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ABSTRACT OF THE DISSERTATION

Quantum Transport in Misoriented Layers of Graphene: Physics and Device
Applications

by

K. M. Masum Habib

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2013
Dr. Roger Lake, Chairperson

Graphene is one of the promising candidates for the channel material of future
electronic devices. Negligible spin-orbit coupling combined with high carrier mobility
and long mean free path make graphene a very attractive material for post CMOS de-
vice applications. The individual layers in a misoriented or twisted stack of graphene
behave as if they were electronically decoupled due to destructive quantum inter-
ference. The interlayer coupling is increased and the Fermi velocity is reduced in
presence of a vertical electric field and negative differential conductance is predicted
at small biases. These properties of misoriented graphene can potentially be exploited
in novel switching mechanisms. In order to utilize these exceptional properties in de-
vice applications, it is important to understand if these phenomena still hold in the
limit of nanoscaled device dimensions.

Our numerical simulations show that the coherent electronic decoupling between
the layers of two-dimensional misoriented bilayer graphene is still present in lower
dimensions when the misoriented region is reduced to the nanometer scale. We found

a novel current switching mechanism in nanoscaled misoriented graphene layers that

vii



utilizes the voltage controlled quantum interference of electrons to achieve large, rapid
modulation of the current with small voltage swings. Utilizing the voltage controlled
quantum interference between standing electronic waves we demonstrated an oscil-
latory current voltage response suitable for multi-state switching. This switching
mechanism does not rely on a bandgap or a potential barrier. Thus, it is not limited
by the thermal limitation of 60 mV /dec.

The coherent, interlayer resistance of a misoriented, rotated interface in vertically
stacked graphene is determined for a variety of misorientation angles. The fundamen-
tally limiting quantum-resistance of the ideal interface with 6 = 0° is on the order of
1072 Qum?. For small rotations, the coherent interlayer resistance is a strong function
of the Fermi energy, and it exponentially approaches the ideal quantum resistance at
energies away from the charge neutral point. At room temperature, the total inter-
layer resistance can still be sensitive to the rotation angle changing one to two orders
of magnitude as the angle changes by a few degrees. Over a range of intermediate
angles, the coherent resistance is much larger than the phonon-mediated resistance

which results in a relatively constant total resistance on the order of 100 Qum?.
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Chapter 1

Rationale

1.1 Introduction

As the continuous down scaling of the conventional silicon metal-oxide-semiconductor
field-effect transistor (MOSFET) is approaching its fundamental limits, the need for
alternative channel materials and device architectures is growing fast. Graphene, a
sheet of carbon atoms arranged in a honeycomb structure, is one of the promising
candidates for the channel material of future electronic devices. Negligible spin-orbit
coupling combined with high carrier mobility and long mean free path make graphene
a very attractive material for post CMOS electronic devices. Although graphene has
many exceptional electronic and mechanical properties, lack of a bandgap reduces its
utility for conventional electronic device applications. A bandgap can be opened by
various means but it is difficult to create a sufficiently large bandgap without degrad-
ing the electronic properties of graphene. One approach to circumvent the bandgap
problem is to utilize the unique properties of graphene in alternative device architec-

tures which is one of the primary objectives of this work.



One remarkable property of graphene is that when graphene layers are stacked
together, as often is the case in chemical vapor deposition (CVD) and multilayer
epitaxial graphene, a relative rotation between the layers is introduced [4,5]. Bilayer
graphene with a relative rotation between the layers is known as misoriented or twisted
bilayer graphene (TBG). It is established that the individual layers in TBG with
a relative rotation angle greater than 20° are electronically decoupled [6-9]. The
decoupling results from the destructive quantum interference between the electron
wave functions of the top and bottom graphene layers [6-8|. An interesting property of
TBG from the application point of view is that the inter layer coupling is increased [10]
and the Fermi velocity is reduced [11] in presence of a vertical electric field, and
negative differential conductance is predicted at small biases [12].

