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ABSTRACT OF DISSERTATION 
  

Investigation of LncRNA Isoform-Specific Alterations and MYC Acetylation in 
Cancer 

  
by 
 

Michael Hamilton 
 

Doctor of Philosophy, Graduate Program in Cell, Molecular and Developmental 
Biology  

University of California, Riverside, September 2018 
Dr. Ernest Martinez, Chairperson 

 

The events leading to the development of cancer often involve a series of 

sequential molecular derailments.  The complexities of these derailments are 

frequently specific not only to the cancer type, but can also be specific to an 

individual tumor.  However, despite these challenges, investigations 

characterizing the global or universal aberrations seen in human cancers have 

provided many effective therapeutic strategies to the combat human 

malignancies.  The current dissertation focuses on two neglected areas of study 

in the cancer biology field, the study of lncRNA isoform-specific alterations and 

the post-translational modifications of the critically important MYC oncoprotein in 

cancer.   

In the beginning chapters of this dissertation, we explore isoform-specific 

alterations in a subtype of renal cell carcinomas, known as clear cell renal cell 

carcinoma (ccRCC).  ccRCC is one of the most prevalent cancers within the 

United States, and can be particularly difficult to treat with conventional 

therapies.  As such, new therapeutics strategies are needed to treat ccRCC in its 
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later stages of the disease.  ccRCC has been shown to have severe aberrant 

RNA production and processing, lending itself as a prime candidate to explore 

isoform-specific alterations.  Furthermore, using new computational methods, we 

identified previously uncharacterized events of differential transcript expression 

and usage in ccRCC implicating several novel genes in the pathology.  

Discovered within these transcriptomic analyses was a long non-coding RNA, 

referred to as HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1), 

which was found to be specifically downregulated in ccRCC and regulates key 

genes involved in the hypoxia pathway.  In chapter 3, we investigate HOTAIRM1 

further examining its function in ccRCC and its role in kidney cell differentiation 

and maintenance. 

In the last two chapters, we discuss and evaluate the effects of two disparate 

forms of MYC regulation.  First, we discuss the complex nature of the interplay 

between MYC expression and numerous lncRNAs, in what is referred to as the 

lncRNA-MYC network.  In this review, we reveal the breadth of the complexities 

of how MYC is regulated by lncRNAs and how MYC regulates its oncogenic 

function through the use of lncRNAs.  Finally, with the development of innovative 

transgenic cell lines, expressing different mutant forms of MYC, we demonstrate 

that different acetylation states of MYC can have gene-selective effects and 

consequently alter different molecular pathways. 
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Transcript-specific alterations in cancer 

Since the development of next-generation technologies, investigations exploring 

global gene expression changes in human cancer have been extensive.   These 

analyses have generated significant insights in the universal gene expression 

changes common among several cancers and also the gene expression changes 

that are specific to individual cancers.  However, despite these advancements 

little attention has been given to the transcript-specific alterations that occur.  

While there are likely several reasons for the paucity in transcript-specific 

investigations, one significant contributing factor was the lack of fast and 

accurate computational techniques for such analyses.   

However, within the last two years new accurate computational methods have 

been developed to tackle these challenges observed with transcript-level 

quantifications.  One such program, referred to as kallisto, uses a k-mer based 

approach, and it is currently one of the most accurate and expeditious transcript 

quantification programs available [1].  In short, kallisto works by assigning k-mers 

to compatibility classes (determines what transcript(s) the k-mers could belong 

to) and then determines the intersection of k-mer compatibility classes to assign 

a read to a specific transcript. 

Abnormal RNA splicing and processing is a common occurrence among several 

human cancers [2-4]. Consequently, such altered RNA production and 

metabolism can result in significant changes to the function of coding and non-

coding RNAs.  For example, an alternative spliced isoform of pyruvate kinase, 
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referred to as PKM2, was found to be exclusively expressed in tumor tissues and 

cancer cell lines and was discovered to be necessary for an enhanced oxidative 

phosphorylation phenotype [5].  Furthermore, in vivo experiments demonstrated 

that PKM2 provided a significant tumor growth advantage, and switching to the 

expression of the other isoform of pyruvate kinase, referred to as PKM1, reduced 

tumorigenicity.  This phenomenon of use or exchange of different isoforms in not 

limited solely to cancer, it can be also highly influential in a normal cellular 

environment.  For example, in a recent study examining the gene regulatory 

mechanisms of meiosis, they found that “toggling” back-and-forth between 

translatable and non-translatable transcripts of several genes was shown to be 

one way in which developing cells modulate protein levels [6]. 

Many of the past and current studies interested in transcript-specific alterations 

have focused on identifying novel splicing events and/or exploring the expression 

changes that occur with individual transcripts.  While programs, such as Cufflinks 

and jSplice, have been developed to address the former, the current dissertation 

focuses solely on the global expression changes of currently annotated individual 

transcripts [7-8].  There are two terms frequently used to describe transcript 

expression changes.  The general term referred to as differential transcript 

expression (DTE) is any change in the expression of a transcript, regardless of 

its locus of origin, between two conditions.  Second, is a narrowly defined type of 

DTE referred to as differential transcript usage (DTU), which is the proportional 

change of a transcript relative to the transcripts derived from the same locus [9].  
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An example of an extreme case of DTU is commonly known as isoform 

switching.  Isoform-switching is defined as a switch in the primary transcript 

(most abundant) of given a gene, in which a previously minor transcript becomes 

the most abundant transcript for that gene. 

 

Clear cell renal cell carcinoma 

One promising cancer model system to study the events of altered RNA 

processing and production is in a renal cell carcinoma subtype, known as clear 

cell renal cell carcinoma (ccRCC).  Renal cell carcinomas are one of the top 10 

most prevalent cancers within the United States, and ccRCCs comprise the 

majority of all renal cell carcinomas [10-12].  RCCs are cancers derived 

predominantly from the proximal tubule cells from the cortex of the kidney and 

carry a relative good prognosis provided the cancer is discovered in its earlier 

stages [13, 14].  However, relative to others cancers, RCCs are rather resistant 

to conventional therapeutic strategies, such as chemotherapy and radiation, and 

can be particularly difficult treat in their later stages [15].   

One characteristic feature of ccRCCs is the frequently mutated von Hippel-

Lindau (VHL) gene, seen with ~55% of ccRCCs.  VHL is an E3 ubiquitin ligase, 

which tightly regulates the stability of a family of transcription factors, known as 

hypoxia induced factors (HIFs).  HIFs are responsible for the transcription of 

several genes of which diversely contribute to cancer progression, regulating 

proliferation, angiogenesis, metabolism and metastasis [16].  Additionally, one 
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pronounced abnormal RNA processing event seen in ccRCC is widespread 

transcriptional read-through, in which transcription fails to terminate at the 

canonical termination site and proceeds to an alternative downstream termination 

site [3].  These events frequently lead to the formation of chimeric RNAs in 

ccRCC and are partially attributed to the relatively high frequency mutations 

observed within the histone methyltransferase, known as SET domain containing 

2 (SETD2) [3, 17].  Moreover, many of the splicing factors, including many of the 

SR proteins, have altered expression in ccRCC [18-20].  In a recent example, 

overexpression of a splicing factor referred to as splicing factor 3b subunit 3 

(SF3B3) (commonly upregulated in ccRCC tissue samples), increased the 

inclusion of alternative exon in the EZH2 transcript, and consequently increased 

the proliferative, migratory and tumorigencity of commensurate renal cell lines 

[18].   

Furthermore, as changes in gene-level expression changes may not fully capture 

the changes in the transcriptome that result from these aberrant RNA processing 

events, studies that assess steady-levels of individual transcripts in ccRCC are 

warranted.  Many of the earlier studies exploring transcript-specific changes in 

ccRCC have relied on gene microarray platforms, using differential exon usage 

(DEU) as a surrogate to determine changes to transcript abundances [21-23].  

However, there are several pitfalls to this approach for identifying DTE and DTU.  

First, few annotated transcripts of a given gene are typically evaluated for their 

expression on microarray platforms.  Frequently, only the “best-characterized” 
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transcripts are included in gene microarrays, which could lead to the loss of 

identifying relevant transcripts pertinent to the tissue or cancer of interest.  

Second, as a consequence of including few transcripts in microarray platforms, 

the accuracy of identifying events of DTU is questionable.  The percentage 

change of a transcript, relative to other transcripts for a gene, is highly reliant on 

a comprehensive list of all transcripts derived from that locus.  For example, if 

only 2 transcripts were evaluated for a gene, the percentage changes of the 

transcripts would likely be different than if 5 transcripts were considered for that 

gene, which could lead to dramatically different DTU results.  Lastly, and possibly 

most important, exons are typically shared across more than a single transcript; 

therefore, many of expression differences discovered with the DEU approach are 

the result of expression changes of more than one individual transcript.  In next 

chapter, we use a multifaceted approach using new computational techniques, 

that avoid many of the problems see with previous analyses, to provide a more 

accurate and comprehensive assessment of transcript-specific alterations 

observed in ccRCC. 

 

HOXA transcript antisense RNA, myeloid-specific 1 

Among the results from the aforementioned computational analyses, examining 

transcript-specific alterations in ccRCC, our lab discovered an uncharacterized 

deregulated lncRNA in ccRCC, referred to as HOXA transcript antisense RNA, 

myeloid-specific 1 (HOTAIRM1 or HM1).  Fortuitously, concomitant functional 
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studies exploring the role(s) of HM1 in developing pluripotent mouse stem cells 

and human cancer cells was already in progress.  

HM1 is a relatively highly conserved lncRNA gene, found among several other 

lncRNA genes, within the HOXA cluster.  HM1 is located between HOXA1 and 

HOXA2 and produces three major isoforms: two spliced products with either two 

exons (HM1-3) or three exons (HM1-2-3) and a full length unspliced transcript.  

HM1 was first characterized in 2006 in a study investigating the intergenic 

transcriptional events within the HOXA cluster [24].  Here, the investigators found 

a collinear expression of HM1, and the other ncRNAs, with the surrounding 

HOXA genes upon induction with a morphogen, known as retinoic acid.  The 

same initial study also discovered concomitant changes to the epigenetic 

landscape of the HOXA cluster, with increases in H3K4me2, H3K4me3 and loss 

of the occupancy of the Polycomb Repressive Complex 2 (PRC2). 

In 2009, HM1 was demonstrated to play a role in myeloid differentiation by 

attenuating the induction of HOXA1, HOXA4 and other myeloid differentiation 

genes [25].  At this time, HM1 was given its name as a myeloid specific lncRNA 

due to its high expression in differentiating myeloid cells.  These initial findings 

were further supported by later studies establishing that HM1 regulates cell cycle 

genes and activates the proximal HOXA genes in differentiating NB4 cells [26, 

27].  In an alternative study, also in NB4 cells, HM1 was demonstrated to 

modulate myeloid differentiation by controlling the degradation of the PML-RARA 

oncoprotein.  HM1 was found to act as a miRNA sponge for miR-20a/106b and 
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miR-125b regulating the expression of key genes (E2F1 and DRAM2) involved in 

the formation of autophagosomes [28].  However, it is not entirely clear from 

these studies which of the HM1 isoforms are responsible for the observed 

effects, as the loss-of-function assays performed do not exclusively alter only one 

of the HM1 isoforms.  This remains a vital question to understanding the 

mechanistic actions of HM1, as these studies and our results, support different 

cellular localizations of the HM1 isoforms, and most likely different mechanistic 

roles. 

While our mechanistic understanding of HM1 in differentiating cells has made 

some steady progress, the function(s) of HM1 in most human cancers remains 

largely unknown.  HM1 expression is frequently deregulated in human cancers; 

however, there is little consistency among the cancers as to the nature of the 

deregulation.  In glioblastomas, pancreatic and leukemic cancers HM1 

expression is frequently upregulated, while colon, breast, head and neck tumors 

often exhibit a downregulation of HM1 [29-34].  One study that explored the 

mechanistic role(s) of HM1 used FaDu cells (a hypopharyngeal squamous cell 

carcinoma cell line), and suggested HM1 was acting as a miR-148a sponge 

regulating the expression of DLG Associated Protein 1 (DLGAP1), a gene known 

for its role in the assembly and stability of synapses [33].  However, similar to the 

reasons stated above, many of the HM1 studies in cancer do not clarify which of 

the HM1 transcripts are being evaluated.  Moreover, many of the studies also do 

not consider the absolute expression of HM1 in these cancers, as differential 
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expression of HM1 would be of questionable clinical significance if the 

expression of HM1 very low.  In chapter 4, we attempt to provide better clarity to 

the functional role of one of the HM1 isoforms (HM1-3) and investigate its role in 

ccRCC.  

 

The lncRNA-MYC network in cancer 

As our study investigating HM1 in ccRCC and numerous other studies suggest a 

functional role of lncRNAs in human cancers, our lab sought review all of the 

studies linking lncRNAs to the critically important MYC oncoprotein [35].  MYC, 

also commonly known as c-MYC, is one of the most studied genes in cancer 

research.  MYC encodes a basic helix-loop-helix transcription factor that is critical 

to numerous cellular activities including: cell growth, proliferation, apoptosis, 

transformation and metabolism [36-38].  In review of the literature, we discovered 

a rather complex network of regulation between lncRNAs and MYC.   

The MYC locus is located on the long arm of human chromosome 8 in a region 

referred to as a “gene desert,” as few protein-coding genes reside in the region.  

However, there are several lncRNA genes surrounding the MYC locus that play a 

vital role in regulating MYC mRNA and protein expression.  Discussed in the 

review, MYC expression is regulated at the transcriptional and post-

transcriptional levels by lncRNAs.  In one example of a neighboring lncRNA 

gene, the CCAT1 lncRNA was found to facilitate the transcription of the MYC 

locus by maintaining local chromatin interactions via the recruitment of a 
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transcription factor, known as CCCTC-Binding factor or CTCF [39].  Additional 

forms of MYC regulation include post-transcriptional mechanisms such as, 

lncRNAs acting as miRNA sponges for MYC mRNA, and also lncRNAs binding 

directly to MYC regulate the degradation of the protein.  Conversely, we also 

found studies supporting MYC as a transcription factor for many lncRNA genes.   

 

MYC acetylation 

An alternative area of growing interest in MYC research focuses on 

understanding how post-translational modifications (PTMs) alter MYC stability 

and activity.  PTMs that facilitate the degradation of MYC, such as ubiquitination, 

sumoylation and phosphorylation, are the subject of great interest, as increased 

MYC stability is found in many human cancers [40-42].  Additionally, PTMs can 

also modulate the transcriptional and transformative activities of MYC.  For 

example, studies have shown that MYC phosphorylation at Ser-373 (by protein 

kinase C ζ) alters prostate tumorigenesis, and also Cdk5-mediated 

phosphorylation of MYC Ser-62 was essential for transcriptional activation of 

cyclin B1 [43, 44].  These studies demonstrate phosphorylation of MYC, and 

likely other post-translational modifications, are key determinants in MYC 

transcriptional activity and tumorigenesis. 

The role of MYC acetylation is less understood, relative to the other PTMs. 

Histone acetyltransferases (HATs), such as CBP/p300, GCN5 and TIP60, have 

been shown to physically interact with MYC, and have been thought to facilitate 
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MYC-mediate transcription via the acetylation of local histones [45-47].   While 

MYC was also found to be directly acetylated, MYC acetylation did not alter its 

binding to DNA nor was MYC acetylation observed to affect dimerization with 

MAX [45, 48].  However, reductions in MYC ubiquitination were observed with 

concomitant MYC acetylation [45].  As both acetylation and ubiquitination both 

occur on lysines, it was recently suggested that MYC acetylation is likely 

interfering with MYC ubiquitination thereby contributing to enhanced MYC 

stability [42].  There are several lysine residues on the human MYC that are 

acetylated by p300, including K143, K157, K275, K317, K323 and K371 [49].  

Despite these initial findings, it remains unclear whether MYC acetylation alters 

its transcriptional activity.  In the final chapter of the dissertation, we examine the 

global transcriptomic effects of overexpressing three novel MYC acetylation 

mutants in Rat1a cells. 

 

Objectives of the dissertation 

There were two main objectives to exploring transcript-specific alterations in 

ccRCC.  The first goal was to provide a comprehensive resource of all 

differentially expressed transcripts, including all putative coding and non-coding 

transcripts, and identify the key molecular programs altered in ccRCC.  The 

second goal of the study was to highlight the importance of transcript analyses by 

demonstrating an increased sensitivity to detecting transcriptomic alterations 

using gene-level and transcript-level analyses in parallel. 
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In chapter 3, the main goal of investigating HM1 was to discover its function in 

human cancer.  Discovery of a novel downregulation of HM1-3 in ccRCC led to 

our second goal in the study, characterizing the molecular changes that occur 

with loss and gain-of-function of HM1 in renal proximal tubule cell lines. 

