
UC Davis
UC Davis Previously Published Works

Title
A computational and experimental study of thermal energy separation by swirl

Permalink
https://escholarship.org/uc/item/7q07f163

Authors
Kobiela, B
Younis, BA
Weigand, B
et al.

Publication Date
2018-09-01

DOI
10.1016/j.ijheatmasstransfer.2018.03.058
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7q07f163
https://escholarship.org/uc/item/7q07f163#author
https://escholarship.org
http://www.cdlib.org/


International Journal of Heat and Mass Transfer 124 (2018) 11–19
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
A computational and experimental study of thermal energy separation
by swirl
https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.058
0017-9310/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: bayounis@ucdavis.edu (B.A. Younis).
B. Kobiela a, B.A. Younis b,⇑, B. Weigand a, O. Neumann c

a Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, 70569 Stuttgart, Germany
bDepartment of Civil & Environmental Engineering, University of California, Davis, CA 95616, USA
cDepartment of Mechanical Engineering, University of Applied Sciences, 24149 Kiel, Germany

a r t i c l e i n f o
Article history:
Received 22 December 2017
Received in revised form 14 March 2018
Accepted 16 March 2018
Available online 21 March 2018

Keywords:
Energy separation by swirl
Turbulent heat fluxes
Ranque-Hilsch effect
a b s t r a c t

When compressed air is introduced into a tube in such a way as to generate a strong axial vortex, an
interesting phenomenon is observed wherein the fluid temperature at the vortex core drops below the
inlet value, while in the outer part of the vortex, the temperature is higher than at inlet. The most familiar
manifestation of this phenomenon is known as the Ranque-Hilsch effect, and several alternative expla-
nations for it have been proposed. In this study, we present an analysis of the heat transfer mechanism
underlying this phenomenon, based on consideration of the exact equation governing the conservation of
the turbulent heat fluxes. The outcome is a model that explicitly accounts for the dependence of the heat
fluxes on the mean rates of strain, and on the gradients of mean pressure. These dependencies, which are
absent from conventional closures, are required by the exact equation. To verify the model, an experi-
mental investigation of flow in a swirl chamber was conducted, and the measurements were used to
check the model’s performance as obtained by three-dimensional numerical simulations. Comparisons
between predictions and measurements demonstrate that the new model yields predictions that are dis-
tinctly better than those obtained using conventional closures.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Vortices that influence the local temperature distribution are
frequently encountered in nature and in engineering practice. In
the core of a strong vortex, for example, the static temperature is
significantly lower than the ambient temperature. It is for this rea-
son that water vapour condenses in the funnel of a tornado, and in
the core of the wing tip vortex of an aircraft landing in humid air.
An extreme manifestation of the effect of vortical motion on local
temperature is seen when compressed air is introduced into a cir-
cular tube via tangential inlet slots designed to induce a strong
axial vortex. Measurements show that in the core of the vortex,
the temperature (both static and total) drops to a value lower than
that at inlet, while in the outer part of the vortex, it is higher. The
most familiar manifestation of this phenomenon of ‘‘thermal
energy separation” is the Ranque-Hilsch effect (Fig. 1). Another
manifestation, which is the subject of this study, is the flow in a
swirl chamber where in the absence of a cold-air outlet, the
temperature separation is evident in a substantial decrease of
temperature at the vortex axis relative to the inlet value.
Several alternative explanations of the Ranque-Hilsch effect
have been put forward since the phenomenon was first observed
by Ranque [1] and elaborated on further by Hilsch [2]. A thorough
review of the literature on this subject can be found in Eiamsaard
and Promvonge [3]. Behera et al. [4], for example, assumed that the
mechanism is related to viscous shear that arises due to the strong
radial variation of the circumferential velocity. Kurosaka [5] attrib-
uted the effect to ‘‘acoustic streaming”. When flow occurred in a
vortex tube with an open outlet, measurements showed that the
temperature in the vortex core was lowered, vortex breakdown
occurred and pressure fluctuations with descent frequencies.
When the pressure fluctuations were suppressed by using Helm-
holz resonators, the temperature in the vortex core increased and
the vortex breakdown did not occur. Gutsol [6] assumed that there
is a ‘‘sorting” of fluid particles with different speeds and therefore
energy separation occurred due to centrifugal forces, i.e. faster par-
ticles move radially outwards. Eckert [7] explained the tempera-
ture change by adiabatic compression processes. The uncertainty
regarding the mechanism underlying this phenomenon is not
diminished by recent experimental findings. Thus, while the phe-
nomenon is clearly evident when the working fluid is air [8–10],
the situation is far less clear when the working fluid is water.
Balmer [11], for example, in experiments in water, showed that a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2018.03.058&domain=pdf
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Fig. 1. Schematic view of a Ranque-Hilsch tube.
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temperature separation can still be observed, but the static tem-
perature of the cold water at outlet was higher than that at inlet.
Clearly compressibility effects that will have been absent from
the water experiments will have played a more important role
than hitherto suspected. This is confirmed in the study of Polihro-
nov and Straatman [12] who considered the simplified but related
case of the radial flow of a compressible fluid taking place in a uni-
formly rotating adiabatic duct. From consideration of the equation
governing the conservation of energy in a rotating fluid under adi-
abatic conditions, they derive an expression for the total tempera-
ture that shows this quantity to depend on both the axial and
angular velocities and hence vary in the radial direction leading
to temperature separation. Their analysis highlighted the impor-
tant role of compressibility in the process of temperature separa-
tion since, in its absence, the fluid cannot give away internal
energy and hence cooling cannot take place.

