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Design features of language emerge from general-purpose learning mechanisms 
 

Padraic Monaghan (p.monaghan@lancs.ac.uk) 
Centre for Research in Human Development and Learning, Department of Psychology 

Lancaster University, Lancaster LA1 4YF, UK 
 
 

Abstract 
There are certain universal properties of language that are 
taken to be definitional to the concept of language itself, such 
as the arbitrary relationship between sounds and meanings of 
words. Another possibility is that these “design features” of 
language may instead be the expressed consequences of 
general purpose learning constraints within the cognitive 
system learning the language. To test this, generations of an 
inverse model learning to map between sounds and meanings 
of words was tested. In this model, learning to associate 
phonology to semantics influences the model’s production of 
phonology from semantics, and phonological productions of 
one model were used as input to the next generation. Over 
generations of the model’s learning, the language became 
easier to acquire, and demonstrated increased arbitrariness of 
mappings between phonology and semantics. The iterative 
modelling demonstrated that design features of natural 
language can spontaneously emerge in a general purpose 
learning system. 

Keywords: Evolution; language acquisition; computational 
modeling; arbitrariness of the sign; phonology; semantics. 

Introduction 
Languages change extremely rapidly. Gray and Atkinson 

(2003), for instance, estimated that all the living Indo-
European dialects diverged approximately 7900 years ago. 
In terms of cultural transmission from generation to 
generation, this means that language has been passed on 
only a few hundred times to produce such variation as that 
found between English, Gaelic, Greek, Italian, Lithuanian, 
and Hindi. There are of course multiple forces at work in 
determining language change (Labov, 1994), however, the 
fact that language has to be transmitted from one generation 
to the next suggests that learnability of the language is a 
critical selective pressure contributing to language evolution 

(Christiansen & Chater, 2008). 
So what are these language properties that contribute to 

language learnability? One place to begin is the recent 
discussion over patterning of language universals 

(Christiansen, Collins, & Edelman, 2009; Scalise, Magni, & 
Bisetto, 2009). Evans and Levinson (2009) demonstrated 
that for each “language universal” proposed in the literature 
there is at least one extant language that violates the 
prevailing pattern. Instead, Evans and Levinson (2009) 
contend that it is language diversity, rather than universality, 
that is the critical feature of human communication to be 
explained. Importantly, this diversity tends to indicate 
statistical clusters of language properties, which are 
consistent with general cognitive constraints that assist in 
learning or transmission of language that then become 
embedded in language structure. Cross-linguistic 

consistencies (rather than absolutes) in language structure 
occur, then, because similar processing and learning 
limitations are present in all language users. 

Yet, there are properties of languages that are universal, 
though these are not discussed by Evans and Levinson 
(2009) because they are considered definitional properties of 
language. These fundamental language properties, or 
“design features” in Hockett’s (1960) terms, were listed by 
Greenberg (1963) as discreteness, productivity, 
arbitrariness, and duality of patterning. Discreteness refers 
to the composition of utterances in a language from smaller 
elements (words/morphemes or phonemes) the combination 
of which provides meaning. Relatedly, productivity refers to 
the ability to use the smaller elements of the language in 
multiple combinations – from a small, finite set of elements 
(words/morphemes) an infinite set of utterances can be 
generated. Arbitrariness refers to the absence of 
systematicity between the sounds of words and their 
meaning (de Saussure, 1916), and duality of patterning 
refers to the composition of words from smaller 
phonological units, where the utterance meaning is carried 
by the combination of words and is unrelated to the 
phonological composition of these words. 

Though researchers such as Greenberg (1963) question 
the possibility of a language without each of these 
properties, an alternative view is instead that many of these 
properties could have been otherwise in language 
(Monaghan, Christiansen, & Fitneva, 2011). It is possible to 
conceive of a language where sounds of words do carry 
some aspect of the meaning. Instead, this paper takes as its 
perspective that design features are universal properties of 
language not because they are definitional but rather 
because of the constraints of our cognitive systems that 
mean that languages are structured to make acquisition and, 
consequentially, transmission easier. The current study tests 
a framework that demonstrates how such design features of 
language may have become instantiated within language 
structure as a consequence of general-purpose (i.e., not 
language-specific) learning mechanisms.  

