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ABSTRACT OF THE DISSERTATION

Quantum Transport in Misoriented Layers of Graphene: Physics and Device
Applications

by

K. M. Masum Habib

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2013

Dr. Roger Lake, Chairperson

Graphene is one of the promising candidates for the channel material of future

electronic devices. Negligible spin-orbit coupling combined with high carrier mobility

and long mean free path make graphene a very attractive material for post CMOS de-

vice applications. The individual layers in a misoriented or twisted stack of graphene

behave as if they were electronically decoupled due to destructive quantum inter-

ference. The interlayer coupling is increased and the Fermi velocity is reduced in

presence of a vertical electric field and negative differential conductance is predicted

at small biases. These properties of misoriented graphene can potentially be exploited

in novel switching mechanisms. In order to utilize these exceptional properties in de-

vice applications, it is important to understand if these phenomena still hold in the

limit of nanoscaled device dimensions.

Our numerical simulations show that the coherent electronic decoupling between

the layers of two-dimensional misoriented bilayer graphene is still present in lower

dimensions when the misoriented region is reduced to the nanometer scale. We found

a novel current switching mechanism in nanoscaled misoriented graphene layers that
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utilizes the voltage controlled quantum interference of electrons to achieve large, rapid

modulation of the current with small voltage swings. Utilizing the voltage controlled

quantum interference between standing electronic waves we demonstrated an oscil-

latory current voltage response suitable for multi-state switching. This switching

mechanism does not rely on a bandgap or a potential barrier. Thus, it is not limited

by the thermal limitation of 60 mV/dec.

The coherent, interlayer resistance of a misoriented, rotated interface in vertically

stacked graphene is determined for a variety of misorientation angles. The fundamen-

tally limiting quantum-resistance of the ideal interface with θ = 0o is on the order of

10−3 Ωµm2. For small rotations, the coherent interlayer resistance is a strong function

of the Fermi energy, and it exponentially approaches the ideal quantum resistance at

energies away from the charge neutral point. At room temperature, the total inter-

layer resistance can still be sensitive to the rotation angle changing one to two orders

of magnitude as the angle changes by a few degrees. Over a range of intermediate

angles, the coherent resistance is much larger than the phonon-mediated resistance

which results in a relatively constant total resistance on the order of 100 Ωµm2.
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Chapter 1

Rationale

1.1 Introduction

As the continuous down scaling of the conventional silicon metal-oxide-semiconductor

field-effect transistor (MOSFET) is approaching its fundamental limits, the need for

alternative channel materials and device architectures is growing fast. Graphene, a

sheet of carbon atoms arranged in a honeycomb structure, is one of the promising

candidates for the channel material of future electronic devices. Negligible spin-orbit

coupling combined with high carrier mobility and long mean free path make graphene

a very attractive material for post CMOS electronic devices. Although graphene has

many exceptional electronic and mechanical properties, lack of a bandgap reduces its

utility for conventional electronic device applications. A bandgap can be opened by

various means but it is difficult to create a sufficiently large bandgap without degrad-

ing the electronic properties of graphene. One approach to circumvent the bandgap

problem is to utilize the unique properties of graphene in alternative device architec-

tures which is one of the primary objectives of this work.
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One remarkable property of graphene is that when graphene layers are stacked

together, as often is the case in chemical vapor deposition (CVD) and multilayer

epitaxial graphene, a relative rotation between the layers is introduced [4,5]. Bilayer

graphene with a relative rotation between the layers is known as misoriented or twisted

bilayer graphene (TBG). It is established that the individual layers in TBG with

a relative rotation angle greater than 20o are electronically decoupled [6–9]. The

decoupling results from the destructive quantum interference between the electron

wave functions of the top and bottom graphene layers [6–8]. An interesting property of

TBG from the application point of view is that the inter layer coupling is increased [10]

and the Fermi velocity is reduced [11] in presence of a vertical electric field, and

negative differential conductance is predicted at small biases [12].

In search for a replacement of conventional transistor, this dissertation has been

primarily focused on understanding the exceptional properties of misoriented graphene

layers and design, modeling and simulation of novel electronic devices that utilize

these properties. My work exploits the voltage controlled quantum interference of

twisted bylayer graphene to achieve large, rapid modulation of the current with small

voltage swings. The physical mechanism of such current modulation does not rely on

a bandgap, or tunneling through or transmission over a potential barrier. Thus, it is

not limited by the thermal limitation of 60 mV/dec.

Novel electronic devices constructed from multiple heterogeneous layers of van

der Waals materials are being proposed with estimates of extremely high-frequency

operation. In general, there will be misorientation between the layers. Understanding

how the misorientation affects the inter-layer resistance is essential for engineering

and determining the performance metrics of such devices. In this work, he coherent,

interlayer resistance of a misoriented, rotated interface in vertically stacked graphene

is determined for a variety of misorientation angles. These values are compared
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with previously calculated values for the phonon-mediated, interlayer resistance of

misoriented bilayer graphene.

1.2 Background and Motivation

Driven by Moore’s law, the semiconductor industry has scaled down the feature sizes

of MOSFET to improve the performance of CMOS circuits. After aggressive down

scaling over the last half century the feature sizes of MOSFET have reached the

length scale comparable to the atomic lengths. Further down scaling of the channel

length will reach a functional limit within the next decade as predicted by most

semiconductor industry projections. Over the past several years there has been an

intense debate concerning the future of such nanoscaled electronic devices and search

for alternatives has been growing fast.

Carbon based electronics is one of the potential candidates in low-power post

CMOS logic alternative. This idea of carbon base electronics has been around since

the discovery of carbon nanotubes (CNT) [13]. Although CNTs have demonstrated

nearly ideal switching characteristics, increased device speed, and lower power con-

sumption than traditional CMOS logic by utilizing band-to-band tunneling [14], their

implementation has been unsuccessful due to the fact that the metallic CNTs can not

be sorted from semiconducting ones.

Recently, graphene has been being studied extensively as another possible platform

for carbon based electronics. High carrier mobility, negligible spin-orbit coupling

and long coherence length [15–17] make graphene a very attractive material for post

CMOS electronic devices. However, lack of a bandgap in graphene [17, 18] is one

of the challenges for achieving high ON/OFF current ratios in graphene field effect

transistors (FETs).
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A bandgap can be introduced by patterning a 2D graphene sheet into a narrow

(<10 nm) nanoribbon, known as a graphene nanoribbon (GNR) [19–21]. Another way

to modify the band structure of graphene is to stack two monolayers to form a bilayer

in which the bandgap can be tuned by creating a potential difference between the two

layers [22–24]. A bandgap can also be introduced by using chemical doping [25–27].

However, it is difficult to create a sufficiently large bandgap without degrading the

electronic properties of graphene.

The possibility of field effect transistors (FETs) using bilayer graphene as the

channel material was recently studied [28]. It was shown that such a FET had a

poor on-off current ratio, Ion/Ioff , due to strong band-to-band tunneling. However, a

tunnel FET using bilayer graphene showed promising performance [29].

One way to circumvent the bandgap problem is to utilize the unique properties of

graphene in alternative FET architectures [30–34]. A highly nonlinear current-voltage

relationship can be obtained in a graphene-insulator-graphene p-n junction [35]. Some

devices exhibiting negative differential resistance (NDR) have been proposed [36–39].

However, most of these devices have relatively complex architectures [33, 34, 36–38],

limited scalability [30], or low on-off or peak-to-valley current ratios [38, 39].

Interest in twisted, or misoriented, layers of graphene was recently motivated

by the need to understand the electronic properties of multilayer graphene furnace-

grown on the C-face of SiC [4]. Experimental analysis showed that the layers tended

to be rotated with respect to each other at certain angles corresponding to allowed

growth orientations with respect to the SiC substrate [5]. Calculations, based on

density functional theory [4, 5, 7, 8], empirical tight binding [40] and continuum [6]

models for such rotated bilayers found linear dispersion near the K-points. A recent

experiment showed that in twisted bilayer graphene for twist angles greater than

∼ 3o, the low-energy carriers behave as massless Dirac Fermions with a reduced Fermi

4



velocity compared to that of single layer graphene, and that for twist angles greater

than 20o, the layers are effectively decoupled and act as independent layers [9]. The

decoupling results from the destructive quantum interference between the electron

wave functions of the top and bottom graphene layers [8]. The interlayer coupling is

increased [10] and the Fermi velocity is reduced [11] in presence of a vertical electric

field, and negative differential conductance is predicted at small biases [12]. The

voltage controlled coupling in misoriented graphene layers opens up possibilities of

novel switching mechanisms.

Although the physics of the decoupled layers in twisted bilayer graphene has been

studied extensively, it is not clear if these properties still hold in the limit of nanoscaled

device dimensions, for example, in the twisted bilayer that occurs in the overlap re-

gion of two crossed GNRs fabricated by unzipping two carbon nanotubes [41]. Un-

derstanding the physical mechanism of interlayer transport in nano scaled twisted

bilayer graphene is one of the motivations of this dissertation.

There is rapidly growing interest in vertically stacked van der Waals materials for

electronic device applications [33, 42–47]. In such structures the interfaces between

different materials will, in general, be misoriented with respect to each other [48]. THz

cutoff frequencies have been predicted for such devices [46]. At such high frequen-

cies, any small series resistance can degrade performance. For example, an emitter

contact resistance of 2.5 Ωµm2 is required to achieve a THz cutoff frequency in a het-

erostructure bipolar transistor [49]. Understanding the effect of the misorientation

on the interlayer resistance is required to fully understand the design requirements

and performance of proposed vertically stacked devices.

The most well studied and well understood van der Waals material is graphene

[17, 48]. Although the effect of misorientation on the electronic structure of bilayer

graphene has been studied extensively [4–9, 40, 50–52], the study of the interlayer
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resistance in misoriented bilayer graphene has received far less attention [3, 12, 53].

Bistritzer and MacDonald used a transfer Hamiltonian approach to calculate the

coherent interlayer resistance as a function of rotation angle θ and found it to vary

by 16 orders of magnitude as the misorientation angle varies from zero degree to 30

degrees [12]. In the method of Ref. [12], the calculated quantitative values of the

coherent interlayer resistance depend inversely on the value of the 75 meV lifetime

(Γ) used in the calculation. Thus, the quantitative values of the interlayer resistance

cannot be determined from this approach without knowing the actual values of the

lifetime broadening Γ.

The room-temperature, phonon-mediated interlayer resistance shows far less de-

pendence on the misorientation angle [3, 53]. It changes by less than an order of

magnitude as the angle varies from zero to 30 degrees [3,53]. The room-temperature,

phonon-mediated interlayer resistance is a smooth, monotonic function of the misori-

entation angle.

To first order, the resistance from the coherent channel (Rc), and the resistance

from the phonon-mediated channel (Rp) are in parallel [54, 55]. Thus, to determine

the total inter-layer resistance between two misoriented graphene layers, one requires

quantitative values for the coherent component of the resistance. In this work, we

provide those values. Combining our values for Rc with the values calculated previ-

ously for Rp, we obtain estimates for the total room-temperature interlayer resistance

for a variety of commensurate misorientation angles.

1.3 Objective

Misoriented graphene has interesting electronic properties that can potentially be

used for current switching in post CMOS devices. However, several open questions
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needed to be answered before the properties of misoriented graphene can be consid-

ered for device applications. Although the physics of twisted bilayer graphene is well

understood, the scaling effect of misoriented layers is yet to be determined. Quan-

titative study of interlayer resistance in misoriented graphene interfaces is also an

important issue for devices constructed from multiple heterogeneous layers of van der

Waals materials.

The objective of this dissertation is to answer aforementioned open questions using

theoretical studies. In this study, the electronic properties of misoriented graphene

layers is modeled using density functional theory (DFT), extended Hückel theory

(EHT) or empirical tight binding (TB) models. The quantum transport is taken

into account using the non equilibrium Green’s functional formalism (NEGF). Wave

function approach is employed to elucidate the underlying physics.

To facilitate the computation, several numerical simulators were developed. The

programming was done in C++, Fortran (F90), MATLAB and shell scripts along with

numerically efficient math libraries such as BLAS, LAPACK and ScaLAPACK. These

simulators were run on in-house compute clusters in parallel computing environment.

The parallelization was done using the message passing interface library MPICH2.

In C++, the math libraries like BLAS and LAPACK were integrated using armadillo

and boost libraries.

1.4 Layout

The rest of this dissertation is organized as follows. In chapter 2, quantum transport in

two independently contacted, AA or AB stacked graphene nanoribbons is presented.

It is shown that this system behave as a resonant tunneling diode featuring nega-

tive differential resistance. Current modulation by voltage control of the quantum
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phase in two infinite crossed GNRs is discussed in chapter 3. Utilizing the voltage

controlled quantum interference between standing electronic waves in semi-infinite

crossed GNR we demonstrated an oscillatory current voltage response suitable for

multi-state switching in chapter 4. In chapter 5, the coherent, interlayer resistance of

a misoriented, rotated interface in vertically stacked graphene is determined for a va-

riety of misorientation angles. Finally, in chapter 6 we summarize the key findings of

this thesis. In Appendix A the user manual and tutorials of Twister is given. Twister

is the C++ code that can calculate the electronic structure and vertical transport of

misoriented layers of vdW materials. Tutorials on armadillo and boost libraries are

given in Appendix B.
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Chapter 2

Negative Differential Resistance in

Bilayer Graphene Nanoribbons

Lack of a bandgap is one of the significant challenges for application of graphene as the

active element of an electronic device. A bandgap can be induced in bilayer graphene

by application of a potential difference between the two layers. The simplest geom-

etry for creating such a potential difference is two overlayed graphene nanoribbons

independently contacted. Calculations, based on density functional theory and the

non-equilibrium Green’s function formalism, show that transmission through such a

structure is a strong function of applied bias. The simulated current voltage char-

acteristics mimic the characteristics of resonant tunneling diode featuring negative

differential resistance.

2.1 Introduction

Graphene has fascinating electronic properties featuring the Dirac fermion [15] with

high mobility [16] and a long coherence length. However, lack of a bandgap in two-
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dimensional (2D) graphene [18] reduces its utility for conventional electronic device

applications. A bandgap can be introduced by patterning a 2D graphene sheet into

a narrow (<10nm) nanoribbon, known as a graphene nanoribbon (GNR) [20, 21].

Another way to modify the band structure of graphene is to stack two monolayers to

form a bilayer in which the bandgap can be tuned by creating a potential difference

between the two layers [23, 24].

The possibility of field effect transistors (FETs) using bilayer graphene as the

channel material was recently studied [28]. It was shown that such a FET had a poor

on-off current ratio, Ion/Ioff , due to strong band-to-band tunneling. However, a tunnel

FET using bilayer graphene showed promising performance [29]. Other proposed

devices include a nanoelectromechanical FET based on interlayer distance modulation

[56, 57], a FET utilizing a bilayer exciton condensate [31] and GNR junction diodes

featuring negative differential resistance based on chemical [39] and field effect [38]

doping.

Many proposed FET type graphene based devices have multiple gates making

them relatively complex device structures. We consider the simplest possible geome-

try by which a potential can be applied between two GNR layers. Such a geometry

consists of two single layer GNRs with one placed on top of the other. Each GNR

is independently contacted such that one GNR is held at ground while the other has

a bias applied to it. Such a geometry and biasing scheme would occur, for exam-

ple, in a cross-bar architecture. Independently contacting the top and bottom GNR

maximizes the voltage drop between them. Assuming that the majority of the po-

tential drop occurs between the two nanoribbons, the potential difference between

the two nanoribbons is the applied bias. Since the bandgap increases with applied

source-drain bias, we hypothesized that negative differential resistance (NDR) would

occur.
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Figure 2.1: Atomic geometry of modeled AB–stacked device.

2.2 Method

To test this hypothesis, we performed numerical simulations of a model GNR ge-

ometry using ab-initio density functional theory (DFT) to simulate the electronic

structure and a non-equilibrium Green’s Function (NEGF) approach to determine

the electron transport. The model structure of the overlapping GNRs is shown in

Fig. 2.1. It consists of a left and a right semi-infinite, armchair, H-passivated GNR

which overlap in the central region. Two well known bilayer stacking sequences, AB

and AA, are considered. The widths of the armchair GNRs (AGNRs) are chosen

to be 14 atomic C layers (3n+2) ∼ 1.8 nm to minimize the bandgap resulting from

the finite width. The bandgap of the 14-AGNR calculated from DFT code, Fire-

ball [58, 59], is 130 meV which is in good agreement with Son et al. [60]. When one

GNR is stacked on top of another to form AB or AA bilayer GNRs, the bandgap

is reduced further consistent with the results of Lam and Liang [21]. For AA GNR,

the bandgap is removed completely, and for AB GNR, the bandgap is reduced to 20

meV. The lengths of the overlap regions for AB and AA stacking are 1.7 nm and 1.6

nm, respectively. The total simulated length between the two ideal leads indicated

by the self-energies in Fig. 2.1 is ∼ 6.8 nm. Transmission through similar systems

in equilibrium and with gate bias was recently studied in detail with π-band and k·p
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Figure 2.2: Bandgap as a function of applied bias for infinite AA– and AB–stacked
bilayer GNRs.

models [61, 62], and strong resonant and anti-resonant features were observed in the

transmission in agreement with our results below.

Both the AA and AB GNR bilayers are either metallic or have a bandgap less

than kBT at room temperature. Creating a potential difference between the two

layers creates a bandgap with a maximum of 0.25 eV for the AB GNR and 130 meV

for AA GNR as shown in Fig. 2.2. Understanding the band structure of the bilayer

GNRs and the effect of bias, we are now ready to investigate the current-voltage

response of the structure shown in Fig. 2.1. Before doing so, we provide a brief

description of the theoretical models.

