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High-Yield D-T Neutron Generator∗ 

B.A. Ludewigt, R.P. Wells, J. Reijonen 

Lawrence Berkeley National Laboratory 
1 Cyclotron Road, Berkeley, CA 94720 

 

Abstract 

A high-yield D-T neutron generator has been developed for neutron interrogation in 

homeland security applications such as cargo screening. The generator has been designed as a 

sealed tube with a performance goal of producing 5·1011 n/s over a long lifetime. The key 

generator components developed are a radio-frequency (RF) driven ion source and a beam-

loaded neutron production target that can handle a beam power of 10 kW. The ion source can 

provide a 100 mA D+/T+ beam current with a high fraction of atomic species and can be pulsed 

up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D 

operation has been started.  
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 1. Introduction 

The need to inspect cargo containers, trucks, and other cargo for Sensitive Nuclear Materials 

(SNM), explosives, or chemical weapons has renewed the interest in neutron sources. Active 

neutron interrogation can play an important role in these inspection tasks because neutrons  

penetrate cargo and shielding materials and generate specific signatures. Neutron induced fission 

in nuclear materials stimulates the emission of β-delayed γ-rays and neutrons that are 

characteristic signatures of SNM [1]. Another promising neutron-based method for the detection 

of nuclear materials is Pulsed Neutron Differential Die Away Analysis [2]. Furthermore, neutron 

induced nuclear reactions in many materials generate characteristic prompt γ-rays that can 

provide valuable information about the chemical composition of the cargo [3,4].  

Neutron generators offer important advantages over other neutron sources. They can be 

rapidly turned on and off, in contrast to radioactive sources, and are significantly smaller and less 

costly than accelerator-driven neutron sources operating at higher beam energies. D-T generators 

produce two orders of magnitude higher yields than D-D generators under the same operating 

conditions. The 14 MeV neutrons generated by the T(d,n)4He reaction are highly penetrating, an 

important benefit in the screening of cargo containers, but they also lead to activation of cargo 

and a increased likelihood of interfering radiation signals.  

Neutron generators, which were first developed more than 40 years ago [5], are limited in 

output and lifetime [6]. In recent years continuously pumped D-D generators, which use radio-

frequency (RF) driven ion sources [7] for generating high beam currents and beam-loaded Ti-

targets [6], have been developed at the Lawrence Berkeley National Laboratory (LBNL) [8,9]. 

Described here is an effort to develop a D-T generator that produces an order of magnitude 

higher neutron yield than currently available devices and for an extended lifetime.  

 

2. Neutron Generator Concept 

In a neutron generator a high-voltage is applied to extract a D+/T+ beam from an ion source 

and accelerate it towards the target where neutrons are produced in D-T, D-D, or T-T reactions. 

The neutron yield increases with acceleration voltage, limited by HV breakdown across the 

acceleration gap, and with beam current, limited by the ion source output and the ability of the 

target to handle the beam power.  
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In the generator described here a high beam current is extracted from an RF-driven ion 

source and accelerated towards the target. The generator is operated with a D-T gas mixture and 

a beam-loaded target, i.e., the D+/T+ beam is driven into the target matrix, for achieving 

acceptable lifetimes. The requirements of a sealed tube for tritium operation posed several design 

challenges including UHV compatible construction, low pressure ion source operation, and the 

need to limit the tritium inventory. An RF-driven ion source was developed that operates at 

pressures down to 2 mTorr, well within the desired pressure range for sealed tube operation (<4 

mTorr). Low pressure operation was achieved with a rather large, 4 inch diameter, cylindrical 

source chamber and an RF power frequency of 27 MHz. The extracted proton current densities 

exceeded 50 mA/cm2 and the atomic species fraction reached 80%. A high atomic species 

fraction is an important benefit because the atomic ions are much more efficient in producing 

neutrons than molecular ions.  

Titanium is a well established target material that can store high concentrations of deuterium 

and tritium, up to a ratio of 1:2 [6] and can be deposited as a thin layer on a metal backing. The 

optimal thickness of the titanium layer is a trade-off between the need to make it sufficiently 

thick so that it is not to sputtered away too quickly and the need for a thin layer to limit the 

surface temperature and the total amount of activity stored in the target. Molybdenum is a good 

backing material because of its mechanical strength and good thermal conductivity. Titanium-

coated and bare molybdenum targets were tested in D-D operation.  The neutron yield for the 

bare molybdenum target was surprisingly high, only about a factor of two less than the yield for 

the titanium targets. In spite of its lower yield, molybdenum is a potentially attractive target 

material for a high-yield generator. Because of molybdenum’s good thermal conductivity, the 

target can be thick so that its lifetime is not limited by sputtering. Furthermore, molybdenum 

stores D/T to a lesser degree than titanium which could lead to a significantly reduced tritium 

inventory. However, more testing is required to better characterize molybdenum’s properties as a 

neutron generator target.  

Other neutron generator components are a gas reservoir and pressure regulator for supplying 

the D/T gas mixture and keeping a stable pressure inside the tube, and an ion getter pump for the 

removal of helium and other contaminant gases.  

The expected 14 MeV neutron yield for a 100 keV, 50% T+/50% D+ beam impinging on a 

fully loaded Ti-target (TiDT) is about 2.2·1013 n/C. However, extrapolation from our 
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experimental results for beam-loaded D-D generators gives about half that value, likely due to an 

incomplete beam-loading of the titanium layer [10]. Therefore, the neutron yield for a 100 keV, 

100 mA T+/D+ beam is estimated as ~1·1012 n/s for a Ti-target and ~5·1011 n/s for a Mo-target.  