In search for a replacement of conventional transistor, this dissertation has been
primarily focused on understanding the exceptional properties of misoriented graphene
layers and design, modeling and simulation of novel electronic devices that utilize
these properties. My work exploits the voltage controlled quantum interference of
twisted bylayer graphene to achieve large, rapid modulation of the current with small
voltage swings. The physical mechanism of such current modulation does not rely on
a bandgap, or tunneling through or transmission over a potential barrier. Thus, it is
not limited by the thermal limitation of 60 mV /dec.

Novel electronic devices constructed from multiple heterogeneous layers of van
der Waals materials are being proposed with estimates of extremely high-frequency
operation. In general, there will be misorientation between the layers. Understanding
how the misorientation affects the inter-layer resistance is essential for engineering
and determining the performance metrics of such devices. In this work, he coherent,
interlayer resistance of a misoriented, rotated interface in vertically stacked graphene

is determined for a variety of misorientation angles. These values are compared



with previously calculated values for the phonon-mediated, interlayer resistance of

misoriented bilayer graphene.

1.2 Background and Motivation

Driven by Moore’s law, the semiconductor industry has scaled down the feature sizes
of MOSFET to improve the performance of CMOS circuits. After aggressive down
scaling over the last half century the feature sizes of MOSFET have reached the
length scale comparable to the atomic lengths. Further down scaling of the channel
length will reach a functional limit within the next decade as predicted by most
semiconductor industry projections. Over the past several years there has been an
intense debate concerning the future of such nanoscaled electronic devices and search
for alternatives has been growing fast.

Carbon based electronics is one of the potential candidates in low-power post
CMOS logic alternative. This idea of carbon base electronics has been around since
the discovery of carbon nanotubes (CNT) [13]. Although CNTs have demonstrated
nearly ideal switching characteristics, increased device speed, and lower power con-
sumption than traditional CMOS logic by utilizing band-to-band tunneling [14], their
implementation has been unsuccessful due to the fact that the metallic CNTs can not
be sorted from semiconducting ones.

Recently, graphene has been being studied extensively as another possible platform
for carbon based electronics. High carrier mobility, negligible spin-orbit coupling
and long coherence length [15-17] make graphene a very attractive material for post
CMOS electronic devices. However, lack of a bandgap in graphene [17,18] is one
of the challenges for achieving high ON/OFF current ratios in graphene field effect

transistors (FETS).



A bandgap can be introduced by patterning a 2D graphene sheet into a narrow
(<10 nm) nanoribbon, known as a graphene nanoribbon (GNR)) [19-21]. Another way
to modify the band structure of graphene is to stack two monolayers to form a bilayer
in which the bandgap can be tuned by creating a potential difference between the two
layers [22-24]. A bandgap can also be introduced by using chemical doping [25-27].
However, it is difficult to create a sufficiently large bandgap without degrading the
electronic properties of graphene.

The possibility of field effect transistors (FETSs) using bilayer graphene as the
channel material was recently studied [28]. It was shown that such a FET had a
poor on-off current ratio, Io,/ Iy, due to strong band-to-band tunneling. However, a
tunnel FET using bilayer graphene showed promising performance [29].

One way to circumvent the bandgap problem is to utilize the unique properties of
graphene in alternative FET architectures [30-34]. A highly nonlinear current-voltage
relationship can be obtained in a graphene-insulator-graphene p-n junction [35]. Some
devices exhibiting negative differential resistance (NDR) have been proposed [36-39].
However, most of these devices have relatively complex architectures [33, 34, 36-38],
limited scalability [30], or low on-off or peak-to-valley current ratios [38,39].

Interest in twisted, or misoriented, layers of graphene was recently motivated
by the need to understand the electronic properties of multilayer graphene furnace-
grown on the C-face of SiC [4]. Experimental analysis showed that the layers tended
to be rotated with respect to each other at certain angles corresponding to allowed
growth orientations with respect to the SiC substrate [5]. Calculations, based on
density functional theory [4,5,7, 8], empirical tight binding [40] and continuum [6]
models for such rotated bilayers found linear dispersion near the K-points. A recent
experiment showed that in twisted bilayer graphene for twist angles greater than

~ 3° the low-energy carriers behave as massless Dirac Fermions with a reduced Fermi



velocity compared to that of single layer graphene, and that for twist angles greater
than 20°, the layers are effectively decoupled and act as independent layers [9]. The
decoupling results from the destructive quantum interference between the electron
wave functions of the top and bottom graphene layers [8]. The interlayer coupling is
increased [10] and the Fermi velocity is reduced [11] in presence of a vertical electric
field, and negative differential conductance is predicted at small biases [12]. The
voltage controlled coupling in misoriented graphene layers opens up possibilities of
novel switching mechanisms.