The objectives of reviewing the literature exploring the link between MYC and 

lncRNAs was to highlight the mechanisms in which lncRNAs regulate MYC 

expression and to explore the MYC-induced lncRNA genes that likely contribute 

to the transformative abilities of MYC.  Finally, the last goal of the dissertation 

was to explore the suspected gene-selective effects elicited by overexpression of 

different mutant forms of MYC with altered acetylation states. 
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Abstract 

Extensive genome-wide analyses of deregulated gene expression have now 

been performed for many types of cancer. However, most studies have focused 

on deregulation at the gene-level, which may overlook the alterations of specific 

transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the 

best-characterized and most pervasive renal cancers, and ccRCCs are well-

documented to have aberrant RNA processing.  In the present study, we 

examine the extent of this aberrant RNA processing by reporting a 

comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs 

pipeline, investigating coding and non-coding differential transcript expression in 

ccRCC.  We analyzed 50 ccRCC tumors and their matched normal samples from 

The Cancer Genome Altas datasets.  We identified 7,339 differentially expressed 

transcripts and 94 genes exhibiting differential transcript isoform usage in 

ccRCC.  Additionally, transcript-level coexpression network analyses identified 

vasculature development and the tricarboxylic cycle as the most significantly 

deregulated networks correlating with ccRCC progression.  These analyses 

uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 

and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated 

with ccRCC progression.  As ccRCC still presents treatment challenges, our 

results provide a new resource of potential therapeutics targets and highlight the 

importance of exploring alternative methodologies in transcriptome-wide studies. 
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Introduction 

Renal cancer is one of the ten most frequently occurring cancers found in both 

males and females in the United States [1].  In 2018, an estimated 65,340 new 

cases of renal cancer will be diagnosed within the US with ~96% of them being 

renal cell carinomas (RCC) [2].  Most RCC tumors originate from the epithelial 

cells of proximal tubules within the cortex of the kidney, and RCCs carry with 

them several therapeutics challenges [3, 4].  Specifically, both chemotherapy and 

radiation treatments are largely ineffective, patients can be frequently asymptotic, 

and metastatic RCC has a relatively high 5-year mortality rate of >90% [5].  

Among the four major histological RCC subtypes, clear cell renal cell carcinoma 

(ccRCC) is the most common, observed within 75% of cases [6]. 

One of the characteristic features of ccRCC is the frequently mutated von Hippel-

Lindau (VHL) gene, found within ~50% of ccRCC tumors, or loss of the short arm 

of chromosome 3 [7-10].  Loss of a functional VHL protein, a E3 ubiquitin ligase, 

results in enhanced stability of a family of transcription factors, known as hypoxia 

inducible transcription factors (HIFs) [11].  As a result of elevated HIF proteins, 

changes to expression levels of several HIF responsive genes can occur, such 

as vascular endothelial growth factor (VEGF), MET proto-oncogene (c-MET), and 

transforming growth factor (TGF), altering the pro-angiogenic, invasive and 

proliferative characteristics of cancer cells.  With the advent of large-platform and 

high-throughout techniques, we have greatly improved our understanding of the 

VHL/HIF pathway, and we have expanded beyond this classical model to reveal 
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other key molecular events that occur in ccRCC.  In a recent comprehensive 

study examining ccRCC, an integrative pathway analysis showed one the most 

frequently mutated subnetworks were genes that influence the epigenetic 

landscape, such as PBRM1 and genes in the PBAF SWI/SNF chromatin 

remodeling complex [7].  

However, despite the shift to global gene expression profiling, little attention has 

been given to examining transcript-specific changes in ccRCC and other 

cancers, possibly due to the additional computational constraints compared to 

conventional gene-level analyses.  Aberrant transcript isoforms from altered 

transcription initiation, termination and RNA processing (including altered 

alternative splicing) are well-documented phenomena found within many cancers 

[8, 12-15].  Furthermore, abnormal RNA processing events can have profound 

effects on coding and non-coding RNA species [16, 17].  In a recent example, 

inactivation of a histone methyltransferase, known as SET domain containing 2 

(SETD2), was discovered to be one of the inciting causes of widespread 

transcriptional read-through and abnormal RNA chimera production found in 

ccRCC [16].  

With the advent of alignment-free RNA-Seq quantification algorithms, larger 

scale and more comprehensive transcript-level analyses can now be performed 

with a smaller computational footprint.  An example is kallisto, one of the fastest 

and most accurate transcript-level quantification programs.  Instead of more time 

consuming read alignments, it uses a k-mer approach for quantifying the 
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abundance of transcripts in RNA-seq experiments [18].  More recently, two R 

packages, sleuth and RATs (Relative Abundance of Transcripts), were 

developed that exploit the bootstrap estimates from kallisto to identify events of 

differential transcript expression and differential transcript usage, respectively 

[19, 20].  Differential transcript expression (DTE) is any change in the relative 

abundance of a transcript between two conditions.  Alternatively, differential 

transcript usage (DTU) is the proportional change of the transcripts that a gene 

encodes.  For example, DTU can frequently result in isoform-switching, in which 

the major isoform (most abundant) “switches” with an alternative transcript, and 

thereby that isoform is longer the major isoform of that particular gene.  To our 

knowledge, there are relatively few transcriptome-level studies examining 

differential transcript expression in ccRCC, and these studies have either relied 

on microarray platforms or focused largely on one aspect of differential transcript 

usage (e.g. differential splicing) [21-26].  Importantly, transcript-level analyses 

can add greater resolution to a transcriptome-wide study, as significant DTE can 

evade traditional gene-level analysis techniques.   

The current study uses a multifaceted approach with new highly accurate 

computational methods, not employed by previous studies, quantifying all 

transcript-level alterations in ccRCC, and places these alterations in context key 

biological pathways involved in ccRCC progression (Figure 2.1A).  In doing so, 

we identified several previously uncharacterized deregulated genes implicated in 

ccRCC.  We analyzed 100 RNA-seq datasets (50 matched pair samples) from 
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The Cancer Genome Altas (TCGA) with kallisto to quantify all putative coding 

and non-coding transcripts, sleuth to identify significant differentially expressed 

transcripts (DETs) and RATs to discover events of differential transcript usage 

(DTU).  We identified 7,339 DETs and 94 DTU genes of which 68 genes are 

uncharacterized.  Furthermore, we performed a comparative differential 

expression analysis, using both gene-level and transcript-level analyses, and 

identified novel deregulated genes in ccRCC.  Additionally, we performed one of 

the first weighted transcript-level coexpression network analyses in ccRCC.  

Using WGCNA, we found that transcript networks controlling vascular 

development and TCA cycle were most significantly deregulated and correlated 

with ccRCC tumor stage.  These analyses identified several uncharacterized 

genes as potential modulators of pathways deregulated in ccRCC. 

 

Materials and Methods 

Transcript quantification and differential expression analysis 

A total of 100 fastq RNA-seq files (50 primary ccRCC and 50 normal adjacent 

renal samples were downloaded from The Cancer Genome Atlas (TCGA) legacy 

archive (https://portal.gdc.cancer.gov/legacy-archive/search/f).  Human cDNA 

and ncRNA FASTA formatted transcript files (Ensembl v89 annotation) were 

acquired form the Ensembl ftp site 

(https://www.ensembl.org/info/data/ftp/index.html), and merged to create a 

master file of all putative coding and non-coding transcripts.  All quantification 
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and differential expression analyses were performed using the kallisto-sleuth 

pipeline. Using the default settings, kallisto was used to create an index for 

quantification using the aforementioned FASTA master file.  Subsequently, 

kallisto was used to quantify all putative transcripts using 50 bootstrap samples.  

Differential expression analysis was performed with sleuth using the Wald test 

with a cutoff of q-value of 0.005.  RATs was performed using the read counts and 

bootstrap values calculated from kallisto.  As ccRCC is a highly heterogeneous 

cancer, and there are 4 major subtypes of ccRCC, a replicate reproducibility of 

0.25 was used in the analysis.  All other parameters remained on default 

settings. 

For the edgeR analysis, alignment of the fastq files was performed first with 

HISAT2 using the hg38 human assembly [27-29].  Read counting was performed 

using the summarizeOverlaps package, with union mode [30].  Using the read 

counts, an edgeR analysis was performed using the default settings.  The entire 

pipeline was performed within the systemPipeR package [31]. 

Weighted coexpression network analysis 

All 217,082 TPM transcripts quantifications were initially filtered for an average 

absolute expression of >1 TPM.  Subsequently, 10,000 of the most variable 

transcripts, using the mean absolute deviation, were used for the proceeding 

WGCNA pipeline [32].  A soft thresholding power of 6 was used in a signed 

transcript coexpression network framework.  All other parameters remained on 

the default recommended settings.  ccRCC correlated coexpression networks 
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were exported to VisANT with an adjacency threshold 0.08 for visualization 

purposes [33].  For the gene-level Metascape analysis (http://metascape.org) of 

each of the network modules, genes were considered only once in the analysis, 

regardless of the numbers of transcripts derived from the gene. 

Primer design and quantitiative PCR 

Primers sequences were designed using Primer3 plus 

(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) using the default qPCR 

settings.  When possible, primers were designed over exon junctions to avoid 

capturing unannotated alternative transcripts.  All primers were synthesized by 

Integrated DNA Technologies.  Twelve matched paired ccRCC RNA samples 

were acquired form Origene.  Origene RNA samples were verified for quality and 

quantity using gel electrophoresis and the Thermoscientific Nanodrop2000 

spectrophotometer.  cDNA was synthesized using 1ug of total RNA using the 

iScript reverse transcription supermix (Biorad, Irvine, CA) according to the 

manufacturer's instructions.  Quantitative PCR was performed using the Biorad 

iQ SYBR green supermix and a Biorad CFX Connect thermocylcer (Biorad, 

Irvine, CA) and analyzed using the CFX manager software.  Using a single 

threshold Cq determination, the Livak method was employed for all gene 

expression analyses.  All qPCR analyses were normalized to PPIA, as PPIA was 

shown to be a suitable reference gene when comparing normal adjacent tissue to 

ccRCC tumor tissue [34, 35]. 
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Results 

Global identification and validation of DTE in ccRCC 

From the kallisto analysis, a total of 217,082 transcripts quantifications (160,717 

protein-coding and 56,365 non-coding) for each of the 100 samples were used in 

the differential expression analyses, comparing 50 normal adjacent renal 

samples against 50 ccRCC samples.  Using the Wald test, with a log2 

transformation, 90,002 transcripts passed the initial filtering process used by the 

sleuth R package.  With a q-value of <0.005, we identified 32,642 DETs, 

encoded by 14,767 genes (Supplemental Figure 2.1).  With additional filtering, 

using the bias estimator, referred to as the beta value of >1 or <-1 and an 

average absolute transcript expression of >1 TPM, 7,339 high confidence DETs 

were identified (Figure 2.1B). 

Gene ontology analyses using the express analysis in Metascape of the unique 

genes encoding the DETs are consistent with previous reports [25].  There is 

significant enrichment of gene sets and GO terms related to the immune 

response for the 3,366 upregulated DETs (encoded by 2,023 genes).  

Conversely, there is enrichment in GO terms related to metabolic processes and 

transport of small molecules and ions for the 3,973 downregulatd DETs (encoded 

by 2,518 genes).  Previously reported and contained within the 7,339 DETs, is 

ras-related C3 botulinum toxin substrate 1 (RAC1), that shows a statistically 

significant downregulation of one of its transcripts, ENST00000356142.4 

(Supplemental Figure 2.2) [13].  ENST00000356142.4 contains an additional 
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exon, referred to as exon 3b that is frequently spliced out in ccRCC.  The most 

abundant RAC1 transcript, ENST00000348035.8, is unaffected in ccRCC.   

As mutations in key epigenetic modifiers, such as SETD2, PBRM1 and BAP1, 

among ccRCCs have demonstrated to have significant effects on the epigenetic 

landscape and consequently splicing events, we compared the DETs observed in 

the current study against 6,207 RefSeq transcripts previously found to have 

defects in splicing and intron retention [14].  Among the 6,207 transcripts, 6,070 

transcripts were readily converted to an ensembl annotation, and 1,857 

transcripts were identified as differentially expressed.  In a similar study, among 

30 genes found to have a deficiency in H3K36me3 and SETD2-mediated 

alternative splicing [15], we found 27 of these genes to have at least one DET in 

the current study (using an FDR <0.005). 

Among the 7,339 DETs discovered (4,470 individual loci), ~89% were protein-

coding (6,546 transcripts) and ~11% were non-coding (793 transcripts) (Figure 

2.1C, left).   These DETs represented only ~4% and ~1% of the total putative 

protein-coding and non-coding transcripts, respectively (Figure 2.1C, right).  

Further characterization of the DETs showed that the number of transcripts 

affected remained relatively static, regardless of the number of putative 

transcripts derived from a given gene (Figure 2.1D).  With genes encoding ≥2 

transcripts, >80% of the genes had ≤3 detectable DETs.   

Lastly, as previous gene-level expression analyses may not have detected some 

cases of DTE, we performed a comparative differential expression analysis of the 
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matched pair samples evaluating the results of edgeR and sleuth (Figure 2.2A) 

[24].  For the gene-level edgeR analysis, read counts were generated within the 

systemPipeR package, using HISAT2 for the alignment of the sequence reads 

and summarizeOverlaps for the generation of the gene counts.  With thresholds 

of >2 fold change and FDR<0.005, edgeR identified 5,665 differentially 

expressed genes (DEGs).  In an alternative gene-level analysis, using kallisto 

generated gene counts, the sleuth gene-level analysis discovered 6,441 DEGs, 

with a beta value of >1 or <-1 and a FDR<0.005.  Among the 4470 genes, 

encoding the 7,339 DETs (described above), a total of 1,159 genes were found 

exclusively within the sleuth transcript-level analysis.   Interestingly, only ~4% (51 

genes) of the 1,159 genes harbored both upregulated and downregulated DETs.  

A moderate degree of overlap was observed between the four differential 

expression analyses, sharing 1,581 genes in common.  Similarly, all gene-level 

analyses shared 1,932 genes in common, while the kallisto gene-level and our 

edgeR analyses had the most in common, sharing 3,632 DEGs. 

One example of significant differentially expressed transcripts, not detected by 

gene-level analyses and not identified by previous ccRCC studies, are derived 

from Pleckstrin homology like domain family B member 2 (PHLDB2) known 

commonly for its association with vascular dementia (Figure 2.2B) [35].  PHLDB2 

encodes for 18 putative transcripts, and two transcripts ENST00000393923.7 

and ENST00000393925.7 are downregulated in ccRCC.  ENST00000393923.7 

is the most abundant protein-coding PHLDB2 transcript, and it is the most 
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significantly downregulated in ccRCC (Figure 2.2C).  ENST00000393925.7 is a 

slightly less abundant PHLDB2 transcript, and it is unaffected in ccRCC.  

Evaluation of the tumor/normal TPM ratios of the 50 matched pair samples 

showed that patients with a high degree of ENST00000393923.7 downregulation 

exhibited lower survival rates over ~12 years (p=0.0015, Figure 2.2D).  Two 

additional examples of genes harboring DETs, solute carrier family 37 member 3 

(SLC37A3) and high-density lipoprotein binding protein (HDLBP) were also found 

to correlate with patient survival (Supplemental Figure 2.3).  

ENST00000393923.7 downregulation was validated using transcript-specific 

qPCR with 12 independent matched pair ccRCC samples (Figure 2.2E).  Using a 

Wilcoxon signed-rank test, ENST00000393923.7 was found to be significantly 

downregulated in ccRCC with a median downregulation of ~6.3 fold change.  No 

statistically significant difference was observed with ENST00000393925.7. 

Weighted transcript-level coexpression network analysis 

As our previous analyses suggest some transcripts derived from the same gene 

exhibiting different expression profiles, we sought to better understand the 

isoform-specific changes occurring within ccRCCs.  Therefore, we pursued a 

weighted coexpression network analysis using the calculated transcript 

quantifications as a framework.  Using WGCNA and the calculated TPM values 

from 10,000 of the most variable transcripts, a coexpression network was 

performed across five stages of ccRCC progression (normal, stage I, stage II, 

stage III, stage IV).  A total of 26 coexpression modules were identified (Figure 
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2.3A), with 7 coexpression modules highly correlated with ccRCC progression 

(pearson coefficient >0.5 or <-0.5 and p<0.05).  Using the Reactome, KEGG 

pathway, CORUM gene sets and the conventional GO terms, a Metascape 

analysis was performed separately with each of the 7 correlated coexpression 

modules.  Among the 4 positively correlated coexpression modules, vascular 

development, ribosome, cytokine signaling and collagen formation were the most 

enriched terms found within each of the modules.  Conversely, the 3 negatively 

correlated coexpression modules revealed TCA cycle, extracellular matrix 

organization and organic acid catabolic processes as the most significant terms.  

