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The electrostatic interaction among molecules solvated in ionic solution is governed by the
Poisson-Boltzmann equation (PBE). Here the hypersingular integral technique is used in a boundary
element method (BEM) for the three-dimensional (3D) linear PBE to calculate the Maxwell stress
tensor on the solvated molecular surface, and then the PB forces and torques can be obtained from
the stress tensor. Compared with the variational method (also in a BEM frame) that we proposed
recently, this method provides an even more efficient way to calculate the full intermolecular
electrostatic interaction force, especially for macromolecular systems. Thus, it may be more suitable
for the application of Brownian dynamics methods to study the dynamics of protein/protein docking
as well as the assembly of large 3D architectures involving many diffusing subunits. The method has
been tested on two simple cases to demonstrate its reliability and efficiency, and also compared with
our previous variational method used in BEM. © 2005 American Institute of Physics.

[DOLI: 10.1063/1.2008252]

I. INTRODUCTION

The electrostatic interactions among biomolecules in
ionic solution can be described by the Poisson-Boltzmann
equation (PBE). Different methods have been developed to
solve the PBE, such as finite difference (FD) methods, ™
finite element (FE) methods,*” and boundary element meth-
ods (BEMS).6’7 However, most of these works and their ap-
plications in biomolecular studies are focused on the electro-
static potential and interaction energy calculations.
Relatively few studies have considered electrostatic force
calculations. Dynamical study of biomolecular systems is of
great interest in chemical physics and molecular biology.
Therefore, the force calculation is important for many theo-
retical studies and molecular-dynamics (MD) simulations.
PB forces have recently been applied in several MD
simulations.*'" Gilson ez al."" derived an expression for PB
force calculation that is correct for the FD approach. The
formula is compatible with the Maxwell stress tensor
method, and a smooth dielectric boundary is required in that
method. But for a system with two or more interacting mac-

YElectronic mail: blu@mccammon.ucsd.edu

0021-9606/2005/123(8)/084904/8/$22.50

123, 084904-1

romolecules, as in protein assembly, the FD method is not
practical for the full PB force calculation “on the fly” due to
the tremendous CPU time required. The Brownian dynamics
(BD) program in the UHBD (Ref. 12) actually uses a partial
PB force between protein and ligand, because only the reac-
tion field of the fixed protein is calculated. For rigid body
problems, the BEM can use the molecular surface informa-
tion repeatedly, so that it has fast performance for the full PB
force updating required in a protein-protein encounter dy-
namics simulation. The force calculation in a BEM using a
“polarized charge” method was first described by Zauhar;"
the force included both gE forces and boundary pressures.
This idea was used in a later BEM work.>'* In these works,
the BEM used a single-layer representation. However, the
accuracy of the boundary pressure computed by this tech-
nique has not yet been demonstrated. More generally, the use
of only a single- or double-layer representation of the BEM
to calculate the forces and torques has still not been ad-
equately tested. In our recent work," to our knowledge, we
gave the first rigorous procedure for using a variational ap-
proach embedded in the BEM frame to calculate the full PB
force and torque on a molecule in an interacting system with
an arbitrary number of molecules in ionic solution. That is

© 2005 American Institute of Physics
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based on the direct BEM solution (with both single-layer and
double-layer terms). In the variational method, in order to
obtain the PB force on a molecule, additional computations
are needed to calculate matrices of coefficients linking the
nodes on the discretized surface of the target molecule and
those of the other molecules, to perform the matrix iterations,
and finally to calculate the integral on the surface of every
interacting molecule. Therefore, this is not efficient enough
for macromolecular systems that have many nodes on the
discretized surface(s). On the other hand, in theory, the PB
force and torque on a molecule can be computed by integrat-
ing the stress tensor including the Maxwell stress tensor and
the osmotic pressure of ions over its surface, and the stress
tensor can be calculated directly from the BEM solution of
the PBE. The PB force calculation after obtaining the BEM
solution is then only related to the corresponding molecule,
which is different from the variational approach, and this
single integration per molecule can increase the force com-
putation speed.