Monaghan et al. (2011) showed that one of the design 
features – arbitrariness of the sign – resulted in more 
accurate language learning by participants acquiring an 
artificial language, and by associative networks learning the 
same sound-meaning mappings. Thus, arbitrariness 
bestowed an advantage for learning. 

However, this work stopped short of demonstrating how 
such arbitrariness becomes incorporated within the 
language as a consequence of learning constraints. In this 
paper, I present a model of cultural transmission where 
general purpose learning constraints that affect language 
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acquisition are expressed within the same model when it 
undertakes language production, which is then used to 
entrain the next generation of models. An appropriate 
architecture for achieving this effect of acquisition 
influencing production is the inverse model (Jordan & 
Rumelhart, 1992), which resembles the sleep-wake 
algorithm implemented in the stochastic inverse Helmholtz 
model (Hinton, Dayan, Frey, & Neal, 1995). Such models 
have close parallels to the learning occurring in feedforward 
and feedback connections in the cortex (Carpenter & 
Grossberg, 1987; Mumford, 1994), and have been 
effectively used to simulate development of features of 
human communication, such as segmental phonology (Plaut 
& Kello, 1999). These models have the advantage over 
previous models of iterated learning in that they permit 
more enriched representations to be learned and to influence 
performance (Kirby, 2001). 

The critical feature of the modeling is that associative 
learning forms the basis of the model’s performance, and 
that the model’s approach to learning words’ meanings from 
sounds influences the model’s production of the words’ 
sounds from meanings. Language structures that are easier 
to acquire due to general purpose learning mechanisms will 
be learned more accurately by the model and will, over 
generations of learner, become stably expressed within the 
words themselves. The dashed lines in Figure 1 illustrate 
how the learning of the spoken input to an output meaning 
representation can feedback to generate a spoken version for 
each verbal input. Hence, the model as learner can adapt its 
version of the language to more closely match its own 
internal constraints. This spoken output can then be used for 
the next generation of learner, and across multiple 
generations the language can be altered in such a way to 
make it more reflective of the model’s learning properties 
and hence more easily learnable for future generations. The 
language can then be analysed for the key “design features” 
of natural languages. 

The first prediction is that the expression of the model’s 
learning constraints will result in a set of phonological 
representations that the model learns to map onto the 
meaning representations more quickly and accurately – so 
future generations will find the language easier to acquire. 
The second prediction is that “design features” of natural 
language will be exhibited in the representations, in 
particular that mappings between phonology and semantics 
will instantiate arbitrariness in the mapping1. However, 
based on previous studies (e.g., Monaghan et al., 2011) it is 
also predicted that the patterns will demonstrate 
systematicity at the category level, in terms of phonology-
category mappings. The first simulation tests the emergent 
structure of phonology-semantics mappings, when the 
phonology is initially random, so fully arbitrary. The second 

                                                             
1 The existence of small pockets of sound-symbolism in natural 

languages has little effect on the overall arbitrariness of the 
relationship between sound and meaning (see Monaghan et al., 
2011, for discussion). 

simulation tests the emergent structure when the initial state 
of the language is systematic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The model of iterated learning. Solid arrows 

indicate the forward model, where the model is trained to 
map phonology onto semantics for each word, with two 
categories (red/blue) centred at a different region of this 
multidimensional space. The dashed arrows indicate the 
inverse model, where the model produces phonology from 
semantics which forms the input to the next generation of 
learner. 

