cruz, and N. Taft, “How to
Zi Xi identify and estimate the largest traffic matrix elements in a dynamic

5 s o (t—1 t—1 environment,” inACM SigmetricsJune 2004.
||X(t) — X(t)H2 — Zk P(k:)(X]g ) - X,g ))2 [10] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
S X(t—l) computation of large-scale ip traffic matrices from link loads, AGM
[ Sigmetrics San Diego, USA, June 2003.
I1-1 (t—1) [11] G. Liang and B. Yu, “Maximum pseudo-likelihood estimation in network
w ’ tomography,”|EEE Transactions on Signal Processjngl. 51, no. 8,
pp. 2043-2053, August 2003.
and N [12] —, “Maximum entorpy models: convergence rates and application in
E|IX® — x®)2 dynamic system monitoring.” itnternational Symposium on Informa-
1) <1 tion Theory 2004.
Zi Xi [13] M. Hanke and P. Hansen, “Regularization methods for large-scale
Further, note that the above bound actually does not depend rl);%bfms‘ Surveys on Mathematics for industnol. 3, pp. 253-315,
on the value ofX ®), implying it holds generally. [14] G. Wahba, “Spline models for observational data,"SHAM, Philadel-
Taking an expectation over both side of the inequality, we_ Phia, 1990. o ,
h [15] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk,
ave 71 and N. Taft, “Structural analysis of network traffic flows,” \CM
E (w(t)> < _°F (w(t_l)) + 1. (14) Sigmetrics June 2004.
-1 [16] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,

IN

. . “Traffic matrix estimation: Existing techniques and new directions,” in
If E(w(Y) > Iy, then the expected error metric will  acwm SigcommPitisburg, USA. Aﬂgust ey
decrease after one step, ie., [17] 1. Csisar, “I-divergence geometry of probability distributions and min-
imization problems."”The Annals of Probabilityvol. 3(1), pp. 146—158,
E (w(t)> <E (w(tfl)) . 1975.
[18] J. Darroch and D. Ratcliff, “Generalized iterative scaling for log-linear
. models,"The Annals of Mathematical Statistie®l. 43, no. 5, pp. 1470—
Easy to show that any value larger than will not be the 1480, 1972,

stabilization point of equation (14). It implies th&g will be [19] S. D. Pietra, V. D. Pietra, and J. Lafferty, “Induce features of random
the upper bound of the expected value of the error metric in fields,” IEEE Transaction on Pattern Analysis and Machine Intelligence
the long run vol. 19, no. 4, pp. 380-393, 1997.

g : [20] R. lhaka and R. Gentleman, “R: A language for data analysis and
graphics,” Journal of Computational and Graphical Statistiosol. 5,

no. 3, pp. 299-314, 1996.
C. Proof of Theorem 3 PP

If only we can show that the uniform selection ruéi) =
1/1 is an equalizer decision rule. First note that

Ep (L(R(t),z’)> =1/I,

independent of the distribution akR®) as long as the is
chosen independent &(*). It implies that the such a decision
rule is actually an equalizer for the game:

E, ( max L(R(t),z’)> =1/I.

X (t—1)

So the uniform rule is minimax.
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