The numerical simulation of flows in which thermal energy sep-
aration as manifested by the Ranque-Hilsch effect has also received
much attention and comprehensive reviews of previous work in
this area can be found in [13,14]. Farouk and Farouk [15] reported
results obtained with Large-Eddy Simulations that showed that,
while the flow field was well predicted, the total temperature sep-
aration at the cold exit underpredicted the measurements. Most
other previous numerical studies of the thermal energy separation
as manifested by the Ranque-Hilsch effect have been based on the
solution of the Reynolds-averaged form of the equations governing
the conservation of mass, momentum and energy [3,4,9]. In this
approach, closure models are needed to approximate the unknown
turbulence correlations that arise from the averaging process.
While a variety of different models were used to obtain the Rey-
nolds stresses, the turbulent heat fluxes were invariably modelled
by using Fick’s law in which the turbulent diffusivity was defined
on the basis of a constant turbulent Prandtl number. The outcomes
were generally the same: the predicted difference in total temper-
ature was always smaller than that observed in experiments.
Moreover, the calculated profile of static temperature exhibited a
maxima on the tube axis and thereafter a decrease towards the
adiabatic tube wall. This is contrary to the measured behaviour
where the static temperature at the tube axis was in fact at min-
ima. Taken together, these results strongly suggest that the simple
model for the turbulent heat flux is not adequate in this case. In the
study of Polihronov and Straatman [12] mentioned earlier, compu-
tations were performed of the flow in a rotating rectangular duct
with adiabatic walls with heated flow introduced at the inlet. Com-
parisons of the temperature drop between inlet and outlet as com-
puted with their theoretical model with results obtained from
solving the conservation equations in three dimensions showed
very close agreement between the two. The authors point out a
number of important differences between the rotating duct flow
considered, and the more complex flow in a vortex tube notably
in the necessity of a hot fluid outlet in the vortex tube flow and
the absence of such an outlet in the rotating duct case. The patterns
of thermal energy transfer, being partly dependent on turbulent
diffusion, wil thus be different in the two cases and hence the need
for further computations to demonstrate the utility of the theoret-
ical model in a vortex tube flow.

In this paper, we put forward an explanation for the thermal
energy separation by swirl based on analysis of the fundamental
equations governing conservation of momentum and thermal
energy in vortical flows. It will be shown that the phenomenon
can be explained from consideration of the thermal energy trans-
port associated with the turbulent heat flux and the turbulent
volume work in a pressure gradient field in a compressible fluid.
A model for the turbulent heat fluxes that can account for these
effects is proposed, and its validity is checked by comparisons with
experimental data obtained in a swirl chamber.
2. Analysis and model development

The exact equations that govern the conservation of the turbu-
lent heat fluxes in compressible flows are obtained from the
Navier-Stokes and energy equations by replacing the instanta-
neous variables by the sum of mean and fluctuating parts, and by
time-averaging after some manipulation. Le Ribault and Friedrich
[16] give the outcome as:
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where U; T and P are the mean components of velocity, temperature
and pressure, respectively, u; t and p are their fluctuating values, q is
the density, cp is the heat capacity at constant pressure,
sijð¼ lð@ui=@xj þ @uj=@xiÞ � 2=3lð@uk=@xkÞdijÞ is the stress tensor
with l being the dynamic viscosity and qjð¼ �k@T=@xjÞ is Fourier’s
heat-flux vector with k being the molecular diffusivity [16].