Emergent structure from random origins 

Method 
Architecture 
The model’s architecture is shown in Figure 1. A set of 10 
units each represented the phonology and the semantics for 
the model, and a set of 10 hidden units interconnected these 
representations. For the forward run of the model, to 
simulate language comprehension, the verbal input was 
connected to the hidden units which were in turn connected 
to the semantic units. These connections are illustrated with 
solid arrows. For the inverse run of the model, to simulate 
language production, there were connections from the 
semantics to the hidden, and from the hidden to the 
phonology to represent spoken output. The inverse model 
connections are illustrated in Figure 1 by dotted arrows. 
Weights on connections were given initial uniform random 
values in the range [-0.25,0.25]. 
Training and Testing 
The model was trained on 20 patterns mapping between 
phonology and semantics. The phonological representations 
were initially constructed by randomly selecting values in 
the range [0,1] in 0.1 intervals for each of the 10 units in the 
pattern. The semantic representation remained stable 
throughout learning and was constructed by generating 10 
exemplars of two prototypes, one centred at a value of 0.75 
for each of the 10 units in the pattern, and the other centred 
at 0.25 for each of the 10 units. Exemplars were produced 
by randomly varying the prototype values by a uniform 
value in the range [-0.25,0.25]. There were therefore two 
clusters of meaning representations in the patterns to be 
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learned. In previous simulations, such semantic categories 
have simulated two grammatical categories of words, e.g., 
nouns and verbs (Monaghan et al. (2011). 

The model was trained to map the phonology onto the 
semantics to simulate learning to comprehend language, and 
then learn to map the semantics back onto the phonology 
using the same hidden unit representations as occurred 
during the phonology to semantics mapping. This entailed 
that the model’s learning constraints for acquiring the 
language were applied during the model’s attempts to 
produce the language. The forward model operated as a 
standard three-layer backpropagation network: A pattern 
was selected randomly and presented at the input. The 
model’s hidden unit representation for this pattern was 
recorded, and then the mean square error at the semantic 
representation (the difference between target and actual 
semantic representations) was used to adjust the weights on 
the forward connections using the backpropagation learning 
algorithm with learning rate of 0.1. 

Then, the inverse model was applied to this same pattern: 
The target semantic representation was presented at the 
semantic layer of the model, and the model was required to 
reproduce the hidden unit representation for that pattern 
produced during the run of the forward model. The error at 
the hidden layer was propagated back to adjust weights 
between semantic and hidden units. Then, the model was 
required to reproduce the phonology for that pattern given 
the hidden unit representation, and once again error 
(between the initial input phonology and the model’s actual 
phonological production) was propagated back to adjust 
weights between hidden and phonology layers. 

At the end of training, the inverse model was presented 
with each of the semantic representations and produced a 
version of the phonology for these patterns that was 
influenced by its learning of the mapping. These new 
phonological patterns were used as the language for training 
the next iteration of the model. There were 10 iterations 
altogether of the model. 

We varied the number of presentations of the patterns to 
determine an effective level of change in the language – not 
too much, such that the language would alter radically from 
one generation to the next, and not too little such that no 
representational change would be observed. We found that 
500,000 patterns resulted in an interpretable level of 
representational change. With fewer presentations than this, 
the model produced phonological representations via the 
inverse model that were distant from the original 
phonological representations, and also that were indistinct 
from one another, and so extremely difficult to learn for 
future generations of the model. 

We ran 20 versions of the model, varying the initial 
phonological and semantic representations, and varying the 
initial randomized weights on the connections between 
units. Each simulation run of the model was used as a 
separate participant in the analyses. 

 
 

a    b 

 
 

 
Figure 2. (a) Correlation among phonological 

representations for all patterns, for patterns within the same 
category. and across different categories, at first and tenth 
iteration of learning. (b) Correlation between phonology and 
semantic representations at first and tenth iteration for all 
patterns, patterns within the same category, and patterns in 
different categories. 

 
Table 1: Mean error (SD in parentheses) for 

phonology→semantics, and semantics→phonology 
mappings at first and tenth iteration of training. 