The electronic structure of the GNRs and bilayer GNRs is modeled with the

quantum molecular dynamics, DFT code Fireball using separable, nonlocal Troullier-

Martins pseudopotentials [63], the BLYP exchange correlation functional [64, 65], a

self-consistent generalization of the Harris-Foulkes energy functional [66, 67] known

as DOGS after the original authors [68,69], and a minimal sp3 Fireball basis set. The

radial cutoffs of the localized pseudoatomic orbitals forming the basis are r1sc = 4.10

Å for hydrogen and r2sc = 4.4 Å and r2pc = 4.8 Å for carbon [70].

A super-cell of hydrogen passivated single layer armchair GNR with periodic

boundary conditions is relaxed quantum-mechanically with Fireball. The relaxed sin-
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gle layer super-cell is then repeated to construct single-layer GNRs. These single-layer

GNRs are then placed one above the other at the experimental separation distance

of 3.35 Å and aligned to form the AB stacked structure shown in Fig. 2.1. The same

procedure is followed to form the AA stacked structure with a separation distance of

3.55 Å. No further relaxation is performed on the structure. The region between the

vertical lines in Fig. 2.1 is used as the supercell for bilayer GNR with lattice vector,

a. A single point self-consistent calculation is performed with Fireball to generate

the Hamiltonian matrix elements of this super-cell. The matrix elements within 16

atomic layers of the end overlap regions are discarded and replaced with the matrix

elements for the relaxed single-layer GNR.

The applied bias is modeled by applying a rigid shift to the energy of the lower

GNR by the amount of the applied bias, U = −eV . The matrix elements of U are

calculated as 〈i, α|U |j, β〉 = Sαi,βj
[U(ri) + U(rj)] /2 where, the indices i and j label

the atoms, the indices α and β label the basis orbitals, and Sαi,βj
is the overlap

matrix 〈i, α|j, β〉. U(ri) = U for atoms on the lower GNR and zero for atoms on the

upper GNR. This approach in which the matrix elements have the same form as in an

extended Huckel model has been used by others [71]. The approach captures the Stark

effect, but not non-equilibrium self-consistency. These and the Fireball Hamiltonian

matrix elements are used in the NEGF algorithm to calculate the surface self-energies,

Green’s function of the device, the spectral function, the transmission, and the current

as described in Ref. [72].

2.3 Results and Discussion

The simulated I−V characteristics for the AB– and AA–stacked GNRs corresponding

to Fig. 2.1 are shown in Fig. 2.3. Both the AB and AA structure exhibit NDR. The
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Figure 2.3: Simulated current voltage (I−V ) characteristics of AA– and AB–stacked
device. The valley current minimums occur at 0.7 V and 1.4 V for AB– and AA–
stacked device, respectively.

peak current of the AB structure occurs at 0.4 V and the valley minimum occurs at

0.7 V. The peak and valley voltages for the AA structure are approximately twice

those of the AB structure. Thus, the model structure does exhibit NDR confirming

the initial hypothesis.

As a check, we repeated the I−V calculation of the AB stacked structure using a

π-bond model with tight-binding parameters for the intra-layer coupling (-2.569 eV)

and the inter-layer coupling (-0.361 eV) taken from Ref. [22]. The peak and valley

currents resulting from the π-bond model were, respectively, 24.5 µA and 2.1 µA,

occurring at the peak and valley voltages of 0.5 V and 1.0 V. Thus, the two models,

DFT and π-bond, give qualitatively the same I − V with the π-bond model giving

approximately twice the peak current and 4 times the peak-to-valley ratio as the DFT

model.

To understand the I − V characteristics shown in Fig. 2.3, the transmission

coefficients are plotted as a function of electron energy. The transmission plots for

the AB structure are shown in Fig. 2.4(a) and (b) at the peak and valley bias voltages,

V = 0.4 V and V = 0.7 V, respectively. In both figures, the unbiased transmission

and the biased quasi-Fermi levels of the left and right contacts are shown for reference.
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Figure 2.4: Transmission as a function of energy for AB–stacked device: (a) at bias,
V = 0.4 V and (b) at bias, V = 0.7 V, superimposed on transmission at no bias. The
vertical lines at the lower and upper energies represent the quasi-Fermi levels of right
and left contacts, respectively. The quasi-Fermi level of the left contact is set at 0.

In agreement with and as discussed in [61, 62], the transmission shows a Fabry-

Perot resonant feature at low energy and both resonances and antiresonances at more

excited energies. The ends of the GNRs result in potential discontinuities at both

ends of the overlap region giving rise to a resonant cavity in which multiple reflections

can occur. At higher and lower energies multiple subbands allow multiple paths which

can constructively or destructively interfere. Edge states also occur on the cut ends,

and these states result in transmission peaks similar to those observed from the cut

ends of carbon nanotubes [70].

At V = 0.4 V, the energy of the bottom GNR has been shifted down by 0.4 eV,

and the low transmission regions near E = 0 and E = −0.4 eV are the result of the

the small 130 meV bandgaps of the GNR leads. The region in between corresponds

to transmission from hole states of the top lead to electron states of the bottom lead.

As the bias of the bottom layer is increased to 0.7 V, the dip in transmission near

−0.4 eV rigidly shifts down to ∼ −0.7 eV, and the transmission from hole states

to electron states between 0 and -0.7 eV is strongly suppressed due to the large

wavevector mismatch [38, 62] of the states inside the contacts and the bilayer region
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Figure 2.5: Schematic band diagrams of the leads and overlap regions of the (a) AB
and (b) AA structures at a bias of 0.4 V. At a given energy, E, the wavevectors of
the leads and bilayer region are different due to the shift of bands caused by applied
bias. At a given energy between the quasi-Fermi levels of the left and right contacts,
the number of right moving states available for carrying current is (a) one in the AB
device and (b) two in the AA device.

as illustrated in Fig. 2.5. The resonant feature at ∼ 0.3 eV results from an edge state

on the cut end of the top GNR.

The coherent current at any bias is proportional to the area under the transmission

curve bounded by the Fermi levels of the contacts. Beyond 0.7 V bias, the transmis-

sion between the Fermi levels in Fig. 2.4(b) begins to increase as the first excited

subbands of the top and bottom GNR leads are pulled into the energy window, and

the current begins to increase.

The dependence of transmission of the AA device on bias follows similar trends.

However, the peak current is twice as large, and the strong suppression of transmission

occurs at approximately twice the bias of the AB device. This can be understood

by noting that the wavevector mismatch for the AA case is less, since at any energy,

E, between the quasi-Fermi levels of the left and right contacts, the AA bilayer has

two states whereas the AB bilayer has only one state for right moving electrons as

illustrated in Fig. 2.5. Therefore, more voltage is required to generate the same

amount of wavevector mismatch for the AA case. This also explains the doubling
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of the magnitude of the peak current for the AA structure compared to that of the

AB structure. This is consistent with the fact that there are twice as many nearest-

neighbor matrix elements in AA stacking compared to those in AB stacking; i.e. in

AA stacking, every atom in the lower GNR is directly below a corresponding atom

in the upper GNR, whereas, in AB stacking, every second atom in the lower GNR is

directly beneath an atom in the upper GNR.

2.4 Conclusion

In summary, we have performed ab-initio DFT, π-bond, and NEGF based calculations

to study the I − V characteristics of a bilayer GNR structure where bias is applied

between the GNRs by independently contacting each layer. The simulations of the

model structures with both AB and AA stacking provide proof-of-principle that NDR

can occur in such structures.
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Chapter 3

Current Modulation by Voltage

Control of the Quantum Phase

A relative rotation of 90 degrees between two graphene nanoribbons (GNRs) creates

a crossbar with a nano-scale overlap region. Calculations, based on the first principle

density functional theory (DFT) and the non-equilibrium Green’s function (NEGF)

formalism, show that the electronic states of the individual GNRs of an unbiased

crossbar are decoupled from each other similar to the decoupling that occurs in twisted

bilayer graphene. Analytical calculations, based on Fermi’s Golden Rule, reveal that

the decoupling is a consequence of the cancellation of quantum phases of the electronic

wavefunctions of the individual GNRs. As a result, the inter-GNR transmission is

strongly suppressed over a large energy window. An external bias applied between the

GNRs changes the relative phases of the wavefunctions resulting in modulation of the

transmission and current by several orders of magnitude. A built-in potential between

the two GNRs can lead to a large peak-to-valley current ratio (> 1000) resulting from

the strong electronic decoupling of the two GNRs that occurs when they are driven

to the same potential. Current switching by voltage control of the quantum phase
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in a graphene crossbar structure is a novel switching mechanism. It is robust even

with an overlap of ∼ 1.8 nm × 1.8 nm which is well-below the smallest horizontal

length scale envisioned in the International Technology Roadmap for Semiconductors

(ITRS).

3.1 Introduction

Lack of a bandgap in graphene [15, 18] is one of the challenges for achieving high

ON/OFF current ratios in graphene field effect transistors (FETs). The most obvi-

ous way to circumvent this problem is to open a bandgap, e.g. by using chemical

doping [25], creating nanoribbons [19–21], or by applying a vertical electric field in

bilayer graphene [22–24]. However, it is difficult to create a sufficiently large bandgap

without degrading the electronic properties of graphene. Another way is to utilize

the unique properties of graphene in alternative FET architectures [30, 31, 33, 34]. A

highly nonlinear current-voltage relationship can be obtained in a graphene-insulator-

graphene p-n junction [35]. Some devices exhibiting negative differential resistance

(NDR) have been proposed [1,36–39]. However, most of these devices have relatively

complex architectures [33, 34, 36–38], limited scalability [30], or low on-off or peak-

to-valley current ratios [1, 38, 39]. In this work, we unveil a novel current switching

mechanism in graphene crossbars in which the current can be modulated by several

orders of magnitude. This switching mechanism is based on voltage control of the

relative phases of the electronic wavefunctions of two crossed graphene nanoribbons.

It does not rely on a bandgap, and it is not based on tunneling through or over a

potential barrier. It is relatively independent of temperature. It is robust even when

the overlap of the active region is scaled down to ∼ 1.8 nm × 1.8 nm. This length

scale is well below any horizontal scale envisioned in the ITRS [73].
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Interest in twisted, or misoriented, layers of graphene was recently motivated

by the need to understand the electronic properties of multilayer graphene furnace-

grown on the C-face of SiC [4]. Experimental analysis showed that the layers tended

to be rotated with respect to each other at certain angles corresponding to allowed

growth orientations with respect to the SiC substrate [5]. Calculations, based on

density functional theory [4, 5, 7, 8], empirical tight binding [40], and continuum [6]

models for such rotated bilayers found linear dispersion near the K-points. A recent

experiment showed that in twisted bilayer graphene for twist angles greater than

∼ 3o, the low-energy carriers behave as massless Dirac Fermions with a reduced

Fermi velocity compared to that of single layer graphene, and that for twist angles

greater than 20o, the layers are effectively decoupled and act as independent layers [9].

A vertical electric field in a twisted bilayer graphene can couple the layers [10] and

reduce the Fermi velocity [11]. A recent study of the conductivity between two infinite

rotated sheets of graphene found enhanced conductance at commensurate angles with

relatively small unit cells and negative differential resistance at small biases [12].

Although the physics of the decoupled layers in twisted bilayer graphene has been

studied extensively, it is not clear if these properties still hold in the limit of nanoscaled

device dimensions, for example, in the twisted bilayer that occurs in the overlap region

of two crossed GNRs fabricated by unzipping two carbon nanotubes [41]. Botello-

Méndez et al. very recently addressed this issue performing both DFT and empirical

tight binding calculations of the transmission across and through crossed graphene

nanoribbons [74]. Crossed armchair - zigzag (AZ) GNRs and crossed zigzag - zigzag

GNRs were considered. Most relevant to our work, was their study of crossed AZ

GNRs, approximately 5nm wide, aligned in AB stacking at right angles and then

rotated. The minimum in the interlayer transmission between the armchair GNR

(aGNR) and the zigzag GNR occurred when the angle of intersection was 60o. This
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is equivalent to the 90o angle of intersection between two aGNRs which is the system

that we consider.

In this work, we analyse the physical mechanism of the inter-layer coupling at

the nanoscale and its dependence on the potential difference between the two layers,

and we show that it can be exploited for current switching by voltage control of the

wavefunction phase.

The model structure shown in Fig. 3.1 consists of two armchair GNRs with

one placed on top of the other at right angles forming a GNR crossbar (xGNR). In

this case, the overlap region of the xGNR, which is neither AA nor AB stacking,

is a twisted bilayer with an area of ∼ 1.8 nm × 1.8 nm and a twist angle of 90o.

For two infinite sheets, a 90o rotation is the same as a 30o rotation which is not a

commensurate rotation angle. A Moiré pattern can be observed at the intersection

of the two nanoribbons in Fig. 3.1.

Calculations, based on ab initio density functional theory (DFT) coupled with the

non-equilibrium Green’s function formalism (NEGF), show that the inter layer de-

coupling still exists in such a small geometry containing approximately 220 C atoms

leading to strong suppression of inter-GNR transmission when the two layers are at

the same potential. An analytical model using Fermi’s Golden Rule reveals that the

suppression of the inter-layer transmission results from the cancellation of the quan-

tum phases of the electronic wavefunctions of the individual GNRs. An external bias

applied between the GNRs changes the relative phases of the wavefunctions resulting

in modulation of the transmission and current by several orders of magnitude. The

decoupling that occurs when the GNRs are at equal potentials can be exploited us-

ing a built-in potential similar to the one that occurs in a p-n junction to produce

negative differential resistance with a large (> 1000) peak-to-valley current ratio. A

large, dense array of crossed graphene nanoribbons, with each cross point providing
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a non-linear current-voltage response, could serve in, for example, a cellular neural

network [75], a memory array [76], or provide added functionality to standard transis-

tor circuits [77]. The inter-layer potential difference governs the transmission. While

in this paper, we consider a two-terminal configuration, one could also control the

inter-layer potential with gates, in which case the physics described here could be

exploited to implement ultra-scaled transistors.

3.2 Method

In this study, four different types of calculations are performed: (i) geometry opti-

mization, (ii) band structure, and (iii) electron transport. The geometry optimization

and band structure calculations are performed using DFT. The electronic transport

of the xGNR is calculated using the NEGF formalism coupled with DFT. (iv) The

numerical results are explained using analytical expressions for the wavefunctions in

a π-orbital basis. The calculation methods and the device structure are discussed

below.

3.2.1 Device Structure

The crossbar structure consists of two H-passivated, armchair GNRs shown in Fig.

3.1. In this arrangement, the GNR along the y-axis is placed on top of the GNR

along the x-axis with a vertical separation of 3.35 Å in between. Throughout the

rest of the paper, the GNRs placed along x- and y-axes will be referred to as the

‘bottom’ and ‘top’ GNRs, respectively. Since we are interested in current modulation

in the absence of a bandgap, the widths of the GNRs are chosen to be 14-C atomic

layers (3n+2) ∼ 1.8 nm to minimize the bandgap resulting from the finite width.

The bandgap of the 14-aGNR, calculated from DFT code Fireball [58,59] is 130 meV
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Figure 3.1: Atomistic geometry of the crossbar GNR (xGNR) consisting of two H-
passivated, armchair GNRs with one placed on top of the other rotated by 90o. Each
GNR is 14-C atomic layers wide (∼ 1.8 nm) with a bandgap of 130 meV. The contacts
are modeled by the self–energies of semi-infinite leads. The region bounded by the
broken lines is used as a super-cell for the band structure calculations.

23



which is in good agreement with Son et al. [60]. The area of the overlap region of the

xGNR is ∼ 1.8 nm × 1.8 nm. The total simulated area between the four ideal leads

indicated by the self-energies in Fig. 3.1 is ∼ 7 nm× 7 nm.

The infinite xGNR, shown in Fig. 3.1, is constructed by attaching the the self-

energies Σt and Σt′ to the top GNR and the self-energies Σb and Σb′ to the bottom

GNR. Throughout this article, the semi-infinite leads indicated by the self-energies

Σt and Σb are termed as top and bottom contacts respectively.

3.2.2 Fireball

The geometry optimization and the calculation of electronic structures are performed

with the ab initio quantum mechanical molecular dynamics, DFT code Fireball [58,78]

using separable, nonlocal Troullier-Martins pseudopotentials [63], the BLYP exchange

correlation functional [64,65] and a self-consistent generalization of the Harris-Foulkes

energy functional [66–69, 79]. A single zeta (single numeric) sp3 Fireball basis set

is used. These localized pseudoatomic orbitals are slightly excited due to hard wall

boundary conditions imposed at radial cutoffs, rc, for each atomic species. The cutoffs

are r1s = 4.10 Å for hydrogen and r2s = 4.4 Å and r2p = 4.8 Å for carbon [70].

3.2.3 Structure Relaxation

In order to construct the crossbar, the geometry of a super-cell of H-passivated single

layer aGNR with periodic boundary conditions is optimized using Fireball. The

super-cell, which has a length of 8-atomic layers, is repeated using the lattice vector

~a = 8.77x̂ (Å). The relaxation is performed until all the Cartesian forces on the

atoms are < 0.05 eVÅ−1. In the self-consistent field calculation, a Fermi smearing

temperature of 50 K and self-consistent convergence factor of 10−7 are used. The
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one dimensional Brillouin zone is sampled using 8 k points during optimization. This

relaxed single layer super-cell is then repeated to construct longer GNR which, in turn,

is used to construct the crossbar. No further relaxation is performed for crossbar.

3.2.4 Band Structure

The region indicated by the broken lines in Fig. 3.1 forms the crossbar super-cell for

electronic bandstructure calculations. The super-cell is repeated with lattice vectors

~a1 = 7.016x̂ and ~a2 = 7.016ŷ (nm). For the self-consistent field calculation, the first

Brillouin zone is sampled using a Monkhorst-Pack scheme with a k mesh of 7 × 7.