While Eq. (1) can be used to obtain the turbulent heat fluxes
after the unknown correlations that appear there have been suit-
ably modeled, it would be more convenient from a practical stand-
point to use this equation to derive an algebraic model that is
simpler to implement in a computational procedure yet one that
contains all the requisite dependencies to represent the effects of
compressibility, turbulence, and the mean rates of strain. In this
regard, attention is drawn to the group of terms that appear on
the last line of Eq. (1). These terms, which originate from expansion
of uiDðP þ pÞ=Ds, represent the contribution to the turbulent scalar
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fluxes due to the work done by the pressure field. In formulating
the heat-flux model, it is important to note that the term in that
group that contains the mean pressure gradient does not also con-
tain gradients of temperature or of mean velocity. This suggests
that for the algebraic model to accurately reflect the contributions
made by these terms, it should be formulated in the form:

�quit ¼ DTij
@T
@xj

þ Dpij

@P
@xj

ð2Þ

where DT ij is the turbulent diffusivity tensor [17] which is unknown
and in need of approximation, and Dpij is a second-order tensor that
is a function of the Reynolds-stress tensor and the turbulence time
scale but not a function of the velocity or temperature gradients. In
this work, and following usual practice, this time scale is assumed
to be proportional to the ratio k=� i.e. of the turbulence kinetic
energy to its rate of dissipation by viscous action.

Several proposals for modelling DT ij can be found in the litera-
ture. In this study, we adopt the proposal of Younis et al. [19]
who used tensor representation to obtain an explicit expression
for uit in terms of the vector and tensor quantities suggested by
Eq. (1). When the mean pressure gradient is finite, the following
functional relationship is obtained:
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Smith [18] gives the general representation for uit, a first-order
tensor, in terms of the first- and second-order tensors in the func-
tional relationship of Eq. (3). This representation and the assump-
tions underlying its simplification for the case with no pressure
gradients are given in [19] and hence will not be reproduced here.
When the gradients of mean pressure are finite, additional terms
arise. If the terms that involve the products of two second-order
tensors are dropped (which is in keeping with the approximations
of the previous study), the following pressure-gradient related
terms remain:
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where the as are linear multipliers that are required for dimen-
sional consistency.

It is immediately evident that only one of the terms in this rep-
resentation corresponds in form to the term in the exact equation
(Eq. (1)) that includes the gradients of mean pressure; specifically,
the term that involves the product of the Reynolds stresses and the
mean pressure gradient. The remaining terms either include gradi-
ents of temperature and velocity which are not present in the exact
equation, or, for dimensional consistency, would require the intro-
duction of a dependence on the temperature variance which is also
absent from the exact equation. It is for this reason that it is argued
here that the term involving the Reynolds stresses should alone be
included in the model for uit. After inclusion of the terms from the
proposal of Younis et al. [19], the complete model now reads:
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It is worth noting that the additional term, being independent of
the temperature gradients, implies that in an initially isothermal
turbulent flow, such gradients can be generated by the application
of pressure gradients.

The model given by Eq. (4) bears some similarity to an earlier
model that was proposed by Deissler and Perlmutter [20] based
on the theory of turbulent volume work in a pressure gradient.
By utilizing certain empirical analogies with atmospheric pro-
cesses, they proposed that the pressure gradient term should be
included in the model for turbulent fluxes in the form:

�uit ¼ kt
@T
@xi

� 1
qcp

@P
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ð5Þ

where kt is an eddy diffusivity. Their analytical solutions for the
temperature distribution in a Ranque-Hilsch tube showed a static
temperature distribution corresponding to an adiabatic change of
state over the radial pressure distribution. The minimum value of
static temperature was predicted to occur on the tube axis, in
good agreement with experiments. The model of Eq. (4) can thus
be considered a generalization of the isotropic model of Deissler
and Perlmutter [20] via the presence of uiuj that brings about the
consistency with the exact equation for the heat fluxes. The new
model also provides a convincing explanation for the need for the
explicit inclusion of a dependence on the gradients of mean
pressure.

