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Abstract

Enabling comparative genomics at the scale of hundreds of species

by

Joel Armstrong

Comparing related (homologous) subsequences between genomes from different species gives

insight into their function. This information is captured in “genome alignments”, which are

essential for almost all comparative genomics analyses. However, most existing methods to

create a genome alignment suffer from reference-bias (where only one genome is fully aligned

to all others), or ignore duplication events. Though the Cactus genome aligner avoided these

restrictions, it could not align more than a few genomes without becoming cost-prohibitive

as well as losing accuracy. I developed and refined a “progressive alignment” extension to

Cactus to allow it to produce a full alignment in time linear in the number of input genomes

while maintaining similar, or often improved, quality. This new method allows Cactus to align

hundreds of large vertebrate genomes—enabling comparative genomics at an unprecedented

scale. During its development I used Cactus as an essential component of several successful

comparative genomics projects. Working closely with the 200 Mammals and Bird 10K projects,

I have used Cactus to create an alignment of over 600 bird and mammal genomes, which is by

far the largest genome alignment ever created. Finally, I have utilized this alignment to provide a

highest-possible-resolution annotation of mammalian and avian evolutionary constraint, using the

uniquely large number of taxa to enable the examination of weak effects of purifying selection.
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Chapter 1

Introduction

1.1 Preamble

What follows is the text of my review paper “Whole Genome Alignment and Compar-

ative Annotation”, co-written with Ian Fiddes and published in Annual Reviews of Genetics. I

have omitted the section on comparative annotation as it is not relevant to the main topic of this

thesis.

1.2 Genome alignment

1.2.1 Introduction

Alignment is possibly the most fundamental problem in genomics. The alignment

problem is to establish a mapping between the letters of a set of sequences that approximates

some relation that the user is interested in. In comparative genomics, we are generally interested

in the homology relation—that is, does the lineage of two bases coalesce at a single base in a

1



single organism at some (recognizably recent) point in time? In typical real-world comparative

genomics, there is no clear proof of homology, as we have absolutely no access to the true

history of every base in a set of sequences. However, we can use our knowledge of molecular

evolution to construct very good approximations to the homology relation. The potential for

using sequence similarity to approximate homology was recognized and applied very early

on, starting with the pioneering work of Needleman and Wunsch on optimal pairwise global

alignment [88]. The pairwise global alignment work was quickly specialized to perform local

alignment, which calculates the optimal alignment of subsequences rather than sequences, by

Smith and Waterman [113].

The traditional dynamic-programming algorithms require O(nm) time and space,

where n and m are the lengths of the two sequences; obviously, as n and m grow to genome-scale

the problem becomes too expensive to solve in practice. Another consideration is how genome

rearrangements complicate the alignment problem. Smith-Waterman and Needleman-Wunsch

both produce alignments which have fixed order-and-orientation, that is, insertions, deletions, and

substitutions are the only allowed edit operations. When looking within short or well-conserved

sequences, like genes, this requirement is usually fulfilled. But at large evolutionary distances

and looking within a sufficiently large window, genomes almost always contain more complex

rearrangements with respect to each other—inversions, transpositions, and duplications all cause

breaks in order and orientation that cannot be captured under constant order and orientation (see

Figure 1.2).

As long DNA sequences became available, it was soon recognized that Needleman-

Wunsch or Smith-Waterman alignments were far too slow to be useful for megabase-scale

2



sequences, much less chromosome-scale sequences. The impractical running time of global

alignment drove the development of several tools [12, 82, 14] that produce an approximately

optimal global alignment through the use of high-confidence anchors in a single order and

orientation, which are then used to partition the alignment into smaller problems which can be

more efficiently solved. These anchors provided a very efficient and reliable way to break up the

alignment problem, but relied on a constant order and orientation, which excludes any possibility

of noticing rearrangements.