 

3. Engineering Design and Construction 

The neutron generator was designed and constructed as a sealed tube suitable for operation with 

tritium. The UHV compatible construction uses brazed joints and conflat seals for 

accommodating vacuum bake-out. A 3D model of the neutron generator is shown in figure 1. 

The beam is extracted from the ion source and accelerated to the target through slit apertures in 

the source, extraction, and acceleration electrodes. Both, the extraction and the acceleration 

electrode, shape the field at the source electrode for forming the plasma meniscus and 

accelerating the beam onto the target. The target itself is biased by an array of Zener diodes at 1 

kV against the shroud surrounding it and the acceleration electrode to prevent secondary 

electrons from being accelerated back to the ion source. The target is supported by the HV 

insulator section through which the HV cable is brought to the target. This way the outside of the 

tube is kept on ground potential. Attached to the tube are a titanium-soot based D/T gas pressure 

regulator [11] and an ion pump. Ion source, extraction electrodes, and target are water cooled. 

The ion source operates at pressures of 2-4 mTorr using 1-2 kW of RF power at 27 MHz. 

With a 0.6 cm x 6 cm source electrode aperture, an extracted current density of 25 mA/cm2 is 

needed for a 100 mA beam current. The ion source consists of an alumina cylinder with a metal 

back plate and extraction electrode. An external, water-cooled antenna is wound around the 

alumina tube as shown in figure 2. An external antenna design was selected because it eliminates 

the possibility of the plasma damaging the antenna and an uptake of tritium by the cooling water. 

Furthermore, the antenna is bonded to the alumina for cooling the ion source wall. The source is 

constructed by hydrogen brazing of a molybdenum plasma electrode and a molybdenum back 

plate to a 4” diameter alumina tube. The connection between the ceramic tube and the end plates 

is made by a thin molybdenum wall that is sufficiently flexible to provide stress relief (see figure 

2.b). Thermal distributions and mechanical stresses were evaluated in a finite element analysis 

(ANSYS).  Initial source tests revealed that bare molybdenum surfaces of the endplates had a 

detrimental effect on the atomic fraction. Subsequent coating of those surfaces with aluminum 

produced a significant improvement in the atomic species fraction.  
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Figure 1: 3D model of neutron generator. The beam is extracted from the ion source on the left 
and accelerated towards the target which is supported by the HV insulators. The HV cable is 
brought in from the right through the oil-filled HV insulator section. 
 

 
Figure 2:  Ion source (a) and thermal response (b). 
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The target consists of two plates mounted in a “V” configuration with a 19º angle of 

incidence and aligned with the slit apertures in the electrodes. The “V” configuration allows 

spreading the heat flux over a larger area as shown in figure 3 and the re-deposition of sputtered 

material. The target plates (2 cm x 10 cm each) are made of arc-recast molybdenum on which a 

titanium layer can be deposited. The target is water cooled by forced convection through a fin 

and rib structure cut into the molybdenum plates. The round passages seen in the molybdenum 

plate in figure 3 were needed for cutting the cooling channels above and were subsequently 

filled. A finite-element thermal and stress analysis showed that the target can handle a heat flux 

of 650 W/cm2. The maximum temperature of 240ºC on the surface of a 90 µm thick titanium 

layer is sufficiently low to retain deuterium and tritium. The target can handle a total beam 

power of 10 kW.  

 
Figure 3:  Target assembly with V-shaped target plates. 

 

4. Initial Test Results 

Ion source tests showed extracted current densities exceeding 25 mA/cm2 and atomic species 

fraction exceeding 75% at 2-4 mTorr operating pressures. Ion beam current rise times of  ~20 µs 
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were measured indicating that the neutron generator can be operated in pulsed mode with pulses 

as short as 100 µs by pulsing the RF power of the ion source.  However, during operation of the 

generator coating of the inside insulator surface of the plasma chamber occurred. Possible ion 

source design changes have been identified to prevent this and to achieve reliable operation in 

the future. The titanium-soot based pressure regulator performed well in the generator tests and 

the gas pressure could be regulated up to 10 mTorr with a fast response time. 

 

RF-
Matching

 
Figure 4:  Neutron generator in test stand. 

First operational testing of the neutron generator, shown in figure 4, in D-D mode 

demonstrated neutron production and basic functionality of the generator. However, the neutron 

Pressure 
Regulator 

Ion Source 

Ion Pump 

Network

- 7 - 



production was hampered by a HV breakdown problem that limited operation to 70 kV 

acceleration voltage. The limited HV holding was not due to operation with beam but manifested 

itself during HV conditioning and was likely due to issues involving the neutron tube assembly. 

The required matching of plasma density and electric field at the extraction aperture made it 

necessary to operate the ion source at an RF power far below the design value. Consequently, 

only about half of the full beam current was extracted and the atomic fraction was likely 

significantly below 75%. Under these conditions a neutron yield of 3·108 n/s was measured. This 

result is consistent with a possible neutron production well above 1011 n/s when extrapolated to 

100 kV, 1000 mA D-T operation of a fully functioning tube. The capabilities of the generator 

will be determined and demonstrated when the full HV holding capability has been restored.  

 

5. Conclusion 

A sealed tube, D-T neutron generator has been designed and built for high-yield operation. In 

particular, an RF-driven ion source has been developed that operates at the low gas pressure 

required for sealed source, produces a 100 mA beam current, and can be pulsed. The generator is 

operated with a D/T gas mixture and the target is beam-loaded for achieving a long lifetime at a 

high neutron output. Tests indicated that a molybdenum target can produce about half the 

neutron yield of a titanium target and thus offers the possibility of a thick, long-lifetime target. 

Initial generator tests at reduce HV showed roughly the expected neutron output.  
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