Identified within each of the modules were transcripts with the highest module 

membership, as these transcripts are likely extensively connected intramodular 

hubs  (Figure 2.3A).  These transcripts included:  ENST00000381125.8 encoded 

by Phosphofructokinase, Platelet (PFKP), ENST00000356892.3 encoded by 

SAM And SH3 domain containing 3 (SASH3), ENST00000225430.8 encoded by 

Ribosomal Protein L19 (RPL19), ENST00000296388.9 encoded by Prolyl 3-

Hydroxylase 1 (P3H1), ENST00000295887.5 encoded by CDP-Diacylglycerol 

Synthase 1 (CDS1), ENST00000257290.9 encoded by Platelet Derived Growth 

Factor Receptor Alpha (PDGFRA), and ENST00000354775.4 encoded by 

Aldehyde Dehydrodenase 9 Family Member 1 (ALDH9A1). 

Further characterization of the coexpression networks showed that the majority 

of the transcripts comprising the networks, and all the transcripts used in the 

network construction, were encoded from separate individuals genes 
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(Supplemental figure 2.4).  Additionally, validation of the network and gene set 

analyses showed 24 out of the top 30 coexpressed transcripts (transcripts with 

high adjacency scores) contained within the vascular development coexpression 

module, are derived from genes comprising the core signature angiogenesis 

genes described previously (Figure 2.3B, left) [36].  Moreover, among the top 30 

correlated transcripts contained within the TCA coexpression module, 28 

transcripts are produced by genes previously discovered as being downregulated 

in ccRCC (Figure 2.3B, right) [37].  The remaining transcripts, 

ENST00000424349.1 encoded by FGD5 antisense RNA 1 (FGD5-AS1) and 

ENST00000620459.1 encoded by AL035661.1 are uncharacterized lncRNAs 

highly downregulated in ccRCC.   

Differential transcript usage in ccRCC 

Using the kallisto transcript abundances, the RATs R package identified 97 

events of differential transcript usage (Figure 2.4A, left, Supplemental Figure 

2.5).  These 97 transcripts were identified using the RATs transcript-level test, 

which examines each transcript individually and then merges the transcript 

information to form a gene-level finding.  Alternatively, the gene-level DTU test, 

which collectively evaluates the transcripts of a gene, identified only 26 DTU 

genes (Figure 2.4A, right, Supplemental Figure 2.5).  Among both transcript-level 

and gene-level DTU tests, 7 DTU genes (AP1M2, CAB39L, CCDC146, C16orf89, 

DAB2, MAPK8IP1, FGFR2) have been identified previously [25, 26].  

Collectively, 94 DTU genes (68 uncharacterized DTU genes) in total were 
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discovered (using both DTU tests) when comparing normal adjacent and ccRCC 

tissues.  No statistically significant GO terms were enriched within the 94 DTU 

genes, using a corrected p-value.  However, the Metascape analysis showed the 

top GO term (p=0.0007) was carboxylic acid transport, supporting previous 

results demonstrating metabolic derangements as a cornerstone of ccRCC [7, 

38].  Seven DTU genes were found to have a carboxylic acid transport GO 

classification, which included: AGXT, SLC38A5, SLC9A4, SLC3A2, UNC13B, 

FABP6 and FOLR1. 

Examination of the DTU events showed that non-primary (i.e. non-major) isoform 

switches are more frequent than primary isoform switches in ccRCC (Figure 

2.4B). On average, we identified approximately twice as many non-primary 

isoform switches relative to primary isoform switches.  Among the 8 primary 

isoform switches (in common between the DTU tests), all of them also had non-

primary isoform switches.  The DTU genes (described previously) AP1M2, DAB2 

and FGFR2 exhibited both primary and non-primary isoform switching events 

(Supplementary Figure 2.6-7).   Constituting the majority of DTU genes, a total of 

76 DTU protein-coding genes were observed.  The remaining DTU genes 

encompassed 11 ncRNA and 7 unclassified genes.  Two examples of mostly 

uncharacterized DTU genes, with high isoform-switch frequencies, were FOLR1 

and BABAM2 (Figure 2.4C, Supplemental Figure 2.6).  FOLR1, known as folate 

receptor 1, produces 4 putative transcripts, and was found to be one of the most 

significant primary isoform switches.  ENST00000393676.4 has an alternative 5’ 
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end and is the most abundant FOLR1 transcript in normal renal tissue (Figure 

2.4D); however, ENST00000393681.6 switches with ENST00000393676.4 

becoming the most abundant or primary FOLR1 transcript in ccRCC.  FOLR1 

had the highest isoform-switch frequency with 61% of ccRCC samples exhibiting 

the primary isoform-switch (Figure 2.4E).  BABAM2 encodes for a component of 

the BRCA1-A complex, and it produces 11 putative transcripts, 4 of which were 

eligible for DTU analysis.  ENST00000436924.5 was the only BABAM2 transcript 

to show a significant proportional increase in its abundance in ccRCC, becoming 

the second most abundant BABAM2 transcript in ccRCC (Supplemental Figure 

2.6).  

 

Discussion 

In the current study, we identified the global isoform-specific alterations in ccRCC 

and explored the deregulated networks implicated in ccRCC progression.  Using 

the kallisto-sleuth pipeline, we discovered 7,339 DETs of which ~90% of the 

transcripts were derived from protein-coding genes.  Additionally, comparative 

differential expression and coexpression network analyses aided in the discovery 

of several potentially clinically relevant genes and the major deregulated 

networks in ccRCC progression.  Lastly, we discovered 68 uncharacterized high-

frequency DTU genes in ccRCC with a suggested enrichment of genes involved 

in metabolic function.   

Differential exon usage (DEU) has frequently been used as an inference for DTE 
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in ccRCC; however, this approach could present challenges in identifying DETs 

among transcripts sharing exons [21, 23, 25].  Additionally, gene-level expression 

analyses could potentially overlook deregulated transcripts from clinically 

relevant genes that give rise to multiple transcripts.  Therefore, we sought to 

identify deregulated transcripts and cognate genes that were not discovered 

readily by gene-level analyses by using novel methods that are not subject to the 

disadvantages of the DEU approach.  In a typical gene-level analysis, all exonic 

reads from a gene are consolidated and used to determine if the expression of a 

gene is altered between two conditions.  However, this approach could be 

disadvantageous in specific circumstances.  One potential pitfall to a gene-level 

analysis is that if the other transcripts from the same gene are of similar 

abundance to the DET, then a conventional gene-level analysis may not detect a 

gene-level difference between the two conditions.  Additionally, while isoform 

switching was found to be a relatively rare occurrence in ccRCC, isoform 

switching could also account for a “masking” of a relevant gene.  PHLD2, HDLBP 

and SLC37A3 are examples of this “masking” effect, in which DTE was not 

detected using conventional gene-level analyses.  While we acknowledge that 

the degree of overlap between gene-level and transcript-level analyses could 

vary greatly depending on methodology and experimental thresholds, the current 

study highlights the importance of considering transcript-level analyses in 

comprehensive transcriptome-wide studies.  Lastly, comparisons with previous 

studies, focused on SETD2 mutational status/H3K36me3 prevalence of ccRCC 
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tumors and the resulting effects on splicing [14, 15], suggest that genes subject 

to splicing defects can also harbor DETs.  However, additional studies with large 

cohorts of mutation-specific ccRCCs are needed to determine isoform-specific 

expression changes that may be dependent on mutational status.  As only 12 

ccRCC tumors had a mutated SETD2, in the current study, our findings largely 

reflect SETD2-independent isoform-specific changes. 

The discovery of two uncharacterized transcripts encoded by lncRNAs genes 

FGD5-AS1 and AL035661.1 identified in the network analysis suggest these 

lncRNAs transcripts could be potential regulators of TCA cycle genes or 

alternatively regulated by a common factor.  These lncRNAs could be of 

particular importance to understanding ccRCC because of their implications in 

metabolic function.  However, further investigation is needed, as the function of 

these lncRNAs is unknown.  Another interesting transcript found within the TCA 

cycle coexpression module, identified with the highest module membership, is 

ENST00000295887.5 encoded by CDS1.  CDS1 encodes an integral membrane 

enzyme, located on the membranes of the mitochondrion and endoplasmic 

reticulum, that catalyzes the conversion of phosphatidic acid into CDP-

diacylaglycerol [39, 40].  CDS1 is uncharacterized in ccRCC and there is limited 

information on its role in cancer; however, in a recent study, CDS1 was 

suggested to potentiate limitless growth and genomic instability in breast cancer 

[41].  We identified a total of 94 genes exhibiting differential transcript usage in 

ccRCC of which 7 DTU genes were reported previously [25, 26].  However, when 
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considering the findings of an alternative study [24], which also evaluated lower 

frequency isoform-switches, the current study identified 26 DTU genes in 

common.  Therefore, the differences observed in the DTU genes are likely 

attributed to different computational techniques/thresholds and/or the use of 

different transcript annotations [19].  While our findings show that the majority of 

isoform switching events involves non-primary isoforms, which is consistent with 

a previous result [24], alterations in the expression of non-primary isoforms could 

still be clinically relevant, as supported by the survival analyses seen with the 

non-primary SLC37A3 and HDLBP deregulated transcripts.  However, the 

mechanisms involved require further investigation.  Recent studies have 

illustrated how isoform-specific alterations could be highly influential in ccRCC 

and other cancers. For instance, alternatively spliced isoforms of VHL were 

shown to alter VHL binding affinity to components of the p53 pathway [42].  

Additionally, isoform-switching events have been demonstrated to alter the 

invasive properties of cancer cells [14, 43].  From our analyses and previous 

similar studies, mentioned above, it is highly suggestive that isoform-specific 

deregulations are a critical part to characterizing and understanding the 

molecular underpinnings of ccRCC, and suggest that isoform-level transcriptomic 

analyses should more generally be considered to obtain a more comprehensive 

view of the genetic deregulations in cancer.   
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Figure 2.1.  Global identification of differential transcript expression in 

ccRCC.  A- Overview of pipeline used in identification and characterization of 

DTE and DTU in ccRCC.  B- Unsupervised hierarchical clustering of 7,339 DETs 

identified using sleuth (FDR <0.005 and beta value of <-1 or >1).  C- Percentage 

of protein-coding and non-coding genes encoding the 7,339 DETs identified 

using sleuth.  D-  Proportion of genes with n identified DETs relative to total 

number of encoded transcripts 
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Figure 2.2.  Comparative differential expression analysis identifies novel 

genes implicated in ccRCC.  A- Comparison of DEGs/DTE genes discovered 

with sleuth, edgeR, and a previous study by Scelo et al.  B- Transcript 

abundances in normal renal and ccRCC tissues for the two most abundant 

PHLDB2 transcripts. Each box plot represents 50 calculated bootstrap values of 

an individual sample (red = normal, blue = ccRCC).  C- ENST00000393923.7 

harbors an alternative exon 1 and 2 and excludes exon 6 of 
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ENST00000393925.7.  Differences colored in blue.  D- Kaplan-Meier plot 

assessing survival of patients with high vs low/no ENST00000393923.7 

downregulation.  Median T/N ratio was used to partition samples into low/no and 

high downregulation groups.  Log rank test was used to calculate statistical 

significance.  E- qPCR validation of PHLDB2 DTE showing log2 fold change of 

12 ccRCC tissues relative to their normal adjacent tissues.  Results normalized 

to PPIA reference gene.  Two-tailed Wilcoxon signed-rank test was used to 

determine statistical significance.  Error bars = average standard deviation of 

technical replicates of pair samples.  ns = non-significant (>0.05). 
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Figure 2.3.  Vascular development and TCA cycle coexpression modules 

are the highest correlated networks in ccRCC progression.  A- ccRCC 

correlated coexpression network modules identified with WGCNA.  Using a 

correlation coefficient of >0.5 or <-0.5 and p<0.05, 4 positively correlated 

networks (blue bars, right of dotted line), and 3 negatively networks were 

identified to be in ccRCC (red bars, left of dotted line).  Networks with no 

significant correlation with ccRCC (grey, p>0.05).  Most significant GO term for 

each module shown in bold, and the transcript with the highest module 

membership shown below.  B- Top 30 highest coexpressed transcripts (gene 

names shown) within the TCA cycle (left) and vascular development modules 
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(right).  Novel genes highlighted in red. 
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Figure 2.4.  Few high frequency DTU genes observed in ccRCC.  A- 

Transcript and gene-level tests using RATs to identify DTU events in ccRCC (red 

dot = non-DTU, blue dot = DTU).  B- Number of primary and non-primary isoform 

switches discovered in ccRCC.  “Both” represents the number of shared DTU 

genes identified in both the transcript and gene-level tests.  C- FOLR1 exhibiting 
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significant proportional isoforms changes in ccRCC.  Circle = significant DTU.  

Square = tested in DTU analysis, but not significant.  X = did not meet 

abundance threshold for DTU anlaysis. D- Schematic of FOLR1 transcripts 

analyzed in DTU analysis.  E- Frequency of FOLR1 and 17 other isoform 

switches shared between both DTU tests.   
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Supplemental figure 2.1.  Assessment of calculated transcript abundances 

and sleuth differential expression analysis.  A- Principal component analysis 

of TPM abundances to assess for outliers.  B- Distributions of transcript 

abundances by tissue status (normal vs ccRCC).  C- Mean-variance of 

transcripts modeled by sleuth (blue dots represent transcripts used in shrinkage 

estimation).  D-  Q-Q plot assessing abundance distributions between normal 

and ccRCC samples (red dot = FDR <0.005). 
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Supplemental figure 2.2. ENST00000356142.4 (RAC1) transcript 

downregulated in ccRCC.  A- Schematic of most abundant protein-coding 

RAC1 transcripts in normal renal tissue. ENST00000356142.4 contains an 

additional exon, referred as exon 3b (enclosed in red box).  B- RAC1 transcript 

abundances in normal renal and ccRCC tissues.  ENST00000356142.4 is 

downregulated in ccRCC.  Each box plot represents 50 calculated bootstrap 

values of an individual sample (red = normal, blue = ccRCC).  
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Supplemental figure 2.3.  SLC37A3 and HDLBP upregulated transcripts in 

ccRCC.  A- SLC37A3 transcript abundances in normal renal and ccRCC tissues 

(left). ENST00000469636.1 upregulated in ccRCC and correlated with patient 

survival (right).  B- HDLBP transcript abundances in normal renal and ccRCC 

tissues (left). ENST00000470482.5 upregulated in ccRCC and correlated with 

patient survival (right).  Each box plot represents 50 calculated bootstrap values 
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of an individual sample (red = normal, blue = ccRCC).  Median T/N ratio was 

used to partition samples into low and high upregulation groups.  Log rank test 

was used to calculate statistical significance.  
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Supplemental figure 2.4.  Coexpression modules comprised mostly of 

transcripts encoded by unique genes.  Assessment of transcripts used in the 

construction of the network analysis (top left) and the transcripts comprising 

ccRCC correlated modules.  Red = genes with one transcript.  Blue = gene with 

≥2 transcripts. 
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Supplemental figure 2.5.  Density distributions of DTU genes relative to 

isoform proportion differences.  A- Number of DTU transcripts and their 

isoform proportion differences discovered using RATs.  B- Number of DTU genes 

and their isoform proportion differences discovered using RATs.  Red bar = DTU 

transcript/gene.  Blue bar = non-DTU transcript/gene.  Y-axis is square root 

compressed. 
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Supplemental figure 2.6.  BABAM2 and DAB2 DTU in ccRCC.  Significant 

proportional increase observed in BABAM2 isoform ENST00000436924.5 in 

ccRCC (top). Significant proportional increase observed in DAB2 isoform 
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ENST00000339788.10 in ccRCC.  Circle = significant DTU.  Square = tested in 

DTU analysis, but not significant.  X = did not meet abundance threshold for DTU 

analysis. 
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Supplemental figure 2.7.  AP1M2 and FGFR2 DTU in ccRCC.  Primary isoform 

switch observed in AP1M2 in ccRCC (top).  A significant proportional decrease 

observed in FGFR2 isoform ENST00000358487.9 in ccRCC.  Circle = significant 
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DTU.  Square = tested in DTU analysis, but not significant.  X = did not meet 

abundance threshold for 
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Chapter 3 

 

HOTAIRM1 lncRNA alters the hypoxia pathway in clear cell renal cell 

carcinoma and regulates kidney cell differentiation 
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Abstract 

Investigations into long non-coding RNAs (lncRNAs) in cancer biology are 

leading to intriguing insights into the molecular and phenotypic aberrations that 

occur when lncRNAs are deregulated.  HOXA Transcript Antisense RNA, 

Myeloid-Specific 1, or HOTAIRM1, is a highly conserved lncRNA that has only 

recently been implicated in cancer.  In our present study, we report a novel 

finding that shows an alternative transcript of HOTAIRM1, referred to as HM1-3, 

is specifically and pervasively downregulated in >90% of clear-cell renal cell 

carcinomas (ccRCCs).  HM1-3 was found to localize predominantly to the 

cytoplasm and was commonly suppressed in human cell lines.  Targeted 

knockdown of HM1 in CAKI-1 cells, has limited effects on RNA steady-state 

levels, but suggests HM1, specifically HM1-3, regulates key genes involved in 

the hypoxia pathway.  Increases in ANGTPL4 and DDAH1 expression were 

observed with concomitant increases in HIF1α protein expression with HM1 

knockdown.  Lastly, assessment of HM1 in differentiating mES cells into kidney 

progenitor cells showed significant increases in HM1 expression, while 

knockdown of HM1 in kidney progenitor cells resulted in suppression of kidney 

differentiation genes.  Collectively, these data suggest HM1 as an important 

regulator of ccRCC pathogenesis and also normal kidney differentiation. 
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Introduction 

Kidney and renal pelvis cancers are among the most pervasive cancers found 

within the United States [1].  Renal cell carcinomas (RCCs) comprise >90% of 

kidney cancers, which have been shown to be particularly difficult to treat with 

conventional therapies [2-4].  Investigations exploring the most frequently 

occurring RCC, known as clear cell renal carinaoma (ccRCC), suggest long non-

coding RNAs (lncRNAs) could serve as new highly specific therapeutic targets.  