The Maxwell stress tensor depends on the electrostatic
field, i.e., the negative gradient of the potential. A direct cal-
culation of the gradient of the potential on the molecular
surface will be subject to the so-called hypersingularity prob-
lem, which comes from the integration of the derivative of
the Green’s function associated with the double-layer part in
the BEM. Fortunately, the hypersingular integral technique
has been developed recently.m’17 In this work, we use the
hypersingular integral technique in a BEM for the three-
dimensional (3D) linear PBE to calculate the derivatives of
the potential at any position on a molecular surface, and
consequently compute the total PB force and torque acting
on the molecule in an interacting molecular system solvated
in ionic solution. The increased efficiency makes it feasible
to calculate the full PB force when applying BD simulation
to study protein encounter or protein-protein docking. An-
other advantage of the present hypersingular integral method
relative to the variational approach is that it gives the detail
of the electrostatic stress everywhere on the surface, which
facilitates the analysis of other related properties of the bio-
molecule. For example, the PB force can be partitioned to
each surface atom, thus enabling all-atom BEMPB MD
simulation. Our previous variational method only gives the
total interaction PB force on a molecule.

The hypersingular integral algorithm is tested on a two-
sphere system, each containing a point charge or a dipole in
the sphere center. The results are compared with that from
our previous method and the analytical ones.

Il. BOUNDARY INTEGRAL EQUATION SOLUTION
FOR THE POTENTIAL

For brevity, the electrostatic potential ¢(x,) is written as
¢,» where p is any position inside, outside, or on the bound-
ary of the molecule. The linear PBE for an isolated molecule
surrounded by an infinite homogeneous ionic solution can be
written as

1
_E ths(rp_rk)s JZRS Q’ (1)

V2 ¢;}nt - _
Dint k
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V2¢;xt= K2¢ext(rp), pe ﬁ’ (2)

where ¢;m is the potential at position p inside the molecular
domain ), S=0() is its boundary, i.e., solvent-accessible sur-
face, d)f,’“ is the potential at position p outside domain ), D;,,
is the interior dielectric constant, r;, is the position of the kth
source point charge g, of the molecule, and « is the recipro-
cal of the Debye-Hiickel screening length, which is is deter-
mined by the ionic strength of the solution. An integral form
of the potential solutions for Egs. (1) and (2) can be ex-
pressed as

) 9 int G )
¢}§“=j€ {G,,z T ;“‘}dst
S

on an
1
+ D_E qupk’ p&k € Q9 (3)
int k
9 ext ou _
ext _ t Z7pt gext
b, _32 {_”pt on T on & ]dsz’ pell, (4)

where n is the outward normal vector, and ¢ is an arbitrary
point on the boundary. G and u are the fundamental solutions
of Egs. (1) and (2), respectively,

1

Gpy= : (5)
P4 4y,
Upg = EXP(= KT )ATT . (6)
When point p approaches surface S, it becomes
L i SE’V I 3G, .
— At _ G 7t~ ptgint dS
2¢p P pt on on ¢t t
1
+ _E CIkak’ P E S’ (7)

Din

1 PV J ext Ju
_gext _ 1 pt jext
= — Uy, + as,, S, 8
27P i RPN ®

where PV denotes the principal value integral to avoid the
singular point when #—p in the integral equations. In our
former work,'> we described a procedure using the BEM to
solve this PBE, and extended it to an interacting system with
an arbitrary number of molecules.

lll. HYPERSINGULAR BOUNDARY INTEGRAL
FOR FORCE CALCULATION

In an ionic solution, the full stress tensor on the bound-
ary should include an additional term accounting for the
ionic pressure besides the conventional Maxwell stress
tensor.'' It is

1
_Dexth(f)z‘Sij» (9)

1
Tij = DextEiEj - EDexth‘sij - 3

where D.,, is the exterior dielectric constant, E is the elec-
trostatic field, and 5” is the Kronecker delta function. The
first two terms form the Maxwell stress tensor (the electric
stress), and the last term represents the contribution of the
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FIG. 1. Exclusion of the singular point y by a vanishing neighborhood o,. e,
denotes the dotted part of the boundary.