1.2.1.1 What is genome alignment?

One obvious possible solution to the problems of rearrangement and duplication is

to use a fast, approximate local alignment algorithm and simply use the collection of all local

alignments that it finds as the whole-genome alignment. However, naively applying a local

alignment approach has its own problems. Local alignments, when applied at genome-wide

scale, have both too low sensitivity and too low specificity to be useful at substantial evolutionary

distances. That is, local alignments will miss homologous sequence that, by chance, happened

to be further diverged than the sensitivity of the aligner could detect. They will also capture

spurious alignments that can obscure more useful data. Even when they correctly identify

homologous regions, the end-user is more often interested in orthology rather than homology:

ancient duplications may share similar sequence, but often do not share similar function. For our

purposes in this paper, we call any alignment that allows rearrangements (i.e. does not have fixed

order-and-orientation) and attempts to determine orthology rather than just homology (even if

restricted to single-copy) a whole-genome alignment (or for short, a genome alignment). Most

3



whole-genome alignment methods are based on local alignments, but do some filtering and post-

processing to construct a useful end product [9]. Genome alignment tools offer more than simply

a collection of local alignments—they must make decisions about where homology begins and

mere similarity ends, and additionally must make decisions about what is orthologous and not

merely homologous. The size of the problem in whole-genome alignment of large genomes (e.g.

mammalians) causes alignments to take too long to be practical, forcing efficiency considerations

to be taken into account. At the same time, they must handle genome rearrangements—global

aligners cannot properly align genomes that are diverged by even a few millions of years, because

the collinearity restriction of global alignment causes so many homologies to be missed.

1.2.1.2 Determining orthology and the single-copy heuristic

Choosing the single “best” target alignment for each region (based on alignment score

or percent identity), which we will call the single-copy strategy, is a common, if overly simplistic,

way [110, 11] to deal with the problems that duplications cause. It is simplistic because the

best-fit strategy will not always find a correct ortholog, and indeed even a reciprocally-best-fit is

not enough to guarantee finding an ortholog [57]. Perhaps more importantly, choosing a single

best sequence ignores lineage-specific duplications. When lineage-specific duplication occurs,

a gene outside that lineage will have multiple orthologs in the lineage, and should be aligned

to multiple copies [68]. Single-copy alignments implicitly assume that orthology is a one-to-

one relationship. However, in nature, orthology can often be a one-to-many relationship [68].

When that assumption of one-to-one orthology is violated, single-copy alignments can be very

misleading.
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1.2.2 Multiple alignment

Often it is necessary to consider the alignment between a set of more than two se-

quences, which we call multiple alignment. A multiple alignment is defined as an equivalence

relation ∼ on a set of sequences S = {s1,s2, . . .}, such that for two bases b1 ∈ s1 ∈ S and

b2 ∈ s2 ∈ S , b1 ∼ b2 if they are considered to be aligned to each other. The alignment is par-

titioned into columns by the equivalence classes of ∼: i.e. every base is related to all bases

in its column, and no two bases in different columns are related. Unfortunately, even simple

formulations of the multiple alignment problem are significantly more difficult than their pairwise

alignment equivalent and known to be NP-hard [56]. Heuristics must be employed to efficiently

solve the multiple alignment problem. Progressive alignment is the most popular strategy for

approximate multiple alignment [36]. Progressive alignment uses as an additional input a guide

tree relating the input sequences. The most closely related sequences are aligned first, then the

resulting alignment is itself aligned to other sequences or alignments, following the structure of

the guide tree. Often consensus sequences are used as a method of aligning alignments.

1.2.3 Reference-free alignment

Since the multiple alignment problem is so difficult, a common heuristic is to use a

single reference genome to base the alignment on. All other sequences in the multiple alignment

are simply aligned to this genome in a pairwise fashion, then the several pairwise alignments

are combined to form a reference-biased multiple alignment. This approach performs very well

when viewed from the reference genome, but information relating genomes distant from the

reference is lost. See Figure 1.1 for an illustration of this effect. In the mid- to late-2000s the

5



first methods for reference-free multiple genome alignment allowing multiple copies began to

appear (notably the Enredo-Pecan-Ortheus (EPO) pipeline [97] and the A-Bruijn aligner [104]).

The EPO pipeline especially began to see wide use as part of the Ensembl genome browser [2].

While impressive, these pipelines left significant room for improvement, especially with regard

to finding small-scale order-and-orientation-breaking rearrangements [97].

1.2.3.1 Genome histories

Alignments are conventionally described as a set of columns, each containing a set

of bases that are all related to each other by some alignment relation ∼. Usually this relation

represents orthology rather than homology. However, in that case, this model falls apart when

considering reference-free alignments with multiple copies per genome. The orthology relation

is not transitively closed [68], so it is impossible in the general case to create a set of columns

containing bases that are all orthologous to each other. The only way to represent a reference-

free, multi-copy, orthologous multiple genome alignment is by associating the alignment with

phylogenetic trees, which are inferred (even if implicitly) during the alignment process. These

trees must be reconciled [124] with the species tree so that the duplication events and speciation

events are distinguished, to enable the determination of orthology relationships. We term these

types of alignments genome histories to reflect that they require a different representation than

typical alignments (which can be represented by a collection of only blocks or columns).