LncRNAs have a greater tissue-specific expression relative to protein-coding 

genes, and recent transcriptomic analyses examining lncRNAs have discovered 

several potentially important deregulated lncRNAs in ccRCC [5, 6].  One 

prominent example is the lncRNA PVT1, which regulates the stability of the MYC 

oncoprotein [7].  PVT1 is part of a network of lncRNAs that modulates MYC 

activity and consequently the VHL-HIF axis by affecting the binding partners of 

HIF1α and HIF2α in ccRCC [8-11].  

However, few lncRNAs have been extensively explored in ccRCC.  In a recent 

study examining the isoform-specific transcript alterations in ccRCC, HOTAIRM1 

or HM1, was suggested to be deregulated in ccRCC [12], specifically the shorter 

spliced HM1 isoform, referred to as HM1-3 (Figure 3.1A).  The HM1 locus is 

located within the HOXA cluster between HOXA1 and HOXA2, and HM1 is best 

known for its role in the differentiation of promyelocytic leukemia cells [13, 14].  

However, contrary to its original designated name, HM1 expression is observed 

in numerous developing and fully differentiated tissue and cell types, and HM1 
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expression is altered in several human cancers [15-18].  Consequently, HM1 has 

caught the attention of the cancer biology field.  While the mechanistic role(s) of 

HM1 in cancer are largely unknown, recent evidence suggests HM1 regulates 

the autophagy pathway acting as a miRNA sponge [19]. 

In the current study, we have expanded on our previous work by examining HM1-

3 expression in ccRCC, and attempted to dissect the functional importance of 

HM1-3 in ccRCC.  Using a well-established ccRCC cell line (CAKI-1), we 

demonstrate that HM1-3 is regulating the hypoxia-responsive genes possibly via 

the modulation of the HIF proteins.  Furthermore, we show HM1 is an important 

player in kidney cell differentiation and maintenance of the differentiated kidney 

state. 

 

Materials and Methods 

Cell culture 

The HK-2, ACHN and CAKI-1 cell lines were acquired from ATCC and were 

cultured as recommended. The HK-2 cell line was cultured in keratinocyte 

serum-free medium supplied with 0.05 mg/ml bovine pituitary extract and 5 ng/ml 

human recombinant epidermal growth factor (Invitogen, Carlsbad, CA).  The 

ACHN cell line was cultured in Dulbecco's modified Eagle's medium 

supplemented with 10% FBS (Gibco, Grand Island, USA).  The CAKI-1 cell line 

was cultured in McCoy's 5a Modified Medium supplemented with 10% FBS 
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(Gibco, Grand Island, USA).  All cultures were maintained in a humidified 

incubator with 5% CO2 at 37°C. 

RNA extraction and quantitative PCR 

Cells were collected using 0.25% trypsin and RNA was extracted using the 

GeneJet RNA purification kit (Thermoscientific, Carlsbad, CA) per manufacturer's 

recommendations.  DNA was digested using the Rnase-Free DNase set (Qiagen, 

Valencia, CA) for 1 hour on the column according to the manufacturer's 

instructions.  Extracted RNA was verified for quality and quantity using gel 

electrophoresis and the Thermoscientific Nanodrop2000 spectrophotometer.  

cDNA was synthesized using 1ug of total RNA using the iScript reverse 

transcription supermix (Biorad, Irvine, CA) according to the manufacturer's 

instructions.  Quantitative PCR was performed using the Biorad iQ SYBR green 

supermix and a Biorad CFX Connect thermocylcer (Biorad, Irvine, CA) and 

analyzed using the CFX manager software.  Using a single threshold Cq 

determination, the Livak method was employed for all gene expression analyses.  

Furthermore, all expression analyses were normalized to PPIA, as PPIA was to 

found to be the most suitable reference gene when comparing normal adjacent 

tissue to ccRCC tumor tissue [20, 21], and little change was observed with HM1 

knockdown.  Three technical replicates of each biological replicate were 

performed for every qPCR reaction.  All Origene cDNA panels (CSRT30, 

HKRT102) and match paired RNA (Supplemental Table 3.1) samples were ran 

using the aforementioned protocols, reagents and instrumentation.    
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Primer design 

Primers sequences were obtained either from qPrimerDepot 

(https://primerdepot.nci.nih.gov/) or designed using Primer3 Plus 

(www.primer3plus.com/) using the qPCR settings (Supplemental Table 3.2).  All 

primers were synthesized by Integrated DNA Technologies. 

Compartment lysis and expression analysis 

Approximately 1 million cells were collected using 0.25% trypsin and spun at 

400g for 3 minutes to pellet the cells.  A total volume 175 ul of cytoplasmic lysis 

(50mM TrisCl pH 8.0, 140 mM NacCL, 1.5 mM MgCl2, 0.5% P-40, 1mM DTT) 

was used to resuspend the cells, and cells were then incubated on ice for 5 

minutes for the HK-2 and CAKI-1 cells and 35 minutes for the ACHN cells.  

Following incubation, lysate was spun at 300g for 2 minutes at 4C.  Supernatant 

and pellet were separated, and RNA was extracted as previous described.  RNA 

was eluted with equal volumes from RNA extraction columns, and equal volumes 

of cytoplasmic and nuclear RNA were used for the reverse transcription reaction. 

siRNA construction and transfection 

All custom siRNAs sequences (Supplemental Table 3.3) were constructed using 

the MIT Whitehead software (http://sirna.wi.mit.edu/), and then used to make 

Silencer Select siRNAs synthesized by Ambion (Carlsbad, CA, USA).  The 

validated Silencer Select negative siRNA #2 was used as negative control in 

transient knockdown assays.  siRNAs were transfected using Lipofectamine3000 
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per manufacturer's recommendations to a final concentration of 100 nM.  Cells 

were collected 60-72 hours following transfection.   

RNA-seq analysis 

Transfected CAKI-1 cells were trypsinized and RNA was extracted, as stated 

above.  RNA quality and quantity were evaluated with a bioanalyzer and 

Thermoscientific Nanodrop2000 spectrophotometer.  Single-end read RNA-seq 

libraries were constructed using the NEBNext Ultra Directional RNA library prep 

kit for Illumina per manufacturer’s protocol.  Samples were multiplexed and 

sequenced with the NEX-seq Illumina sequencing platform. 

Western blot 

Transfected CAKI-1 cells were scraped and lysed using a standard RIPA buffer.  

Lysate was spun at max speed and the supernatant was collected.  Protein 

concentration was determined using Bradford reagent.  A total of 10-20 ug of 

total protein was loaded and subjected to SDS-page.  Protein was transferred to 

a nitrocellulose membrane using the Biorad Trans-Blot Turbo for 45 minutes at 

25V.  Membranes were blocked with milk for 1 hour and then probed with primary 

antibodies, β-actin at 1:7500, DDAH1 at 1:1000, VHL at 1:3000, and HIF1α at 

1:3000, overnight.  The next day, three washes with 1X TBST at 10 minutes were 

conducted.  Subsequently, anti-mouse and anti-rabbit secondary HRP antibodies 

incubated with membrane for 1 hour at room temperature.  Then, three washes 

with 1X TBST at 10 minutes were conducted and the membrane was exposed to 

autography and developed. 
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Bioinformatic analyses 

A total of 614 fastq RNA-seq files were downloaded from TCGA legacy archive 

website (https://portal.gdc.cancer.gov/legacy-archive/search/f).  Human cDNA 

and ncRNA FASTA formatted transcript files (Ensembl v89 annotation) were 

acquired form the Ensembl ftp site 

(https://www.ensembl.org/info/data/ftp/index.html), and merged to create a 

master file of all putative coding and non-coding transcripts.  

Transcript quantifications and differential expression analyses were performed 

using the cufflink suite (TCGA data) or the kallisto-sleuth pipeline (RNA-seq 

analysis) [22-24].  Cufflinks was used to obtain transcript quantifications [23].  

Calculated transcript quantifications were then used to generated tumor/normal 

ratios.  A two-tailed Wilcoxon signed rank test was performed to determine 

statistical significance.  Cuffdiff was used to confirm differential expression.  

Using the default settings, kallisto was used to create an index for quantification 

using the aforementioned FASTA master file.  Subsequently, kallisto was used to 

quantify all putative transcripts using 50 bootstrap samples.  Differential 

expression analysis was performed with sleuth using the Wald test with a cutoff 

of q-value <0.05 and beta >0.5.   

For the gene-level analyses, alignment of the fastq files was performed first with 

HISAT2 using the hg38 human assembly [25].  Read counting was performed 

using the summarizeOverlaps package, with union mode [26].  Using the read 

counts, an edgeR analysis was performed using the default settings [27, 28].  
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The entire pipeline was performed within the systemPipeR package [29].  

Normalization of the gene counts was performed using DESeq2 and then 

subsequently used in consensus clustering to determine the number molecular 

subtypes in ccRCC [30].  Consensus clustering was performed using the 

ConsensusClusterPlus R package [31].  A total 1,000 of the most variable genes, 

based on mean absolute deviation were used in the clustering generating 

consensus matrices for k=2-7.  Number of molecular subtypes was determined 

based on the consensus matrices and the cumulative distribution functions for 

each k. 

 

Results 

HM1-3 downregulated in ccRCC 

Using a commercially available multiple tissue cDNA array, qPCR was used to 

examine the expression levels of three experimentally validated HM1 transcripts 

between 8 cancer tissues relative to their respective normal anatomical tissues 

(Figure 3.1A-B, Supplemental Figure 3.1A-B).  Discovered in this initial survey 

was a novel finding showing a significant downregulation of HM1-3 expression in 

RCCs.  HM1-3 downregulation was also observed in breast and colorectal 

cancers, which is consistent with previous reports [15, 32].  Further examination 

of HM1-3 expression in RCC, in a second independent cDNA array, 

demonstrated HM1-3 downregulation was shown to be restricted largely to 

ccRCC (Figure 3.1C).  An average ~5.5 fold downregulation in HM1-3 expression 



 68

was seen when comparing 9 normal renal tissue samples to 21 ccRCC samples.  

No statistically significant HM1-3 downregulation was observed in papillary renal 

cell carcinomas (pRCC).  These results were supported further using 12 ccRCC 

matched pair samples, which showed 11 ccRCC samples with a HM1-3 

downregulation relative to their normal adjacent tissue (Figure 3.1D).  No 

statistically significant differentially expression was found for HM1-2-3 and 

Unspliced HM1. 

To further substantiate HM1-3 downregulation in ccRCC, 614 RNA-seq datasets 

(72 normal and 542 ccRCC samples) from TCGA were bioinformatically 

examined.  Evaluation of HM1 FPKM tumor/normal ratios, using 50 matched 

paired samples contained within these data, showed HM1-3 to be the only 

significantly downregulated HM1 transcript, as determined with a Wilcoxon 

signed ranked test (Figure 3.1E).  This result was later validated in a Cuffdiff 

analysis.  Among ~250,000 transcripts identified with cufflinks, using the 

forementioned matched pair samples, HM1-3 was found within 1,710 

differentially expressed transcripts identified in the analysis, using a threshold of 

>2 fold change and <0.2% FDR.  Subsequently, absolute levels of HM1 

transcripts in normal renal tissue were examined.  A composite trace of 72 

merged alignments files from normal renal tissue and the transcript 

quantifications using cufflinks shows HM1-3 is the most abundant HM1 transcript 

in normal renal tissue (Figure 3.1F, top). These results were validated with PCR 

using 12 normal renal tissue samples (Figure 3.1F, bottom).  
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As ccRCC is a highly herterogeneous cancer, HM1-3 expression was explored 

within the different subtypes of ccRCC.  Consensus clustering was performed 

using gene-level read counts from the 542 ccRCC samples, which showed four 

distinct subtypes of ccRCC (Figure 3.1G, left, Supplemental Figure 3.2) 

consistent with previous findings [6, 33].  Among the four subtypes identified are 

the two major molecularly distinct ccA and ccB subtypes, in addition to the mixed 

ccA/ccB and distal tubule subtypes.  Using a two-tailed Student’s t-test, a 

significant HM1-3 downregulation would found within all subtypes of ccRCC 

(Figure 3.1G, right). 

Characterization of the HM1 transcripts in proximal tubule renal cells 

In effort to identify a suitable in vitro model, four proximal tubule renal cell lines 

were investigated for their HM1 expression (Figure 3.2).  Using qPCR, absolute 

levels of HM1-3 and HM2-3 expression were observed to be low in HRPTEpC, 

HK-2 and ACHN cells, with HM1-3 copies per cell (Figure 3.2A).  CAKI-1 had the 

most copies of HM1-3, with approximately 10 copies per cell with each of the 

spliced HM1 transcripts.  Alternatively, significantly higher levels of Unspliced 

HM1 were observed within HK-2, ACHN and CAKI-1 cell lines.  Other cell lines 

were also evaluated for HM1 absolute expression, such as MCF10A, MCF7 and 

DAOY, all of which showed similar or lower levels of expression (data not 

shown).  Subsequently, subcellular fractionation followed by qPCR, showed both 

spliced transcripts, HM1-3 and HM2-3, were found predominantly within the 

cytoplasm, while Unspliced HM1 was observed mostly within the nucleus in all 
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three renal cell lines (Figure 3.2B).  HOXA1 mRNA and MALAT1 lncRNA were 

used as cytoplasmic and nuclear controls, respectively. 

HM1 knockdown alters hypoxia pathway in CAKI-1 cells 

As CAKI-1 cells had the most HM1-3 expression among the cell lines, a stranded 

RNA-seq analysis was performed evaluating the transcriptomic effects of a 

targeted HM1 knockdown in CAKI-1 cells (Figure 3.3).  Collectively, 40 genes 

were differentially expressed with HM1 knockdown between edgeR and sleuth 

analyses (Figure 3.3A-B).  Using edgeR, 28 genes were differentially expressed 

(16 upregulated and 12 downregulated) with HM1 knockdown, with a 1.25 fold 

change and 5% FDR threshold.    Alternatively, using kallisto gene counts and 

sleuth for differential expression analysis, 14 differentially expressed genes (8 

upregulated and 6 downregulated) were observed with a 0.5 bias estimator value 

and 5% FDR threshold.   Only DDAH1 and MELTF were found in common 

between both edgeR and sleuth analyses.  As the upregulated DEGs identified in 

the RNA-seq showed fewer type I errors (seen below), a comprehensive Enrichr 

analysis was performing using the 22 identified upregulated genes.  No 

statistically significant GO terms were identified. 