osmotic pressure of ion to the stresses at the level of linear
PBE. This term is considered to be part of the hydrodynamic
stress rather than the electric stress. For a system with no
convective flow (as is the case in this work), the above-
mentioned formula gives the total stress present. Therefore,
to obtain the boundary stress tensor, the derivative of the
potential, that is, the negative of E on the boundary, should
be known. In the integral form of the potential solution, Eqs.
(3) and (4), the derivative of the potential with respect to
position p, noted as ¢ ,, is obtained directly by differentiat-
ing on both sides of the equations, and then this value on the
surface can be obtained by taking the limit as p approaches
the boundary S. In order to use some results from the litera-
ture in which Laplace’s equation is usually studied, here we
first treat the interior potential solution of the PBE by sub-
tracting the contribution of the source point charges of the
molecule, that is

in 1
=g = —2 Gy pk e Q. (10)
Din "y

Then, the modified potential v, satisfies Laplace’s equation,
which is equal to the case without point charges. We will first
calculate the derivative of v, noted as vy then return to the
derivative of the original potential, i.e., ¢ ,, by recovering
the contribution from the source point charges, which is eas-
ily calculated using Coulomb’s law.

Now let us first consider the standard boundary integral
equation for the harmonic function v on the 3D domain (),
bounded by the regular surface S (see Fig. 1),'®'®
lim f [Mv(x) - G(y,x)&y—(x) dS(x)=0.
(S—eg)+s, on an

e—0"
(11)

The fundamental solution G has a weak singularity of order
r~!, when r=|x—y|—0, while its normal derivative has a
strong singularity of order r~2. Since in Eq. (11) both the
points y and x lie on the surface S, a limiting process is
necessary. Actually, since Eq. (11) stems from Green’s sec-
ond identity, it may be only formulated on a domain not
including the singular point y. The situation is exemplified in
Fig. 1, where a (vanishing) neighborhood o, of y has been
removed from the original domain ). The integration is thus
performed on the boundary S,=(S—e,)+s, of the new do-
main Q,=Q-o0, (Fig. 1).

Differentiating Eq. (11) with respect to any coordinate
y;, we obtain

J. Chem. Phys. 123, 084904 (2005)

lim J {Vi(y,x)v(x) - W,»(y,x)&—v]dS(x) =0, (12)
(S—eg)+sg an

£—0"
where
G 1
=T = 2}’[’ (13)
dy; 4dmr
G 1 or
V= n(x) = — —3[3r,.— —n,], (14)
0x;, dy; 4r T on

where r ;=dr/dx;=—dr/ dy;, and n; is the ith component of the
normal vector n. As expected, the kernel W; shows a strong
singularity of order =2, while the kernel V; is hypersingular
of order r3, as r—0.

Through the limiting process analysis as in Refs. 16 and
19 the hypersingular boundary integral equation for our
modified electrostatic potential v can be written in the fol-
lowing form:

civ i (y) + lim f {Vi(y,x)v(x)
e—0" (S—e,)

dv(x) bi(y)

on

- Wily,x) }dS(X) +v(y) =0, (15)

where c;; and b; are (bounded) coefficients that only depend
upon the local geometry of S at y. If y is a smooth boundary
point (and s, had a spherical shape), the coefficient c;; sim-
ply reduces to 0.58;. This is then similar to Eq. (4.4.5) in
Ref. 19. This is the value we take in our case, because we
consider that our molecular boundary has been smoothed
before discretization.

The derivative of the potential appears in Eq. (15), but
there still is a limiting process to be treated. We rearrange the
equation in the hypersingular integral form on a discretized
boundary for v in our study as

1 Ju(x
~v,(y)=-0%~ lim f Vily.x) ( )dS(x)
2 ' £—0" (s,—eg) an
b.
+v(y)—’(y )y lim f Wi(y,0)v(x)dS(x),
€ e—0"Y (s,~¢;)

(16)

where s, denotes the boundary element(s) involving the sin-
gular point y, and v denotes the value from integration in
Eq. (15) on all other elements S—s,, which can be obtained
by regular numerical integration. The term in brackets in Eq.
(16), defined in terms of a limit, is called the “Hadamard”?’
or “finite part” of the unregularized integral, which is the
hypersingular integral part. Guiggiani et al.'® presented a
procedure using Laurent series expansion to treat the general
form of hypersingular integral and finally transformed it into
a sum of a double integral and a one-dimensional regular
integral. Then the standard quadrature formulas can be used.
The procedure was improved a little bit later and expressed
in a more complete form,17 which does not affect the formu-
las for our case. Similar results can be obtained by using
other approaches (see the appendixes of Ref. 17). The strong
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[

X1

FIG. 2. A flat triangle in the three-dimensional space is mapped to a right
isosceles triangle on the &7 plane. The singular point y, its surrounding
circular patch e,, and their images in the transformed triangle are also
shown.

singular integral part, i.e., the last term on the right-hand side
of Eq. (16), can be treated following a similar procedure.