The electronic structure of the super-cell is calculated with Fireball using the basis,

pseudopotentials, functional, Fermi smearing temperature, and convergence factor as

described above.

3.2.5 Transport

The Hamiltonian matrix elements used in the NEGF calculation are generated from

the Fireball super-cell calculation. The matrix elements include the electron-electron

interaction at the DFT/BLYP level of theory in equilibrium. The matrix elements of

the external applied potential U are calculated as 〈i, α|U |j, β〉 = Sαi,βj
[U(ri) + U(rj)] /2

where the indices i and j label the atoms, the indices α and β label the basis orbitals,

and Sαi,βj
is the overlap matrix 〈i, α|j, β〉. This approach in which the matrix ele-

ments of the external potential have the same form as in an extended Hückel model

has been used by others [71]. The approach captures the Stark effect, but not non-

equilibrium charge self-consistency. The applied bias V is distributed symmetrically

between the top and the bottom GNRs such that the electrostatic potential energies

are U(ri) = −eV/2 for atoms on the top GNR and, U(ri) = eV/2 for atoms on the
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bottom GNR.

The matrix elements are used in a recursive Green’s function (RGF) algorithm

that utilizes non-uniform block layers to calculate the Green’s function of the de-

vice, GR, as described in Ref. [70]. The self-energies Σt and Σb are calculated

with the decimation method [80] using a 10 meV broadening factor. The trans-

mission spectrum, T (E), is then calculated from the standard Green’s function ex-

pression, T (E) = tr
{

Γb
1,1G

R
1,NΓ

t
N,N(G

R
1,N)

†}, where the indices 1 and N indicate

the first and last block-layers of the xGNR respectively, Γb
1,1 = i

(

Σb −Σb†
)

, and

Γt
N,N = i

(

Σt −Σt†
)

. The coherent current is calculated from

I =
2e

~

∫

dE

2π
T (E) [f(E − (µ+ eV/2)) − f(E − (µ− eV/2))] (3.1)

where f(E) is the Fermi function, and µ is the equilibrium Fermi level. The temper-

ature is 300 K for all current calculations.

3.2.6 Analytical Model

An expression for the current flow between the two GNRs can also be obtained from

Fermi’s Golden Rule using analytical expressions for the wavefunctions and empirical

tight-binding parameters for the matrix elements. The transition rate from a kx state

of mode n in the bottom GNR to a ky state of mode m in the top GNR is

1

τ
=

2π

~
|Mmn(kx, ky)|2 δ(Em(ky)− 2U − En(kx)) (3.2)

where Ei(k) is the energy-wavevector relation of an individual GNR for mode i.

U = eV/2 is the magnitude of the electrostatic potential energies of the individual

GNRs. The matrix element Mmn is calculated between the kx state on the bottom
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GNR and the ky state on the top GNR, and the detailed expression is given below in

Eq. (3.13). The current is obtained by multiplying Eq. (3.2) with the Fermi factors

of the top and bottom contacts [f(En − (µ + U))− f(Em − (µ− U))] and summing

over all initial and final states. The sum over kx and ky gives the joint density of

states of the top and bottom GNR,

∑

kx,ky

δ(Em(ky)− 2U − En(kx)) =

∫

dENn
1D(E − U)Nm

1D(E + U) (3.3)

where N i
1D is the single-spin, 1D density of states for mode i that has the units of

(energy−1). The final expression for the current is

I =
4πe

~

∑

m,n

∫

dE |Mmn|2Nn
1D(E−U)Nm

1D(E+U)[f(E− (µ+U))− f(E− (µ−U))]

(3.4)

which has the same form as the equation for current obtained for 2D twisted bilayer

graphene [12]. Comparing Eq. (3.1) with Eq. (3.4) gives the analytical expression

for the transmission,

T (E) = 4π2
∑

m,n

|Mmn|2Nn
1D(E − U)Nm

1D(E + U). (3.5)

The expression for the matrix element Mmn can be obtained from the expres-

sion for the electronic wavefunction of a single layer aGNR as follows. The energy-

wavevector dispersion relationship of band n of an N -atomic layers wide aGNR can

be written as [81],

En(k) = ǫ+ sgn(n)
∣

∣t̃n(k)
∣

∣ (3.6)

with

t̃n(k) ≡ 〈ψnkA|H|ψnkB〉 = −t0
[

2eikacc/2 cos(θn) + e−ikacc
]

(3.7)
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where ǫ is the site energy of the carbon atoms, k is the wave vector, sgn is the signum

function, t0 is the in-plane nearest neighbor hopping parameter, acc is the C-C bond

length, and θn = |n|π
N+1

. The corresponding electronic wavefunction is given by [81],

|ψnk〉 =
1√
2

(

|ψnkA〉+ sgn(n)e−iΘnk |ψnkB〉
)

(3.8)

with

Θnk = ∠t̃n(k) (3.9)

and

|ψnkα〉 =
√

2

Nx(N + 1)

N
∑

p=1

Nx
∑

q=1

eikxq sin(θnp)|αpq〉 (3.10)

where α ∈ {A,B} represents the A or B atomic sites, p and q count the atomic layers

and the unit cells, respectively, and Nx is the total number of unit cells considered.

|αpq〉 is the pz orbital of the atomic site α in the unit cell q and atomic layer p of the

GNR. The matrix element Mmn can be resolved into four components,

Mmn ≡ 〈ψmky |Hint|ψnkx〉 (3.11)

=MAA
mn +MAB

mn +MBA
mn +MBB

mn (3.12)

=
1

2

∑

α=A,B

∑

β=A,B

Cαβ
mnH

αβ
mn (3.13)
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where

CAA
mn = 1 (3.14)

CAB
mn = sgn(n)e−iΘnkx (3.15)

CBA
mn = sgn(m)eiΘmky (3.16)

CBB
mn = CAB

mnC
BA
mn = sgn(nm)ei(Θmky−Θnkx ) (3.17)

and

Hαβ
mn ≡ 〈ψmkyα|Hint|ψnkxβ〉 (3.18)

=
2

√

NxNy(N + 1)

N
∑

p=1

Ny
∑

q=1

N
∑

p′=1

Nx
∑

q′=1

ei(kxxq′−kyyq) sin(θmp) sin(θnp
′)〈αpq|Hint|βp′q′〉

(3.19)

where Hint is the inter-GNR interaction, p and q are the indices of the atoms of the

top GNR, and p′ and q′ are the indices of the the atoms of the bottom GNR. The

quantity 〈αpq|Hint|βp′q′〉 is calculated using the empirical formula [10],

〈αpq|Hint|βp′q′〉 = −t1e−3(dpqp′q′−do) (3.20)

where t1 is the nearest-neighbor inter-layer hopping parameter, dpqp′q′ is the distance

between the atoms on the top and the bottom GNRs, and do is the inter GNR

distance. The edge effects were taken into account by replacing t̃n(k) in Eq. (3.9) by

t̃n(k) + δt̃n(k) where δt̃n(k) is the correction for the edge bonds following Ref. [81].

While calculating Mmn, the site energies of the C atoms of the top and the bottom

GNRs are rigidly shifted by −eV/2 and eV/2, respectively, to include the effects of

the external bias voltage V .
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Figure 3.2: (Color Online) Band structure of the xGNR super-cell calculated using
Fireball: (a) as a function of kx and ky, (b) as a function of kx only, at ky = 0. The
energy E = 0 eV is set at the Fermi level. The bands shown in (a) appear as a
superposition of bands of two isolated GNRs with one aligned in the x- and the other
in y-direction. The bands indicated by 1 and 2 in (b) are degenerate at Γ indicating
that they are decoupled.

For all the calculations presented below, the hopping parameters are t0 = 3.16 eV

and t1 = 0.39 eV [10]. For the 14 atomic layer aGNR (N = 14), the conduction-band

sub-band index is n = 10, and the valance-band sub-band index is n = −10.

3.3 Numerical Results

3.3.1 Band Structure

The bandstructure of the crossbar supercell, calculated as described in Sec. 3.2.4

using the DFT code Fireball, reveals that the low energy states of the top and the

bottom GNRs are electronically decoupled. The calculated bandgap of the xGNR

is found to be ∼ 130 meV, which is equal to the bandgap of a single aGNR. The

low energy electronic dispersion of the xGNR as a function of wave vectors kx and

ky shown in Fig. 3.2(a) appears as a superposition of the band structures of two
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(a) (b)

Figure 3.3: (Color Online) Three dimensional iso-surface of the eigenstate correspond-
ing to (a) band 1 and (b) band 2 in Fig. 3.2(b) at Γ. The eigenstate of band 1 is
localized on the top GNR, and the eigenstate of band 2 is localized on the bottom
GNR.

infinite single aGNRs with one placed along the x-axis and the other along the y-

axis. To see this in more detail, the electronic dispersion is plotted as a function

of kx (at ky = 0) in Fig. 3.2(b). The band indicated by 1 in Fig. 3.2(b) does not

have any dependence on kx while band 2 is exactly the same as the valence band

of an isolated GNR along the x-axis. These two bands are degenerate at gamma

which indicates that they are decoupled from each other. This is confirmed by the

3D contour plots of the population at gamma for bands 1 and 2 shown in Figs. 3.3(a)

and (b) respectively. Bands 1 and 2 are entirely localized on the top and bottom

GNRs, respectively. Therefore, bands 1 and 2 correspond to the valance bands of the

top and bottom GNRs, respectively. The decoupling is also consistent with recent

experimental [9] and theoretical [8] studies of twisted bilayer graphene.

Coupling is observed between the fundamental modes and the first excited modes.

Bands 3 and 6 in Fig. 3.2(b) are the folded valance bands of the the bottom GNR.

Similarly, the bands 4 and 5 are the folded valance bands of the top GNR. Bands 7

and 8 are the first excited bands of the top and bottom GNRs. At these energies,
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Figure 3.4: Current voltage (I-V) characteristic of the intrinsic xGNR.

splitting is seen at the super-cell Brillouin zone edge. These are the energies where

the transmission becomes non-negligible. Similar analysis applies for the first excited

conduction bands.

3.3.2 Transport

Intrinsic xGNR

The simulated current voltage (I-V) characteristic of the xGNR corresponding to

Fig. 3.1 is shown in Fig. 3.4. Initially, the current increases sharply with the bias,

reaches a peak at ∼ 0.2 V and then decreases exhibiting NDR. The origin of this non-

linear behavior can be understood in terms of the inter-GNR transmission plotted in

Fig. 3.5. The transmission in the unbiased xGNR shown in Fig. 3.5(a) is strongly

suppressed in a large energy window due to the decoupling of the fundamental modes.

The asymmetry in the transmission is consistent with the fact that the electron-hole

symmetry is broken in bilayer graphene. The peaks near ±0.65 eV and ±0.9 eV

are due to the excited sub-bands. When the bias voltage is increased beyond the

bandgap, e.g. at V = 0.15 V, the transmission within the energy window defined by

the chemical potentials of the top and the bottom contacts increases several orders of
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Figure 3.5: (Color Online) Transmission as a function of energy for different bias
voltages. The energy E = 0 eV is set at the equilibrium Fermi level. The vertical
lines represent the chemical potentials of the top and the bottom contacts. The dips
in the transmission near the vertical lines correspond to energies lying inside the
bandgap of either the top or the bottom GNR. The transmission does not go to zero
at these energies as a result of the finite energy broadening used to calculate the
surface self-energies of the contacts.

magnitude as shown in Fig. 3.5(b). The transmission between the chemical potentials

remains high until V ∼ 0.2 V, and then it decreases resulting in NDR. The analysis in

Sec. 3.4 will show that the dependence of the transmission on the voltage difference

between the two GNRs results from voltage control of the relative phases of the top

and bottom GNR wavefunctions. The most important point to take away from the

transmission plots in Fig. 3.5 is that the transmission is suppressed by several orders

of magnitude when the potential difference between the GNRs at the cross point is

zero.
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Figure 3.6: (Color Online) Simulated I-V characteristics of xGNR p − n junctions
with different built-in potentials. Inset: Transmission of the xGNR p − n junction
for φbi = 0.25 V as a function of energy for different bias voltages. The energy E = 0
eV is set at the equilibrium Fermi level. The vertical lines represent the chemical
potentials of the top and bottom contacts.

xGNR p− n junction

The strong decoupling of the top and bottom GNR at zero bias can be exploited

by creating a built-in potential using either field-effect [82, 83] or chemical [26, 27]

doping. For simplicity, we assume that, the built-in potentials of the p-doped top

GNR and n-doped bottom GNR are −φbi/2 and +φbi/2 respectively, where φbi is the

total built in potential. The bias V is symmetrically distributed between the GNRs

such that the electrostatic potential energies of the top and the bottom GNR are

U = −e(V − φbi)/2 and U = e(V − φbi)/2, respectively, and the potential difference

between the GNRs is ∆U = e(V − φbi).

In Fig. 3.6, the calculated I-V’s through the xGNR are shown for different built

in potentials. All of the I-V’s show large peak-to-valley current ratios summarized in

Table 3.1. The origin of such large peak-to-valley current ratios can be understood by

looking at the transmission plots when φbi = 0.25 V as shown in the inset of Fig. 3.6.

The built in potential of 0.25 eV between the two GNRs results in a large transmission

coefficient at zero bias. Increasing the bias to V = 0.10 V decreases the potential
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φbi Vpeak Vvalley Ipeak Ivalley Ipeak/Ivalley
(V) (V) (V) (nA) (pA)

0.20 0.05 0.20 32.5 34.4 945
0.25 0.09 0.25 57.9 54.8 1057
0.30 0.13 0.30 76.1 82.2 926
0.35 0.18 0.35 87.2 118.4 737

Table 3.1: Calculated peak and valley currents for different built in potentials for
xGNR p− n junction.

energy difference ∆U between the GNRs to 0.15 eV and increases the difference of

the chemical potentials of the leads to 0.10 V. The current is proportional to the area

under the transmission curve between the two chemical potentials. Increasing the bias

drives the potential difference ∆U between the two GNRs to zero. At V = 0.25 V, the

potential difference between the GNRs becomes zero resulting in strong suppression

of the transmission over a large energy window and strong suppression of current.

Thus, the large peak-to-valley current ratios result from the strong modulation of the

transmission with voltage. The physical mechanism governing the voltage dependence

of the transmission is analyzed in the next section.

3.4 Analysis

The inter-GNR transmission calculated from the analytical expression given by Eq.

(3.5) captures the essential physics of the transmission and its dependence on the

potential difference of the two GNRs. The transmission calculated from Eq. (3.5)

is plotted in Fig. 3.7 for two different biases with φbi = 0 corresponding to Figs.

3.4 and 3.5. At V = 0 V the transmission is strongly suppressed in the energy

range between the edges of the first excited sub-bands which is in agreement with

the numerical calculations. The analytical calculations also capture the asymmetry

in the transmission and the voltage modulation of the transmission. For example, at
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Figure 3.7: (Color Online) Transmission as a function of energy for different bias
voltages calculated using Eq. (3.5). The energy E = 0 eV is set at the equilibrium
Fermi level. The dashed vertical lines represent the chemical potentials of the top
and the bottom contacts. The gaps in the transmission near the chemical potentials
correspond to energies lying inside the bandgap of either the top or the bottom GNR.
Since the analytical calculations include no energy broadening, the transmission is
zero at those energies.

0.25 V the transmission inside the energy window bounded by the chemical potentials

in Fig. 3.7(b) increases several orders of magnitude. The gaps in the transmission

correspond to energies lying inside the bandgap of either the top or the bottom GNR.

Since the analytical calculations include no energy broadening, the transmission is

zero at those energies.

Although Eq. (3.5) clearly shows that the transmission is proportional to both

the magnitude of the matrix element squared and the joint density of states of the

two GNRs, the physics governing the transmission at low energies between the fun-

damental modes is primarily determined by the matrix element. For example, at

V = 0 V the matrix element squared closely resembles the trend in the transmission

at low energies as shown by the black curve in Fig. 3.8(a). The joint 1D density of

states peaks at the band edges and, therefore, enhances the transmission at the band

edges. Similarly, the matrix element squared at V = 0.25 V shown by the black curve

in Fig. 3.8(b) captures the main features of the transmission at low energies and
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Figure 3.8: (Color Online) Magnitude squared of the matrix element and its four com-
ponents considering only the fundamental modes. The total matrix element squared
and its components are indicated according to the legend in (a). (a) V = 0 V. For
E & 0 eV, m = 10 and n = 10 and for E . 0 eV, m = −10 and n = −10. (b)
V = 0.25 V. For −0.06 < E < 0.06 eV, m = −10 and n = 10; for E < −0.19 eV,
m = −10 and n = −10; for E > 0.19 eV, m = 10 and n = 10. The AB and BA
components are very small at low energies near E = 0 compared to the AA and BB
components in both cases. The vertical lines represent the chemical potentials of the
contacts.
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Figure 3.9: (Color Online) Phasor plots of Mαβ
mn (a,b), Hαβ

mn (c,d), and Cαβ
mn (e,f). The

AA, BB, AB, and BA components are indicated according to the legend at the top
of the figure. (a, c, e) V = 0 V and E = 0.064 eV (the conduction band edge). (b, d,
f) V = 0.25 V and E = 0 eV. The lengths and the directions of the arrows represent
the magnitude and the angle of the corresponding complex quantities, respectively.
Since the AB and BA components of H and M are very small, they are magnified
several orders of magnitude and shown in the insets.

its enhancement by the applied bias. Hence the matrix element governs the voltage

dependence of the transmission, and we shall concentrate only on Mmn below. In the

discussion below, we shall only consider the fundamental modes and hence drop the

subscript of M .