Although the physics of the decoupled layers in twisted bilayer graphene has been
studied extensively, it is not clear if these properties still hold in the limit of nanoscaled
device dimensions, for example, in the twisted bilayer that occurs in the overlap re-
gion of two crossed GNRs fabricated by unzipping two carbon nanotubes [41]. Un-
derstanding the physical mechanism of interlayer transport in nano scaled twisted
bilayer graphene is one of the motivations of this dissertation.

There is rapidly growing interest in vertically stacked van der Waals materials for
electronic device applications [33,42-47]. In such structures the interfaces between
different materials will, in general, be misoriented with respect to each other [48]. THz
cutoff frequencies have been predicted for such devices [46]. At such high frequen-
cies, any small series resistance can degrade performance. For example, an emitter
contact resistance of 2.5 Qum? is required to achieve a THz cutoff frequency in a het-
erostructure bipolar transistor [49]. Understanding the effect of the misorientation
on the interlayer resistance is required to fully understand the design requirements
and performance of proposed vertically stacked devices.

The most well studied and well understood van der Waals material is graphene
[17,48]. Although the effect of misorientation on the electronic structure of bilayer

graphene has been studied extensively [4-9,40, 50-52], the study of the interlayer



resistance in misoriented bilayer graphene has received far less attention [3,12,53].
Bistritzer and MacDonald used a transfer Hamiltonian approach to calculate the
coherent interlayer resistance as a function of rotation angle # and found it to vary
by 16 orders of magnitude as the misorientation angle varies from zero degree to 30
degrees [12]. In the method of Ref. [12], the calculated quantitative values of the
coherent interlayer resistance depend inversely on the value of the 75 meV lifetime
(I") used in the calculation. Thus, the quantitative values of the interlayer resistance
cannot be determined from this approach without knowing the actual values of the
lifetime broadening I.

The room-temperature, phonon-mediated interlayer resistance shows far less de-
pendence on the misorientation angle [3,53]. It changes by less than an order of
magnitude as the angle varies from zero to 30 degrees [3,53]. The room-temperature,
phonon-mediated interlayer resistance is a smooth, monotonic function of the misori-
entation angle.

To first order, the resistance from the coherent channel (R.), and the resistance
from the phonon-mediated channel (R,) are in parallel [54,55]. Thus, to determine
the total inter-layer resistance between two misoriented graphene layers, one requires
quantitative values for the coherent component of the resistance. In this work, we
provide those values. Combining our values for R, with the values calculated previ-
ously for R,, we obtain estimates for the total room-temperature interlayer resistance

for a variety of commensurate misorientation angles.

1.3 Objective

Misoriented graphene has interesting electronic properties that can potentially be

used for current switching in post CMOS devices. However, several open questions



needed to be answered before the properties of misoriented graphene can be consid-
ered for device applications. Although the physics of twisted bilayer graphene is well
understood, the scaling effect of misoriented layers is yet to be determined. Quan-
titative study of interlayer resistance in misoriented graphene interfaces is also an
important issue for devices constructed from multiple heterogeneous layers of van der
Waals materials.

The objective of this dissertation is to answer aforementioned open questions using
theoretical studies. In this study, the electronic properties of misoriented graphene
layers is modeled using density functional theory (DFT), extended Hiickel theory
(EHT) or empirical tight binding (TB) models. The quantum transport is taken
into account using the non equilibrium Green’s functional formalism (NEGF). Wave
function approach is employed to elucidate the underlying physics.