 
Iteration phon→sem sem→phon 
1 2.40 (1.42) 116.29 (32.45) 
10 1.31 (.75) .03 (.07) 

Results and Discussion 
The first prediction was that over iterations of the model, the 
model would learn to map between phonology and meaning 
(comprehension task), and meaning to phonology 
(production task) with less error. We compared the mean 
square error of the model’s actual productions versus the 
target semantic representation across the meaning layer 
when the phonology was inputted, and the mean square 
error across the phonology layer when the meaning layer 
was inputted, we compared the error after the first iteration 
to that after the tenth iteration. The error value provides a 
reflection of how accurately the model reproduces the 
semantic and phonological representations of the words. 
Table 1 shows the results. 

For both comprehension and production tasks, there was a 
reduction in error over iterations, t(19) = 3.11, and 15.01, 
both p < 0.01, thus the generations of learning resulted in 
easier comprehension and production of the patterns. 

To determine the changes that actually occurred to the 
phonology representations as a consequence of the iterated 
learning, we measured the cosine distance between each pair 
of phonological patterns and then computed the mean of 
these distances for each simulation run. High mean cosine 
values indicate that there is similarity among the patterns. 
We took this measure at the first iteration and at the tenth 
iteration. The results are shown in Figure 2a. From first to 
tenth iteration, the correlation increased among the 
phonological representations, t(19) = 18.09, p < 0.001. To 
determine whether this increased correlation was due to 
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words of the same (semantic) category becoming more 
similar to one another, or whether words of distinct 
categories were becoming more aligned, we distinguished 
the cosine distances among phonological representations of 
the same category, and those among representations of 
different categories. The results are also shown in Figure 2a. 
An ANOVA with same/different category and first/tenth 
iteration on mean cosine distance for each simulation run 
resulted in a significant main effect of same/different 
category, F(1, 19) = 8.46, p < 0.01, indicating that same 
category responses were more correlated than different 
category. There was also a significant main effect of 
iteration, F(1, 19) = 327.40, p < 0.001, reflecting the general 
increase in correlations from first to tenth iteration. The 
interaction was also significant, F(1, 19) = 27.72, p < 0.001, 
showing that the correlation increased more sharply for 
same category responses than different category responses, 
though the magnitude of the difference was small. Thus, the 
model introduced systematicity at the category level into the 
phonological representations resulting in easier acquisition 
of the patterns at the end of the set of iterations. 

To determine the extent to which the mappings between 
phonology and semantics introduced greater or less 
arbitrariness in the mapping, we correlated the cosine 
distances between each pair of phonology representations 
and each pair of semantics representations. If patterns that 
are close together in phonology are also close together in 
semantics and patterns that are distant in phonology are 
distant in semantics then the correlation will be high, 
representing systematicity in the mapping. If patterns that 
are distinct in phonology are similar in semantics then the 
correlation will be low, indicating arbitrariness. 

The results are shown in Figure 2b. For all patterns, there 
was an increase in correlation between the phonology and 
the semantic spaces from first to tenth iteration, t(19) = 
4.65, p < 0.001. There is thus an increase in systematicity 
across the iterations. To determine whether this change was 
within each category, indicating that words of the same 
category were becoming increasingly systematic with 
respect to their meanings, or whether the change was due to 
systematicity across categories, we measured the correlation 
between distances just for words within the same category, 
and compared this to distances for words occurring in 
distinct categories.  

The results are again shown in Figure 2b. An ANOVA 
with same/different category, and first/tenth iteration was 
performed. There was a marginally significant main effect 
of same/different category, F(1, 19) = 3.81, p = 0.07. There 
was a significant main effect of iteration, F(1, 19) = 58.25, p 
< 0.001, as correlations increased from first to tenth 
iteration. There was also a significant interaction, F(1, 19) = 
4.77, p < 0.05, indicating that for the first iteration there was 
little difference in the correlation between phonology and 
semantics for patterns in the same versus different 
categories, but that after ten iterations, the correlation was 
substantially higher for patterns of different categories than 
same categories. 