A total of 10 upregulated DEGs identified between the two RNA-seq analyses 

were partially randomly selected for qPCR validation.  Among the 10 genes, 8 

genes were confirmed with qPCR:  ADAM19, H3F3C, CUTA, DDAH1, GXYLT1, 

ZC3H18, ANGPTL4 and CDKN1C.  Conversely, only 2 of the 7 downregulated 

DEGs were validated using qPCR (Figure 3.3C).  In a second validation, using 
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one inefficient HM1 siRNA (HM1 siRNA #1) and a more efficient HM1 siRNA 

(HM1 siRNA #3), DDAH1 and ANGPTL4 were the only genes consistently 

deregulated with efficient HM1 knockdown conditions (Figure 3.3D).  In effort to 

discern which HM1 transcript(s) were contributing to the DDAH1 and ANGPTL4 

upregulation, a HM1 knockdown was performed in CAKI-1 cells constitutively 

overexpressing the HM1-3 transcript (Figure 3.3D, left).  With HM1 knockdown, 

an attenuation of the ANGPTL4 and DDAH1 upregulation was observed in the 

HM1-3 overexpressing cells relative to the parental CAKI-1 cells (Figure 3.3D, 

right).  The pre-mRNA ANGPTL4 and DDAH1 expression was also evaluated to 

explore a possible mechanism for the observed upregulation of ANGPTL4 and 

DDAH1 steady-state expression.  A concomitant upregulation in ANGPTL4 

precursor was observed with HM1 knockdown, while the DDAH1 precursor was 

unaffected (Figure 3.3E). 

As the Enrichr analysis of the identified DEGs suggested a connection to HIF1α, 

and ANGPTL4 is known target of HIF1α, protein expression of ANGPTL4, 

DDAH1 and the HIFs were evaluated (Supplemental Table 3.4).  With HM1 

knockdown, significant increases in HIF1α were observed (Figure 3.3E).  

However, no statistically significant changes were observed with DDAH1 and 

VHL expression, and ANGPTL4 protein expression is still under investigation.  

Lastly, evaluation of the tumor/normal ratios of TPM values (generated using 

kallisto), show a highly significant upregulation in ANGPTL4 expression in 

ccRCC relative to normal adjacent tissue (Figure 3.3F, left).  Alternatively, 
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DDAH1 expression exhibited a significant downregulation in ccRCC relative to 

normal adjacent tissue (Figure 3.3F, right).  Statistical significance was 

determined using the Wilcoxon signed-rank test for the match paired samples. 

To explore HM1, DDAH1 and ANGPTL4 further, we exposed CAKI-1 cells to 100 

uM cobalt chloride, a mimic for hypoxia-induced stress.  As anticapted, we 

observed a significant induction of HIF1α protein (not shown) and the HIF1α 

responsive gene, ANGPTL4, at approximately 4 hours of exposure to cobalt 

chloride (Figure 3.4).  Little expression change was observed with DDAH1.  

Alternatively, similar levels of reduction in all three isoforms of HM1 and HIF1α 

were observed starting at 4 hours of exposure. 

HM1 knockdown dedifferentiates mouse kidney progenitor cells (results 

produced by M. Young) 

To examine a suspected role of HM1 in kidney differentiation, mES cells were 

differentiated into kidney progenitor cells, as previously described (Figure 3.5A) 

[34].  Gene expression levels of mesoderm-commitment, intermediate mesoderm 

and metanephric mesenchyme markers demonstrated successful timed induction 

of the corresponding markers, signifying differentiation of mES into kidney 

progenitor cells (Figure 3.5B).  Evaluation of all three HM1 isoforms showed peak 

expression at the end of the induction process at day 8 (Figure 3.5C).  

Knockdown HM1 in kidney progenitor cells showed slight reductions in OSR1 

and GDNF expression and a large reduction in PAX2 expression (Figure 3.5D).  
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No other significant change in kidney differentiation markers were observed with 

HM1 knockdown. 

Discussion 

In the current study, we provide new insights in the functional role(s) of the HM1 

lncRNA in kidney biology.  In our results, we identify a novel and highly pervasive 

downregulation of HM1-3 in ccRCCs, not previously reported.  We demonstrate 

that HM1-3 is the only HM1 isoform downregulated in ccRCC, and it is the most 

abundant HM1 transcript found in normal kidney tissue.  Furthermore, we show 

that HM1-3 is largely localized to the cytoplasm in renal proximal tubule cells, 

and knockdown of HM1 alters the hypoxia pathway in ccRCC cells.  Lastly, we 

provide evidence suggesting a functional role of HM1 in kidney differentiation and 

maintenance. 

As both HIF1α protein expression and ANGPTL4 expression, a HIF1α target 

gene, are increased with HM1 knockdown, these findings strongly suggest HM1 

regulates the hypoxia pathway in ccRCC cells.  However, it remains unclears 

whether the induction of HIF1α is responsible for the increase in ANGPTL4 

expression.  Preliminary evidence suggests that HIF1α is not responsible for 

increased ANGPTL4 expression, as HIF1α knockdown also elicits an induction of 

ANGPTL4 expression (data not shown).  Currently, HIF1β, HIF2α and aryl 

hyrdrocarbon receptor (AHR) are being explored to explain the ANGPTL4 

induction seen with HM1 knockdown, as all of these proteins are likely 

transcription factors for ANGPTL4.  Furthermore, HM1 expression is reduced 
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with cobalt chloride exposure, mimicking the expression profile seen with HIF1α 

expression, suggesting HM1 is part of the hypoxia-induced response of ccRCC 

cells.  Additionally, as the HM1 also increases ANGPTL4 pre-mRNA, HM1 is 

possibly changing the transcriptional output of ANGPTL4 and not affecting the 

degradation of the ANGPTL4 mRNA.  DDAH1 was similarly upregulated with 

HM1 knockdown; however, DDAH1 pre-mRNA and protein were not affected and 

DDAH1 is highly downregulated in ccRCC.  These data suggest that DDAH1 is 

not contributing to the ccRCC pathology and could be a compensatory response 

of the cells to HM1 knockdown. 

The findings observed from differentiating mES cells suggest the role of HM1 

extends more broadly to an essential kidney biological function.  As the 

expression profiles of HM1 with differentiating mES mirror the expression profiles 

of WNT11, GDNF and CDH11, HM1 is possibly involved in the later metanephric 

mesenchyme commitment stage of kidney cell differentiation.  Additionally, HM1 

expression appears to be necessary to maintain the kidney progenitor state, as 

loss of HM1 expression with knockdown shows a suppression of kidney 

differentiation markers, OSR1, GDNF and PAX2.  As the knockdown of HM1 

does not preferentially or exclusively affect HM1-3, it is unclear which of the HM1 

transcript is responsible for the maintenance of the differentiated state.  However, 

it is suspected that HM1-3 is likely the transcript responsible for loss of the 

differentiated state, as it is significantly more abundant than the unspliced HM1 

transcript. 
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Collectively, the study provides new evidence of a cell-type specific regulatory 

function of HM1 influencing the hypoxia pathway and differentiation state in 

kidney cells.  Immediate future studies exploring the mechanisms of HM1 would 

be of greatest interest, as it remains unknown how HM1 functions in kidney cells. 
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Figure 3.1.  Reduced HM1-3 expression in ccRCC.  A- The HOTAIRM1 locus 

is located in the HOXA gene cluster between HOXA1 and HOXA2 and produces 

two spliced transcripts (HM1-3, HM1-2-3) and one unspliced transcript.  B- 

Relative expression of HM1-3 in eight human cancers relative to their respective 

normal tissue. HM1-3 levels were analyzed by qPCR and normalized 

commercially to β-actin.  C- Analysis of HM1-3 expression by qPCR in normal 

tissues (n=9) versus ccRCC (n=21) and pRCC (n=10, papillary renal cell 

carcinoma) tumors was performed as in panel B.  D- Analysis of HM1-3 

expression by qPCR in 12 ccRCC matched pair samples. Fold changes in 
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expression in tumor vs normal (ΔΔCt) are indicated. E- FKPM tumor/normal 

ratios of 50 ccRCC match paired TCGA samples for all HM1 transcripts. F- 

Quantification of HM1 transcripts within normal adjacent samples.  Shown is the 

merged trace of 72 normal renal RNA-seq datasets and validation using 12 

independent normal renal samples using PCR, showing relative abundance of 

the HM1 transcripts. G-  Unsupervised consensus clustering identified 4 distinct 

ccRCC subtypes (left).  HM1-3 expression with respect to their ccRCC subtype 

classification (right).  Statistical significance was determined by using two-tailed 

Student’s t-test for panels B and C and the Wilcoxon signed-rank test for the 

match paired samples in panel D and E (* p<0.01,  **p<0.005, ns >0.01). 
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Figure 3.2.  Characterization of HM1 transcripts in proximal renal tubule cell 

lines.  A - Copies per cell of HM1 transcripts using qPCR.  Error bars represent 

SEM across three biological replicates.  HRPTEpC copies per cell inferred based 

on 7 pg total RNA per cell.  B - Subcellular localization of HM1 transcripts.  

MALAT1 serves as a nuclear transcript control and HOXA1 serves as a 

cytoplasm transcript control.  Error bars represent SEM across three technical 

replicates.    
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Figure 3.3.  Hypoxia pathway altered with HM1 knockdown in CAKI-1 cells.  

A– HM1 knockdown with three HM1 siRNAs.  B– A total of 40 DEGs collectively 

identified between edgeR (fold change >1.25 and FDR <0.05) and sleuth 

analyses (β >0.5 and FDR <0.05) in RNA-seq experiment using HM1 siRNA #2.  

C– qPCR validation of 10 identified DEGs in RNA-seq using HM1 siRNA #2.  D – 

Validation of ANGPTL4 and DDAH1 upregulation with HM1 knockdown in 

parental and HM1-3 overexpression CAKI-1 cells.  E– ANGPTL4 and DDAH1 

precursor expression with HM1 knockdown.  F– Western blot evaluating HIF1α, 
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DDAH1 and VHL protein expression with HM1 knockdown.  G- TPM 

tumor/normal mRNA ratios of 50 ccRCC match paired TCGA samples for 

ANGPTL4 and DDAH1. 
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Figure 3.4.  HM1, ANGPTL4 and HIF1α RNA expression altered with cobalt 

chloride exposure.  CAKI-1 cells exposed to 100uM cobalt chloride at 

increasing time intervals.  Relative expression normalized to PPIA expression.    
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Figure 3.5.  HM1 knockdown dedifferentiates mouse kidney progenitor 

cells.  A – mES cells sequentially exposed to activin A (Day 0, D0), BMP-4 (Day 

2, D2), LiCL (Day 4, D4) and RA (Day 6, D6) to differentiate into kidney 

progenitor cells.  A=activin A, 4=BMP-4, L=LiCL, R=RA.  B – Gene expression of 

mesoderm-commitment, intermediate mesoderm and metanephric mesenchyme 

markers during differentiating time course.  C- HOTAIRM1 expression during 

differentiating time course.  D- HM1 knockdown in kidney progenitor cells and its 

effects on kidney differentiation markers.  Gene expression normalized to 
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POLR2A, GAPDH and ACTB.  Error bars represent the SEM across three 

biological replicates. 
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          Supplemental table 3.1.  Origene ccRCC match paired samples. 

Match Pair # 
Catalog 
Number 

Case ID 
Sample 

Classification 

1 
CR563036 CU0000000807 Tumor 

CR562944 CU0000000807 Normal 

2 
CR559247 CU0000006303 Tumor 

CR561460 CU0000006303 Normal 

3 
CR560088 CI0000010082 Tumor 

CR560086 CI0000010082 Normal 

4 
CR561100 CI0000000216 Tumor 

CR559748 CI0000000216 Normal 

5 
CR560856 CI0000005561 Tumor 

CR560857 CI0000005561 Normal 

6 
CR560960 CI0000005877 Tumor 

CR560957 CI0000005877 Normal 

7 
CR560907 CI0000006155 Tumor 

CR560906 CI0000006155 Normal 

8 
CR559302 CI0000006640 Tumor 

CR560658 CI0000006640 Normal 

9 
CR559596 CI0000009997 Tumor 

CR560141 CI0000009997 Normal 

10 
CR561841 CU0000011475 Tumor 

CR559696 CU0000011475 Normal 

11 
CR559768 CU0000012615 Tumor 

CR561775 CU0000012615 Normal 

12 
CR559682 CU0000012830 Tumor 

CR561813 CU0000012830 Normal 
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Supplemental table 3.2.  qPCR primer sequences 

Gene/Transcript Primer Sequence 

HM1-3 
AAGATGAACTGGCGAGAGGTC 

TTTCAAACACCCACATTTCAACC 

HM2-3 
CATCGCGTTGTCATTGGAAC 

TTCAGGCAAAACAGACCGTGA 

Unspliced 
GCAACAACCCAGTGACACAC 

TGCTTCGAAGTCAGGTTAGC 

HOXA1 
TTGACCCAGGTAGCCGTACT 

TCTTCTCCAGCGCAGACTTT 

MALAT1 
AGGGACTGGAGCTGCTTTTATC 

TGAACCAAAGCTGCACTGTG 

RPL7 
GCCATATATTGCATGGGGGTAC 

TGCCATAACCACGCTTGTAG 

ADAM19 
AGCACTTGCCCCAAAGTTTC 

AGCTCAAGGAAAGGGAGAAGC 

H3F3C 
TGGTGGGTCTGTTGGAAGATAC 

TGTCTTTGGGCATGATGGTG 

MAP7D1 
AAGGAGGCTGTGCAGAAAGAG 

AGAAGCCATTCTCCTGGTGTG 

CUTA 
TGCAGCCTTTGTTACTTGCC 

AATCTGAGGGATGAGGTTGACG 

DDAH1 
AGTGAATCTGCACAGAAGGC 

ACAGTGAGTTTGTCGTAGCG 

GXYLT1 
TGGCTCATGCATGTAATCCC 

ACTTTGTCACCTAGGCTGGTC 

ZC3H18 
GAGGACGATGATGGAGAAATCG 

ACTGGGGTCCTTCACTTCAC 

ANGPTL4 
CGCCATTTTTGGTGAACTGC 

TTGAAGTCCACTGAGCCATCG 

CDKN1C 
ACGCACTAGCTCGGTTATTG 

GCTACAGCTTGTGAGTGACC 

PTGS2 
ATGATTGCCCGACTCCCTTG 

TGGGGATCAGGGATGAACTTTC 

ARSD 
CAGCATCTTCACGCAGCAC 

TGCGGGGTCGTGTAATGAAC 

GSTA4 
CAGTTGTACAAGTTGCAGGATGG 

TCCCGTCAATTTCAACCATGGG 

CDH1 
AATGGGGCAATCGCTTCAAG 

ACCACCAGCAACGTGATTTC 

WDR31 
TGGCTGCTTTGAACTCAGAC 

TGGTGATCTCATGTTCATGTCC 

TNFRSF11B 
ATTTGGAGTGGTGCAAGCTG 

AGGGTGCTTTAGATGACGTCTC 
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  Supplemental table 3.2 continued.  qPCR primer sequences 

Gene/Transcript Primer Sequence 

WWP1 
CTGCCGATGACACTGTTAATGG 

TACTGGAGTACCCGTGACAG 

ANGPTL4 precursor 
ACAGCTGGCATTCATGGAAG 

AGTGACCAGGAAGACGCTTTC 

DDAH1 precursor 
AGGCCCTAACTGCTCTTCAAAG 

TCTACCCTGTCAAATGCCATCC 

HIF1α 
ACAGTAACCAACCTCAGTGTGG 

ATGGGTGAGGAATGGGTTCAC 
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                           Supplemental table 3.3.  siRNA sequences 

siRNA name siRNA sequence (5'->3') 

HM1 siRNA #1 UCAAUGAAAGAUGAACUGGtt 

HM1 siRNA #2 CUGGGAGAUUAAUCAACCAtt 

HM1 siRNA #3 GGAGACUGGUAGCUUAUUAaa 
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Supplemental Figure 3.1. HM2-3 and Unspliced transcripts unaffected in 

ccRCC.  (A) Relative expression of HM1-2-3 and Unspliced transcripts in eight 

human cancers relative to their respective normal tissue. HM1-2-3 and Unspliced 

transcripts levels were analyzed by qPCR and normalized commercially to β-

actin.  (B) Analysis of Unspliced HM1 expression by qPCR in normal tissues 

(n=9) versus ccRCC (n=21) and pRCC (n=10, papillary renal cell carcinoma) 

tumors was performed as in panel B.  No significant Unspliced HM1 differential 

expression observed in ccRCC or pRCC. Statistical significance was determined 

by using two-tailed Student’s t-test for all panels (* p<0.05). 
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Supplemental Figure 3.2.  Four major subtypes identified in ccRCC.  A- 

Consensus matrices generated for k=2-7, using 1000 of the most variable genes. 