A genome history {S ,∼,Tc, ts,L} consists of a set of genomes S , a multiple alignment

∼ relating the bases of those genomes, a reconciled tree called a column tree t ∈ Tc for each

column in that alignment, a species tree ts, and, optionally, a set of links L between columns,
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indicating the ordering of the ancestral chromosomes. The columns of the genome history reflect

the homology rather than orthology relation. Since homology is transitive, the homology-based

alignment can be represented by columns. The set of trees (hereafter referred to as column trees)

indicate the evolutionary history of the bases in each column. Where there are duplications, gains,

or losses, the column tree t ∈ Tc will differ from the species tree ts. Though the genome history

representation we present here is not the only possible representation, any other representation

(such as a collection of all pairwise orthology relationships) can be transformed into this one.

A genome history can be used to define both orthology and paralogy relations. The

orthology relation, which we will symbolize by ∼o, uses the column trees of the genome history

to determine which of the homologous bases in a column are also orthologous to each other. The

orthologous bases are those homologous bases whose lineage coalesces in a speciation event

in the reconciled column tree [68]. The paralogy relation ∼p simply relates homologous bases

which are not orthologs.

A genome history can be projected onto any genome to create a more conventional

referenced multiple alignment. These projected, reference-based alignments are collections

of columns, each containing exactly one reference base, where every base in the column is

orthologous to the reference base, but not necessarily orthologous to every other base in the

column. These projected alignments are useful because they can be represented in conventional

formats like MAF, and used as input to existing analysis tools.
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1.2.4 Local alignment tools

Because genome alignment tools usually rely heavily on local alignments of some

form, local alignment tools play a large role in genome alignments. Since finding all-against-all

optimal local alignments has prohibitive time and memory requirements, approximate local

aligners in the vein of BLAST [4] are used almost exclusively. These aligners typically look for

short sections of exact matches called seeds (which may sometimes include positions which are

allowed to vary, to increase sensitivity [80]), and then extend the alignment away from those

seeds. Local aligners used for genome alignment are often different than read aligners like

BWA [75]. Though they use the same basic ideas, local alignment between genomes generally

involves much more evolutionary distance than read aligners, which are generally optimized

for aligning reads to a reference genome which is near-identical to the sample. BLAT [62]

is a popular, fast local alignment tool which is useful at short evolutionary distances, though

it can handle longer evolutionary distances with its “translated BLAT” translated-protein vs.

translated-protein mode. BLASTZ [110] and its successor LASTZ [48] are local aligners tuned

to be more sensitive than normal BLAST, using PatternHunter-esque spaced seeds [80], while

also allowing transitions for increased sensitivity. LAST [64] is a similar aligner, which can

potentially use much smaller seeds than other aligners, without spending time going through

uninteresting highly-repetitive alignments, because it extends partial matches until a low enough

multiplicity is reached using an efficient substring index.
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1.2.5 Genome alignment methods

Most genome aligners, at a high level, work in two stages: filtering, where a large

number of local alignments are generated and filtered down to remove spurious false-positive

alignments and identifying homologous, rearrangement-free regions (locally collinear blocks in

the terminology used by Mauve [22]), and refinement, where the homologous regions undergo

alignment with a collinear aligner. (Some aligners keep a subset of the original local alignments

as “anchors” to be included in the final alignment, while others throw away all the original local

alignments and align the rearrangement-free regions from scratch.) The filtering step can take

many different forms, but many involve constructing a graph representation of the alignment and

using various heuristics to simplify the graph (for a review, see [61]).

A table summarizing popular or historically significant genome alignment tools is

given in Table 1.1 (for pairwise alignment) and Table 1.2 (for multiple alignment). In the

following sections, we briefly survey some of the most significant tools.