It may be that the development of systematicity at the 
category level and arbitrariness at the individual word level 
is an intermediate stage in the model’s development to an 
optimal representation for the language, where this final 
optimal state is fully systematic. In order to rule out this 
possibility, the next simulation tested language change when 
the initial language was highly systematic. 

Emergent structure from systematic origins 

Method 
Architecture 
The architecture was identical to the first simulation. 
Training and testing 
The training and testing were identical to the first simulation 
except that the initial phonological representations were 
highly correlated with the semantic representations for each 
pattern. Each phonological representation was generated by 
taking the semantic representation for that pattern and 
varying each dimension by a random value in the range [-
0.25,0.25].  
 

a    b 
 

 
 

 
Figure 3. (a) Correlation among phonological 

representations for all patterns, for patterns within the same 
category. and across different categories, at first and tenth 
iteration of learning for systematic origin model. (b) 
Correlation between phonology and semantic 
representations at first and tenth iteration for all patterns, 
patterns within the same category, and patterns in different 
categories for systematic origin model. 

 
Table 2: Mean error (SD in parentheses) for phonology-

>semantics, and semantics->phonology mappings at first 
and tenth iteration of training for the second simulation. 

 
Iteration phon->sem sem->phon 
1 1.06 (0.52) 18.00 (4.92) 
10 15.35 (7.02) 0.003 (0.009) 

Results and Discussion 
In terms of the model’s error, for the production task there 
was a significant increase in error between first and tenth 
iteration, t(19) = -9.10, p < 0.001, but a significant decrease 
for the comprehension task, t(19) = 16.39, p < 0.001 (see 
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Table 2). Thus, systematic mappings resulted in easier 
acquisition, but greater difficulties in producing 
discriminating output, and the model adapted the 
representations to meet better the production task. 

The correlations among the phonological representations 
were compared between first and tenth iterations, and as 
with the initial arbitrary mapping the correlations increased, 
t(19) = 31.15, p < 0.01. For the same/different category 
comparing first and tenth iteration in an ANOVA, there was 
a significant main effect of same/different, F(1, 19) = 
137.99, p < 0.001, with same category resulting in higher 
correlations. There was a significant main effect of 
first/tenth iteration, F(1, 19) = 962.90, p < 0.001, and a 
significant interaction, F(1, 19) = 4.64, p < 0.05. The 
difference between same/different category was greater at 
the tenth iteration (see Figure 3a). 

For the correlations between phonology and semantic 
representations comparing first and tenth iteration, the 
correlation decreased with time, t(19) = 6.52, p < 0.001. An 
ANOVA with same/different category and first/tenth 
iteration resulted in a significant main effect of 
same/different, F(1, 19) = 52.15, p < 0.001, with same 
category resulting in higher correlation than different 
category. There was also a significant main effect of 
iteration, F(1, 19) = 4.90, p < 0.05, and a significant 
interaction, F(1, 19) = 17.84, p < 0.001, with a decrease in 
correlation between first and tenth iteration for same 
category but an increase in correlation for different category 
correlations (see Figure 3b). As with the model beginning 
with fully arbitrary mappings, arbitrariness increased to a 
greater extent for words belonging to the same category. 

General Discussion 
The results indicate that the model adapted phonological 

representations to become easier to map onto semantics. The 
model’s general learning constraints shaped the phonology 
of the language to make mapping to and from semantics 
easier for future models to acquire. Investigating the actual 
changes in the phonological representations from first to 
tenth generation revealed that this ease of learning was 
accomplished through two primary changes in the 
representations that resembled the design features of natural 
language. 

First, the iterations of the language increased the 
similarity among words of the same category in terms of 
their phonological representation. This accords with 
observations over the variety of phonological and prosodic 
cues that reflect grammatical categories of words cross-
linguistically (Farmer, Christiansen, & Monaghan; 2006; 
Monaghan, Christiansen, & Chater, 2007). Indeed, for 
English, there are now more than 20 distinct phonological 
and prosodic properties that relate to grammatical category 
distinctions (Monaghan & Christiansen, 2008).  