To facilitate the computation, several numerical simulators were developed. The
programming was done in C++, Fortran (F90), MATLAB and shell scripts along with
numerically efficient math libraries such as BLAS, LAPACK and ScaLAPACK. These
simulators were run on in-house compute clusters in parallel computing environment.
The parallelization was done using the message passing interface library MPICH2.
In C++, the math libraries like BLAS and LAPACK were integrated using armadillo

and boost libraries.

1.4 Layout

The rest of this dissertation is organized as follows. In chapter 2, quantum transport in
two independently contacted, AA or AB stacked graphene nanoribbons is presented.
It is shown that this system behave as a resonant tunneling diode featuring nega-

tive differential resistance. Current modulation by voltage control of the quantum



phase in two infinite crossed GNRs is discussed in chapter 3. Utilizing the voltage
controlled quantum interference between standing electronic waves in semi-infinite
crossed GNR we demonstrated an oscillatory current voltage response suitable for
multi-state switching in chapter 4. In chapter 5, the coherent, interlayer resistance of
a misoriented, rotated interface in vertically stacked graphene is determined for a va-
riety of misorientation angles. Finally, in chapter 6 we summarize the key findings of
this thesis. In Appendix A the user manual and tutorials of Twister is given. Twister
is the C4++ code that can calculate the electronic structure and vertical transport of
misoriented layers of vdW materials. Tutorials on armadillo and boost libraries are

given in Appendix B.



Chapter 2

Negative Differential Resistance in

Bilayer Graphene Nanoribbons

Lack of a bandgap is one of the significant challenges for application of graphene as the
active element of an electronic device. A bandgap can be induced in bilayer graphene
by application of a potential difference between the two layers. The simplest geom-
etry for creating such a potential difference is two overlayed graphene nanoribbons
independently contacted. Calculations, based on density functional theory and the
non-equilibrium Green’s function formalism, show that transmission through such a
structure is a strong function of applied bias. The simulated current voltage char-
acteristics mimic the characteristics of resonant tunneling diode featuring negative

differential resistance.

2.1 Introduction

Graphene has fascinating electronic properties featuring the Dirac fermion [15] with

high mobility [16] and a long coherence length. However, lack of a bandgap in two-



dimensional (2D) graphene [18] reduces its utility for conventional electronic device
applications. A bandgap can be introduced by patterning a 2D graphene sheet into
a narrow (<10nm) nanoribbon, known as a graphene nanoribbon (GNR) [20, 21].
Another way to modify the band structure of graphene is to stack two monolayers to
form a bilayer in which the bandgap can be tuned by creating a potential difference
between the two layers [23,24].

The possibility of field effect transistors (FETSs) using bilayer graphene as the
channel material was recently studied [28]. It was shown that such a FET had a poor
on-off current ratio, I, /I, due to strong band-to-band tunneling. However, a tunnel
FET using bilayer graphene showed promising performance [29]. Other proposed
devices include a nanoelectromechanical FET based on interlayer distance modulation
[56,57], a FET utilizing a bilayer exciton condensate [31] and GNR junction diodes
featuring negative differential resistance based on chemical [39] and field effect [38]
doping.

Many proposed FET type graphene based devices have multiple gates making
them relatively complex device structures. We consider the simplest possible geome-
try by which a potential can be applied between two GNR layers. Such a geometry
consists of two single layer GNRs with one placed on top of the other. Each GNR
is independently contacted such that one GNR is held at ground while the other has
a bias applied to it. Such a geometry and biasing scheme would occur, for exam-
ple, in a cross-bar architecture. Independently contacting the top and bottom GNR
maximizes the voltage drop between them. Assuming that the majority of the po-
tential drop occurs between the two nanoribbons, the potential difference between
the two nanoribbons is the applied bias. Since the bandgap increases with applied
source-drain bias, we hypothesized that negative differential resistance (NDR) would

occur.
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Figure 2.1: Atomic geometry of modeled AB—stacked device.