For our specific case, because we use a flat triangular
element and linear shape functions, the derivation of hyper-
singular integral formulation can be more simple and
straightforward. Here we give the detailed derivation. Let us
first consider the case that the singular point y locates in the
element, and suppose in the limiting process the patch e, is
circular and of radius & centered at point y (see Fig. 2). In
this case, we can then show as following that part of the
integral (the circular patch-related part) is solved analytically
and the remainder numerically, which was also discussed by
Allison.”" In the implementation of the boundary element
integral, the surface triangles in the physical three-
dimensional space are mapped to an isosceles triangle on the
&m parametric plane, as shown in Fig. 2, where the integra-
tion on each element is actually performed.

The values of the coordinates, the potential, and its nor-
mal derivative at any position in the element are obtained by
linear interpolation from the corresponding values on three
nodes, respectively. For example, for a point (&, %) in para-
metric space, its coordinates in the original space is x
=NY(E, p)x, +N* (€, 9)xy+ N> (€, )x3, where N' (i=1,2,3) are
the shape functions, and x;,x,,x3 are the original coordinates
of the three nodes of the element. Here, N’ =(1-¢-79), N2
=¢, and N3 =7,

Now, we use polar coordinate (p,6) in the parametric
space (&, 7) to perform the integral. Denoting Eq. (16) as

1
Ev,i:—vf’i—I+IW, (17)

we find that the hypersingular part I and the strong singular
part IV are

b;
I= lim {J Vi(y,x)Nv;Jpdpd 6+ v(y)ﬂ} ,
(se=eg) €

(18)
Y= lim {f W,-(y,x)N“v“]pdpdt‘)}, (19)
e—0" | Y (s,—e,)

where v and v, a=1,2,3, denote the value v and dv(x)/dn
at node «, respectively, and the doubly appeared superscripts
(or subscripts) implicitly mean a summation, i.e., N°v)
=3 ,N,. Note that dr/dn=0 on the flat surface, the hyper-
singular integrand in Eq. (18) is thus reduced to
(n;/ 47 )N“Jp, and the strong singular integral is given by

J. Chem. Phys. 123, 084904 (2005)

(r;/4mr*)N®v%Jp. J is the Jacobian from the coordinate
transformation, and here simply doubles the element area,

From the coordinate transformation from r to (&, ), we
find

x;=y;=pAL0), (20)
r=pA(6), (21)
where
A(0) = (xg - x’i)cos 0+ (x"3 - xi)sin 0, (22)
3 12
AO) =\ 2 [AOF [ (23)
i=1
and

N*=N%+pN¥(6), a=12,3. (24)

Here, A, A;, Ny, and N, have the same definitions as in Ref.
16. N, is a constant that depends on the position of the sin-
gular point, namely, the position where we want to calculate
the derivative of the potential. The contour of the neighbor-
hood e, (given by the expression £=r) now in the parameter
plane is expressed in polar coordinates by

e=pA,6). (25)

By using the reversion of the above expression, we then
obtain the expression in & of the equation in polar coordi-
nates of the contour e, (the image of e,, see Fig. 2)

p=2¢lA,6). (26)

Now, using the above formulas (expansion) Eqgs.
(20)—(26) and performing the hypersingular and strong sin-
gular integrals, we obtain

2 -3 o
A In,N
I= lim{f {$(1n|ﬁ(e)|—1ng+1n|A(9)|)
e—0"

0 4
A‘3Jn,~N6“( R )} bi(y)
- —477 0 + —SA(G) do+v(y) - [ (27)

21 -3 @
ATAJN
"= lim f {—",3(9)
e—0" 0 47T
ATAJING
+ 4—O(ln|/3(0)| ~lne+ 1n|A(0)|)]d0}. (28)
ar

Note that A(0)=A(6+m), A(0)=—-A(6+m), and N{(6)
=-N{(6+), the integral of the terms involving In & in both
Eqgs. (27) and (28) is equal to zero. Because the final value 7
in Eq. (27) is finite, in the limiting process, the integral result
of the term involving 1/& must be canceled by the term
v(y)[b,(y)/e]. Then, the singular integrals are transformed
without any approximation into regular integrals (one dimen-
sion in our case), they are