B- Cumulative distribution functions (CDF) for each k of the consensus matrix 

(top).  Greatest relative change in the area under the CDF curves observed from 

k=3 to k=4 (bottom).  C-  Mean item consensus value for each cluster at a given 

k. 
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Supplemental table 4.3.  Enrichr analysis results of 22 upregulated DEGs 

Name p-value q-value Z-score 

SMAD_19615063_ChIP-ChIP_OVARY_Human 0.008122 0.9594 -4.09 

HIF1A_21447827_ChIP-Seq_MCF-7_Human 0.005031 0.9594 -3.36 

TP63_17297297_ChIP-ChIP_HaCaT_Human 0.04311 0.9594 -4.05 

NANOG_18700969_ChIP-ChIP_MESCs_Mouse 0.05435 0.9594 -4.13 

SOX9_22984422_ChIP-ChIP_TESTIS_Rat 0.06812 0.9594 -4.35 

NANOG_21062744_ChIP-ChIP_HESCs_Human 0.01235 0.9594 -2.46 

ERG_21242973_ChIP-ChIP_JURKAT_Human 0.04803 0.9594 -2.9 
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Abstract 

Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are 

changing how researchers view eukaryotic gene regulation.  Once considered to 

be non-functional products of low-level aberrant transcription from non-coding 

regions of the genome, lncRNAs are now viewed as important epigenetic 

regulators and several lncRNAs have now been demonstrated to be critical 

players in the development and/or maintenance of cancer.  Similarly, the 

emerging variety of interactions between lncRNAs and MYC, a well-known 

oncogenic transcription factor linked to most types of cancer, have caught the 

attention of many biomedical researchers.  Investigations exploring the dynamic 

interactions between lncRNAs and MYC, referred to as the lncRNA-MYC 

network, have proven to be especially complex.  Genome-wide studies have 

shown that MYC transcriptionally regulates many lncRNA genes.  Conversely, 

recent reports identified lncRNAs that regulate MYC expression both at the 

transcriptional and post-transcriptional levels.  These findings are of particular 

interest because they suggest roles of lncRNAs as regulators of MYC oncogenic 

functions and the possibility that targeting lncRNAs could represent a novel 

avenue to cancer treatment. Here, we briefly review the current understanding of 

how lncRNAs regulate chromatin structure and gene transcription, and then 

focus on the new developments in the emerging field exploring the lncRNA-MYC 

network in cancer. 
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Introduction 

In recent years, the investigations exploring the importance of how long non-

coding RNAs (lncRNAs) influence epigenetic modifications and chromatin 

structure has truly been paradigm shifting in our fundamental understanding of 

how transcription is regulated in higher eukaryotes.  Once considered to be 

“transcriptional noise” inherent to the large genomes of higher eukaryotic 

organisms, lncRNAs are now viewed as critical regulators of complex genomes 

and have added another layer of complexity to the molecular mechanisms that 

govern gene regulation.  In humans there is ~2 times more genes that produce 

lncRNAs, an estimated ~48,000 lncRNA genes [1], than protein-coding genes, 

and only a very small fraction of these lncRNA genes have been characterized 

[1]. 

While lncRNAs are only a subset of the non-coding transcriptome, over the last 

several years these mysterious RNAs have stepped into the limelight.  In 

particular, a topic of great interest has been how dysregulation of lncRNAs leads 

to the inappropriate epigenetic regulation of critical genes that are involved in the 

development and/or maintenance of cancer.  Recent evidence suggests that 

MYC, a well-studied oncogenic transcription factor that is deregulated in most 

types of cancer and controls many cellular processes, including cell growth, 

metabolism, proliferation, differentiation and apoptosis [2-6], is an important 

mediator in the transcription of lncRNAs [7, 8].  In turn, new evidence suggests 

that lncRNAs can also control the expression of MYC [9].  In this review, we 
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briefly discuss our current understanding of the basic features of lncRNAs and 

how they regulate the epigenetic landscape and then focus on the emerging 

dynamic relationships between MYC and several lncRNAs as they pertain to 

cancer. 

 

Characteristics of lncRNAs:  structure and function 

The generally accepted definition of a lncRNA is an RNA molecule longer than 

200 nucleotides that does not code for a protein [10].  With the arrival of genome-

wide platforms, such as microarrays and next-generation sequencing, and more 

sophisticated computational analyses of genome-wide data, the exploration of 

the non-coding transcriptome has developed a strong foothold in molecular 

research laboratories [11-14].  In a recent publication, it was estimated that 

there are ~110,000 different lncRNA transcripts within the human genome, with 

~80,000 of these considered to be high confidence lncRNA transcripts, 

representing ~48,000 genes [1].  Through the use of sophisticated computational 

analyses, these high confidence lncRNAs transcripts were shown to have very 

limited or no appreciable coding potential [1].  LncRNAs share many similarities 

to protein-coding transcripts.  LncRNAs undergo similar co-transcriptional and 

post-transcriptional processing.  Many lncRNA transcripts are transcribed by 

RNA polymerase II (although some are transcribed by RNA polymerase III) [15], 

they share the same canonical splice sites and polyadenylation terminal signals 

and frequently contain a 5’ cap and a polyadenylated 3’-end [16,17].    
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Importantly, there are also some notable dissimilarities between lncRNAs and 

mRNAs.  LncRNAs can undergo some unconventional processing [18-20] and 

tend to have a higher degree of tissue-specific expression relative to protein-

coding genes [14, 21, 22].  Additionally, the primary sequences of lncRNAs tend 

to be less conserved across species [23].  These data suggest that the structure 

(rather than sequence) of lncRNAs may be of greater importance when exploring 

the function of lncRNAs, but this topic of RNA biology remains challenging.  

LncRNAs that have been extensively studied, such as HOTAIR and MALAT1, 

have provided some of the initial insights into the importance of the structural 

features of lncRNAs [23-27].   Recent evidence has shown that secondary 

structural elements of lncRNAs that are evolutionarily conserved contain 

important protein-binding domains [27].  Several methodologies have been 

developed in an effort to determine the secondary and tertiary structures of RNA 

molecules [28].  Some of the most noteworthy techniques have used either 

specific nucleolytic enzymes or chemical modifications of the RNA molecules 

followed by sequencing [29-33].  Once sequenced, the secondary structure of the 

RNA molecules can be determined from the ends of the reads using advanced 

computational tools (Figure 4.1).  For example, the technique frequently referred 

to as Structure-seq employs the use of dimethyl sulfate (DMS) which penetrates 

the cells and methylates N1 of adenines and N3 of cytosines when not involved 

in Watson-Crick base pairing [29, 35].  Reverse transcription of the DMS-

methylated RNA, results in reverse transcriptase stopping at the methylated 
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bases generating cDNAs of different lengths that are then sequenced. From 

these data, the secondary structure of RNA molecules can be determined on a 

genome-wide level using computational models.  However, most techniques for 

the structural analysis of RNA molecules involve in vitro conditions that may not 

retain the structural characteristics of lncRNAs in vivo [36].  In spite of the 

challenges in RNA structural biology, the elucidation of lncRNA structure appears 

to be of vital importance, if we are to fully understand the functional capabilities of 

lncRNAs. 

LncRNAs have a myriad of functions within eukaryotic cells.  One of the best-

understood and studied functions of lncRNAs is how they modulate gene 

expression.  LncRNAs have been described as “fine-tuners” of gene regulatory 

networks regulating gene expression both at the transcriptional and post-

transcriptional levels via a variety of distinct mechanisms [37, 38]. LncRNAs can 

be cis-acting, regulating chromatin structure and transcription of neighboring 

genes, and/or trans-acting, regulating the transcription of genes at distant 

locations within the genome [10, 38]. There are three broad functional 

classifications for lncRNAs; they can serve as decoys, scaffolds and/or guides 

(Figure 4.2).  In simple terms, lncRNAs that serve as decoys can associate with 

both regulatory RNAs and proteins, such as miRNAs, DNA-binding proteins and 

histone-modifying enzymes, and prevent their binding to specific target mRNAs 

or chromatin loci and/or inhibit their enzymatic activity [10, 37, 39, 40].  In a 

recent example, MALAT1 was shown to mediate the mRNA levels of serum 
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release factor (SRF), an important transcription factor in myogenesis, by acting 

as a sponge or competing endogenous RNA (ceRNA) for miR-133 [40]. Scaffold 

lnRNAs provide a platform onto which different molecular interactions can occur, 

such as protein-protein interactions, including interactions of distant chromatin 

loci [41].  For example, HOTAIR has been demonstrated to aid in protein 

ubiquitination by acting as a scaffold for E3 ubiquitin ligases containing Dzip3 

and Mex3b RNA-binding domains and also their substrates, Ataxin-1 and 

Snurportin-1, respectively [41].  Lastly, guide lncRNAs aid in the recruitment of 

protein complexes to specific locations within the cell, such as recruitment of 

epigenetic modifying enzymes to specific genes [10, 37, 38, 42].  The Xist 

lncRNA and its role in dosage compensation is a prime example of a guide 

lncRNA.  Xist has been shown to interact with the SHARP-SMRT complex and 

recruit it to the X chromosome, thereby activating HDAC3 leading to histone 

deacetylation and exclusion of RNA polymerase from the X chromosome [42].  

As more lncRNAs are characterized, we suspect these functional classifications 

will change with the discovery of novel lncRNA cellular functions.  All three of 

these broad functional classifications of lncRNAs are found within the lncRNA-

MYC network, described below. 

 

The lncRNA-MYC network 

Over the last decade as lncRNAs have been drawing the attention of more 

researchers, as too has the lncRNA-MYC network gained the attention of many 
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investigators.  In two recent reviews, the lncRNA-MYC network has been 

described:  either by examining how lncRNAs influence MYC expression [9], or 

selectivity summarizing some of the interactions seen within the human lncRNA-

MYC regulatory network [43].  Here, we will further expand on what is known 

about the lncRNA-MYC network by providing a comprehensive summary of the 

molecular interactions within this regulatory network (Table 4.1), with an 

emphasis on recent developments in the field demonstrating functional 

relationships between cancer-associated lncRNAs and MYC. 

PVT1 

We will begin by describing recent findings suggesting a reciprocal relationship 

between MYC (formerly c-MYC) and a well-known lncRNA, known as PVT1.  

Both the MYC and PVT1 genes are located in the 8q24 chromosomal region, 

which is frequently referred to as a “gene desert” because it contains few protein-

coding genes (Figure 4.3).  However, several lncRNA genes have been 

discovered within this region.  The 8q24 region has also been of particular 

interest because it is a frequent region of genomic alterations, including 

amplifications and translocation breakpoints, in several different types of cancer 

[44].  Moreover, aberrant overexpression of PVT1 has been discovered in many 

different human cancers [45].  As previous mentioned, MYC is an oncogenic 

transcription factor and can either activate or repress transcription [46].  In a 

recent study, PVT1 was shown to contain two non-canonical MYC-binding sites, 

which were found to be important for the binding of both MYC and its paralog 
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MYCN (formerly N-MYC) to the promoter region of PVT1, with changes in H4 

acetylation and PVT1 mRNA production correlating with changes in MYCN 

occupancy at the PVT1 promoter [47].  As suggested by the authors, this study 

demonstrates that PVT1 is a likely downstream target of MYCN.  Conversely, 

PVT1 lncRNA has been shown to be important in the regulation of MYC 

expression. Through the use of chromosome engineering in mice and both loss 

and gain-of-function analyses in different human cancer cell lines, it was 

demonstrated that PVT1 was required for high MYC protein expression, via its 

capacity to protect MYC from phosphorylation and subsequent degradation [48].  

PVT1 is an exceptionally interesting lncRNA, both in its ability to physically 

interact with and regulate MYC and its pivotal roles in many cancers, making it 

an attractive therapeutic target to combat different cancers.  For a more 

extensive review of PVT1 and its oncogenic features, we will refer to a recent 

review by Colombo et al. [45]. 

The CCAT family 

The colon cancer associated transcripts (CCATs) are a collection lncRNAs 

located on different chromosomes that have been both associated with and 

functionally demonstrated to be involved in the development of human colorectal 

cancers (CRC).  Specifically, three of the best-characterized CCAT lncRNAs are 

CCAT1 (also known as CARLo5), CCAT2 and CCAT6.  CCAT6, also known as 

MYCLo2, will be discussed below in the MYCLos section.  While the CCAT6 

gene is located on chromosome 7, CCAT1 and CCAT2 are located in the gene 
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desert region of 8q24, near MYC and PVT1.  With the use of genome-wide 

association (GWA) studies, the 8q24 region has been implicated in CRC [49-51].  

From these GWA studies, CCAT1 was later identified and characterized as being 

a highly specific marker for CRC [52].   

The interplay between MYC and CCAT1 involves many complex molecular 

interactions.  Contained within the 8q24 region are several chromatin-looping 

interactions that have been shown to be tissue-specific [53] and have been 

suggested to regulate MYC expression [53-58].  One of the most studied 

structural elements found in the 8q24 region is an enhancer region located ~335 

kb upstream of MYC, frequently referred as MYC-335 [55-57].  Located ~180 kb 

upstream of MYC-335 is CCAT1, and this region is considered to be a super-

enhancer (Figure 4.3).  A recent study showed a long-range physical interaction 

between MYC-335 and the promoter of CCAT1, suggesting that MYC-335 is 

important for CCAT1 expression [54].  Moreover, it was later demonstrated that a 

long isoform of CCAT1, referred to as CCAT1-L, was important in the 

maintenance of the chromatin interaction via its role in the recruitment of a 

transcription factor, called CCCTC-Binding factor or CTCF [58].  Moreover, 

CCAT1 has been suggested to also regulate MYC post-transcriptionally.   Deng 

et al., found that CCAT1 was deregulated in hepatocellular carcinoma, and 

CCAT1 expression correlated with the progression of the malignancy and poor 

prognosis [59].  With the use of RNA immunoprecipitation, CCAT1 was 

discovered to function as a let-7 miRNA sponge, thereby disinhibiting MYC [59].  
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Adding to the complexity, MYC has been shown to bind to the promoter of 

CCAT1 and upregulate its expression and promote proliferation and invasion of 

colon and gastric cancer cells [60, 61].  

Also important to the regulation of MYC expression is the CCAT2 lncRNA.  

CCAT2 is transcribed from MYC-335, described above, and CCAT2 is 

overexpressed in CRC and has been shown to promote tumor growth and 

metastasis [62].  Moreover, in the same study, CCAT2 was also shown to 

upregulate transcription of MYC through the recruitment of TCF7L2 [62].  

Recently, additional CCAT lncRNAs have been discovered; however, it remains 

unclear whether these novel CCAT lncRNAs are part of the lncRNA-MYC 

regulatory network [63].  Altogether, the CCAT lncRNA family is proving to be 

complex and important in the involvement of colorectal cancer and in the 

regulation of MYC expression. 

MYCLos 

MYCLos is as collective term for several lncRNAs included within the CCAT 

family, coined by a research group examining the importance of these lncRNAs 

in human CRC.  In the original study, conducted by Kim et al., a microarray 

analysis was used to profile ~33,000 lncRNAs in both normal and CRC samples 

[63].  Their results revealed thousands of lncRNAs to be differentially expressed, 

including the CCAT1 and CCAT2 lncRNAs that had previously been suggested 

to be important in several stages of CRC [52, 54, 58, 62, 64, 65].  To further 

narrow their search and to isolate the lncRNAs that were both differentially 
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expressed in CRC and regulated by MYC, they examined the effects of MYC 

knockdown in different CRC cell lines.  From these experiments, they identified 

three lncRNAs, referred to as MYCLo-1, MYCLo2 (also known as CCAT6), and 

MYCLo-3, that were transcriptionally upregulated by MYC.  They later confirmed 

that MYCLos had influential roles in cell proliferation and cell cycle progression 

by regulating the expression of CDKN1A and CDKN2B, known gene targets of 

MYC.  In a follow-up study by the same research group, three additional lncRNAs 

were identified, named MYCLo-4, MYCLo5, and MYCLo6, and were repressed 

by MYC.  Similar to MYCLos1-3, MYCLos4-6 were also found to influence cell 

proliferation and cell cycle progression, by regulating the expression of MYC 

target genes [66].  Collectively, MYCLos are a newly identified class of MYC-

regulated lncRNAs, with some of them having an oncogenic role (MYCLos 1-3) 

and others having a tumor suppressor role (MYCLos 4-6).  In the future, it will be 

important to determine how universal these lncRNAs are to the functions of MYC 

and whether a similar regulation of MYCLos by MYC is observed in other 

cancers. 

The PCAT family 

The prostate cancer associated transcripts (PCATs) are another class of 

lncRNAs within the lncRNA-MYC network.  Three of the better-characterized 

PCAT lnRNAs are PCAT1, PCAT8 (also known as PRNCR1 and CARLo-3) and 

PCAT9 (also known as PCGEM1).  While PCAT9 is located on chromosome 2, 

PCAT1 and PCAT8 are located ~715 kb and ~645 kb upstream of MYC, 
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respectively.  As mentioned above, lncRNAs have been shown to regulate the 

transcription of the MYC gene and the stability of the MYC protein.  More recent 

evidence suggests that lncRNAs may also influence MYC protein expression at 

the mRNA level.  In a recent study in prostate cancer cells, it was shown that 

PCAT1 attenuates the downregulation of MYC protein expression (but not mRNA 

amount or stability) by interfering with miR-34a [67], a known miRNA that 

regulates MYC expression by targeting the MYC mRNA 3’UTR [68-70].  Although 

many lncRNAs act as sponges to sequester miRNAs away from their mRNA 

targets [71, 72], the investigators were unable to identify any putative miR-34a 

binding site in PCAT1.  Therefore, it was suggested that PCAT1 indirectly affects 

miR-34a post-transcriptional regulation of MYC [67].  While PCAT1 does appear 

to be directly involved in the lncRNA-MYC network, it is unclear if PCAT8 is also 

part of this network; however, PCAT8 has been associated with both prostate 

and colorectal cancers [73, 74]. 