2.2 Method

To test this hypothesis, we performed numerical simulations of a model GNR ge-
ometry using ab-initio density functional theory (DFT) to simulate the electronic
structure and a non-equilibrium Green’s Function (NEGF) approach to determine
the electron transport. The model structure of the overlapping GNRs is shown in
Fig. 2.1. It consists of a left and a right semi-infinite, armchair, H-passivated GNR
which overlap in the central region. Two well known bilayer stacking sequences, AB
and AA, are considered. The widths of the armchair GNRs (AGNRs) are chosen
to be 14 atomic C layers (3n+2) ~ 1.8 nm to minimize the bandgap resulting from
the finite width. The bandgap of the 14-AGNR calculated from DFT code, Fire-
ball [58,59], is 130 meV which is in good agreement with Son et al. [60]. When one
GNR is stacked on top of another to form AB or AA bilayer GNRs, the bandgap
is reduced further consistent with the results of Lam and Liang [21]. For AA GNR,
the bandgap is removed completely, and for AB GNR, the bandgap is reduced to 20
meV. The lengths of the overlap regions for AB and AA stacking are 1.7 nm and 1.6
nm, respectively. The total simulated length between the two ideal leads indicated
by the self-energies in Fig. 2.1 is ~ 6.8 nm. Transmission through similar systems

in equilibrium and with gate bias was recently studied in detail with 7-band and k-p
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Figure 2.2: Bandgap as a function of applied bias for infinite AA— and AB-stacked
bilayer GNRs.

models [61,62], and strong resonant and anti-resonant features were observed in the
transmission in agreement with our results below.

Both the AA and AB GNR bilayers are either metallic or have a bandgap less
than kpT at room temperature. Creating a potential difference between the two
layers creates a bandgap with a maximum of 0.25 eV for the AB GNR and 130 meV
for AA GNR as shown in Fig. 2.2. Understanding the band structure of the bilayer
GNRs and the effect of bias, we are now ready to investigate the current-voltage
response of the structure shown in Fig. 2.1. Before doing so, we provide a brief
description of the theoretical models.

The electronic structure of the GNRs and bilayer GNRs is modeled with the
quantum molecular dynamics, DF'T code Fireball using separable, nonlocal Troullier-
Martins pseudopotentials [63], the BLYP exchange correlation functional [64,65], a
self-consistent generalization of the Harris-Foulkes energy functional [66,67] known
as DOGS after the original authors [68,69], and a minimal sp® Fireball basis set. The
radial cutoffs of the localized pseudoatomic orbitals forming the basis are r'¥ = 4.10
A for hydrogen and r%* = 4.4 A and r? = 4.8 A for carbon [70].

A super-cell of hydrogen passivated single layer armchair GNR with periodic

boundary conditions is relaxed quantum-mechanically with Fireball. The relaxed sin-
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gle layer super-cell is then repeated to construct single-layer GNRs. These single-layer
GNRs are then placed one above the other at the experimental separation distance
of 3.35 A and aligned to form the AB stacked structure shown in Fig. 2.1. The same
procedure is followed to form the AA stacked structure with a separation distance of
3.55 A. No further relaxation is performed on the structure. The region between the
vertical lines in Fig. 2.1 is used as the supercell for bilayer GNR with lattice vector,
a. A single point self-consistent calculation is performed with Fireball to generate
the Hamiltonian matrix elements of this super-cell. The matrix elements within 16
atomic layers of the end overlap regions are discarded and replaced with the matrix
elements for the relaxed single-layer GNR.

The applied bias is modeled by applying a rigid shift to the energy of the lower
GNR by the amount of the applied bias, U = —eV. The matrix elements of U are
calculated as (i, a|U|j, ) = Sa, 3, [U(r;) + U(r;)] /2 where, the indices 7 and j label
the atoms, the indices o and 8 label the basis orbitals, and Sy, s, is the overlap
matrix (i, a7, 5). U(r;) = U for atoms on the lower GNR and zero for atoms on the
upper GNR. This approach in which the matrix elements have the same form as in an
extended Huckel model has been used by others [71]. The approach captures the Stark
effect, but not non-equilibrium self-consistency. These and the Fireball Hamiltonian
matrix elements are used in the NEGF algorithm to calculate the surface self-energies,

Green’s function of the device, the spectral function, the transmission, and the current

as described in Ref. [72].