1
p(6)

2w
1=J [F_1(0)(1n|ﬁ(0)A(0)|)—F_z(ﬁ) de, (29)

0
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21
M™=| [Fy(0)p(0) + FX(0)(In|p(DA(O))]d6,  (30)
0
with
-3 «
Jn;Nj
F_(0) = —, (31)
dar
AN
Fo(f)=——", (32)
4
ATAJNY
Fy(0) = 4—1 (33)
T
A7A JN0
FY (o) =——"— (34)
4

The above two formulas hold for linear triangular
boundary elements employed when the singular point is lo-
cated in the element. A general form for hypersingular inte-
gral for any kind of boundary element employed can be
found in Refs. 16 and 17. If the singular point is chosen to be
nodal points on the bounding surface, a similar circular patch
can be selected, but subdivided into parts belonging to dif-
ferent neighboring elements. Then a similar procedure pre-
sented above can be used, and the singular integral can be
analytically resolved. The results become

I= E f {F (6)(In|p"(6)A™(0)])

1

- F".(6) }d& , (35)

p"(6)
dzfl
M=> f . [Fy™(0)p™(0) + F"(6)

X (In[p"(9)A™(O)))]dO ¢ , (36)

where the index m refers to the mth element around the col-
location point, F",(6), F™5(6), F""(9), F(V)V’”(ﬁ), and A™(6)
are the similar coefficient as in Egs. (29) and (30) but corre-
spond to the mth element, and 8{'< << 6, on the element. It
should be noted here that, when the adjacent elements are on
a plane, the sum of all the sectional angle ranges is equal to
277, This was restated in the work of Huber et al.? However,
in a real discretized surface such as the triangulated molecu-
lar surface in our case, the adjacent elements sharing a com-
mon node may deviate somewhat from a plane, and thus the
sum of the angles might not be 2. Nevertheless, in our
present stress calculations on the node, we suppose that the
molecular surface is smoothed enough and the adjacent ele-
ments around a node are nearly on a plane; Egs. (35) and
(36) are still used for the boundary integral on each related
element. Because the integral on each element is also actu-
ally transformed onto an independent parametric triangle as
is routinely done, the angle interval in the integral is /2 if

J. Chem. Phys. 123, 084904 (2005)

3
\ \
n Y 0.6
\ /o
PO N\ /
W \\
92\/{&/ o
e \\ \01
b{ <3 S :}\\ .
I (0 2
a

FIG. 3. A singular point in a parametric triangle.

taking the singular node as the first node of each element in
the transformation.

In this work, we implement two options to select the
collocation point, a singular point where the v ; is to be cal-
culated. One is to select the point(s) in the element (not on
the edge), which is(are) just the Gauss quadrature point(s) for
the integration in Egs. (29) and (30). We name this hypers-
ingular integral method type I, denoted as HS1. The other
option is to put the collocation point at each corner (node),
and Egs. (35) and (36) will be used, for which case the de-
rivative of the potential at any point in the element will be
obtained by interpolation. This second method is denoted as
HS2.

For the first case where the singular point is selected as
inside the triangular element, we just show the integral on
the parametric triangle where the boundary element integral
is actually performed. Figure 3 shows the singular point in a
parametric triangle.

From the figure, the needed function p(6) can be calcu-
lated,

(1-a-b)sin(m/4)

5,(0) = , —0=0<m7-0,,

PO = i) + 6] ! TR

()= ———— b= <m0 (37)

P2 ~ cos(m—6)’ TR 27T

03(0) = — g h=60<2 0

PRI= oslo-Gi)a] 27 BT o
where 0,=arctan b/(1-a), 0,=arctan(1-b)/a, 0,

=arctan a/b, and (a,b) are the parametric coordinates of the
singular point in the parametric triangle; e.g., if the singular
point is in the center of the triangle, then a=1/3 and b
=1/3.

The values in N in Egs. (31)—(34) are

and

—cos f—sinf, a=1
N{(6) = cos 6, a=2 (38)
sin 6, a=3.
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In method HS2 for the singular point at the node of a
triangular element, e.g., the first node (0,0), the functions in
p(0) reduce to only one type,

1 T
ﬁ(@)zm, 0=s60< 5, (39)
and the functions in N are
1, a=1
Ng=10, a=2
0, a=3,
and
—cos f—sin 0, a=1
N{(6) =1 cos 6, a=2 (40)

sin 6, a=3.