The complete model of Eq. (4) contains a number of coefficients
that need to be determined. Of those, the coefficient of the original
model of Younis et al. [19] that were determined by reference to
results from Direct Numerical Simulations of some fundamental
heated flows remain unchanged, viz. C1 ¼ �0:0455;C2 ¼ 0:373;
C3 ¼ �0:00373;C4 ¼ �0:0235. This is logical, because in the
absence of a strong pressure gradients, the new model should
revert to its original form.

In determining the new coefficient (C5), consideration must be
given to the fact that the pressure gradient term must be balanced
by the other terms in the model in such a way as to maintain the
correct asymptotic behavior in conditions of strong pressure
gradients and turbulence. This requirement can be seen when
examining the physical process underlying the heat transfer
processes in these conditions.

Briefly, turbulent eddies transport small amounts of fluid coun-
ter to the local pressure gradient. When moving along the pressure
gradient into an area with higher pressure, these fluid volumes are
compressed and volume work is done leading to rise in fluid tem-
perature. In their final position the temperature is equalized to the
new environment due to heat conduction. In strong turbulence this
mechanism is much stronger than heat conduction and turbulent
heat transport due to the temperature gradient, it results in a tem-
perature distribution that looks like an adiabatic change of state. A
temperature difference that is larger than the one corresponding to
an adiabatic distribution is physically impossible. This has implica-
tions for the value of C5. When the temperature distribution is sim-
ilar to an adiabatic change of state compared to the pressure
distribution, the influence of the pressure term, which is in part
determined by C5, has to be equal or smaller than the influence
of the terms depending on the component of the temperature gra-
dient, which is parallel to the pressure gradient.

To assess the relative importance of the terms that are functions
of the gradients of temperature and pressure in isolation, we con-
sider the case of flow in the x-direction, with velocity component U
and a pressure gradient @P/@x. To balance the internal heat transfer
due to the pressure gradient, the only relevant gradient of temper-
ature is @T/@x. Under these circumstances, the model of Eq. (4)
reduces to:

0 ¼ C1
k2

�
@T
@x

þ C2
k
�

u2 @T
@x

� C5
1
qcp

u2 @P
@x

� �
þ C3

k3

�2
@U
@x

@T
@x

þ C4
k2

�2
u2 @U

@x
þ u2 @U

@x

� �
@T
@x

: ð6Þ

It is immediately apparent that the terms u2@T=@x and
C5

1
qcp

u2@P=@x are very similar in form. Considering the velocity
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distribution in a vortex in Eq. (6), the terms containing C3 and C4 are
much smaller than the term containing C2, as the included velocity
gradient @U/@x becomes small (in the geometrical point that is
discussed, the velocity component U is equal to the radial velocity.
This is always almost equal to zero). Moreover, the term containing
C1 is of minor importance being much smaller than the term
containing C2.

When the heat transport is accomplished by fluid particles that
are moving along a pressure gradient and work is done, they can
maximally change their temperature according to an isentropic
change of state. Thus, due to turbulence in a pressure gradient,
the static temperature changes in its limit to a distribution adapt-
ing an adiabatic change of state compared to the pressure distribu-
tion. In this case the turbulent heat flux has to tend to zero, when
neglecting heat conduction and convection. With this assumptions
only the term belonging to the coefficient C2 is able to balance the
pressure term resulting in the following equilibrium:
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Integrating this equation results in

T
T0

¼ P
P0

� �j�1
j C5

: ð9Þ

For an ideal gas with C5 ¼ 1 an isentropic change of state is
obtained. The fact that turbulent particles move adiabatically in
radial direction has also been noted by Deissler and Perlmutter [20].