2.3 Results and Discussion

The simulated I —V characteristics for the AB— and AA-stacked GNRs corresponding
to Fig. 2.1 are shown in Fig. 2.3. Both the AB and AA structure exhibit NDR. The
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Figure 2.3: Simulated current voltage (I — V') characteristics of AA— and AB-stacked
device. The valley current minimums occur at 0.7 V and 1.4 V for AB— and AA—
stacked device, respectively.

peak current of the AB structure occurs at 0.4 V and the valley minimum occurs at
0.7 V. The peak and valley voltages for the AA structure are approximately twice
those of the AB structure. Thus, the model structure does exhibit NDR confirming
the initial hypothesis.

As a check, we repeated the I —V calculation of the AB stacked structure using a
m-bond model with tight-binding parameters for the intra-layer coupling (-2.569 eV)
and the inter-layer coupling (-0.361 eV) taken from Ref. [22]. The peak and valley
currents resulting from the 7w-bond model were, respectively, 24.5 pA and 2.1 pA,
occurring at the peak and valley voltages of 0.5 V and 1.0 V. Thus, the two models,
DFT and m-bond, give qualitatively the same I — V' with the m-bond model giving
approximately twice the peak current and 4 times the peak-to-valley ratio as the DFT
model.

To understand the I — V' characteristics shown in Fig. 2.3, the transmission
coefficients are plotted as a function of electron energy. The transmission plots for
the AB structure are shown in Fig. 2.4(a) and (b) at the peak and valley bias voltages,
V =04V and V = 0.7 V, respectively. In both figures, the unbiased transmission

and the biased quasi-Fermi levels of the left and right contacts are shown for reference.
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Figure 2.4: Transmission as a function of energy for AB—stacked device: (a) at bias,
V' =0.4 Vand (b) at bias, V = 0.7 V, superimposed on transmission at no bias. The
vertical lines at the lower and upper energies represent the quasi-Fermi levels of right
and left contacts, respectively. The quasi-Fermi level of the left contact is set at 0.

In agreement with and as discussed in [61,62], the transmission shows a Fabry-
Perot resonant feature at low energy and both resonances and antiresonances at more
excited energies. The ends of the GNRs result in potential discontinuities at both
ends of the overlap region giving rise to a resonant cavity in which multiple reflections
can occur. At higher and lower energies multiple subbands allow multiple paths which
can constructively or destructively interfere. Edge states also occur on the cut ends,
and these states result in transmission peaks similar to those observed from the cut
ends of carbon nanotubes [70].

At V = 0.4V, the energy of the bottom GNR has been shifted down by 0.4 eV,
and the low transmission regions near £ = 0 and £ = —0.4 eV are the result of the
the small 130 meV bandgaps of the GNR leads. The region in between corresponds
to transmission from hole states of the top lead to electron states of the bottom lead.
As the bias of the bottom layer is increased to 0.7 V, the dip in transmission near
—0.4 eV rigidly shifts down to ~ —0.7 eV, and the transmission from hole states
to electron states between 0 and -0.7 eV is strongly suppressed due to the large

wavevector mismatch [38,62] of the states inside the contacts and the bilayer region
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Figure 2.5: Schematic band diagrams of the leads and overlap regions of the (a) AB
and (b) AA structures at a bias of 0.4 V. At a given energy, E, the wavevectors of
the leads and bilayer region are different due to the shift of bands caused by applied
bias. At a given energy between the quasi-Fermi levels of the left and right contacts,
the number of right moving states available for carrying current is (a) one in the AB
device and (b) two in the AA device.

N

as illustrated in Fig. 2.5. The resonant feature at ~ 0.3 eV results from an edge state
on the cut end of the top GNR.

The coherent current at any bias is proportional to the area under the transmission
curve bounded by the Fermi levels of the contacts. Beyond 0.7 V bias, the transmis-
sion between the Fermi levels in Fig. 2.4(b) begins to increase as the first excited
subbands of the top and bottom GNR leads are pulled into the energy window, and
the current begins to increase.