Now, all the essential elements are ready for the calcu-
lation of the derivatives of the potential on the molecular
surface. The PB force calculation takes the following steps:
First, we use the BEM to get the PBE solution (potentials
and their normal derivatives) on the boundary elements for
an arbitrary number of solvated molecules, as described in
our former work."> Second, the singular integrals as de-
scribed above are used to calculate the derivatives of the
modified potential v ;, then the derivatives of the potential ¢ ;
are obtained by adding the contribution of the source point
charges to v, and the stress tensor T at any point on the
surface can be computed from Eq. (9). Finally, the PB force
F and torque M acting on each molecule are calculated by
integrations

F:J T(x) - dS(x), (41)
s

M= f r.(x) X [T(x) - dS(x)], (42)
s

where r.(x) is a vector from the center of mass of the target
molecule to the surface point x, and the dot and cross vector
multiplication are applied to the vector and tensor quantities.

IV. TESTS FOR SOME SIMPLE CASES

Since we have previously compared the potentials calcu-
lated from a variational approach with the analytical results
on some cases,” here we just calculate and compare the
electrostatic interaction forces between solvated molecules
computed by all these methods. For a test model, we choose
two point charges in vacuum, in which each charge is sur-
rounded by a unit sphere discretized by 320 flat triangular
elements (162 nodes). Both charges are put on the x axis,
therefore, the nonzero force component is along the x direc-
tion, i.e., F,, and the other two components F, and F, are
zero in theory. Figure 4 shows the forces F, along the x
direction as a function of the distance between the two point
charges calculated using the two hypersingular integral
methods HS1 and HS2, the variational approach, and the
analytical formula.

J. Chem. Phys. 123, 084904 (2005)

— Analytical
=+ HS2
Variational

30—

o
=]
!

Force {kcal/mol.A)
o

35 4 45 5 33
~.
S — Analytical -
S\ ++=+ HSI
SN = HS2
4 S --- Variational T

Distance between two point charges (A)

FIG. 4. The force calculation comparison using different approaches: ana-
lytical results (solid line), hypersingular integral type I (HS1) with singular
point in the center of each element (dotted line), hypersingular integral type
1T (HS2) with singular point on the nodes (dot-dashed line), and variational
approach (dashed line).

It is found that the forces F, calculated by both HS1 and
the variational approach are very close to the analytical ones
in all the distance range shown in Fig. 4. The results from the
hypersingular integral method HS1 are even more accurate
than those from the variational approach; the HS1 curve is
between those obtained by analytical solution and the varia-
tional approach over all the range. For HS2, the results at
close distance are even more accurate than those from
method HS1, but HS2 is less accurate at a large distance. It is
also found that the more separated the two charges become,
the smaller the relative errors of HS1 and the variational
methods are. For example, the relative errors given by the
variational approach and the HS1 method at a distance of 4
A are 5.6% and 3.1%, respectively, and 2.8% and 0.3% at a
distance of 10 A, respectively. HS2 gives a more accurate
result with a relative error of 2.7% at distance of 4 A, but a
bigger relative error (5.6%) at a distance of 10 A. One reason
may be the approximation of treating the adjacent elements
as on a plane when using Egs. (35) and (36), as mentioned
above. Another possible reason will be discussed later. In
addition, note that as mentioned in our previous work the
force calculations at moderate to large distances are even
more accurate than the potential itself on the boundary. This
is quite promising for BD trajectory calculations.