The inverse model presented here showed that such 
coherence with respect to category structure can emerge as a 
consequence of pressures of learning. The inverse model 
instantiated learning constraints into the representations 

themselves, and these learning constraints were expressed 
by reflecting the output category structure within the input 
phonology. In artificial language learning studies, such 
reflections of category structure within phonology has been 
shown to result in improved learning of categories (Frigo & 
McDonald, 1998; St Clair, Monaghan, & Ramscar, 2009), 
and may indeed be vital for effective acquisition of 
grammatical categories (Braine, 1987). The model points to 
the way such phonological characteristics of words can 
become imprinted within the language as a consequence of 
general-purpose learning mechanisms exerting their 
influence through generations of language learners. 

Second, the results of the model in terms of the properties 
of the mapping between phonology and semantics show in 
addition that arbitrariness can sit alongside systematicity 
indicated at the category level. For words of the same 
semantic category there is greater distinction between 
individual phonological patterns in terms of the precise 
semantic representation that they map onto. For words of 
different categories, there is greater expression of words or 
similar sound relating to meanings that are similar. This can 
be interpreted in terms of the coherence among the 
phonological representations being tempered by the 
additional requirement to distinguish particular semantic 
representations. Thus, emerges systematicity at the category 
level, but arbitrariness for mapping between individual 
patterns.  

In this respect, the iterative inverse modeling results 
presented here relate to learning studies of static artificial 
languages that map between phonological and semantic 
representations of words. Monaghan et al. (2011) trained 
associative learning models and human participants to map 
between phonological and semantic representations for 
words belonging to one of two categories. They varied the 
properties of the patterns in terms of whether the mappings 
were arbitrary or systematic between phonology and 
semantics, and also the extent to which additional 
phonological cues provided information about the general 
category to which the word belonged. Learning was most 
accurate for both the associative learning model and the 
behavioural results when the mapping between phonology 
and meaning was arbitrary, but with coherence at the 
category level. The iterative modeling presented here 
demonstrates that similar general purpose learning 
mechanisms imposed by requirements to associate between 
two sets of representations can result in an attuning of the 
representations themselves to approximate this structure as a 
consequence of constraints imposed in learning the language 
being expressed in production. 

The model was trained with a starting language that was 
either fully arbitrary or largely systematic. These situations 
can be seen to resemble two theories of the origins of 
language, where words emerge either from articulatory 
noise (Jespersen, 1922), or from iconic or sound-symbolic 
forms (Ramachandran & Hubbard, 2001). In both cases, we 
have shown that there is an increase in accuracy of 
reproduction of the language across generations, and that 
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this is coupled with generated systematicity at the category 
level and greater arbitrariness in the form-meaning 
mappings within those categories. Future work may also 
permit investigation into whether the emergent 
pronunciations are more likely to result from iconic or noisy 
initial forms. 

The starting point for this modeling approach was to 
demonstrate how learning may, over generations of learners, 
affect the structure of natural languages. In this respect, the 
modeling demonstrates that “design features” of languages 
may fall under the remit of the cognitive sciences in 
explaining how and why such properties are observable 
within language. Plaut and Kello (1999) demonstrated how 
an inverse model can account for the development of 
segmental phonology – a contributor to the design feature of 
discreteness, and we have shown here how arbitrariness of 
form-meaning mappings is an emergent property of 
constraints on learning in a similar model. Though the 
model learns only a small set of patterns, and consequently, 
the results should be treated cautiously, the observations 
tally closely with computational and behavioural studies on 
learning effectiveness from different structures of a 
language’s vocabulary. The model presented here provides 
an iterative step to showing how such design features can 
emerge spontaneously within a learning system. Natural 
languages may possess “design features”, then, not as 
necessary, definitional properties, but rather because having 
such structure facilitates learning, and over generations this 
process of learning becomes impressed within the structure 
of language itself. 
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