Beside this consideration, the coefficient C5 has also been deter-
mined out of the comparison of temperature calculations and mea-
surements in the vortex chamber, which are presented in the next
section. This results in the same value for C5 as the one given
above.
3. Experiments in a swirl chamber

3.1. Geometry

The flow in a swirl chamber provides an ideal manifestation of
thermal energy separation by swirl as the geometry is fairly simple
and the effect can be studied in isolation of other phenomena. In
the present swirl chamber, which is depicted in Fig. 2, air is intro-
duced via two tangential slots into a round tube with diameter
D ¼ 50 mm and length of 1 m. The slots themselves have a length
l ¼ 0:66D and a width of b ¼ 0:1D. The outlet from the tube is open
and the pressure there is atmospheric. The tube walls are assumed
to be adiabatic and the inlet temperature was maintained at a con-
stant value of TE ¼ 300 K.
Fig. 2. Geometry of a
The strength of swirl is generally quantified by the swirl num-
ber i.e. by the ratio of the flux of tangential momentum IH to that
of axial momentum Ix:

S ¼ IH
RIx

¼
R R
r¼0 qWU2p r2 dr

R
R R
r¼0 qU2 2p r dr

: ð10Þ

where R is the pipe radius, r is the radial coordinate, U is the axial
component of velocity and W the tangential velocity. For the flow
inside a Ranque-Hilsch tube, the axial flow is bi-directional in the
sense that the flows in the central core and the periphery move in
opposite directions and thus the swirl number as defined in Eq.
(10) would not be an appropriate indicator of the strength of swirl
at a given streamwise section. At inlet to the swirl chamber, how-
ever, the axial flow is uniformly directed across the entire section
and hence the swirl number as defined in Eq. (10) is a meaningful
indicator of the strength of swirl at that location. This being the
case, the inlet swirl number in the experiments is obtained as
SI ¼ 5:30.

The Reynolds number is defined with the mean axial velocity of
the flow U0 and the tube diameter

ReD ¼ U0D
m

¼ 4 _m
qpDm

: ð11Þ

In the present experiment, the mean axial velocity was
U0 ¼ 6:18 m=s and ReD ¼ 20; 000.

3.2. Instrumentation

A schematic representation of the test rig used for the present
experiments is shown in Fig. 3. Air entered the test section through
a conical inlet where the mass flow has been measured using a
laminar flow element (TetraTec LMF 50MC02-02-FS). According
to the manufacturer, this mass flow element is accurate to within
0:15% of the actual value in the range 300–2400 l/min. From the
mass flow element, the flow passed through a plenum chamber fol-
lowed by a honeycomb flow straightener before entering the swirl
chamber via the tangential slots. Downstream of the swirl cham-
ber, the flow passed through a 500 mm long tube leading to a sec-
ond plenum. The tube was made out of Plexiglass with a wall
thickness of 20 mm. Thus the outer wall can be considered to be
adiabatic. From there the air was sucked by a vacuum pump. In
the PIV experiments, small oil droplets where injected directly
after the first plenum.

Measurement of temperature was with thermocouples (type K,
Omega 5SCTT-KI-40-2 M) with a manufacturer quoted accuracy of
0:3 K and a response time of 0:02 s at 18 m=s air speed. The voltage
of the thermocouples was measured with an Agilent 34830A ana-
lyzer with external temperature reference. To measure the radial
profile of fluid temperature, the test rig was equipped with a
traversing mechanism that spanned the entire range. The wall
swirl chamber.



Fig. 3. Setup of the experimental test rig.
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temperature TW was measured using ten thermocouples that were
placed directly below the surface at different axial positions. Mea-
surement of velocity was by using a PIV system (Lavision). The air
flow was seeded with small oil droplets with a diameter of about
0:25 lm. The oil droplets were generated using a Topas ATM210
aerosol generator which, according to the manufacturer, yields
particle concentrations of the order of 108 particles/cm3. The
Stokes number, with the fluid time scale based on rotation of the
main vortex, turns out to be approximately 1:8� 10�4 – a value
that is sufficiently small for the oil droplets to follow the air flow.
A two-dimensional plane was illuminated twice by a laser sheet
with a very short time delay. Each time an image was captured
with a camera orientated perpendicularly to the laser sheet. The
resolution of the camera is 900 pixels per tube diameter. The local
velocities were deduced from the shift of the oil droplets between
the two images. To do so, cross correlations between correspond-
ing interrogation windows of 16 � 16 pixels of the two pictures
have been calculated. The time delay between two laser flashes
was chosen in a way that the fastest oil droplets have been shifted
by 5 pixels. The shift of the oil droplets could be detected by the
PIV system with an accuracy of 0.1 pixels resulting of an measure-
ment error of 2% of the highest velocity in this section. The velocity
field in each tube section is the result of the averaged value of 200
single measurements.
4. Results and discussion