In a study by Hung etl al., PCAT9, also known as prostate cancer gene 

expression marker 1 (PCGEM1), was found to be an important transcriptional 

mediator of many metabolic pathways in prostate cancer cells [75].  With 

chromatin isolation by RNA purification (ChIRP), a technique developed to 

examine specific RNA-DNA interactions [76], it was demonstrated that PCAT9 

physically interacts with the promoters of metabolic genes, and that PCAT9 

expression affected cell-cycle progression and proliferation [75].   Also 

discovered, PCAT9 was found to bind to MYC and that upon knockdown of 
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PCAT9 recruitment of MYC to metabolic genes was diminished [75].  To date, 

PCAT9 is the only lncRNA that been shown to bind to MYC and promote its 

transactivation activity thereby affecting the metabolism of cancer cells. 

GAS5 

The growth arrest-specific 5 (GAS5) lncRNA is a functionally diverse lncRNA 

[77], that is transcribed from chromosome 1.  GAS5 has been suggested to be a 

tumor suppressor, implicated in several human cancers [78-82].  Similar to 

PCAT1, GAS5 has been suggested to affect MYC expression at the mRNA level.  

In a recent study, GAS5 was shown to bind to both the eIF4E translation initiation 

factor and the MYC mRNA thereby inhibiting translation of MYC [82].  However, 

further investigation is needed to determine mechanistically how GAS5 is 

suppressing the translation of MYC mRNA.  This study provides another example 

of the diversity of mechanisms by which lncRNAs regulate the expression of 

MYC. 

GHET1 

Gastric carcinoma proliferation enhancing transcript 1 (GHET1) is an unspliced 

lncRNA transcribed from chromosome 7 that has been implicated in gastric and 

bladder cancers [83, 84].  First discovered by Yang et al., GHET1 was found to 

be upregulated in gastric carcinoma clinical samples and higher levels of GHET1 

expression correlated with a poor survival rate [84].   Knockdown of GHET1 was 

shown to inhibit proliferation rates of gastric carcinoma cells.  Conversely, 

overexpression of GHET1 promoted cell proliferation rates in vitro and tumor 
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growth in vivo.  With the use of different immunoprecipitation techniques, GHET1 

was shown to physically interact with insulin-like growth factor 2 mRNA binding 

protein 1 (IGF2BP1) and also promote the binding of IGF2BP1 to MYC mRNA 

aiding in its stabilization [84].  The MYC mRNA is a very unstable mRNA that is 

rapidly degraded, and IGF2BP1 is part of a protein complex that has been shown 

to promote its stability [85, 86].  In the future, it would be interesting to see if 

GHET1 maintains this same mechanistic relationship with MYC in other 

malignancies. 

H19 

Imprinted maternally expressed transcript, known as H19, is a lncRNA expressed 

only from the maternal allele on chromosome 11 that has been to shown to be 

essential for human tumor growth and metastasis [87, 88].  Moreover, H19 has 

been demonstrated to be functionally important in several human cancers [89-

94].  While it has been known for many years that H19 is a key player in many 

human malignancies, it was only recent that a functional link between H19 and 

MYC had been discovered.  MYC was found to bind to E-boxes located in the 

H19 promoter and assist in histone acetylation, thereby promoting H19 

expression [94].  Many of these findings were recapitulated in a later study [93].  

Interestingly, H19 is predominantly a cytoplasmic lncRNA, and recently has been 

demonstrated to be important in muscle differentiation by acting as a molecular 

sponge for the let-7 miRNA [96].  Furthermore, the role of H19 in metastasis was 

elucidated later in ovarian cancer cells were H19 was discovered to interfere with 
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let-7 mediated downregulation of MYC mRNA and protein levels [97].  

Collectively, H19 is one of the most pervasive dysregulated lncRNAs seen in 

human cancer, and to date it is one of only a few lncRNAs that feeds into a 

positive feedback loop with MYC, by being transcriptionally upregulated by MYC 

and post-transcriptionally disinhibiting MYC mRNA degradation.  

TUSC8 

A relatively uncharacterized lncRNA, referred to as tumor suppressor candidate 8 

(TUSC8) located on chromosome 13 has also be suggested to modulate the 

expression of MYC.  In a study by Liao et al., TUSC8 was found to be 

downregulated in cervical cancer, and TUSC8 expression was found to correlate 

with the progression of the cervical cancer and patient survival rate.  In HeLa, 

SiHA and HCC94 cells, overexpression of TUSC8 was discovered to diminish 

both MYC mRNA and protein levels and decrease proliferation rates, while 

knockdown of TUSC8 had an opposite effect in both MYC expression and 

proliferation rates [98].  However, the mechanisms of how TUSC8 regulates the 

expression of MYC is unclear and these observed effects on MYC expression 

could potentially be indirect. 

 

Conclusion 

Our understanding of the dynamic regulatory relationship between lncRNAs and 

MYC remains in its infancy.  However, just within the past year there have been 

several studies exploring this potentially invaluable relationship found within 
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many human cancers.  It is not surprising that MYC would transcriptionally 

regulate many lncRNAs, and it is especially interesting that MYC oncogenic 

functions could be mediated through the regulation of specific lncRNAs.  Given 

the crucial role of MYC in many cancers, these findings suggest that MYC-

regulated lncRNAs and also lncRNAs that regulate MYC could be potential 

valuable targets in the treatment of many human cancers. MYCN is another 

interesting protein of the lncRNA-MYC network that is garnering attention. New 

studies have been conducted exploring a functional connection between MYCN 

and lncRNAs implicated in cancer [99-103].  Given its importance in the nervous 

system and mesenchymal tissues [104, 105], like MYC, MYCN could also 

mediate some of its oncogenic functions through the regulation of lncRNAs.  

Currently, we are still left with many unanswered questions concerning the 

importance of the lncRNA-MYC regulatory network in the development and/or 

maintenance of cancer.  Specifically, it would be interesting to know how 

pervasive these regulatory networks are and whether the same or distinct 

molecular interactions exist in different malignancies.  Given the sheer number of 

different lncRNA genes/loci, which give rise to an even larger number of lncRNA 

transcripts, and the fact that many of these lncRNAs are expressed both in a 

temporal and tissue-specific manner [14, 21, 22], one could postulate the 

existence of many more lncRNAs that could be regulated by MYC in a context-

dependent manner.  Altogether, future investigations in understanding this 
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complex regulatory network could serve to provide critical insights in the biology 

underlying the many different types of cancers. 
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Figure 4.1.  Overview of two methodologies used to determine RNA 

secondary structure.  A- Parallel analysis of RNA structure (PARS) uses an in 

vitro enzymatic treatment with single strand (S1 nuclease, red scissor) and 

double strand (RNase V1, blue scissor) cutters to generate two pools of digested 

RNA.  Once digested, adaptor sequences are ligated to the cleavage sites, 

converted into a cDNA library and subject to next-generation sequencing (NGS).  

Cleavages sites, identified from the sequencing data, will provide the locations of 

double stranded RNA regions (seen from the RNase V1 cleavage sites) or single 

stranded regions (seen from the S1 nuclease cleavage sites). Collectively, from 

these data secondary structure of RNA molecules can be determined.   B- An in 

vivo chemical treatment, named Structure-seq, uses DMS to selectively 

methylate available adenines and cytosines (denoted by red letters).  Reverse 
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transcriptase activity stops one nucleotide before reaching the methylated 

adenine or cytosine.  A cDNA library is constructed and subject to NGS.  As a 

result, the signature of discernable stop sites can be used to infer secondary 

structure from NGS data. 
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Figure 4.2.  Functional categories of lncRNAs.  There are three broad 

functional classifications for lncRNAs. A- LncRNAs can act as decoys 

sequestering either proteins and/or regulatory RNAs, such as miRNAs, away 

from their targets or cellular locations. B- LncRNAs can also be key players in the 

recruitment of proteins, such chromatin-modifying enzymes, to specific genomic 

locations thereby influencing transcriptional events. C- LncRNAs can provide a 

platform or scaffold to facilitate different molecular interactions, such as protein-

protein interactions. 
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Figure 4.3.  Molecular interactions of the lncRNA-MYC network at the 8q24 

genomic region.  CCAT1 both transcriptionally (through chromatin interactions) 

and post-transcriptionally (through titration of let-7) regulates MYC expression.  

CCAT2 recruits TCFL2 to the MYC promoter aiding in transcriptional activation.  

PCAT1 prevents miR34-a mediated translational repression.  PVT1 binds to 

MYC preventing threonine-58 phosphorylation by glycogen synthase kinase 3 

(GSK3) and subsequent MYC degradation.  Collectively, all of the flanking 
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lncRNAs promote the accumulation of MYC; therefore, when these lncRNA are 

inappropriately upregulated, MYC-dependent malignancies can develop. 
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Abstract 

The MYC oncoprotein has a long-standing and extensively explored history in the 

cancer biology field.  It is one of few proteins that are almost universally 

deregulated in human cancers.  One area of gaining interest in cancer studies is 

examining the functional role(s) of post-translational modifications of highly 

influential proteins, such as MYC and p53.  Acetylation is one such example of a 

post-translational modification largely overlooked in MYC studies.  While widely 

known for its role in recruiting histone acetyltransferases to stimulate 

transcription, recent studies have also demonstrated MYC to be a substrate for 

histone acetyltransferases.  These preliminary investigations have lead to 

interest in the role MYC acetylation has on its transcriptional activity.  In current 

study, we sought characterize how different MYC acetylation states alter the 

transcriptome.  Using RNA-seq analysis, we discovered MYC acetylation state 

has gene and pathway-specific effects, providing the first evidence showing that 

MYC acetylation has the capacity to change the transcriptome of cells. 

 

Introduction 

The MYC oncoprotein is a central player in most human cancers, and the 

mechanisms how its transcriptional activity is regulated is a subject of intense 

investigation and debate.  MYC is a basic helix-loop-helix transcription factor, 

and it is largely seen as an activator of transcription through its recruitment of 

histone acetyltransferases or HATs [1-3].  However, MYC-mediated 
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transcriptional regulation is far more complex, as MYC has multiple binding 

partners to modulate its transcriptional activity and MYC has also been shown to 

be a suppressor of transcriptional activity [4].  Furthermore, MYC has also been 

shown to be a direct substrate for HATs [1, 5, 6].  However, the functional role of 

MYC acetylation on its stability and transcriptional activity is largely unknown.   

MYC binds and is acetylated by HATs, such as: lysine acteyltransferase 2A 

(GCN5) and 5 (TIP60), and also E1A binding protein p300/CREB binding protien 

(p300/CBP) [1, 5, 6].  In the preliminary studies exploring MYC acetylation, MYC 

acetylation was found to stabilize MYC [1, 3, 7].  However, it was discovered that 

p300 and CBP was found to stabilize MYC independent of its HAT activity [3].  

Furthermore, MYC acetylation did not affect its binding to DNA nor its 

dimerization with MAX [1, 5].   

In the current study, we explore the global gene expression changes that occur 

with altered MYC acetylation states.  To achieve our goal, an RNA-seq analysis 

was performed comparing the transcriptomic profiles of Rat1a cell lines with 

different expression levels and/or acetylation states of MYC, comprising a wild-

type MYC overexpression cell line and three other cell lines overexpressing 

mutant forms of MYC, with missense mutations converting lysines residues 

(K149, K158 and K323) into arginine residues.  Conversion into arginine of these 

residues results in a loss of acetylation at these residues positions. 
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Materials and Methods 

RNA-seq analysis (conducted by Matthew Hurd, unpublished) 

Rat1a cells were trypsinized and the RNA was extracted using the RNeasy 

Qiagen RNA extraction kit per manufacturer’s protocol.  RNA quality and quantity 

were evaluated with a bioanalyzer and Thermoscientific Nanodrop2000 

spectrophotometer.  Single-end read RNA-seq libraries were constructed using 

the NEBNext Ultra Directional RNA library prep kit for Illumina.  Samples were 

multiplexed and sequenced with the HiSeq2500 HT sequencing platform. 

Read alignment and differential expression analysis 

Alignment of the sequencing reads was performed with HISAT2 using the mouse 

m38 assembly acquired from the Ensembl ftp site 

(https://www.ensembl.org/info/data/ftp/index.html) [8].  Read counting was 

performed using the summarizeOverlaps package, with union mode [9].  Using 

the read counts, an edgeR analysis was performed using the default settings [10, 

11].  The entire pipeline was performed within the systemPipeR package [12].  

Gene ontology analysis was conducted with the DEGs in Metascape using 

default settings (http://metascape.org/gp/index.html#/main/step1) [13]. 

Gene set enrichment analysis 

Read counts generated from the aforementioned summarizeOverlaps analysis, 

were normalized using DESeq2 [14].  Subsequently, all normalized counts were 

used in the GSEA software using default settings [15, 16].  Significant gene set 

were define with an FWER <0.05. 
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Results 

Transcriptomic effects of MYC overexpression in Rat1a cells 

Comparison of the Rat1a cell lines overexpressing wild-type (WT) MYC relative 

to the Rat1a cell with empty control vector (endogenous MYC levels) revealed a 

significant number of differentially expressed genes with several molecular 

pathways affected.  A total of 916 DEGs were identified, using a >2 fold change 

and 7% FDR.  Surprisingly, more downregulated genes than upregulated genes 

were observed; a total of 235 upregulated genes and 681 downregulated genes 

were observed with MYC overexpression.   Gene ontology analysis, using 

Metascape, with all of the identified DEGs showed terms related to wounding, 

extracellular matrix organization, regulation of cellular component movement and 

neuron projection development to be the most significantly enriched terms (Table 

5.1).  Segregated GO analyses rendered similar results to the collective GO 

analysis with all the DEGs.  GO analysis with only upregulated DEGs showed no 

significantly enriched terms using a q-value of <0.05 (Table 5.2).   Alternatively, 

GO analysis with only the downregulated DEGs rendered enriched terms related 

to extracellular matrix organization and cellular component movement (Table 

5.3). 

Transcriptomic effects of overexpression of MYC mutants in Rat1a cells 

Differential expression analysis comparing wild-type MYC overexpressing cells 

relative each of the mutant cell lines revealed both similarities and differences in 

the identified DEGs (Figure 5.1A, B).  The K149 mutant showed the greatest 
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number of DEGs, with 22 upregulated and 186 downregulated genes.  Among 

these DEGs 11 upregulated and 92 downregulated genes were unique to the 

K149 mutant.  The K149 mutant showed the greatest similarity with the K323 

mutant, sharing 93 differential expressed genes in common.   Moreover, the 

K323 mutant had 18 upregulated and 18 downregulated not found in the other 

mutants.  Lastly, the K158 had the highest number of upregulated genes, with 47 

genes.  The K158 mutant had 53 unique DEGs, and had least number of DEGs 

in common among the mutants. 

GO analysis of the all of the discovered K149 mutant DEGs showed chemotaxis, 

regulation of cytosolic calcium concentration and prostate gland epithelium 

morphogenesis among the top enriched ontology terms (Figure 5.2A).  GSEA 

using the Hallmarks gene sets showed a significant enrichment in 6 gene sets 

(Figure 5.2B, FWER <0.05).  The MYC target gene gene sets were among the 

most enriched, exhibiting significant increases in expression in the K149 mutant.  

Gene sets related to the interferon response and oxidative phosphorylation were 

also found to be enriched in the K149 mutant.  Alternatively, 2 gene set showed 

enrichment in the WT relative to the K149 mutant; these gene sets include 

hedgehog signaling and UV response. 

For the K158 mutant, actin filament and filopodium assembly and arginine 

transport were among the most enriched ontology terms.  Similarly, GSEA 

implicated genes related to the cytoskeleton as being enriched in the K158.  Only 

3 gene sets were identified as enriched.  Two gene sets, mitotic spindle 
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assembly and WNT β-catenin signaling, were enriched in the K158 mutant.  

Interesting the EMT gene set was enriched in the WT relative to the K158 

mutant, indicating a decreased expression of several EMT genes in the K158 

mutant. 