The matrix element consists of four components,M =MAA+MAB+MBA+MBB

as given by Eq. (3.12). These four components plotted in Fig. 3.8 are labeled as

‘AA’, ‘BB’, ‘AB’ and ‘BA.’ At low energies, M ≈MAA +MBB since MAA and MBB

are orders of magnitude larger than MAB and MBA for all bias voltages.

The cancellation of the phases of MAA and MBB suppresses the matrix element

and hence the transmission at V = 0 V. This can be understood by looking at the
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phasor diagram, Fig. 3.9(a), where the matrix element and its four components are

shown in polar coordinates at the conduction band edge. The magnitude of M is

very small since |MAA| ≈ |MBB| and ∠MAA − ∠MBB ≈ 180o.

The applied bias does not change |MAA| and |MBB|, but it modulates the phase

difference between these components which, in turn, results in a significant change

in the magnitude of the total matrix element, M . For example, at V = 0.25 V, the

magnitudes of MAA and MBB shown in Fig. 3.8(b) remain unchanged. Although

|MAB| and |MBA| increase by an order of magnitude, they are still several orders

of magnitude smaller compared to |MAA| and |MBB| and hence insignificant. The

applied bias changes ∠MBB by ∼ 60o while leaving ∠MAA almost unchanged as

shown in Fig. 3.9(b). Thus, a bias voltage of 0.25 V changes the phase difference,

∠MAA−∠MBB from 180o to∼ 120o. As a consequence, the total matrix elementM ≈

MAA +MBB and the resulting transmission increase by several orders of magnitude.

The voltage modulation of the phases of the major components Mαα = 1
2
CααHαα

is controlled by the voltage dependent quantum phase factors Cαα defined by Eqs.

(3.14) and (3.17) . Figs. 3.9(c) and (d) clearly show that the phases of HBB and HAA

are only slightly modified by the bias. On the other hand, it is clear from Figs. 3.9(e)

and (f) that the bias changes the phase of CBB by ∼ 60o. The phase of CAA remains

unchanged for all energies and for all biases due to the particular construction of

the wavefunction given by Eq. (3.8). Thus, the voltage dependency of the quantum

phases are lumped into the quantity CBB.

The asymmetry in transmission at zero bias results from the phase factors CAB and

CBA and the small difference between |MAA| and |MBB|. At the conduction band

edge, n = 10 and hence ∠CAB = ∠ sgn(n)e−iΘnkx = −Θnkx where Θnkx is a small

angle. At the valance band edge, n = −10 and hence ∠CAB = ∠ sgn(n)e−iΘnkx =

180o − Θnkx . Thus, ∠CAB and hence ∠MAB at the conduction and valence band
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edges differ by 180o. The same is true for the phase of CBA and MBA. The sum of

MAB and MBA adds to MAA at the conduction band edge as shown in Fig. 3.9(a),

and the sum adds to MBB at the valence band edge. |MAA| is slightly larger than

|MBB|. At the valence band edge, the addition of (MAB +MBA) to MBB gives a

better cancellation withMAA resulting in the matrix element minimum shown in Fig.

3.8(a). At the conduction band edge, the addition of (MAB +MBA) to MAA reduces

the cancellation with MBB resulting in a larger total matrix element and increased

transmission.

In a preliminary study of the sensitivity of the transport properties to the detailed

geometry of the overlap region we have considered four variations of the xGNR shown

in Fig. 3.1: the x and the y coordinates of the top GNR are shifted by (a) acc/2 and

(b) 3acc/2, (c) the width of both arms are increased to 4.5 nm (38 atomic C layers),

and (d) the width of the top GNR is increased to 20 C atoms so that the xGNR

consists of a 14-aGNR and a 20-aGNR. Calculations, based on the model presented

in Sec. 3.2.6, show that the transport properties of all of these xGNRs are similar to

that of the crossbar shown in Fig. 3.1. The I-V characteristics of these xGNRs with

the biasing scheme described in Sec. 3.3.2 are all similar to the I-V’s shown in Fig.

3.6. The peak-to-valley current ratios for the (a), (b), (c), and (d) configurations at

φbi = 0.25 V are ∼ 100, ∼ 1000, ∼ 150, and ∼ 120, respectively.

3.5 Conclusions

We have performed ab-initio DFT and NEGF based calculations to study the inter-

layer coupling and transport properties of nanometer scale twisted bilayer graphene

that occurs in the overlap region of a crossbar consisting of two GNRs with one placed

on top of the other at right angles. The GNRs in the crossbar are electronically decou-
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pled from each other similar to the decoupling that occurs in twisted bilayer graphene.

An analytical model based on Fermi’s Golden Rule reveals that the decoupling is a

consequence of the cancellation of quantum phases of the electronic states of the

individual GNRs. This leads to strong suppression of the inter-GNR transmission

when the two GNRs are at the same potential. A potential difference between the

GNRs changes the relative phases of the top and bottom wavefunctions and destroys

the phase cancellation resulting in strong coupling and high transmission. Thus, the

transmission can be modulated several orders of magnitude by controlling the quan-

tum phase using an external bias. A built-in potential between the two GNRs can

lead to large peak-to-valley current ratios (> 1000) resulting from the strong elec-

tronic decoupling of the two GNRs that occurs when they are driven to the same

potential. Current switching by voltage control of the quantum phase in graphene

crossbar structure is a novel switching mechanism. It is robust even with an overlap

of ∼ 1.8 nm×1.8 nm containing only ∼ 220 C atoms which is well-below the smallest

horizontal length scale envisioned in the ITRS.
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Chapter 4

Multi-State Current Switching by

Voltage Controlled Coupling

The interlayer transport between two semi-infinite crossed graphene nanoribbons

(GNRs) is governed by the quantum interference between the standing waves of the

individual GNRs. An external bias applied between the GNRs controls the wave-

length and hence the relative phase of these standing waves. Sweeping the applied

bias results in multiple constructive and destructive interference conditions. The

oscillatory nature of the voltage controlled interference gives rise to an oscillatory

current-voltage (I-V) response with multiple negative differential resistance (NDR)

regions. The period of oscillation is inversely proportional to the length of the finite

ends of the GNRs. Quantum interference is explicitly shown to be the physical mech-

anism controlling the interlayer current by direct evaluation of the interlayer matrix

element using analytical expressions for the wavefunctions.
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4.1 Introduction

One remarkable property of graphene is that the individual layers in misoriented or

twisted bilayer graphene (TBG) are electronically decoupled [4–9, 40, 50, 51, 53]. The

decoupling results from the destructive quantum interference between the electron

wave functions of the top and bottom graphene layers [8]. Between two misoriented

sheets of graphene, the coherent interlayer resistance has been found to vary between

8 to 16 orders of magnitude as the rotation angle is varied between 0 and 30 degrees

[3,12]. Contact resistances resulting from the coherent coupling between two rotated

graphene layers have been calculated to vary between ∼ 107 Ωcm2 and ∼ 10−9 Ωcm2

as a function of the rotation angle [12]. The interlayer coupling is increased [10] and

the Fermi velocity is reduced [11] in presence of a vertical electric field, and negative

differential conductance is predicted at small biases [12]. Since the coherent interlayer

coupling can be so small, the interlayer, room-temperature conductance for all but the

smallest misorientation angles is dominated by phonon-assisted transport mediated

by an out-of-plane beating mode of the bilayer with phonon energies ranging from 10

meV to 30 meV as the misorientation angle varies from zero to 30 degrees [3].

The coherent electronic decoupling between two-dimensional (2D) misoriented

bilayers is still present in lower dimensions when the overlap region is reduced to the

nanometer scale [2]. The crystallographic misorientation angle of two overlapping

armchair nanoribbons placed at a 90◦ angle with respect to each other is 30◦. The

coherent interlayer transmission between two crossed, 1.8 nm, armchair, graphene

nanoribbons was suppressed by 5 orders of magnitude. Applying a 0.15 V voltage

between the nanoribbons increased the transmission by 4 orders of magnitude [2]. The

GNR crossbar in Ref. [2] consisted of two infinite nanoribbons in which the electron

states were propagating waves.
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This work investigates the electronic coupling between two semi-infinite armchair

GNRs in which the electron states are standing waves. Despite the equivalence of

the atomistic geometry of the overlap regions, the inter-layer transport properties of

the crossed infinite GNRs (IxGNR) and the crossed semi-infinite GNRs (SxGNR) dif-

fer due to the difference of the electronic wavefunctions. Unlike the current-voltage

response of the IxGNR, sweeping a two-terminal voltage applied between the two

crossed semi-infinite GNRs results in an oscillatory current-voltage (I-V) characteris-

tic with multiple NDR regions. Since the vibrational modes of such structures have

not yet been calculated, only the coherent inter-layer current will be considered. Es-

timates of the relative magnitudes of the coherent current and the phonon-assisted

current will be given at the end.

The occurrence of transmission resonances and antiresonances in single layer

graphene structures is not uncommon [84–91]. Such structures would display many

features in the low-bias conductance as a function of gate voltage. In contrast, the

individual features in the transmission spectra of the rotated graphene nanoribbons

are not of primary importance. The average magnitude of the transmission and the

dependence of the average magnitude on the applied two terminal voltage are of pri-

mary interest. Sweeping an external two-terminal bias applied between the GNRs

alters the relative phases of the two standing waves resulting in a periodic modula-

tion of the average interlayer transmission and an oscillatory I-V characteristic with

multiple NDR regions. The voltage period of oscillation is inversely proportional to

the length of the truncated ends of the GNRs.

A GNR device with oscillatory I-V characteristics and multiple NDR regions is

complementary to numerous graphene field effect transistors [32–34, 92–94]. Such a

non-linear I-V response can provide increased functional density in all-carbon based

electronics [76, 77, 95].
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4.2 Method

Three different types of calculations are performed. (i) The geometry of the graphene

nanoribbons are optimized using density functional theory (DFT). (ii) The electronic

transport is calculated using the non-equilibrium Green’s function (NEGF) formalism.

The Hamiltonian matrix elements used in the NEGF calculations are generated using

the extended Hückel theory (EHT). (iii) The physics governing the electron transport

is explained by direct evaluation of the interlayer matrix element using analytical

expressions for the wavefunctions.

4.2.1 Device Structure and Transport

The structure, as shown in Fig. 4.1, consists of two overlapping, semi-infinite, arm-

chair GNRs. Each GNR has one truncated end with a zigzag edge. To minimize the

bandgap resulting from the finite width, the number of atoms across the width of

the GNRs is chosen to be Nw = 3p + 2 where p is an integer. The analysis is car-

ried out for Nw = 14 with a calculated bandgap of 136 meV. Different and unequal

widths are also numerically simulated. The GNRs are H-passivated, and their struc-

ture is relaxed using a projector augmented wave method within the framework of

the Perdew-Burke-Ernzerhof type generalized gradient approximation of the density

functional theory as implemented in the software package VASP [96]. The relaxed

GNRs are placed one above the other with a vertical separation of 3.35 Å to create

the crossbar, and no further relaxation is performed. The top and bottom contacts

are modeled as infinite leads using self-energies Σt and Σb on the top GNR (tGNR)

and the bottom GNR (bGNR), respectively as shown in Fig. 4.1. An external bias

V is applied between the tGNR and the bGNR such that the electrostatic potential

energies are U(r) = −eV/2 for atoms on the tGNR and, U(r) = eV/2 for atoms on
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Figure 4.1: The structure consists of two crossed semi-infinite, armchair nanoribbons.
To minimize the bandgap due to quantization, the number of atoms across the width
is chosen to be 3p + 2 where p is an integer. The length of the top and bottom
truncated ends are Ltop and Lbot, respectively. The coordinate system is chosen such
that the origin is at the center of the overlap region.
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the bGNR. The Hamiltonian matrix elements used in the NEGF calculation are gen-

erated from the EHT using non-orthogonal Slater-type orbitals. The EHT graphene

parameters are taken from Ref. [97]. The Hamiltonian matrix elements are used in

the NEGF algorithm to calculate the transmission coefficient, T (E), as described in

Ref. [2]. The current is calculated from

I =
2e

~

∫

dE

2π
T (E) [fb(E) − ft(E)] (4.1)

where fb(E) and ft(E) are the Fermi distributions of the bGNR and tGNR contacts

respectively. In all current calculations, the temperature of the Fermi distributions is

300 K.

4.2.2 Analytical Model

The analytical expression for the inter-layer transmission obtained using Fermi’s

Golden Rule is given by [2],

T (E) = 4π2
∑

m,n

|Mm,n|2Nn(E − eV/2)Nm(E + eV/2). (4.2)

where the subscriptsm and n index a mode on the top and bottom GNR, respectively,

Nm(E) and Nn(E) are the corresponding single-spin density of states, and Mm,n =

〈ψmky |Hint|ψnkx〉 is the matrix element between the states on the top and bottom

GNRs. Here, |ψmky〉 is the injected state at the top contact, and |ψnkx〉 is the collected

state at the bottom contact. Both states are at energy E. Since the low energy

transport of the SxGNR is governed by the fundamental modes, we will only consider

the wavefunctions of the conduction and valance bands and drop the subscripts of M

below.
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2 3 ... Nw1i=

j=

Figure 4.2: (Color Online) Atomistic geometry of the model semi-infinite armchair
graphene nanoribbon (aGNR) with a zigzag end. The origin of the coordinate system
is placed on the atom at the bottom left corner. The edge-atoms removed from the
GNR are shown in gray. The envelope function is zero at those positions. For the
analytical calculations presented in Sec. 4.4, the GNR width Nw = 14.
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Within the framework of the continuum model, the wavefunction of mode n of

the semi-infinite armchair graphene nanoribbon (aGNR) shown in Fig. 4.2 can be

written as [98, 99],

|ψnky〉 = |ψnkyA〉+ |ψnkyB〉 (4.3)

with

|ψnkyα〉 =
∑

Rα

(

eiK.Rαψnα − eiK
′.Rαψ′

nα

)

|αRα
〉 (4.4)

where |αRα
〉 is the pz orbital of the carbon atom located at Rα with α ∈ {A,B} and,

ψnα and ψ′
nα are envelope wave functions at K ≡ (−4π/3a0, 0) and K

′ ≡ (4π/3a0, 0)

valleys, respectively. The envelope wave functions of π-electrons can be written as a

four component spinor [98, 99],


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(4.5)

with

kn =
√

k2nx + k2y (4.6)

where s = +1 and −1 for the conduction and valance bands, respectively. The

quantized wavevector knx is given by,

knx = k̃nx −
4π

3a0
(4.7)

where, n = 0,±1,±2, . . . and k̃nx = 2nπ
(Nw+1)a0

. The dispersion relationship of the
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electron associated with the wavefunction in Eq. (4.3) is

En(ky) = sγkn = s~vkn (4.8)

where γ =
√
3a0t0
2

= ~v, t0 = 2.7 eV is the nearest neighbor tight binding param-

eter [100] and v is the velocity of electron near the Dirac point of graphene. One

difference between the wavefunction of a semi-infinite aGNR given by Eq. (4.5) and

the wavefunction of a graphene quantum dot (GQD) derived in Ref. [98] is that in a

GQD, ky is discrete due to the fourth hard-wall boundary imposed on the GQD.

For a Nw = 3p + 2 atomic layer wide metallic aGNRs, the band index for the

conduction and valance band is given by n = 2(p + 1). Hence, knx = 0 and the

dispersion relationship for these bands is linear,

En(ky) = sγky = s~vky. (4.9)

The corresponding wavefunction components obtained from Eqs. (4.4), (4.5) and

(4.6) are given by,

|ψnkyα〉 = C

Nw
∑

i

Nu
∑

j

φkyα(j) sin(k̃nxxαi
)|αij〉 (4.10)

where the envelope wavefunctions along y,

φkyA(j) = sin(kyyAj
) (4.11)

and

φkyB(j) = s cos(kyyBj
) (4.12)
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are standing waves. Here, the normalization constant C =
√

( 2
(Nw+1)Nu

), k̃nx = 2π
3a0

and |αij〉 is the pz orbital of the atomic site α in the atomic layer i and the unit cell

j of the aGNR.

This continuum model does not take into account the reduced C-C bond length

at the armchair edges and therefore Nw = 3p + 2 atomic layer wide aGNRs do not

show any bandgap. Also, this model does not include the edge state localized at the

zigzag edge of the truncated end. Although it does not include the bandgap and the

edge states, in section 4.4, we will show that this model captures the essential physics

governing the quantum transport in the SxGNR. The missing transmission features

corresponding to the bandgap and the edge states do not affect the conclusions drawn

by this continuum description.

The coordinate system of the SxGNR shown in Fig. 4.1 is chosen such that the

origin is located at the center of the overlap region. The top and bottom stubs

are equal in length i.e., Lbot = Ltop ≡ L. In this coordinate system, the envelope

wavefunctions along y for the fundamental modes of the tGNR are

φkyA(j) = sin ky(yAj
+ Ls) (4.13)

and

φkyB(j) = s cos ky(yBj
+ Ls) (4.14)

where the stub length Ls is measured from the origin i. e., Ls = L +W/2. Here, W

is the width of the GNRs. Similarly, the envelope wavefunctions for the fundamental
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modes of the bGNR are obtained by replacing y with −x in Eqs. (4.13) and (4.14),

φkxA(j) = − sin kx(xAj
− Ls) (4.15)

φkxB(j) = s cos kx(xBj
− Ls). (4.16)

For the fundamental modes, the quantized wavevectors for the tGNR and the bGNR

are equal i. e., qn ≡ k̃nx = k̃ny.