4.1. Computational details

The computations were performed using the compressible flow
form of the Ansys CFX (v. 11sp1) software in which the governing
equations are discretized by second-order accurate finite-volume
methodology. The unknown Reynolds stresses were obtained using
an explicit algebraic Reynolds stress model [21,22] incorporating
the modification proposed byWallin and Johansson [23] to account
for streamline curvature. This combination of closures was found
to yield sufficiently accurate predictions of the Reynolds stresses
for input into the model for the turbulent heat fluxes. Implementa-
tion of the latter into the computations software was fairly
straightforward and was accomplished via user defined subrou-
tines. For comparison, a model with a constant turbulent Prandtl
number Prt ¼ 0:9 was also used. The assumption that the flow in
the swirl chamber is axi-symmetric, which is often made in the cal-
culation of these flows, was not invoked here. Instead, fully three
dimensional computations were performed on a number of
structured O-grids with varying number of cells, with the finest
consisting of 1.5 million non-uniformly distributed active cells.
The first grid point near the wall was placed at a distance yþ1 < 1
(where yþ ¼ yus=m with y being the normal distance to the wall,
and us is the shear velocity). This was done to ensure that the com-
putations accurately captured the steep temperature gradients
that occurred there. The refinement factor for the thickness of
the grid cells from the wall is 1:20.

The sensitivity of the computed results to grid density and dis-
tribution was assessed using the Grid Convergence Index (GCI)
method. After calculating the numerical solution on three grids
with different number of cells, an asymptotic solution on a grid
with an infinite number of cells is estimated by Richardson extrap-
olation. This allows for the error between the actual numerical
solution and the asymptotic solution to be estimated. In the pre-
sent study (with SE ¼ 2:95 and ReD ¼ 20; 000), the number of cells
of the used grid was bisected twice. The estimated mean error of
the axial velocity is 0:76%, for the circumferential velocity 1:28%
and for the temperature 0:26%.
4.2. Comparisons with measurements

The computed and measured cross-stream profiles of the axial
component of velocity are compared in Fig. 4. The results are pre-
sented at three streamwise locations viz. z=d ¼ 6:2, 9 and 15.5. As
expected, the computational results are exactly symmetric around
the centerline. The adverse pressure gradients set-up by the swir-
ling motion leads to the establishment of a central region of
reversed flow with the velocity maxima now occurring closer to
the outer walls. The correspondence with the measured profiles
are generally good considering the inevitable uncertainty in the
latter which is estimated at around 5% at the centerline.

The computed and measured circumferential velocity at four
streamwise locations along the vortex chamber are compared in
Fig. 5. The circumferential velocity was non-dimensionalized using
the average streamwise velocity. As can be seen from the figure,
and as suggested by Marsik et al. [24], the flow field in the vortex
chamber can be viewed as a combination of a Rankine vortex and a
wall boundary layer. In the core of the vortex the fluid rotates like a
solid body with constant angular velocity. The circumferential
velocity increases linearly with the radius. Around the viscous core
there is a transition area, where the shape of the flow changes to
the outer flow region with an almost potential like vortex. Near
the wall, the existence of a viscous boundary layer is apparent.
The circumferential velocity decreases over the chamber length



Fig. 4. Predicted and measured axial velocity SI ¼ 5:30;ReD ¼ 20;000. From top:
z=D ¼ 6:2, 9.0, 15.5.

Fig. 5. Predicted and measured circumferential velocity SI ¼ 5:30;ReD ¼ 20;000.
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as the swirl dissipates. The viscous core is most pronounced in the
front part of the chamber (z=D ¼ 2:7). Its diameter decreases over
the tube length and the position of the maximal velocity in each
cross section moves closer to the axis. Near the entrance to the
chamber, the calculated and measured velocity profiles agree fairly
well. The streamwise development of the vortex core does not
appear to be predicted very accurately, as the angular velocity
remains constant, whereas in the measurements the angular veloc-
ity increases, and the diameter of the viscous core decreases faster
as in the numerical computation. Outside the viscous core, in the
region of the potential vortex, the agreement between numerical
calculations and experiments is far better. Experimental errors in
PIV measurements, evident here in the high-frequency oscillations
near the core, are estimated at 20%.