The dependence of transmission of the AA device on bias follows similar trends.
However, the peak current is twice as large, and the strong suppression of transmission
occurs at approximately twice the bias of the AB device. This can be understood
by noting that the wavevector mismatch for the AA case is less, since at any energy,
E, between the quasi-Fermi levels of the left and right contacts, the AA bilayer has
two states whereas the AB bilayer has only one state for right moving electrons as
illustrated in Fig. 2.5. Therefore, more voltage is required to generate the same

amount of wavevector mismatch for the AA case. This also explains the doubling
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of the magnitude of the peak current for the AA structure compared to that of the
AB structure. This is consistent with the fact that there are twice as many nearest-
neighbor matrix elements in AA stacking compared to those in AB stacking; i.e. in
AA stacking, every atom in the lower GNR is directly below a corresponding atom
in the upper GNR, whereas, in AB stacking, every second atom in the lower GNR is

directly beneath an atom in the upper GNR.

2.4 Conclusion

In summary, we have performed ab-initio DF'T, m-bond, and NEGF based calculations
to study the I — V' characteristics of a bilayer GNR structure where bias is applied
between the GNRs by independently contacting each layer. The simulations of the
model structures with both AB and AA stacking provide proof-of-principle that NDR

can occur in such structures.
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Chapter 3

Current Modulation by Voltage

Control of the Quantum Phase

A relative rotation of 90 degrees between two graphene nanoribbons (GNRs) creates
a crossbar with a nano-scale overlap region. Calculations, based on the first principle
density functional theory (DFT) and the non-equilibrium Green’s function (NEGF)
formalism, show that the electronic states of the individual GNRs of an unbiased
crossbar are decoupled from each other similar to the decoupling that occurs in twisted
bilayer graphene. Analytical calculations, based on Fermi’s Golden Rule, reveal that
the decoupling is a consequence of the cancellation of quantum phases of the electronic
wavefunctions of the individual GNRs. As a result, the inter-GNR transmission is
strongly suppressed over a large energy window. An external bias applied between the
GNRs changes the relative phases of the wavefunctions resulting in modulation of the
transmission and current by several orders of magnitude. A built-in potential between
the two GNRs can lead to a large peak-to-valley current ratio (> 1000) resulting from
the strong electronic decoupling of the two GNRs that occurs when they are driven

to the same potential. Current switching by voltage control of the quantum phase
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in a graphene crossbar structure is a novel switching mechanism. It is robust even
with an overlap of ~ 1.8 nm x 1.8 nm which is well-below the smallest horizontal
length scale envisioned in the International Technology Roadmap for Semiconductors

(ITRS).

3.1 Introduction

Lack of a bandgap in graphene [15, 18] is one of the challenges for achieving high
ON/OFF current ratios in graphene field effect transistors (FETs). The most obvi-
ous way to circumvent this problem is to open a bandgap, e.g. by using chemical
doping [25], creating nanoribbons [19-21], or by applying a vertical electric field in
bilayer graphene [22-24]. However, it is difficult to create a sufficiently large bandgap
without degrading the electronic properties of graphene. Another way is to utilize
the unique properties of graphene in alternative FET architectures [30,31,33,34]. A
highly nonlinear current-voltage relationship can be obtained in a graphene-insulator-
graphene p-n junction [35]. Some devices exhibiting negative differential resistance
(NDR) have been proposed [1,36-39]. However, most of these devices have relatively
complex architectures [33, 34, 36-38], limited scalability [30], or low on-off or peak-
to-valley current ratios [1,38,39]. In this work, we unveil a novel current switching
mechanism in graphene crossbars in which the current can be modulated by several
orders of magnitude. This switching mechanism is based on voltage control of the
relative phases of the electronic wavefunctions of two crossed graphene nanoribbons.
It does not rely on a bandgap, and it is not based on tunneling through or over a
potential barrier. It is relatively independent of temperature. It is robust even when
the overlap of the active region is scaled down to ~ 1.8 nm x 1.8 nm. This length