The matrix element M between a ky state of the tGNR and a kx state of the

bGNR can be resolved into four components

M =MAA +MAB +MBA +MBB (4.17)

where the subscripts indicate the A or B atom of each primitive unit cell. The matrix

elements are given by

Mαβ ≡ 〈ψkyα|Hint|ψkxβ〉 (4.18)

= C2
∑

i,j,i′,j′

φkyα(j)φkxβ(j
′) sin(qnxαi

) sin(qnyβ
i′
)tij,i′j′ (4.19)

where i, j and i′, j′ are the indices of the atoms on the top and the bottom GNRs,

respectively. The inter-layer matrix elements between the π-orbitals are obtained

following Ref. [10] with tij,i′j′ = −t1e−3(dij,i′j′−do) where dij,i′j′ is the distance between

the atom on the top layer at site (i, j) and the atom on the bottom layer at site (i′, j′),

and do is the distance between the two layers (3.35 Å). The inter-layer parameter

t1 = 0.36 eV [100].

Since the site energies of the top and bottom GNRs are shifted by +eV/2, and
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−eV/2, respectively, the wavevectors for the top and bottom GNRs are given by

ky =
1

sγ
(E +

eV

2
) (4.20)

and

kx =
1

sγ
(E − eV

2
) (4.21)

respectively. Hence, the external bias can be used to control the relative phase of

the envelope wavefunctions inside the overlap region. In section 4.4, we show that

this voltage controlled phase determines the nature of the interference between the

standing waves of the tGNR and bGNR.

4.3 Numerical Results

The inter layer current in the SxGNR, calculated using the NEGF and EHT for-

malism, is an oscillatory function of the applied bias with multiple NDR regions as

shown in Fig. 4.3. The period of oscillations are 0.5 V, 0.35 V, 0.27 V and 0.18 V for

SxGNRs with stub lengths 2.5 nm, 4.2 nm, 5.9 nm and 9.3 nm respectively. Using an

analytical model we show below that the period of oscillation is inversely proportional

to the stub length.

The inter-GNR transmission plots for stub length L = 4.2 nm at the current

minima and maxima are shown in Fig. 4.4. At zero bias the transmission shown

in Fig. 4.4(a) is strongly suppressed within −0.25 eV < E < 0.5 eV due to the

destructive interference between the standing waves of the top and bottom GNR

states as explained in section 4.4 below. The dip in the transmission near E = 0

eV is due to the 136 meV bandgap of the top and bottom GNRs. The narrow peak

in the transmission at E = 0 eV results from the edge states localized at the zigzag
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Figure 4.3: (Color online) Current voltage (I-V) characteristics of a symmetric
SxGNR with different stub-lengths as shown in the legend.

edges of the top and the bottom GNRs [101].

When the bias is increased to 0.2 V, the transmission increases by five orders of

magnitude as shown in Fig. 4.4(b) and the current reaches its first maximum. The

transmission peaks at E = −0.1 eV and E = 0.1 eV are due to the edge states of the

top and the bottom GNR, respectively. This is confirmed by the three dimensional

contours of the local density of states shown in Fig. 4.5. The states at E = −0.1 eV

and E = 0.1 eV are localized at the zigzag edges of the top and the bottom GNR,

respectively.

To understand the contribution of the edge states to the total current we have

plotted the cumulative current in Fig. 4.4. The expression of cumulative current is,

Icum(E) =
2e
~

∫ E

−∞
dE′

2π
T (E ′) [fb(E

′) − ft(E
′)] where fb and ft are the Fermi distribu-

tions at the bottom and the top contacts, respectively. At V = 0.2 V the majority

of the current is transferred through the evanescent edge states at E = ±0.1 eV as

indicated by Icum in Fig. 4.4(b). However, at V = 0.52 V and V = 0.88 V all of the

states within the Fermi window contribute to the current as shown in Figs. 4.4(d)

and (f), respectively. It is found that up to the first current minimum the I-V is
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Figure 4.4: (Color online) Transmission (solid line) and the cumulative current
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Figure 4.5: (Color online) Three dimensional contour plots of local density of states
(LDOS) for V = 0.2 V and L = 4.2 nm at (a) E = −0.1 eV and (b) E = 0.1 eV.
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governed by the interference between the edge state and the standing wave. Since the

edge state decays exponentially inside the GNR, the matrix element between the edge

state of one GNR and the standing wave of the other GNR decreases with increasing

stub length. This explains the lowering of the first peak in the I-V with increasing

stub length.

At V = 0.33 V and 0.7 V, the transmission decreases due to the destructive in-

terference between the standing waves of the tGNR and the bGNR and the current

minima appear in the I-V. In Sec. 4.4, we will show that with increasing bias the suc-

cessive appearance of the constructive and destructive interference leads to successive

enhancement and suppression of the interlayer transmission, and hence the current

oscillates.

To determine if the current-voltage response was qualitatively the same for vari-

ations of the symmetric geometry shown in Fig. 4.1, we carried out a preliminary

study of three asymmetric structures: (a) Lbot = 2.5 nm, Ltop = 4.2 nm, Nw = 14, (b)

Lbot = ∞, Ltop = 4.2 nm, Nw = 14, and (c) Nw = 20 (14) for the top (bottom) GNR

with Ltop = Lbot = 4.2 nm. The current-voltage responses remain similar to those

shown in Fig. 4.3. The periods of oscillation for the (a), (b) and (c) configurations

are 0.4 V, 0.44 V and 0.36 V respectively. For the (b) configuration with one infinite

GNR, the first current peak becomes smaller due to absence of one of the edge states.

To determine how a built-in potential difference between the top and bottom

GNRs affects the current-voltage response, we simulated the same four structures as

in Fig. (4.3) with a built-in potential difference of 0.25 V. A forward bias drives the

potential difference between the two GNRs to zero. When the potential difference

is zero, the transmission is reduced several orders of magnitude as shown in Fig.

(4.4)(a). At this bias (0.25 V), the current is reduced by several orders of magnitude.

The current-voltage curves of the 4 structures with a built-in voltage of 0.25 V are
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Figure 4.6: (Color Online) Simulated I-V characteristics of SxGNR p-n junctions with
built-in potential, φbi = 0.25 V for different stub lengths. The numbers inside the
parentheses represent the peak-to-valley current ratios.

shown in Fig. (4.6). The current ratio of the first current peak to the current minimum

at 0.25 V is given in parenthesis for each curve. Because of the large reduction in

transmission when the GNRs are drive to equal potentials, peak-to-valley ratios of

approximately three orders of magnitude are observed.

4.4 Analysis

Analysis based on Fermi’s Golden Rule and analytical expressions for the wavefunc-

tions reveals the physics of the inter-GNR transport. The transmission is governed

by both the matrix element squared and the density of states as shown in Eq. (4.2).

The transmission calculated numerically with NEGF and the matrix element squared

calculated from the analytical expressions for the wavefunctions are plotted in Fig.

4.7(a-b). A comparison of the plots shows that the energy dependence of the trans-

mission and the overall change in magnitude with bias are determined by the matrix

element. The mismatch between T (E) and |M(E)|2 near E = 0 eV in Fig. 4.7(a) is

due to the fact that the bandgap and the edge state are not included in the analytical
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Figure 4.7: (Color online) Transmission T (E) (thick line) and matrix element |M(E)|2
(thin line) at (a) V = 0 V and (b) V = 0.2 V. Four components of matrix element
M = MAA +MAB +MBA +MBB labeled as AA, AB, BA, and BB at (c) V = 0 V
and (d) V = 0.2 V. The black thick line shows the sum of the four matrix elements,
M .

model. Outside of that 136 meV range, the energy dependence of T (E) follows closely

that of |M(E)|2. Similarly, the matrix element squared at V = 0.2 V shown in Fig.

4.7(b) captures the enhancement of the transmission at low energies by the applied

bias. The peaks in the T (E) plot at E = ±V/2 are due to the edge states and are

not reproduced in the |M(E)|2 plot. Overall, the matrix element governs the voltage

dependence of the transmission, and we shall concentrate only on M below.

The four components of the matrix element given by Eqs. (4.17) and (4.19) are

plotted in Figs. 4.7(c-d). The total matrix element, M , is well approximated by

the sum of MAB and MBA, since these two matrix elements are orders of magnitude

larger than eitherMAA orMBB. At V = 0 V,MAB andMBA are approximately equal

in magnitude but 180o out of phase as shown in Fig. 4.7(c). Thus the destructive

interference between the AB and the BA components ofM suppresses the total matrix

element and hence the transmission.

When the bias is increased to 0.2 V, the quantum phases of the standing electron

waves are modulated by the bias andMAB andMBA acquire a non-zero average value

as shown in Fig. 4.7(d). As a result, the AB and BA components do not cancel.
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The nature of the voltage controlled quantum interference can be understood by

looking at the envelope wavefunctions in the long wavelength limit. At low energies

when the wavelength λ >> W , the variation of the envelope function inside the

overlap region is negligible i.e., φkyA(j) = sin ky(yAj
+ Ls) ≈ sin(kyLs). Using the

dispersion relationship given by Eq. (4.20) we get

φkyA(j) ≈ sin
Ls

γ
(E + eV/2). (4.22)

Similarly, for the B sites of bGNR,

φkxB(j) ≈ s cos
Ls

γ
(E − eV/2). (4.23)

Using Eqs. (4.19), (4.22) and (4.23) we get the expression for MAB in the long

wavelength limit,

MAB ≈ 1

2

(

sin
2LsE

γ
+ sin

LseV

γ

)

HAB. (4.24)

Similarly,

MBA ≈ 1

2

(

sin
2LsE

γ
− sin

LseV

γ

)

HBA. (4.25)

Here, the quantity Hαβ is the energy independent part of Mαβ that depends on the

atomic positions of the α atoms of the tGNR and the β atoms of the bGNR,

Hαβ = C2
∑

i,j,i′,j′

sin(qnxαi
) sin(qnyβ

i′
)tiji′j′ . (4.26)

Numerical calculations show that

HBA = −HAB. (4.27)
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The quantity, HAB (HBA) is the weighted sum of the interlayer hopping parameter

between all the A (B) atoms of the tGNR and all the B (A) atoms of the bGNR

weighted by the transverse sine functions of |ψnkyA(B)〉 and |ψnkxB(A)〉. Thus, they are

sums over different matrix elements and are not Hermitian conjugates.

Using relation (4.27) in Eqs. (4.24) and (4.25) we get the final expressions for

MAB and MBA,

MAB ≈ 1

2

(

sin
2LsE

γ
+ sin

LseV

γ

)

HAB (4.28)

MBA ≈ 1

2

(

− sin
2LsE

γ
+ sin

LseV

γ

)

HAB. (4.29)

Eqs. (4.28) and (4.29) clearly show that at V = n πγ
eLs

where n = 0, 1, 2, ..., the

AB and the BA components of the matrix element cancel each other as indicated in

Fig. 4.7(c). Thus the voltage controlled destructive interference between the A and

the B atoms results in suppression of transmission and current minima. Similarly, at

V = (2m+1) πγ
2eLs

where m = 0, 1, 2, . . . , the A and B atoms interfere constructively

giving rise to enhancement in transmission and current maxima. Thus the voltage

controlled interference between the tGNR and the bGNR is an oscillatory function of

the bias which results in an oscillatory current voltage response with multiple NDR

regions. The period of the oscillation is inversely proportional to the stub length,

Vp =
πγ

eLs

. (4.30)

The periods of the oscillations in the current-voltage responses calculated using Eq.

(4.30) are 0.52 V, 0.35 V, 0.26 V and 0.18 V for the SxGNRs with 2.5 nm, 4.2 nm,

5.9 nm and 9.3 nm stub lengths, respectively, which closely match with the numerical

results calculated using NEGF.
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With an understanding of the magnitude of the coherent current, we can compare

it to an estimate of the magnitude of the phonon assisted current. Since the phonon

modes of the structures under consideration are not known, we estimate an order-

of-magnitude of the phonon-assisted current from the phonon-assisted conductivity

Gph of 2D misoriented graphene. In 2D misoriented graphene, Gph is a smoothly

decreasing function of the rotation angle. At low temperature (T = 20 K) and finite

bias, V > 0.1 V, the inter-layer conductance lies between 10−9 S/nm2 and 10−8

S/nm2 [3]. The overlap region of the crossbar in Fig. 4.3 is 3.24 nm2. Choosing a

one volt bias, the maximum estimate of the phonon-assisted current would be 32.4

nA. The coherent current shown in Fig. 4.3 is on the order of 100 nA. Thus, from

this crude estimate, the current oscillations in the coherent current should still be

observable in the presence of phonon-assisted current.

4.5 Conclusions

The inter-layer transport between two crossed, semi-infinite armchair GNRs is gov-

erned by voltage controlled quantum interference between the standing waves of the

individual GNRs. An external bias applied between the GNRs controls the wave-

length and hence the relative phases of these standing waves. Sweeping the applied

two-terminal bias causes multiple constructive and destructive interference conditions

resulting in a periodic modulation of the average transmission and an oscillatory I-V

characteristic with multiple NDR regions. The voltage period of the oscillation is in-

versely proportional to the length of the truncated ends of the GNRs. An estimate of

the magnitude of the phonon-assisted current based on the 2D phonon-assisted con-

ductivity indicates that the oscillations in the coherent current will not be masked by

the phonon-assisted current.
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Chapter 5

The Interlayer Resistance of a

Misoriented, Rotated Interface in

Vertically Stacked Graphene

The coherent, interlayer resistance of a misoriented, rotated interface in vertically

stacked graphene is determined for a variety of misorientation angles. These values

are compared with previously calculated values for the phonon-mediated, interlayer

resistance of misoriented, bilayer graphene. The fundamentally limiting quantum-

resistance of the ideal interface with θ = 0o is on the order of 10−3 Ωµm2. For small

rotations, the coherent interlayer resistance is a strong function of the Fermi energy,

and it exponentially approaches the ideal quantum resistance at energies away from

the charge neutral point. At room temperature, the total interlayer resistance can

still be sensitive to the rotation angle changing one to two orders of magnitude as the

angle changes by a few degrees. Over a range of intermediate angles, the coherent

resistance is much larger than the phonon-mediated resistance which results in a

relatively constant total resistance on the order of 100 Ωµm2.
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5.1 Introduction

There is rapidly growing interest in vertically stacked van der Waals materials for

electronic device applications [33, 42–47]. In such structures the interfaces between

different materials will, in general, be misoriented with respect to each other [48]. THz

cutoff frequencies have been predicted for such devices [46]. At such high frequen-

cies, any small series resistance can degrade performance. For example, an emitter

contact resistance of 2.5 Ωµm2 is required to achieve a THz cutoff frequency in a het-

erostructure bipolar transistor [49]. Understanding the effect of the misorientation

on the interlayer resistance is required to fully understand the design requirements

and performance of proposed vertically stacked devices.

The most well studied and well understood van der Waals material is graphene

[17, 48]. The effect of misorientation on the electronic structure of bilayer graphene

has been studied extensively both theoretically and experimentally [4–9, 40, 50–52].

After a few degrees misorientation, the in-plane dispersion becomes linear, and after

about 10 degrees misorientation, the in-plane velocity is the same as that of single-

layer graphene. Thus, misoriented graphene bilayers act as if they are electronically

decoupled.

The study of the interlayer resistance in misoriented bilayer graphene has received

far less attention [3, 12, 53]. Bistritzer and MacDonald used a transfer Hamiltonian

approach to calculate the coherent interlayer resistance as a function of rotation angle

θ and found it to vary by 16 orders of magnitude as the misorientation angle varies

from zero degree to 30 degrees [12]. The calculated coherent interlayer resistance

values vary from approximately 1015 Ωµm2 to 0.1 Ωµm2 as a function of rotation

angle. Furthermore, the variation with θ is highly non-monotonic, varying many

orders of magnitude as θ changes by a few degrees. Our calculations show that the
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resistance determined by this approach is inversely proportional to Γ, so that changing

the lifetime broadening from 75 meV to 10 meV increases the resistance by an order

of magnitude. Thus, the quantitative values of the interlayer resistance cannot be

determined from this approach without knowing the actual values of the lifetime

broadening Γ. What is independent of Γ is the extreme sensitivity of the coherent

interlayer resistance to the rotation angle and the many-order-of-magnitude variation

in resistance values as the misorientation angle is varied from zero to 30 degrees.

The room-temperature, phonon-mediated interlayer resistance shows far less de-

pendence on the misorientation angle [3, 53]. It changes by less than an order of

magnitude as the angle varies from zero to 30 degrees [3,53]. The room-temperature,

phonon-mediated interlayer resistance is a smooth, monotonic function of the misori-

entation angle. Perebeinos et al. [3] calculated that it varied from about 50 Ωµm2 at

θ = 3◦ to 330 Ωµm2 at θ = 30◦. Experimental measurements found approximately

an order of magnitude larger resistance that varied from 750 Ωµm2 to 3400 Ωµm2 as

the angle varied from 5◦ to 24◦ [53, 102].

To first order, the resistance from the coherent channel (Rc), and the resistance

from the phonon-mediated channel (Rp) are in parallel [54, 55]. Thus, to determine

the total inter-layer resistance between two misoriented graphene layers, one requires

quantitative values for the coherent component of the resistance. In this work, we

provide those values. We do so, by considering two stacks of AB graphite that are

rotated with respect to each other at their interface. In such a structure, injection

is well defined using the usual non-equilibrium Green function approach; a lifetime

broadening factor is not required; and the resistance can be calculated for θ = 0o pro-

viding a minimum baseline value. Furthermore, this type of structure is consistent

with the proposed vertically stacked van der Waals structures. Combining our values

for Rc with the values calculated previously for Rp, we obtain estimates for the total
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room-temperature interlayer resistance for a variety of commensurate misorientation

angles.

Interest in vertically stacked structures returns us to the many investigations of

the c-axis resistance of graphite [103–107] in a more modern, controlled, and scaled

context [108]. Ono [105] developed a theory of electron scattering from stacking faults

and applied it to faults of the type · · ·ABABACAC · · · and · · ·ABABCBCB · · · .