As anticipated, the GO analysis and GSEA for the K323 mutant was similar to 

the K149 mutant.  Like the K149 mutant, GO analysis of the K323 mutant 

showed leukocyte migration, response the virus and wounding as the top 

enriched ontology terms.  Similarly, GSEA showed enrichment in the interferon 

and TGF-β signaling gene sets.  However, the K323 mutant diverged from the 

K149 mutant showing an enrichment of the oxidative phosphorylation gene set 

with the WT, while the oxidative phosphorylation gene set was enriched in the 

K149 mutant.  

 

Discussion 

These data provide two essential pieces of information debated among the MYC 

research field.  First, these data highlight that enhanced MYC expression does 

not solely activate transcription or increase RNA steady-state levels.  On the 

contrary, the data demonstrates that with overexpression of MYC, decreases in 

RNA steady-state levels are more likely.  Second, these data provide the first 

evidence suggesting MYC acetylation is influential in its activity.  The data 

supports shared changes in gene expression between the three MYC mutants, 

and it also demonstrates distinct gene and pathway-specific effects.   
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One of the most noteworthy findings was seen with the gene set enrichment 

analyses.  While sharing several altered genes in common, the K149 and K323 

MYC mutants showed opposing changes to genes involved in oxidative 

phosphorylation.    These molecular changes discovered are reflected in the 

unique phenotypic characteristics seen in the mutant cell lines (data not shown). 

Another interesting finding from data was from the K149 mutant.  In the GSEA, 

the K149 MYC mutant was the only mutant that increased MYC target genes.  

While the K158 and K323 MYC mutants largely inhibited MYC regulatory function 

or “broke” normal MYC function, the K149 MYC mutant was the only mutant that 

enhanced MYC function. 

It is known that changes in MYC expression will elicit changes to many biological 

pathways [17-19]; however, these data suggest that MYC acetylation could be 

serving to “tip the balance” towards one biological function to another.  

Altogether, it will be interesting in the future to observe how this information will 

serve the medical field, as new therapeutics strategies could be developed 

targeting MYC acetylation in effort to modulate only parts of MYC function. 
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Table 5.1.  Gene Ontology analysis of all DEGs identified with MYC overexpression 

  Gene Count % Log10(P) Log10(q) 

response to wounding 62 7.74 -11.67 -7.47 

extracellular matrix organization 36 4.49 -10.96 -7.06 

positive regulation of cellular component movement 57 7.12 -10.73 -7.01 

negative regulation of cellular component movement 40 4.99 -10.19 -6.69 

regulation of neuron projection development 59 7.37 -10.19 -6.69 

muscle structure development 61 7.62 -8.72 -5.71 

blood vessel morphogenesis 55 6.87 -8.69 -5.71 

ossification 42 5.24 -8.64 -5.70 

actin filament-based process 62 7.74 -8.18 -5.34 

collagen biosynthetic process 14 1.75 -7.99 -5.18 

negative regulation of cell differentiation 64 7.99 -7.97 -5.18 

mesenchyme development 33 4.12 -7.96 -5.18 

metal ion homeostasis 57 7.12 -7.37 -4.70 

response to mechanical stimulus 34 4.24 -7.01 -4.40 

response to growth factor 60 7.49 -6.93 -4.34 

positive regulation of fibroblast proliferation 15 1.87 -6.81 -4.24 

tissue morphogenesis 56 6.99 -6.78 -4.22 

cell-cell adhesion 57 7.12 -6.74 -4.20 

positive regulation of reactive oxygen species metabolic process 18 2.25 -6.64 -4.14 

positive regulation of lipid kinase activity 10 1.25 -6.55 -4.10 
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Table 5.2.  Gene Ontology analysis of upregulated DEGs identified with MYC overexpression 

  Gene Count % Log10(P) Log10(q) 

negative regulation of cell cycle arrest 4 2.19 -4.36 -0.17 

glutathione metabolic process 5 2.73 -3.92 -0.10 

cofactor metabolic process 14 7.65 -3.77 -0.10 

regeneration 10 5.46 -3.46 0.00 

response to copper ion 4 2.19 -3.05 0.00 

negative regulation of growth 9 4.92 -2.93 0.00 

regulation of telomerase activity 4 2.19 -2.89 0.00 

response to vitamin D 4 2.19 -2.80 0.00 

positive regulation of bone resorption 3 1.64 -2.78 0.00 

cellular response to lipid 15 8.20 -2.68 0.00 

response to zinc ion 4 2.19 -2.60 0.00 

cranial nerve morphogenesis 3 1.64 -2.60 0.00 

leukocyte migration 9 4.92 -2.57 0.00 

monocarboxylic acid metabolic process 12 6.56 -2.47 0.00 

monocarboxylic acid transport 6 3.28 -2.46 0.00 

acylglycerol homeostasis 3 1.64 -2.44 0.00 

organic cyclic compound catabolic process 11 6.01 -2.26 0.00 

regulation of release of sequestered calcium ion into cytosol 4 2.19 -2.15 0.00 

response to insulin 8 4.37 -2.08 0.00 
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Table 5.3.  Gene Ontology analysis of downregulated DEGs identified with MYC overexpression

  Gene Count % Log10(P) Log10(q) 

extracellular matrix organization 36 5.83 -14.29 -10.10 

positive regulation of cellular component movement 50 8.09 -11.44 -7.72 

response to wounding 52 8.41 -11.17 -7.57 

regulation of neuron projection development 49 7.93 -9.60 -6.35 

collagen biosynthetic process 14 2.27 -9.44 -6.24 

supramolecular fiber organization 52 8.41 -8.87 -5.78 

negative regulation of cellular component movement 32 5.18 -8.60 -5.65 

cell-cell adhesion 52 8.41 -8.54 -5.65 

muscle structure development 51 8.25 -8.51 -5.65 

response to growth factor 54 8.74 -8.50 -5.65 

positive regulation of reactive oxygen species metabolic process 18 2.91 -8.35 -5.55 

positive regulation of MAPK cascade 43 6.96 -8.00 -5.26 

ossification 34 5.50 -7.57 -4.91 

heart development 47 7.61 -7.40 -4.79 

negative regulation of cell differentiation 52 8.41 -7.28 -4.70 

tissue morphogenesis 47 7.61 -6.81 -4.26 

response to tumor necrosis factor 25 4.05 -6.58 -4.07 

response to reactive oxygen species 27 4.37 -6.49 -4.00 

positive regulation of lipid kinase activity 9 1.46 -6.45 -3.98 

smooth muscle cell proliferation 20 3.24 -6.34 -3.91 
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Figure 5.1.  MYC acetylated mutants exhibit gene-selective effects.  A– 

Unsupervised hierarchical clustering of differentially expressed genes identified 

comparing overexpression of wild-type MYC (WT) relative to MYC 

overexpression mutants (M149, M158, or M323), using edgeR (fold change >2 

and FDR <7%).  Relative expression normalized to empty control (E).  B– Venn 

diagram of DEGs identifying genes in common and unique between the MYC 

mutants.  Red – number of upregulated genes.  Blue – number of downregulated 

genes. 
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Figure 5.2.  MYC-149 mutant alters chemotaxis pathway, upregulates 

oxidative phosphorylation and MYC-induced target genes.  A – Metascape 

express gene ontology analysis using all 208 DEGs identified in edgeR analysis 

(fold >2 and FDR <7%) comparing MYC wild-type relative to the MYC-149 

mutant.  B – GSEA with Hallmarks gene sets comparing MYC wild-type relative 

!4# !3# !2# !1# 0#

A 

B 

log10(q) 

MYC targets V1 Oxidative phosphorylation Interferon alpha response 

MYC targets V2 UV response Hedgehog signaling 



 141

to the MYC-149 mutant (FWER p-value <0.05). 
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Figure 5.3.  MYC-158 mutant downregulates actin/mitotic spindle assembly 

genes and upregulates EMT genes.  A – Metascape express gene ontology 

analysis using all 124 DEGs identified in edgeR analysis (fold >2 and FDR <7%) 

comparing MYC wild-type relative to the MYC-149 mutant.  B – GSEA with 

Hallmarks gene sets comparing MYC wild-type relative to the MYC-158 mutant 

(FWER p-value <0.05). 
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Figure 5.4.  MYC-323 mutant upregulates interferon response pathways and 

downregulates oxidative phosphorylation genes.  A – Metascape express 

gene ontology analysis using all 142 DEGs identified in edgeR analysis (fold >2 

and FDR <7%) comparing MYC wild-type relative to the MYC-323 mutant.  B – 

GSEA with Hallmarks gene sets comparing MYC wild-type relative to the MYC-

!1.5% !1% !0.5% 0%
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323 mutant (FWER p-value <0.05). 
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The current dissertation focuses on two areas of research largely overlooked in 

the cancer biology field:  the isoform-specific alterations that in occur in human 

cancer and the regulatory mechanisms controlling MYC expression and activity.  

While mostly descriptive, the studies presented provide several novel findings 

and a foundation for future investigations interested in examining the molecular 

derailments of ccRCC and the mechanisms regulating MYC activity. 

In chapter 2, we take an unbiased computational and experiment approach 

exploring the transcript-specific changes observed in ccRCC.  While previously 

undertaken by other labs, our lab implemented a series of new computational 

methods to reliably identify differential expressed transcripts and the molecular 

pathways altered in ccRCC.  One of the most interesting findings from our study 

was the discovery of lncRNAs, FGD5-AS1 and AL035661.1, of which have no 

known function and were among the top downregulated genes within ccRCC.  

FGD5-AS1 and AL035661.1 were among the top 30 coexpressed genes 

implicated in TCA cycle, and would be excellent candidates for future functional 

studies in ccRCC.   

Additionally, the study also highlights the unspoken issues seen with different 

differential expression analyses.  In the study, we used gene-level analyses, 

such as edgeR and sleuth, and observed rather large differences in the number 

of discovered DEGs between ccRCC tumors and normal adjacent renal tissue.  

Furthermore, we also discovered transcript-level analyses would also render 

unique deregulated genes, not detected by any of the gene-level approaches.  
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As discussed in chapter 3, we suspect that the lack of sensitivity seen with gene-

level analyses is in part attributed to the different alterations, and sometimes 

opposing changes, observed with transcripts derived from the same gene.  In 

other words, in many of the cases we observed differential transcript expression 

with only one of the transcripts from a gene.  This circumstance presents a 

situational, but fundamental, issue with gene-level analyses because if the 

unaffected transcripts are of suitable abundance, gene-level analyses could 

“overlook” the deregulation of the gene. 

In the future, it would be interesting to examine larger cohorts of match paired 

samples to evaluate how mutational status may influence the differential 

transcript expression analysis.  The current study used 50 match paired samples, 

and looks at the transcript alterations independent of mutational status.  As 

mutations in SETD2, and deficiencies in H3K36me3 are commonplace and 

known to influence splicing events in ccRCC, a transcript-level analysis 

segregating the paired samples according to these alterations could render 

different results than the findings presented in this dissertation [1, 2]. 

Findings from aforementioned computational analyses identified and confirmed 

the downregulation of HM1 in ccRCC.  In chapter 4, we provide the first evidence 

of a highly specific and pervasive downregulation of one transcript of HM1, 

referred to as HM1-3.  The study also provides preliminary evidence to suggest 

that HM1-3 regulates the hypoxic response in ccRCC through the suppression of 

HIF protein levels. However, the mechanisms of how HM1-3 regulates HIF 
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protein levels and consequently hypoxia-responsive genes are unknown.  As 

HM1-3 is almost exclusively found within the cytoplasm, HM1-3 likely regulates 

the HIF proteins via a post-transcriptional mechanism.  HM1 has been suggested 

to be a miRNA sponge; however, as the mRNA levels of the HIF genes are 

unaffected with HM1 knockdown, this mechanism seems less likely [3, 4].  

Moreover, the absolute abundance of HM1 is rather low in most cell types; 

therefore, it appears more likely that HM1-3 is affecting either the production or 

the stability of the HIF proteins. 

We found that steady-state RNA levels are largely unaffected with HM1 

knockdown in CAKI-1 cells.  However, hypoxia-responsive genes, such as 

ANGPTL4, were among the most differentially expressed with HM1 knockdown.  

Evaluation of the ANGPTL4 pre-mRNA also showed an upregulation with HM1 

knockdown suggesting that the increase in ANGPTL4 steady-state levels is likely 

an increase in transcription of ANGPTL4.  Furthermore, it is highly suspected that 

many of the steady-level RNA changes observed with HM1 knockdown are 

secondary effects and consequences of the changes seen with the HIF protein 

levels.  Alternatively, genes, such as DDAH1, are likely upregulated through a 

different mechanism.  As DDAH1 pre-mRNA is unaffected with HM1 knockdown 

and it is the largest upregulation observed with HM1 knockdown, HM1 may be a 

direct target of HM1.  However, no appreciable change was observed with 

DDAH1 protein level with HM1 knockdown.  The time of collection of the cells 

after the HM1 knockdown could account for the absence of change in DDAH1 
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protein levels.  However, additional studies are needed to determine whether 

DDHAH1 protein levels are upregulated.  Additionally, as DDAH1 is heavily 

downregulated in ccRCC tissues, the DDAH1 upregulation seen could be a 

compensatory response of the cells to HM1 knockdown, and may not, in the end, 

contribute to the ccRCC pathology. 

Immediate studies that elucidate the mechanisms of how HM1-3 regulates HIF 

proteins levels are warranted.  Additionally, a more global proteomics 

assessment in the presence of HM1 knockdown may reveal a broader influence 

on the proteomic landscape.  Furthermore, studies using reagents, such as 

cycloheximide, in the present of the HM1 knockdown would likely resolve 

whether HM1 regulates protein production, stability or both.  Lastly, more detailed 

investigations exploring HM1 in developing kidney cells are needed.  The 

experiments conducted (by Matt Young) show an increase in HM1 expression 

with kidney cell differentiation and a loss of kidney differentiation markers with 

HM1 knockdown in kidney progenitor cells.  Loss of HM1 during the course of 

kidney cell differentiation would solidify the necessity of HM1 in kidney cell 

development.  Additionally, studies carried out to more terminally differentiated 

kidney cell states would also been beneficial in further implicating HM1 function 

in normal kidney biology. 

In chapters 4 and 5, we explore the regulatory mechanisms controlling MYC 

expression and activity.  In chapter 4, we review the growing literature supporting 

a complex regulatory network between MYC and several lncRNAs.  In our review 
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of the literature, we highlight several experimental studies that show lncRNAs, 

many of them in close proximity to the MYC locus, regulating the transcription of 

MYC and also serving as miRNA sponges to increase MYC mRNA levels [5].  As 

lncRNAs exhibit a higher degree of tissue-specific expression, it would be 

interesting to learn if the same lncRNA regulatory functions of MYC extent to 

multiple tissues or cell types [6, 7].  Additionally, as PVT1 was discovered to bind 

to MYC, thereby controlling its degradation in cytoplasm [8], future studies 

examining other MYC binding lncRNAs are of great interest.  LncRNAs are best 

known for their function in transcriptional regulation, and to our knowledge there 

are no investigations exploring lncRNAs bound to MYC in the nucleus [9]. 

Finally, in chapter 5, we investigated the transcriptomic changes that occur when 

MYC acetylation states are altered in Rat1a.  Missense mutations in ectopically 

expressed MYC were created to convert lysines at positions 149, 158 and 323 to 

arginines.  These mutations in turn inhibit acetylation of MYC at these residues 

positions.  However, it is possible that the missense mutations themselves could 

be responsible for the transcriptomic changes seen and not necessarily the 

changes in MYC acetylation.  Additionally, another disadvantage to this 

experimental approach is that the mutations are not specific to inhibiting only 

MYC acetylation.  Conversion of the lysines into arginines also affects 

ubiquitination at these residues; therefore, our study cannot rule out that the 

transcriptomic changes discovered are solely attributed to MYC acetylation.  

However, there are a couple of experiments that would help support MYC 
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acetylation as a mediator of its transcriptional activity and thereby in part 

responsible for the observed gene-selective effects.  First, ChIP experiments, 

using the antibodies specific to the MYC mutants, should be consistent with the 

gene-selective expression changes found.  In other words, expression increases 

of a gene should be accompanied by changes in MYC occupancy on the 

promoter of the same gene.  These findings would support that the gene-

selective effects are direct effects of MYC and not secondary effects through an 

intermediate factor.  Second, electromobility shift assays could be performed 

using promoter sequences, identified above, with in vitro generated acetylated 

MYC to see if MYC binding affinities are altered for the respective promoter 

sequences. 

Altogether, the findings presented in the dissertation provide new insights into 

complexities of the derailments seen in cancer and highlight a potentially new 

mechanism regulating MYC activity.  It is our hope that the information gathered 

from our studies will provide a backdrop for investigators in the future to develop 

experimental strategies to help elucidate our unanswered and also novel 

therapeutic strategies to combat human cancer. 
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