It has to be noted that in our calculations the other two
force components F, and F, that should be zero are very
small (less than 10_§) in the variational approach, while in
hypersingular integral method HS1, these numbers are not as
small, although they are still small relative to the nonzero
component F, . (e.g.é F,=0.14 kcal/mol A and F,
=0.28 kcal/mol A at 4-A distance). At larger distances, these
two force components do not decrease much, thus the rela-
tive errors of these force components will be increased at a
long distance. This is mostly due to the numerical error in-
herently existing in the algorithms. Comparing the two ap-
proaches (refer to previous work'®), we find that the interac-
tion between molecules calculated using the variational
approach depends on A, which is the difference of the po-
tential on the molecular surface in the interacting molecular
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system relative to that in the isolated case. Therefore A,
and consequently the force calculation, directly depend on
the distance between the molecules. This keeps the relative
accuracy more constant over almost all the distance ranges
where the BEM is valid. But for the hypersingular integral
method, as described in Sec. III the calculation of the deriva-
tive of the potential v ; depends on the total potential includ-
ing A¢ due to the interaction, as well as the potential from
the isolated molecule ¢, that is fixed independent of the
relative positions of the two molecules. Therefore, at a large
distance, even if A¢ is small, ¢;, stays the same; the nu-
merical error due to this part is maintained, and this makes
the relative error increase. However, as illustrated by the
above example, the relative error does not increase for the
main force component, e.g., F. So, it seems that the relative
errors of the variational approach are more stable and inde-
pendent of the relative position of the molecules, while for
molecules that are closer together, where the interaction is
expected to be strong, the hypersingular methods give more
accurate results.

An interesting thing is to check how much the singular
integral parts (including strong and hypersingular) contribute
to the total calculated electrostatic field. In the HS1 method,
the singular integral contribution is just from the integration
on one element where the singular point is located, and the
other part is from the integral on all of the other elements.
However, it is found that the singular integral contribution is
large enough to offset the contributions from all the other
elementary integrals. For example, at 4-A distance in the
above case, at the center of the first element, the singular
integral part (HS1) gives the contributions to the electrostatic
field —47.86, —34.84, and —347.17 kcal/mol A e on X, y, and
z directions, respectively, and the regular integral part gives
59.59, 36.55, and 364.69 kcal/mol A e on x, v, and z direc-
tions, respectively. Therefore, the singular integral part can-
not be omitted in the stress tensor calculation in the BEM.

The main advantage of the hypersingular integral
method is its calculation efficiency, which is also the main
motivation to develop this method, as mentioned above. In
the above test case, in which 30 calculation points were se-
lected as shown in Fig. 4, the CPU time on an Intel Pentium
IV(2 GHz) for the whole BEM calculation is 28.3 s for the
variational approach, 23.0 s for HSI, and 19.3 s for HS2.
Moreover, as shown in the methods sections, the CPU time
spent on the force calculation for the hypersingular integral
is only dependent on the boundary elements on the target
molecule, i.e., ~N3,,,, While that in the variational approach
is dependent on all the boundary elements of the molecular
systems. Therefore, for a large biomolecular system, the hy-
persingular integral methods should display much more effi-
ciency than in the above simple system.

The second testing model is a point charge interacting
with a dipole. The point charge surrounded by a unit
spherical boundary is located at (-2,0,0); the dipole is also
surrounded by a unit spherical boundary with its two point
charges located at (2, 0, 0.1) and (2,0,-0.1), respectively. In
this model, there are both force and torque acting on the
dipole, but only the z direction force component F, and
the y direction torque component M, are in principle not
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zero. The analytical solutions are F?“aly=—1.04 kcal/mol A,
and M*Y=-4.15 kcal/mol. The variational approach
gives FZ:—I.OZ kcal/mol 10\, and M,=-4.08 kcal/mol,
and the hypersingular integral method HSI gives
F,=-1.01 kcal/mol A, and M,=-4.01 kcal/mol, and they
are all close to the correct values. HS2 gives
F.=-1.15 kcal/mol A, and M,=-4.58 kcal/mol. The results
of HS2 have a relatively large deviation from the analytical
values, and show a less accuracy than HS1 again.

V. CONCLUSIONS AND DISCUSSION

We use the hypersingular integral technique in a BEM
frame to directly calculate the derivatives of the potential on
the molecular boundary, and then the Maxwell stress is ob-
tained and used to compute the PB force on a molecule in an
interacting solvated molecular system. The computational
accuracy and performance for force and torque are demon-
strated in the sample tests and compared with that of the
previous variational approach. The accuracy of the hypersin-
gular integral method (HS1) is found to be even somewhat
higher than that of the variational method for the main force
component computation. Compared with HS2, the first kind
of hypersingular integral method (HS1) is rigorous in prin-
ciple without the plane approximation for the adjacent
boundary elements, and it has a stable computational perfor-
mance in terms of accuracy in different cases. Overall, the
major advantage of this hypersingular integral method is its
faster performance compared with the variational approach,
especially for biomolecular systems, and this makes it poten-
tially useful for the BD simulation of protein-protein
docking.
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