This theory was enhanced, and, with a few empirical parameters such as the average

distance between stacking faults and the transmission probability through a stacking

fault, it fit the experimental data over a wide temperature range [107]. The experi-

mental measurements of the c-axis resistivity have been performed through stacks of

kish graphite or HOPG with a random ensemble of stacking faults and in the diffu-

sive limit. There is considerable spread in the experimental data. We cannot, at this

time, compare our calculations with results from the older body of work [103–107].

Our focus is on the rotated interfaces that naturally occur with the new mechanical

stacking methods [48].

5.2 Model

5.2.1 Exact Model

The twisted bilayer graphene (TBG) supercell (i.e. the primitive cell of the commen-

surate twisted bilayer) is created following the method described in Ref. [40]. The top

layer of the TBG supercell is used to create an AB stacked bilayer graphene supercell

which, in turn, is used to create the top contact. Similarly, the bottom contact is

created using the bottom layer of the TBG supercell. Thus, the twisted structure

consists of two AB oriented stacks that are rotated with respect to each other as
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Figure 5.1: Atomistic geometry of the rotated interface. It consists of two AB oriented
stacks that are rotated with respect to each other. The interface layers where the
misorientation occurs have been colored for visualization. The two misoriented layers
are the ‘device’ in the NEGF calculation.
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shown in Fig. 5.1.

The inter layer coherent transport through the twisted structure is modeled us-

ing the non-equilibrium Green function (NEGF) formalism with an empirical tight

binding Hamiltonian. The coherent resistance is calculated using

R = 1/

[

2
e2

~

∫

dE

2π
T (E)

(

− ∂f

∂E

)]

(5.1)

where f(E) is the Fermi function. The transmission T (E) is given by

T (E) =

∫

1stBZ

dk T (E,k) (5.2)

where k is 2D wave vector in the TBG Brillouin zone and T (E,k) is the wavevector

resolved transmission calculated using NEGF. To exploit the symmetry, we sample

one third of first Brillouin zone indicated by the rhombus ΓK1K2K3 in Fig. 5.4.

The rhombus is sampled using equally spaced (δk = 0.005 Å−1) k-points. For a

TBG supercell with θ = 21.7868o , there are ∼ 17000 k-points for each energy.

The transmission at each k-point is calculated using the standard Green function

expression,

T (E,k) = tr
{

ΓbGR
DΓ

tGR
D

†
}

(5.3)

where Γb = i
(

Σb(E,k)− Σb†(E,k)
)

, Γt = i
(

Σt(E,k)− Σt†(E,k)
)

and Σb(E,k)

and Σt(E,k) are the self-energies of the bottom and the top contacts, respectively.

The structure is partitioned such that the ‘device’ consists of the misoriented bilayer

at the center of Fig. 5.1. The surface Green functions of the top and bottom AB

stacks are calculated using the decimation algorithm [80] with a convergence factor

of 1 meV, and the self energies are calculated from the surface Green functions in the
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usual way [109]. The Green function of the twisted bilayer device is given by

GR
D =

[

EI−HD(k)− Σb(E,k)− Σt(E,k)
]−1

(5.4)

where HD(k) is the Hamiltonian matrix of the twisted bilayer in the pz orbital basis.

The Hamiltonian matrix elements of the twisted bilayer, the top contact and the

bottom contact are generated using an empirical tight binding model with an in-pane

first nearest neighbor hopping element of t = 3.16 eV [17]. The model developed by

Perebeinos et al. is used for the out-of-plane coupling [3]. The out-of-plane coupling

between atom i in top layer and atom j in the bottom layer is calculated using [3]

tij = t⊥ exp

(

−rij − d⊥
λz

)

exp

[

−
(

rxyij
λxy

)α]

(5.5)

where the inter layer distance d⊥ = 3.35 Å, the inter layer AB hopping parameter

t⊥ = 0.39 eV, rij is the distance between atom i and atom j, the in-plane distance

rxyij = [(xi − xj)
2 + (yi − yj)

2]1/2, λxy = 1.7 Å, λz = 0.6 Å and α = 1.65. This model

is known to reproduce the LDA results for twisted bilayer graphene [3].

5.2.2 Perturbative Model

In the model used by Bistritzer and MacDonald in Ref. [12] for calculating the in-

terlayer transport between two weakly coupled misoriented layers of graphene, the

interlayer coupling is treated as a small perturbation between perfect 2D electron

gases. In this section, we describe a similar formalism.

The schematic diagram of the device structure used in this formalism is shown

in Fig. 5.2. It consists of two misoriented graphene layers. The misoriented bilayer

supercell is created following the method described in Ref. [40]. Assuming the inter
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Top Layer

Bottom Layer

θ

Figure 5.2: Atomistic geometry of the rotated bilayer structure used in perturbative
calculations. The atoms on the top and the bottom layers have been colored for
visualization.

layer coupling between the misoriented layers as a small perturbation, the wavevector

resolved interlayer transmission T (E,k) is given by,

T (E,k) = tr {t10(k)a00(E,k)t01(k)a11(E,k)} (5.6)

where the tij(k) is the inter layer coupling between layer i and layer j and aii(E,k) =

i[gii(E,k)−g†ii(E,k)] is the unperturbed spectral function of layer i. The unperturbed

Green function of layer i is

gii(E,k) = [EI−Hii(k) + iη]−1 (5.7)

where η is the energy broadening which limits the lifetime of Bloch state in each layer

and Hii(k) is the Hamiltonian matrix of layer i in the pz orbital basis. The total
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Figure 5.3: Zero temperature coherent contact resistance of twisted bilayer graphene
as a function of Fermi Energy calculated using Eq. (5.6) for different energy broad-
ening for θ = 21.8o.

transmission T (E) and resistance R is then calculated using Eq. (5.2) and (5.1),

respectively.

This formalism is similar to the formalism used by Bistritzer and MacDonald

in Ref. [12]. It is very fast because it does not require the self-energy calculations.

However, the transmission T (E) calculated using this method depends strongly on

the energy broadening factor η as we will show bellow.

5.3 Results and Discussion

The interlayer coherent resistance between two misoriented layers of graphene for

different broadening factor η calculated using the perturbative method described in
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E = 0.5 eV for (a) perfect AB stacking calculated using the 21.8◦ supercell, and
(b) a misoriented structure with θ = 9.43o. To exploit the symmetry, the rhombus
ΓK1K2K3 is sampled by equally spaced k-points.

Sec. 5.2.2 is shown in Fig. 5.3. The resistance varies inversely with η exhibiting

a strong dependence. The calculated quantitative values of the coherent interlayer

resistance increases approximately an order of magnitude when the broadening is

changed from 1 meV to 10 meV. The resistance calculated using Eq. (5.6) with

η = 150 meV is five times higher than that calculated using Eq. (5.3). Thus,

this method fails to give correct quantitative values of interlayer coherent resistance

between two misoriented layers of graphene. Therefore, we will use the exact method

described in Sec. 5.2.1 for all the results shown below.

Fig. 5.4 shows the momentum resolved transmission T (E,k) calculated using Eq.

(5.3) in the first Brillouin zone for two structures at an energy of 0.5 eV. The left

one is for ideal AB stacked graphite calculated using a supercell corresponding to the

21.8◦ structure. The transmission is centered at the K and K ′ points, and within the

isoenergy circle, it is 1.0 as one would expect for an ideal crystal. The supercell of

the 21.8◦ twisted structure is the smallest of all the nonzero twist angles. At other
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Figure 5.5: Zero temperature coherent contact resistance of twisted bilayer graphene
as a function of Fermi Energy for different rotation angles.

angles, the supercell is larger and the first Brillouin zone becomes smaller as shown

in Fig. 5.4b for a twist angle of 9.43◦. It is still hexagonal, and the transmission is

still centered around the K and K ′ points. However, now the transmission is peaked

at the isoenergy surface. Furthermore, the overall scale has been reduced by 7 orders

of magnitude (compare the scale bars on the left and right). At each energy E, these

functions are integrated over the first Brillouin zone to obtain the transmission as a

function of energy T (E) and then the interlayer resistance from Eq. (5.1).

Fig. 5.5 shows the zero-temperature, interlayer resistance over a range of Fermi

energies from ±1 eV around the charge neutrality point for different rotation angles

θ. The lowest curve is the coherent resistance of the ideal AB stack with θ = 0o.

This resistance is the fundamental limiting ‘quantum resistance’ inversely propor-

tional to the number of transverse modes available to carry the current at a given

72



−1 −0.5 0 0.5 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Fermi Energy, E
F

(eV)

R
e
s
is

ta
n
c
e
,

R
(Ω
µ

m
2
)

AB
21.7868

o

27.7958
o

13.1736
o

17.8966
o

9.43
o

15.1782
o

16.4264
o

7.341
o

T = 300 K

Figure 5.6: Room temperature coherent contact resistance of twisted bilayer graphene
as a function of Fermi energy for different rotation angles.

energy. This quantity has recently been calculated for other materials to determine

the fundamental lower limit on the contact resistance [110–112].

The magnitude of the coherent interlayer resistance increases several orders of

magnitude as the layers become misaligned. The legend is ordered according to the

size of the corresponding supercell so that, among the rotated bilayers, θ = 21.8◦

gives the smallest supercell and θ = 7.34◦ gives the largest supercell. In general, the

magnitude of the resistance increases with the size of the supercell. However, the

resistance for the two smallest angles, 7.34◦ and 9.43◦, falls off most quickly with

energy, so that at larger energies this trend can fail for the smaller rotation angles.

The coherent interlayer resistance at T = 300 K is shown in Fig. 5.6. It is ob-

tained by convolving the transmission with the room temperature thermal broadening

function in Eq. (5.1) which removes the sharpest features in Fig. 5.5. At a Fermi
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Figure 5.7: Room temperature coherent contact resistance of a 21.8◦ misoriented
interface as a function of the Fermi energy for different relative in-plane translations.

energy of 0.26 eV considered in Refs. [3, 12], the trend of increasing resistance with

supercell size is generally followed except for the two smallest angles, and the smallest

angle of 7.34◦ falls far outside of the trend.

The coherent room temperature resistance is also sensitive to translation of one

plane with respect to the other. Fig. 5.7 shows the room temperature resistance

for different translations of one plane with respect to the other for a misorientation

angle of 21.8◦. The coherent resistance changes by a factor of 4 to 5 for different

translations. The sensitivity to translation is far less than the sensitivity to rotation.

Translation alters the coherent resistance value within the same order of magnitude,

whereas rotation alters the coherent resistance by many orders of magnitude.

The total resistance is the parallel combination of the phonon-mediated resistance
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Rp and the coherent resistance Rc. The values for the room-temperature, phonon-

mediated resistance Rp at a Fermi level of 0.26 eV are taken from Fig. 1 of Ref. [3].

The values for the coherent, room temperature resistance Rc at a Fermi level of

0.26 eV are taken from Fig. 5.6. These values along with the parallel combination

Rtot are plotted in Fig. 5.8 as a function of the supercell lattice constant, and they

are listed in Table 5.1. The rotation angle is shown on the plot for each set of

resistances. For reference, the coherent resistance of the ideal AB structure is also

shown. Its value of 3.9 × 10−3 Ωµm2 is 3 to 5 orders of magnitude less than that

of any of the structures with a nonzero misorientation. For the two smallest cell

sizes corresponding to 21.8◦ and 27.8◦, the coherent resistance is smaller than the

phonon-mediated resistance, and the total resistance is determined by the coherent

resistance. The corresponding values of the total resistance are 3.2 Ωµm2 and 25

Ωµm2, respectively. For the intermediate cell sizes, the phonon-mediated resistance

is less than the coherent resistance, so that the total resistance is determined by the

phonon-mediated resistance. The value of the total resistance is on the order of 100

Ωµm2 for all of the intermediate cell sizes. The coherent resistance of the largest cell

size corresponding to the smallest angle of 7.34◦ is two orders of magnitude smaller

than the phonon-mediated resistance. Thus, for θ = 7.34◦, the total resistance is

determined by the coherent resistance and its value is 0.9 Ωµm2.

The values for Rp taken from Ref. [3] must be viewed as an estimate using the

best and most optimistic values available. Those were calculated from a Fermi golden

rule expression using the calculated phonon modes of each misoriented bilayer with

a misorientation angle θ and the initial and final density of states of single layer

graphene. The system we consider consists of two misoriented semi-infinite stacks

of AB graphite. This alters both the phonon modes and the initial and final den-

sity of states. The phonon modes are now three dimensional with a finite velocity
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Rotation Angle θ Lattice Constant Rc Rp Rtot

AB 2.4595 3.89× 10−3

21.7868 6.5073 3.28 208 3.23
27.7958 8.8679 27.7 311 25.5
13.1736 10.7208 363 87.8 70.7
17.8966 13.6940 1860 137 128
9.43 14.9606 4080 69.2 68.0

15.1782 16.1281 3720 105 102
16.4264 17.2166 16400 120 119
7.341 19.2094 0.902 64.0 0.890

Table 5.1: Coherent resistance Rc, phonon-mediated resistance Rp, and total resis-
tance Rtot as a function of rotation angle and primitive-cell lattice constant. Resis-
tance units are (Ωµm2). Angles are in degrees and the lattice constants are in Å.
T = 300 K and EF = 0.26 eV. The angles are ordered according to the supercell size
from smallest to largest. The values for Rp are from Ref. [3].

perpendicular to the planes, and the initial and final density of states become the

surface spectral functions of the two interface layers. Therefore, a re-calculation of

the phonon-mediated interlayer resistance for a stacked structure is required to verify

the values for Rp and, finally, Rtot. In the interim, the values for Rtot shown in Fig.

5.8 are the best and most optimistic ones available.

Assuming that the values for Rp are good estimates for the actual values, Rtot is

still a sensitive function of the misorientation angle even in the presence of phonon-

mediated transport. It varies by a factor of 40 as the angle is varied a few degrees from

17.9◦ to 21.8◦ and a factor of 76 as the angle varies from 9.4◦ to 7.3◦. Over a range of

intermediate angles, the interlayer resistance is determined by the phonon-mediated

resistance with a relatively constant value near 100 Ωµm2 at a Fermi level of 0.26

eV. The resistance values for most angles are large for THz applications. If we take

1 Ωµm2 as an order-of-magnitude target resistance for THz applications, then only

small misorientation angles with Fermi levels well away from the charge neutral point

will meet the target. There is the one special angle of 21.8◦ that gives a minimal
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primitive cell and a resistance in the target range, however, small variations away

from that angle result in resistance values well outside of the target value.

5.4 Conclusion

In conclusion, we have calculated the coherent transmission and resistance of two

semi-infinite stacks of AB graphite rotated with respect to each other at a commen-

surate angle θ. The values are well defined and they do not depend on an empir-

ical energy broadening factor Γ. The fundamental limiting value is the coherent

quantum-resistance of ideal AB graphene. It is on the order of 10−3 Ωµm2. For small

misorientation angles, the coherent interlayer resistance is a strong function of the

Fermi energy. It decreases rapidly towards the ideal, unrotated AB value at higher

energies. For a wide range of intermediate angles the coherent interlayer resistance

becomes very large (> 1000 Ωµm2), and the interlayer resistance is determined by

the phonon-mediated resistance with a relatively constant value on the order of 100

Ωµm2. At room temperature, there can still be strong sensitivity of the resistance to

the rotation angle. A few degrees of rotation can vary the resistance by one to two

orders of magnitude. The general trends such as the strong energy dependence of

the interlayer resistance for small angles should be relevant to other two-dimensional

stacked materials.
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Chapter 6

Conclusion

There is rapidly growing interest in vertically stacked van der Waals materials for

electronic device applications. The most well studied and well understood van der

Waals material is graphene. The effect of misorientation on the electronic structure of

bilayer graphene has been studied extensively both theoretically and experimentally.

After a few degrees misorientation, the in-plane dispersion becomes linear, and after

about 10 degrees misorientation, the in-plane velocity is the same as that of single-

layer graphene. Thus, misoriented graphene bilayers act as if they are electronically

decoupled. The interlayer coupling can be modulated using an external electric field.

This opens up possibilities for novel switching mechanism for post CMOS device

applications.

In this work, we explored the quantum transport domain of misoriented layers

of graphene for possible current switching mechanism that utilizes the exceptional

properties of graphene. Our simulations show that the coherent electronic decoupling

between two-dimensional misoriented bilayers is still present in lower dimensions when

the overlap region is reduced to the nanometer scale. We found a current switching

mechanism based on voltage control quantum phase of electrons to achieve large,
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rapid modulation of current using a small voltage swing. This switching mechanism

does not rely on a bandgap or a potential barrier. Therefore, it is not limited by the

ideal thermal limitation of 60 mV/dec.

In vertically stacked van der Waals material devices the interfaces between dif-

ferent materials will, in general, be misoriented with respect to each other. The

interlayer current and resistance is expected to be very sensitive to the rotation an-

gle. Understanding the effect of the misorientation on the interlayer resistance is

required to fully understand the design requirements and performance of proposed

vertically stacked devices. In this work, the coherent, interlayer resistance of a mis-

oriented, rotated interface in vertically stacked graphene is determined for a variety

of misorientation angles and compared with previous values for the phonon-mediated,

interlayer resistance.

The quantum transport simulations in misoriented layers of graphene were carried

out using NEGF formalism. The Hamiltonian matrix element required for NEGF

calculations were constructed using semi-empirical tight binding models, extended

Hückel theory or density functional theory. Depending on the nature of the problem

we started from simpler models and added sophistication of better models if neces-

sary. The underlying physics governing the numerical results were elucidated using

analytical models based on wave function approach. The critical findings of this work

are summarized as follows:

• Two independently contacted, AA or AB stacked graphene nanoribbons behave

as a resonant tunneling diode featuring negative differential resistance.

• A relative rotation of 90 degrees between two GNRs creates a crossbar with a

nano-scale overlap region. The electronic states of the individual GNRs of an

unbiased crossbar are decoupled from each other similar to the decoupling that
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occurs in twisted bilayer graphene.