The predicted and measured contours of the axial velocity are
compared in Fig. 6. The swirl in the vortex chamber is sufficiently
strong so as to cause vortex breakdown. This is evident by the pres-
ence of forward streamwise flow near the wall, and reversed flow
in the core over the whole length of the chamber. In obtaining the
measurement of axial velocity near the entrance to the chamber,
the circumferential velocity there was very high to the extent that
the oil droplets left the laser sheet too quickly so no accurate mea-
surements of the axial velocity were possible there. In Fig. 6 this
area is seen shaded in grey in order to make clear that the mea-
surements there are subject to large uncertainty. In the down-
stream end of the chamber, only a few oil droplets remained
within the middle of the core of the vortex. It is thus the case that
the low velocity within the axial backflow in this region was also
subject to high experimental uncertainty.

The computed contours of static temperature are presented in
Fig. 7. It should here again be noted that the outer wall of the tube
is adiabatic. The results were obtained with the newmodel for heat
fluxes (Eq. (4)) with C5 ¼ 1:0. The swirl-induced temperature sep-
aration can clearly be seen there. The static temperature is mini-
mum in the core of the vortex, especially at entrance to the
chamber where the swirl is strongest. Further downstream, the
degree of temperature separation is reduced as the swirl weakens
and with it the radial gradients of static pressure. It is interesting to
note that the predicted mean temperature in a cross section at
entrance to the chamber is lower than near the exit. At first sight,
this would appear to be in violation of the conservation of energy.
However, as there is a large area of axial backflow in the core of the
vortex, it was confirmed that the mass flow averaged transport of
energy at all cross sections of the chamber remained constant.

The predicted and measured cross-stream profiles of static tem-
perature (presented as the ratio Tc=TW of the centerline to wall
temperature) are shown in Fig. 8. Plotted there are results obtained
with the new model with three different values for the coefficient
C5 to check the sensitivity of the results to this coefficient. Also
plotted there are results obtained using the conventional Fourier’s
law with constant turbulent Prandtl number. With the coefficient



Fig. 6. Predicted and measured contours of axial velocity SI ¼ 5:30;ReD ¼ 20;000.

Fig. 7. Predicted contours of static temperature SI ¼ 5:30;ReD ¼ 20;000.

Fig. 8. Predicted and measured streamwise variation of static temperature along
the axis, SI ¼ 5:30;ReD ¼ 20;000.

Fig. 9. Radial distribution of velocity and pressure for
z=D ¼ 0:32; SI ¼ 5:30;ReD ¼ 20;000.
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C5 ¼ 1:0, the new model provides the closest agreement between
the numerical predictions and the experiments. This confirms the
validity of the arguments presented earlier in support of this value.
In the downstream part of the chamber, the centerline tempera-
ture is somewhat underestimated. That is caused by the deviation
of the circumferential velocity shown in Fig. 5. The results obtained
with Fourier’s law show that the temperature separation is drasti-
cally underestimated. At entrance to the chamber, the static tem-
perature is slightly reduced due to the dynamic part of energy,
whereas the wall temperature is predicted as being equal to the
total temperature.

The predicted radial variation of axial and tangential velocities
and of pressure at the streamwise position z=D ¼ 0:32 are pre-
sented in Fig. 9. As the flow is dominated by vortex breakdown,
the axial velocity (uax) is positive near the wall and negative in
the core of the vortex. The circumferential velocity (u/) shows a
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pronounced region with a solid body velocity profile and a bound-
ary layer near the wall. Due to centrifugal forces, the pressure
increases over the radius.

Fig. 10 shows the predicted and measured radial distribution of
temperature, also at z=D ¼ 0:32. Both the static and total tempera-
tures are shown. As expected, the swirl-induced temperature sep-
aration leads to pronounced increase in static temperature with
increasing radial distance from the centerline.