scale is well below any horizontal scale envisioned in the ITRS [73].
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Interest in twisted, or misoriented, layers of graphene was recently motivated
by the need to understand the electronic properties of multilayer graphene furnace-
grown on the C-face of SiC [4]. Experimental analysis showed that the layers tended
to be rotated with respect to each other at certain angles corresponding to allowed
growth orientations with respect to the SiC substrate [5]. Calculations, based on
density functional theory [4,5,7,8], empirical tight binding [40], and continuum [6]
models for such rotated bilayers found linear dispersion near the K-points. A recent
experiment showed that in twisted bilayer graphene for twist angles greater than
~ 3° the low-energy carriers behave as massless Dirac Fermions with a reduced
Fermi velocity compared to that of single layer graphene, and that for twist angles
greater than 20°, the layers are effectively decoupled and act as independent layers [9].
A vertical electric field in a twisted bilayer graphene can couple the layers [10] and
reduce the Fermi velocity [11]. A recent study of the conductivity between two infinite
rotated sheets of graphene found enhanced conductance at commensurate angles with
relatively small unit cells and negative differential resistance at small biases [12].

Although the physics of the decoupled layers in twisted bilayer graphene has been
studied extensively, it is not clear if these properties still hold in the limit of nanoscaled
device dimensions, for example, in the twisted bilayer that occurs in the overlap region
of two crossed GNRs fabricated by unzipping two carbon nanotubes [41]. Botello-
Méndez et al. very recently addressed this issue performing both DFT and empirical
tight binding calculations of the transmission across and through crossed graphene
nanoribbons [74]. Crossed armchair - zigzag (AZ) GNRs and crossed zigzag - zigzag
GNRs were considered. Most relevant to our work, was their study of crossed AZ
GNRs, approximately 5nm wide, aligned in AB stacking at right angles and then
rotated. The minimum in the interlayer transmission between the armchair GNR

(aGNR) and the zigzag GNR occurred when the angle of intersection was 60°. This
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is equivalent to the 90° angle of intersection between two aGNRs which is the system
that we consider.

In this work, we analyse the physical mechanism of the inter-layer coupling at
the nanoscale and its dependence on the potential difference between the two layers,
and we show that it can be exploited for current switching by voltage control of the
wavefunction phase.

The model structure shown in Fig. 3.1 consists of two armchair GNRs with
one placed on top of the other at right angles forming a GNR, crossbar (xGNR). In
this case, the overlap region of the xGNR, which is neither AA nor AB stacking,
is a twisted bilayer with an area of ~ 1.8 nm x 1.8 nm and a twist angle of 90°.
For two infinite sheets, a 90° rotation is the same as a 30° rotation which is not a
commensurate rotation angle. A Moiré pattern can be observed at the intersection
of the two nanoribbons in Fig. 3.1.

Calculations, based on ab initio density functional theory (DFT) coupled with the
non-equilibrium Green’s function formalism (NEGF), show that the inter layer de-
coupling still exists in such a small geometry containing approximately 220 C atoms
leading to strong suppression of inter-GNR transmission when the two layers are at
the same potential. An analytical model using Fermi’s Golden Rule reveals that the
suppression of the inter-layer transmission results from the cancellation of the quan-
tum phases of the electronic wavefunctions of the individual GNRs. An external bias
applied between the GNRs changes the relative phases of the wavefunctions resulting
in modulation of the transmission and current by several orders of magnitude. The
decoupling that occurs when the GNRs are at equal potentials can be exploited us-
ing a built-in potential similar to the one that occurs in a p-n junction to produce
negative differential resistance with a large (> 1000) peak-to-valley current ratio. A

large, dense array of crossed graphene nanoribbons, with each cross point providing
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a non-linear current-voltage response, could serve in, for example, a cellular neural
network [75], a memory array [76], or provide added functionality to standard transis-
tor circuits [77]. The inter-layer potential difference governs the transmission. While
in this paper, we consider a two-terminal configuration, one could also control the
inter-layer potential with gates, in which case the physics described here could be

exploited to implement ultra-scaled transistors.

3.2 Method

In this study, four different types of calculations are performed: (i) geometry opti-
mization, (ii) band structure, and (iii) electron transport. The geometry optimization
and band structure calculations are performed using DFT. The electronic transport
of the xGNR is calculated using the NEGF formalism coupled with DFT. (iv) The
numerical results are explained using analytical expressions for the wavefunctions in
a m-orbital basis. T