• The decoupling is a consequence of the cancellation of quantum phases of the

electronic wavefunctions of the individual GNRs. As a result, the inter-GNR

transmission is strongly suppressed over a large energy window.

• An external bias applied between the GNRs changes the relative phases of the

wavefunctions resulting in modulation of the transmission and current by several

orders of magnitude.

• A built-in potential between the two GNRs can lead to a large peak-to-valley

current ratio (> 1000) resulting from the strong electronic decoupling of the

two GNRs that occurs when they are driven to the same potential.

• Current switching by voltage control of the quantum phase in a graphene cross-

bar does not rely on a bandgap or a potential barrier. Thus it is not limited

by the fundamental thermal limitation of 60 mV/dec. It is robust even with an

overlap of ∼ 1.8 nm×1.8 nm which is well-below the smallest horizontal length

scale envisioned in the ITRS.

• The interlayer transport between two semi-infinite crossed GNRs is governed by

the quantum interference between the standing waves of the individual GNRs.

• An external bias applied between the GNRs controls the wavelength and hence

the relative phase of these standing waves.

• Sweeping the applied bias results in multiple constructive and destructive in-

terference conditions.

• The oscillatory nature of the voltage controlled interference gives rise to an

oscillatory current-voltage (I-V) response with multiple NDR regions.
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• The period of oscillation is inversely proportional to the length of the finite ends

of the GNRs.

• The fundamentally limiting quantum-resistance of the ideal AB stacked graphite

is on the order of 10−3 Ωµm2.

• For small misorientation angles, the coherent interlayer resistance is a strong

function of the Fermi energy. It decreases rapidly towards the ideal, unrotated

AB value at higher energies.

• For a wide range of intermediate angles the coherent interlayer resistance be-

comes very large (> 1000 Ωµm2), and the interlayer resistance is determined by

the phonon-mediated resistance with a relatively constant value on the order of

100 Ωµm2.

• At room temperature, there can still be strong sensitivity of the resistance to

the rotation angle.

• A few degrees of rotation can vary the resistance by one to two orders of mag-

nitude.

• The general trends such as the strong energy dependence of the interlayer re-

sistance for small angles should be relevant to other two-dimensional stacked

materials.
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Appendix A

Twister User Manual

Twister is a C++ code that can calculate the electronic structure and transport

of twisted or misoriented stacks of van der Waals materials including graphene and

hBN. It was used to calculate the interlayer coherent resistance of misoriented layers

of graphene presented in Chapter 5. It uses high performance math libraries like

BLAS and LAPACK. Calculations are performed in parallel using the message passing

interface (MPI).

Twister takes two input files: (1) an xml file for the simulation setup and (2) a

standard Gaussian gjf file containing the atomic structure. Below, we provide two

tutorials followed by the format of the xml file.

A.1 Tutorials

A.1.1 Graphene Bandstructure

To calculate bandstructure of graphene using Twister, create a simulation directory in

your home directory. Create an xml file in the simulation directory with the following

contents:
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Listing A.1: grapheneEkLine.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <Twister Version="0.6.1">

4

5 <TBParams dtol="1E-3">

6 <Param ec="0"/>

7 <Param di0cc="1.42" ti0cc="3.16"/>

8 <Param do0cc="3.35" to0cc="0.39" doXcc="0.0"/>

9 <Param lmdxy="1.7" lmdz="0.6" alpha="1.65"/>

10 </TBParams>

11

12 <Calculation

13 Active="true"

14 Mode="BandStructure"

15 OutPath="band"

16 FileName="ekLine"

17 NumBands="10"

18 >

19 <AtomicStructure FileName="grapheneEk.gjf">

20 <Lattice a1="2.1300 1.2298" a2="2.1300 -1.2298"/>

21 </AtomicStructure>

22

23 <Neighbors Generate="true"/>

24 <Bias>0.0</Bias>

25 <KPoints>

26 <KLine

27 KxStart="0" KyStart="0"

28 KxEnd="1.4749" KyEnd="0.8515"

29 DelK="0.0005"

30 />
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31 <KLine

32 KxStart="1.4749" KyStart="0.8515"

33 KxEnd="0.7375" KyEnd="1.2773"

34 DelK="0.0005"

35 />

36 <KLine

37 KxStart="0.7375" KyStart="1.2773"

38 KxEnd="0" KyEnd="0"

39 DelK="0.0005"

40 />

41

42 </KPoints>

43 </Calculation>

44 </Twister>

This file holds all the details needed for the simulation. A detailed description of

all the keywords used in List. A.1 is given in Sec. A.2. The TBParams tag lists

the tightbinding parameters: (1) ec: C on-site energy, (2) di0cc: C-C in-plane

nearest neighbor distance, (3) do0cc: C-C out-of-plane nearest neighbor distance,

(4) ti0cc: C-C in-plane nearest neighbor tight binding parameter, (5) to0cc: C-C

out-of-plane nearest neighbor tight binding parameter etc. The Calculation tag

describes types of calculation to be performed (Method="BandStructure"), output

directory (OutPath="band"), output filename (FileName="ekLine"), atomic struc-

ture filename (FileName="grapheneEk.gjf"), lattice vector (a1="2.1300 1.2298"

a2="2.1300 -1.229") and k-points. The k-points are specified by the KLine tags

which tells Twister to create equally spaced k-points for the line segments from Γ

through K and M to Γ.

The primitive cell of graphene contains two atoms described in List. A.2.
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Listing A.2: grapheneEk.gjf

1 %chk=twistedEk.gjf.chk

2 %mem=6MW

3 %nproc=1

4 #p pbepbe/auto bepbe

5

6 graphene

7

8 0 1

9 C 0.00 0.00 0.00

10 C 1.42 0.00 0.00

Copy the Twister executable file twister to this simulation directory and run the

simulation:

1 $ srun twister GrapheneEkLine.xml

Twister will calculate the band structure and save it in band/ekLine 0.0000.dat

file. To convert this file to a MATLAB friendly mat file, issue:

1 $ ./convBandData band/ekLine_0.0000.dat

command. This will create band/ekLine 0.0000.mat file needed to plot the band

structure. The bandstructure can be plotted using the following MATLAB script:

Listing A.3: plotGrapheneEkLine.m

1 clear all;

2 clc;

3

4 load(’band/ekLine_0.0000.mat’);

5

6 nbands = size(Ek, 1)-2;

7 nEV = nbands/2+2;

8 nEC = nEV + 1;
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9

10 kx = Ek(1,:);

11 ky = Ek(2,:);

12

13 nk = [1:length(kx)];

14

15 figure;

16 plot(nk,Ek(nEV:nEC,:));

17 grid on;

18 set(gca,’Xtick’,[1, 3407, 5202, length(kx)],’XTickLabel’,{’\Gamma’, ’K’, ’M’, ’\

Gammas’});

19 ylabel(’Energy, E (eV)’);

A.1.2 Transport Through AB Stacked Graphite

For the transport calculation, we create six layers AB stacked graphene. The bottom

two AB layers constitute the bottom contact, the middle two layers constitute the

device and the top two layers constitute the top contact. The resulting gjf file looks

like this:

Listing A.4: grapheneTEk.gjf

1 %chk=twistedEk.gjf.chk

2 %mem=6MW

3 %nproc=1

4 #p pbepbe/auto bepbe

5

6 graphene

7

8 0 1

9 C 0.00 0.00 -8.375
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10 C 1.42 0.00 -8.375

11 C 1.42 0.00 -5.025

12 C 2.84 0.00 -5.025

13 C 0.00 0.00 -1.675

14 C 1.42 0.00 -1.675

15 C 1.42 0.00 1.675

16 C 2.84 0.00 1.675

17 C 0.00 0.00 5.025

18 C 1.42 0.00 5.025

19 C 1.42 0.00 8.375

20 C 2.84 0.00 8.375

Here, atoms 1-4 constitute the bottom contact, 5-8 constitute the device and 9-12

constitute the top contact. The simulation setup file looks like this:

Listing A.5: grapheneTEk.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <Twister Version="0.6.1">

4

5 <TBParams dtol="1E-3">

6 <Param ec="0"/>

7 <Param di0cc="1.42" ti0cc="3.16"/>

8 <Param do0cc="3.35" to0cc="0.39" doXcc="0.0"/>

9 <Param lmdxy="1.7" lmdz="0.6" alpha="1.65"/>

10 </TBParams>

11

12 <Calculation

13 Active="true"

14 Mode="Transport"

15 DeviceType="NonRGF"

16 OutPath="trans"
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17 FileName="tekParallelo"

18 >

19 <AtomicStructure FileName="grapheneTEk.gjf">

20 <Lattice a1="2.1300 1.2298" a2="2.1300 -1.2298"/>

21 <Layer

22 BotContact="1 4"

23 Device="5 8"

24 TopContact="9 12"

25 />

26 </AtomicStructure>

27

28 <Neighbors Generate="true"/>

29 <Bias>0.0</Bias>

30 <Energy Start="-1.2" End="1.2" DelE="0.01"/>

31 <Eta>1E-3</Eta>

32 <KPoints>

33 <KParallelo

34 K1x="1.4749" K1y="0.8515"

35 K2x="-1.4749" K2y="0.8515"

36 DelK="0.005"

37 />

38 </KPoints>

39 </Calculation>

40 </Twister>

The simulation type is now changed to transport using Mode="Transport" tag. The

output path and file name is also changed. The BotContact="1 4" attribute in the

Layers tag tells Twister that the bottom contact consists of atom 1-4. Similarly

Device="5 8" and TopContact="9 12" defines the device and the top contact, re-

spectively. A uniform energy grid from -1.2 eV to 1.2 eV with 10 meV interval is
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defined in the Energy tag. The one third of the first BZ is sampled using equally

spaced k-points defined by the KParallelo tag.

To run the simulation in parallel in 16 nodes, we issue:

1 $ srun -n 16 twister grapheneTEk.xml

command. Twister will calculate transport and save the output in trans/

tekParallelo 0.0000.dat file. The output file can be converted to MATLAB mat

file using the following command.

1 $ ./convBandData band/tekParallelo_0.0000.dat

The following MATLAB script will plot the transmission.

Listing A.6: plotTEParallelo.m

1 clear all;

2 clc;

3

4 VV = 0.0;

5 plotTkParallelo = ’YES’;

6 plotTkLine = ’NO’;

7 plotTE = ’YES’;

8

9 hBar = 1.054571628E-34;

10 e = 1.6E-19;

11

12 %% T(E,k)

13 EE = -0.6;

14

15 load(sprintf(’tekParallelo_%0.4f.mat’, VV));

16 nE = find(abs(E-EE)<1E-3);

17 nE = nE(1);

18
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19 kt = k{nE};

20 kx = kt(:,1);

21 ky = kt(:,2);

22 kt = [];

23 Tk = TEk{nE};

24

25 nkx = 400;

26 nky = 400;

27

28 [kxs, kys] = meshgrid(linspace(min(kx), max(kx), nkx), linspace(min(ky), max(ky),

nky));

29 Tks = griddata(kx, ky, Tk, kxs, kys);

30

31 if strcmp(plotTkParallelo, ’YES’)

32 figure;

33 pcolor(kxs, kys, Tks);

34 hold on;

35 hold off;

36 grid on;

37 shading interp;

38 axis equal;

39 xlabel(’k_x (1/A)’);

40 ylabel(’k_y (1/A)’);

41 title(sprintf(’E = %0.2f’,EE));

42 colorbar;

43 end

44

45 if strcmp(plotTkLine, ’YES’)

46 figure;

47 plot(kx,ky,’.’);

48 grid on;
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49 axis equal;

50 xlabel(’k_x (1/A)’);

51 ylabel(’k_y (1/A)’);

52 end

53

54 %% T(E)

55 delk = 0.005;

56 factor = 3*delk^2*sin(pi/3);

57

58 TE = zeros(size(E));

59 for iE = 1 : length(E)

60 TE(iE) = sum(TEk{iE});

61 end

62 TE = TE*factor;

63

64 G0 = 2*e^2/(hBar*2*pi)*1E16;

65

66 if strcmp(plotTE, ’YES’)

67 figure;

68 plot(E, TE);

69 grid on;

70 xlabel(’Energy, E (eV)’);

71 ylabel(’Transmission, T (A^{-2})’);

72

73 figure;

74 semilogy(E, TE);

75 grid on;

76 xlabel(’Energy, E (eV)’);

77 ylabel(’Transmission, T (A^{-2})’);

78

79 figure;
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80 semilogy(E, 1./(TE*G0));

81 grid on;

82 xlabel(’Energy, E (eV)’);

83 ylabel(’Resistance, R (\Omega cm^{2})’);

84 end

A.2 Twister Tag Reference

In Twister, a simulation is defined in an xml file. In this section, we describe the tags

and their attributes that define a simulation.

TBParams

The TBParams (tight binding parameters) tag contains multiple Param tags that define

the tight binding parameters.

Param

Attributes:

• ec: C on-site energy in eV

• di0cc: C-C in-plane nearest neighbor distance in Å

• do0cc: C-C out-of-plane nearest neighbor distance in Å

• ti0cc: C-C in-plane nearest neighbor tight binding parameter in eV

• to0cc: C-C out-of-plane nearest neighbor tight binding parameter in eV

• lmdz: the parameter λz used in Eq. (5.5)

• lmdxy: the parameter λxy used in Eq. (5.5)
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• alpha: the parameter α used in Eq. (5.5)

Calculations

The Calculations tag defines the calculation method, atomic structure, lattice vec-

tor, k-points, energy grid etc. An xml file can contain multiple Calculations tag

but the one with Active="true" will be used for actual calculations.

Attributes:

• Active: true|false. The one with Active=“true” will be used for actual calcula-

tions.

• DeviceType: NonRGF|RGF. Device type for NEGF calculations.

• OutPath: The path where the output file will be stored.

• FileName: The output filename.

• NumBands: Number of bands to be stored in the output file.

AtomicStructure

Defines the atomic structure.

Attributes:

• FileName: Name of the Gaussian gjf file.

Lattice

Defines the lattice vector.
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Attributes:

• a1: a1=“a1x a1y a1z” defines lattice vector ~a1 = ~a1xx̂+ ~a1yŷ + ~a1z ẑ.

• a2: See a1.

• a3: See a1.

Layer

Defines the contacts and the device.

Attributes:

• BotContact: BotContact=“1 4” defines the bottom contact consisting of atoms

1 to 4.

• Device: See BotContact.

• TopContact: See BotContact.

Neighbors

For debugging. Controls whether or not to save nearest neighboring supercells in a

gjf file.

Attributes:

• Generate: true|false. True = save.

• FileName: Gjf filename for the neighbors.
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KPoints

Defines how to generate the k-points.

KPoint

Individual k-points. For example, 〈KPoint〉0.0 0.0〈/KPoint〉 defines the Γ point.

KLine:

Creates a number of k-points that lie on a straight line joining two points.

Attributes:

• KxStart: x coordinate of the starting point.

• KyStart: y coordinate of the starting point.

• KxEnd: x coordinate of the ending point.

• KyEnd: y coordinate of the ending point.

• DelK: ∆k.

KParallelo

Creates a parallelogram defined by K1xx̂+K1yŷ and K2xx̂+K2yŷ containing uniform

mesh of k-points.

Attributes:

• K1x: K1x.

• K1y: K1y.
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• K2x: K2x.

• K2y: K2y.

• DelK: ∆k.

Bias

Defines the total bias between the top and the bottom contacts.

Potential

Defines how total bias drops within the device region. For example, 〈Potential

StartAtom="1" EndAtom="4" Ratio="0.5"/〉 tells Twister that atom 1 to 4 has the

potential energy of -bias*0.5 eV.

Energy

Defines the energy grid. For example, 〈Energy Start="-1.0" End="1.0" DelE="0.001"/〉

creates a uniform energy grid from -1.0 eV to 1.0 eV with 1 meV interval.

Eta

Defines η in eV.

A.3 Miscellaneous Scripts

The convBandData and convTransData scripts convert the band and the transmission

outputs files to MATLAB friendly mat files. For completeness, we include those

scripts below.
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Listing A.7: convBandData: runs MATLAB script convBandDat2Mat.m for the con-

version

1 #!/bin/bash

2 matlab -nosplash -nodesktop -nojvm -nodisplay -r "try, convBandDat2Mat(’$1’);

catch, disp(’ERROR!!’); end, quit"

Listing A.8: convTransData: runs MATLAB script convTransDat2Mat.m for the

conversion

1 #!/bin/bash

2 matlab -nosplash -nodesktop -nojvm -nodisplay -r "convTransDat2Mat(’$1’); quit"

Listing A.9: convBandDat2Mat.m: converts dat file to mat file

1 function convBandDat2Mat(datFile)

2

3 Ek = load(datFile);

4 matFile = [datFile(1:end-3), ’mat’];

5 save(matFile);

6

7 end

Listing A.10: convTransDat2Mat.m: converts dat file to mat file

1 function convTransDat2Mat(datFile)

2 [TEk, k, E] = importTek(datFile, []);

3

4 matFile = [datFile(1:end-3), ’mat’];

5 save(matFile);

6

7 end

Listing A.11: importTek.m: imports T (E,k) from dat file to MATLAB cell array

1 function [T, k, EE] = importTek(fileName, E)
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2 fid = fopen(fileName, ’rt’);

3

4 iE = 1;

5 while(~feof(fid))

6

7 Ecell = textscan(fid, ’%[E = ]%f’);

8 data = textscan(fid, ’%f %f %f’);

9

10 if isempty(E)

11 T{iE} = data{3};

12 k{iE} = [data{1}, data{2}];

13 EE(iE) = Ecell{2};

14 iE = iE + 1;

15 else

16 if (abs(Ecell{2} - E) < 1E-4)

17 T = data{3};

18 k = [data{1}, data{2}];

19 EE = E;

20 break

21 end

22 end

23 end

24 fclose(fid);

25 end
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Appendix B

C++ Libraries for Engineers:

Armadillo and Boost

Armadillo [113] and Boost [114] are very useful C++ libraries for engineering and

physics students. Armadillo provides high level abstraction over the low level math

routines provided by BLAS and LAPACK libraries. Boost is a collection of widely

useful, peer-reviewed C++ codes that can speed up the application development. It

provides a C++ wrapper for low level MPI routines.