Concerning the temperature measurements, in experiments
such as this one where thermocouples are used, a difficulty arises
since due to the boundary layer effects on the surface of the ther-
mocouples, the temperature values that are measured do not
exactly represent the free-stream temperature but a value in
between T and Ttotal. This is also the case for all other temperature
probes and is usually accounted for by the introduction of a recov-
ery factor f:

Tmeasured ¼ T þ f
V2

2cp
ð12Þ

In the above, by setting f ¼ 0, the static temperature T is obtained,
while setting f ¼ 1 yields the total temperature Ttotal. In this study,
the recovery factor was set to f ¼ 0:9 which is appropriate for the
turbulent flow of air, where the recovery factor scales as

ffiffiffiffiffi
Pr3

p
. There-

fore, the measured temperature is 10% of the dynamic part of the
temperature below total temperature. In order to properly compare
the measured and simulated temperatures, the numerical results
for T were post-processed according to Eq. (12) with f ¼ 0:9. The
result is shown in Fig. 9 where it can be seen to closely match the
measured total temperature Ttotal.

According to the arguments on swirl-induced temperature sep-
aration presented earlier, the static temperature should increase
with the pressure like an isentropic change of state. This behavior
is plotted in Fig. 10 where it is labeled (T=TWtheory). The result
Fig. 10. Radial distribution of temperature for z=D ¼ 0:32; SI ¼ 5:30;ReD ¼ 20;000.
correlates well with the numerically calculated static temperature
distribution. In the viscous boundary layer, the static temperature
increases towards the total temperature. In the core of the vortex
chamber, with the flow being in almost solid body rotation, there
occurs a significant change in total temperature. This is the most
important region for the swirl-induced temperature separation.
In the area with an almost potential like vortex flow, there is only
a smaller increase of total temperature. This corresponds well with
the theory. It can be shown analytically that, in a potential vortex,
the total temperature would be constant when defining the static
temperature to show an adiabatic change of state compared to
the pressure profile and assuming an ideal gas, whereas in a vortex
the shape of a solid body rotation total temperature will increase
with the radius.

Fig. 10 also shows calculations obtained by using Fourier’s law
with a constant turbulent Prandtl number of Prt ¼ 0:9. In contrast
with the results obtained with the new heat-flux model, these fail
to capture the temperature change especially in the tube center.
Indeed the static temperature turns out to be almost constant over
the radius with a very slight increase towards the axis. There is a
small separation of total temperature due to the higher velocity
in the outer parts of the flow. This is the same behavior that can
be expected to occur in incompressible fluids like water, and is a
further demonstration of the important role that compressibility
effects play in swirl-induced temperature separation.
5. Conclusions

The results presented in this paper demonstrate the importance
of accounting for the effects of pressure gradients in the prediction
of swirl-induced thermal energy separation. Conventional models
for the turbulent heat fluxes, exemplified by Fourier’s lawwith con-
stant turbulent Prandtl number, do not take these effects into
account. That the effects of pressure gradients should appear
explicitly in a model for the turbulent scalar fluxes is apparent from
the appearance of these gradients in the exact equations governing
the conservation of these fluxes. An algebraic model for the turbu-
lent heat fluxes was thus developed to explicitly include the
pressure-gradient effects. The model is based on an earlier version
that was limited to incompressible flows in which the pressure-
gradient terms were insignificant. The newmodel introduced a sin-
gle new coefficient whose value was set to unity based on theoret-
ical consideration derived from analysis of an idealized swirling
flow. Verification of this model was performed via comparisons
with experimental data obtained in a swirl chamber. It was found
that at the entry region to the chamber, where the swirl effects
aremost pronounced, the predictions obtainedwith the newmodel
matched quite closely the experimental results to within the esti-
mated accuracy in the latter. It should be noted that the tempera-
ture variations in the experiment were not very large and hence
the close agreement obtained here does not necessarily mean that
the model would be equally successful in predicting the Ranque-
Hilsch regime of parameters where the temperature differences
are much larger. In general, where the velocity field was accurately
predicted, so was the temperature distribution obtained with the
new model. The swirl-induced temperature separation was clearly
evident with a cold vortex core and a temperature distribution that
looks almost like an adiabatic change of state compared to the pres-
sure. In contrast, the results obtained with Fourier’s law and a con-
stant Prandtl number were seriously in error in that the predicted
static temperature profile was almost flat across the swirl vortex.
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