In Twister, these two libraries were used extensively. In this Appendix, we will

discuss the installation procedure and some features of these libraries. In the following

discussion, we assume that the reader has a working knowledge of C++ concepts,

basic understanding of MPI and a good LINUX/UNIX background.

B.1 Boost

Boost is huge collection of C++ libraries. It is complementary to the standard C++

library. It helps programmers to speed up the application development by letting
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them concentrate on the real problem they are trying to solve rather than bogged

down to the lower level implementation details.

Boost library has a C++ wrapper (boost::mpi) for lower level MPI routines. By

default, the MPI libraries are not enabled in boost libraries. In this section, we will

discuss how to enable MPI and compile boost for the LATTE clusters. Later, we will

provide a tutorial on how to use boost::mpi for transmitting user defined data types

among multiple processes. A detailed documentation on boost can be found online

in Ref. [114].

B.1.1 Compilation

Download the boost source code from Ref. [114], put it under ∼/src folder and untar

the archive.

1 $ cd ~/src

2 $ tar -xvf boost_1_53_0.tar.bz2

A new folder named boost 1 53 0 will be created. To configure boost for your host/-

cluster, change directory to boost 1 53 0 and use:

1 $ cd boost_1_53_0

2 $ ./bootstrap.sh

commands.

To enable MPI with boost we need to find out the MPI wrapper for C++ compiler

(mpic++). To do that issue the following command:

1 $ which mpic++

In venti, mpic++ is located at /usr/local/bin/mpic++ but in excelso it is in /usr/bin/

mpic++. Now edit tools/build/v2/user-config.jam file to include the following

line for venti:
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1 using mpi : /usr/local/bin/mpic++ ;

and for excelso:

1 using mpi : /usr/bin/mpic++ ;

Now that we have enabled MPI, let’s configure it again:

1 $ ./bootstrap.sh --prefix=/usr/local

2 $ ./bootstrap.sh --show-libraries

The output of the last command should show that MPI is enabled now. Configuration

is done, let’s install it:

1 $ sudo ./b2 install | tee install.log

Boost libraries will be installed in /usr/local/lib and the header files will be in-

stalled in /usr/local/include/boost folder. Include boost in your program using:

1 #include <boost/mpi.hpp>

2 #include <boost/serialization/string.hpp>

3 #include <boost/serialization/access.hpp>

4 #include <boost/serialization/split_free.hpp>

5 namespace mpi = boost::mpi;

etc.

B.1.2 Transmitting User Defined Data Types Using boost::mpi

Sending and receiving built-in data types are easy using boost::mpi. Suppose you

have a string and you want to broadcast it. For example, in the following code the

master process a string to the slave processes.

1 #include <boost/mpi.hpp>

2 #include <boost/serialization/string.hpp>

3 #include <boost/serialization/access.hpp>
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4 #include <boost/serialization/split_free.hpp>

5

6 using namespace std; // the standard namespace

7 namespace mpi = boost::mpi; // the mpi namespace

8

9 int main(int argc, char** argv){

10 // master process id is 0

11 const int master = 0;

12

13 // initialize mpi, similar to calling MPI_Init()

14 mpi::environment env(argc, argv);

15 // the communicator object is responsible for

16 // transmitting data, providing barriers etc.

17 mpi::communicator world;

18

19 string mpiTestString;

20

21 // if this is the master process then initialize the string

22 if (world.rank() == master){

23 mpiTestString = "Hello world!";

24 }

25

26 // now we will broadcast this string to other

27 // processes

28 mpi::broadcast(world, mpiTestString, master);

29

30 // print the mpiTestString

31 cout << "Process# " << world.rank() << " says: " << mpiTestString;

32

33 return 0;

34 }
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If you compile and run this code in 4 cpu’s, the output will be something like:

1 $ srun -n 4 hello

2 Process# 0 says: Hello world!

3 Process# 1 says: Hello world!

4 Process# 2 says: Hello world!

5 Process# 3 says: Hello world!

Thus, the string mpiTestString is actually broadcasted to all the processes.

Now, imagine you have your own data type defined by a class:

1 struct LatticeOpts{

2 string a1;

3 string a2;

4 string a3;

5

6 // your code goes here.

7 };

and you want to send/receive the objects of this class using MPI. To do so, your class

must be ‘serializable’ which means that the data your class holds must be convertible

to a sequence of bytes and vice versa. This can be done using boost:serializable

library as follows.

1 #include <boost/serialization/access.hpp>

2

3 struct LatticeOpts{

4 string a1;

5 string a2;

6 string a3;

7

8 // your code goes here.

9

10 // For MPI send/receive to work
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11 // declare this class as a friend of

12 // boost::serialization::access class

13 // so that the acces class can access your

14 // class members.

15 private:

16 friend class boost::serialization::access;

17

18 // Now define how your data can be serialized.

19 template<class Archive>

20 void serialize(Archive& ar, const unsigned int version){

21 // add one line for each of your members

22 ar & a1;

23 ar & a2;

24 ar & a3;

25 }

26 };

In the code listed above, we have declared the LatticeOpts class as friend of boost::

serialization::access class so that it can access our class members. Next we define

how to serialize our class in the serialize() function. Inside this function we are

archiving our class members one by one. Now it is possible to send/receive the object

of LatticeOpts class using mpi.

1 LatticeOpts lvopts;

2

3 // your code goes here

4 // ...

5

6 mpi::broadcast(world, lvopts, master);

7

8 // your code goes here
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9 // ...

In the master process, the broadcast() function will call the serialize() function

to convert data members of LatticeOpts to a sequence of bytes and send it to the

other processes over the network. In the other processes, broadcast() function will

receive the sequence of bytes and call the serialize() function to convert it to

suitable data types and assign those data to the data members.

A more detailed documentation of the MPI wrapper library can be found in Ref.

[115].

B.2 Armadillo

Armadillo is a C++ linear algebra library aiming towards a good balance between

speed and ease of use. It uses BLAS and LAPACK to perform the actual calculations.

Thus, it is numerically efficient. The syntax is similar to MATLAB.

In this section, we will show how to compile armadillo on the LATTE clusters and

present some of the codes I had to write to integrate armadillo with boost.

B.2.1 Compilation

Download armadillo source armadillo-3.800.2.tar.gz from Ref. [113] and put it

in ∼/src directory. Untar the source and change to armadillo-3.800.2 directory.

By default armadillo cannot find Intel MKL and/or AMD ACML math libraries in

venti and excelso clusters. For compiling armadillo on excelso using MKL change the

build aux/cmake/Modules/ARMA FindMKL.cmake file so that the first few lines look

like:

1 IF(CMAKE_SIZEOF_VOID_P EQUAL 8)

2 SET(MKL_NAMES ${MKL_NAMES} mkl_intel_lp64)
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3 ELSE(CMAKE_SIZEOF_VOID_P EQUAL 8)

4 SET(MKL_NAMES ${MKL_NAMES} mkl_intel)

5 ENDIF(CMAKE_SIZEOF_VOID_P EQUAL 8)

6

7 SET(MKL_NAMES ${MKL_NAMES} mkl_intel_thread)

8 SET(MKL_NAMES ${MKL_NAMES} mkl_core)

9 SET(MKL_NAMES ${MKL_NAMES} iomp5)

10 # Not needed/supported by MKL 11.0

11 #SET(MKL_NAMES ${MKL_NAMES} mkl_lapack)

12 #SET(MKL_NAMES ${MKL_NAMES} guide)

13 #SET(MKL_NAMES ${MKL_NAMES} mkl)

14

15 FOREACH (MKL_NAME ${MKL_NAMES})

16 FIND_LIBRARY(${MKL_NAME}_LIBRARY

17 NAMES ${MKL_NAME}

18 PATHS /usr/local/intel/mkl/lib/intel64 /usr/local/intel/lib/intel64

19 )

20

21 SET(TMP_LIBRARY ${${MKL_NAME}_LIBRARY})

22

23 IF(TMP_LIBRARY)

24 SET(MKL_LIBRARIES ${MKL_LIBRARIES} ${TMP_LIBRARY})

25 ENDIF(TMP_LIBRARY)

26 ENDFOREACH(MKL_NAME)

Note that MKL is installed in /usr/local/intel on excelso. For venti, the MKL

is located at /usr/local/intel/Compiler/11.1/056. Therefore, you will need to

modify line#18 for venti. Now, we are ready to compile armadillo. The following

commands configure armadillo to use MKL, compile and install.

1 $ cmake .
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2 $ make

3 $ make install

Armadillo will be installed in /usr/local/lib64 and the header files will be in-

stalled in /usr/local/include. Include armadillo in your program using the follow-

ing code.

1 #include <armadillo>

2 using namespace arma;

AMD ACML can be integrated with armadillo using similar procedure. Only dif-

ference is that now you will have to change the build aux/cmake/Modules/ARMA Find-

ACML.cmake so that the first few lines look like the following.

1 SET(ACML_NAMES ${ACML_NAMES} acml)

2 FIND_LIBRARY(ACML_LIBRARY

3 NAMES ${ACML_NAMES}

4 PATHS /usr/local/amd/acml/gfortran64/lib/

5 )

B.2.2 Integrating armadillo with boost::mpi

Using armadillo library, it is very easy to create, manipulate and perform matrix op-

erations. For example, in the follwing code, in line#1 a double complex 2-dimensional

matrix TkDT is declared. In line#8, Σt
11 = tdtg

s
t t

†
dt is calculated. Similarly, line#16 cal-

culates G11 =
[

EI−Hd(k)− Σt
11 − Σb

11

]−1
. In the backend, the BLAS and LAPACK

are used for performing these operations.

1 cx_mat TkDT; // coupling matrix between device and top contact

2 cx_mat gst; // surface green function of top contact

3

4 // ...
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5 // some code

6 // ...

7

8 cx_mat sig11Tp = TkDT*gst*trans(TkDT); // sigma top layer

9 cx_mat sig11Bt = trans(TkBD)*gsb*TkBD; // sigma bottom layer

10

11 // ...

12 // some code

13 // ...

14

15 cx_mat G11 = E*eye<cx_mat>(HkD.n_rows, HkD.n_cols); // G11 = E*I

16 G11 = inv(G11 - HkD - sig11Tp - sig11Bt); // G11 = inv[EI - H - SigL - SigR]

17

18 // ...

19 // some code

20 // ...

Armadillo matrices and vectors are dynamic in memory. The memory allocation and

deallocation is done automatically on the fly.

In parallel programs it is important to exchange matrices between multiple pro-

cesses. In order to transmit armadillo matrices and vectors using boost::mpi, we

need to define serialize() functions for those matrices and vectors as shown below.

1 #include <string>

2 #include <sstream>

3 #include <armadillo>

4 #include <boost/serialization/access.hpp>

5 #include <boost/serialization/string.hpp>

6 #include <boost/serialization/split_free.hpp>

7

8 using namespace std;
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9 using namespace arma;

10

11 namespace boost {namespace serialization {

12

13 //---- For stringstream ----

14 template<class Archive>

15 void save(Archive& ar, const stringstream& ss, const unsigned int version){

16 string s = ss.str();

17 ar & s;

18 };

19

20 template<class Archive>

21 void load(Archive& ar, stringstream& ss, const unsigned int version){

22 string s;

23 ar & s;

24 ss.str(s);

25 };

26

27 template<class Archive>

28 inline void serialize(Archive& ar, stringstream& ss, const unsigned int

file_version){

29 split_free(ar, ss, file_version);

30 };

31

32 //---- For svec ----

33 template<class Archive>

34 void serialize(Archive& ar, svec& sv, const unsigned int version){

35 ar & sv(X);

36 ar & sv(Y);

37 ar & sv(Z);

38 };
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39

40 //---- For Mat: armadillo matrices ----

41 template<class Archive, class T>

42 void save(Archive& ar, const Mat<T>& m, const unsigned int version){

43 stringstream ss;

44 m.save(ss);

45 ar & ss;

46 };

47

48 template<class Archive, class T>

49 void load(Archive& ar, Mat<T>& m, const unsigned int version){

50 stringstream ss;

51 ar & ss;

52 m.load(ss);

53 };

54

55 template<class Archive, class T>

56 inline void serialize(Archive& ar, Mat<T>& m, const unsigned int file_version){

57 split_free(ar, m, file_version);

58 };

59

60 //---- For Col: armadillo column vector ----

61 template<class Archive, class T>

62 void save(Archive& ar, const Col<T>& m, const unsigned int version){

63 stringstream ss;

64 m.save(ss);

65 ar & ss;

66 };

67

68 template<class Archive, class T>

69 void load(Archive& ar, Col<T>& m, const unsigned int version){
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70 stringstream ss;

71 ar & ss;

72 m.load(ss);

73 };

74

75 template<class Archive, class T>

76 inline void serialize(Archive& ar, Col<T>& m, const unsigned int file_version){

77 split_free(ar, m, file_version);

78 };

79

80 }}

Defining these functions will allow you to transmit armadillo matrices and vectors

through mpi:

1 // ...

2 // some code

3 // ...

4

5 cx_mat sig11Tp; //some matrix

6

7 // calculate sig11Tp on the master process and send it

8 // to the slaves

9 if (world.rank() == master){

10 sig11Tp = TkDT*gst*trans(TkDT);

11 }

12

13 // Now we will broadcast this matrix to other

14 // processes

15 mpi::broadcast(world, sig11Tp, master);

16

17
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18 // ...

19 // some code

20 // ...

In the master process, the broadcast() function calls the serialize(Archive& ar,

Mat〈T〉& m, const unsigned int file version) function which, in turn, calls the

void save(Archive& ar, const Mat〈T〉& m, const unsigned int version) func-

tion. This save function converts the matrix to a string stream and broadcast it over

the network. In the other processes, the broadcast() calls the same serialize()

function but this time the serialize() function calls void load(Archive& ar,

Mat〈T〉& m, const unsigned int version) function. This load function receives

the string stream from the master, convert it to matrix and assign it to matrix

sig11Tp.

Thus, once these serialize() functions are included in the code, it is very easy

to use boost::mpi functions for transmitting matrices and vectors over the network.
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Appendix C

Linux Beowulf Clusters

To facilitate computation, LATTE group has four Linux Beowulf Clusters: Supremo,

Mocha, Venti and Excelso. Supremo and Mocha were built by Nicolas Bruque in

2004 and 2006 respectively [116]. These two clusters are now decommissioned. Venti

was built by Thomas Helander in fall of 2009 [117]. These clusters have been being

maintained by K M Masum Habib since 2010. The newest cluster, Excelso, was

assembled by K M Masum Habib, Mahesh Neupane, Carlos Velasco and Supeng Ge

and is being configured by K M Masum Habib.

Venti has one master node and 10 slave nodes. Each node of Venti has two quad-

core Intel Xeon E5405s (45nm) processor. Most of these nodes have 64 GB ECC

DDR2 667MHz RAM, while three of the nodes have 32 GB of RAM. All the nodes

are mounted on a 42U rack. The cluster is connected via gigabit ethernet. Venti has

total 88 CPUs and 600 GB of RAM running CentOS5.3. The cluster is monitored

using Ganglia and job control is performed by SLURM.

Excelso, shown in Fig. C.1, is he most recent and advanced cluster of LATTE

group. It has one master node and 12 slave nodes. Each of the slave nodes has two

AMD Opteron 6320 8-Core 2.8GHz processor, 128 GB Kingston DDR3-1333MHz

125



Figure C.1: Server rack containing the Excelso cluster and Calypso fileserver.
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ECC REG Memory and one 128 GB M4 CT128M4SSD2 SSD. The master node has

the same configuration except that it has two 480GB Samsung SM843 SSD configured

in RAID1 and two 2TB Seagate ST2000NM0033 ES.3 SATA in RAID1 for operating

system, software and data storage. The nodes are connected using gigabit ethernet

using a Netgear GS748TS-100NAS 48-port Gigabit Smart Switch. Like Venti, the

Excelso cluster is also mounted on a 36U rack to save floor space in the cluster room.

In total, Excelso has 208 CPUs and 1.6 TB of RAM.

Excelso runs CentOS 6.4. It is monitored by Ganglia. The jobs are managed

by SLURM. Libraries installed are: Intel MKL, AMD ACML, MPICH2 Boost and

Armadillo. Computational tools installed are: MATLAB, COMSOL and Gaussian.

Compilers and IDEs: Intel Fortran, Intel C/C++, AMD Open64, GCC, NetBeans

and Eclipse.

A new fileserver, Calypso, was also built with Excelso. Calypso has one AMD

Opteron 6320 8-Core 2.8GHz CPU, 32 GB Kingston DDR3-1333MHz ECC Memory,

two 128 GB Crucial M4 CT128M4SSD2 SSD and twelve Seagate 2TB ST2000NM0033

HDD. It runs FreeBSD9.1 utilizing the state-of-the-art ZFS filesystem. The hard

drives are configured as two RAID-Z2 devices providing 14TB of storage. ZFS also

provides compression built-into the filesystem: 1.3 TB of data on Lattelocker is 750

GB on Calypso. It can tolerate upto four simultaneous disk failures

Calypso stores the users’ home directories. In addition, it serves the the cluster

maintenance website, the Ganglia webpage and user authentication (LDAP). Other

services provided by Calypso include: DHCP, DNS, Network Boot (PXE), CentOS6.4

software repository, Data Backup, SAMBA etc.
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