1.2.5.1 Pairwise genome alignment tools

MUMmer MUMmer [82] is an extremely fast pairwise alignment tool, able to align the human

and chimp genomes within less than 4 hours. It achieves this speed by using a suffix-tree data

structure to find all maximal unique matches between the two input genomes. Optionally, the

“nucmer” script included in the package can perform gapped extension between these matches to

generate a more complete alignment. MUMmer is an efficient package for aligning very similar

genomes, though as a tradeoff for its impressive speed, its sensitivity, especially with the default

settings, is somewhat lower than slower aligners like LASTZ.
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Shuffle-LAGAN Shuffle-LAGAN [15] is a pairwise genome alignment tool which aims to

draw a compromise between the drawbacks of global and local alignment, using a method which

the authors call “glocal” alignment. The method works by first performing an all-against-all local

alignment of the two genomes using CHAOS [16], then finding a maximal-scoring 1-monotonic

map, which groups a subset of local alignments into “chains”, each of which contains local

alignments with only a single order and orientation. This map is restricted so that the chains must

be non-decreasing with respect to a single reference genome, while they can be in an arbitrary

order in the other genome to represent rearrangements. This allows homology to be detected

despite rearrangements, though it will not be able to detect duplications in the non-reference

genome. The alignment is then further refined by discarding the local alignments within the

chains, and instead realigning the region bounded by each chain with the approximate global

aligner LAGAN [14].

Chaining and netting Chaining [63] is a powerful technique for making sense of pairwise

local alignments. Chains are simply maximal-scoring combinations of local alignments that

maintain a single order and orientation. Chaining provides a good way of filtering out spurious

alignments, which are likely to form short, low-scoring chains. However, the set of chains can

often include distant paralogs or spurious sequence, which makes it difficult to understand the

rearrangements that have taken place between the two input genomes. Netting [63] is a related

technique that makes rearrangements relative to a reference genome much easier to find. In

essence, netting finds the best-scoring set of chains that covers the bases of the reference genome

only once. This makes it very easy to find high-confidence rearrangements like transpositions,
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inversions, and deletions, but removes any duplications in the target genome, instead choosing a

single copy to align to.

1.2.5.2 Multiple genome alignment tools

Mauve / progressiveMauve Mauve [22] is a reference-free multiple genome aligner that

works by first finding all blocks that contain maximal unique matches from every species to use

as anchors. To remove spurious matches, small matches that cause rearrangements are removed,

until the alignment can be partitioned into “locally collinear blocks” which are all above a

certain size. These blocks are then further refined to attempt to create alignment problems

small enough that they can be handled using a conventional collinear multiple aligner, in this

case CLUSTAL W [116]. The collection of these multiple alignments forms the final genome

alignment.

The original version of Mauve performed poorly in large regions which were present

in some but not all genomes, because only blocks containing sequence from every genome were

used as anchors. progressiveMauve [23] was developed to relax this restriction. It builds a

phylogenetic tree from the input sequences, then uses that tree as a guide to progressively apply

an algorithm similar to the original Mauve at each internal node.

Mugsy Mugsy [5] is a reference-free multiple genome aligner which uses a graph-based

algorithm to segment a large collection of local alignments into smaller, rearrangement-free

sub-problems called “locally collinear blocks”, which can be fed into a conventional non-genome

multiple aligner. Mugsy first generates all-against-all pairwise alignments using MUMmer [82],
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then constructs a graph representation of the local alignment relationships. This graph is used to

segment the large alignment problem into smaller “locally collinear” subproblems, which are

then aligned using a specialized version of TCoffee [92].

MultiZ / TBA MultiZ [11] is a reference-biased multiple genome alignment tool originally

developed as part of the TBA [11] program. Because TBA is restricted to producing multiple

alignments that have only a single order-and-orientation (though there exists an unpublished

version that removes that restriction), MultiZ sees much wider use than TBA itself. It is the tool

currently used to generate the multiple alignments on the UCSC Genome Browser [46].

MultiZ, in effect, is a method of aligning alignments. To produce MultiZ alignments

in practice, usually pairwise alignments from a given reference to all other species are generated

using a local alignment tool, sometimes post-processed using chains and nets, and then the

“autoMZ” command is used to progressively align together these pairwise alignments using a

guide tree.

ABA The A-Bruijn alignment method (ABA) [104] uses A-Bruijn graphs (introduced in [100])

to filter a collection of local alignments, removing inconsistencies and small rearrangements

using simplification operations on the graph. The method is in principle reference-free if the

input alignments are generated in an unbiased way. Though the method was mostly applied to

protein alignment (where individual domains are often duplicated and shuffled during evolution),

it was also shown to be capable of aligning small chloroplast genomes more completely than

TBA.
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VISTA-LAGAN VISTA-LAGAN, also known as SuperMap [28], is a reference-free multiple

alignment tool built on the Shuffle-LAGAN [15] pairwise alignment algorithm. Unlike Shuffle-

LAGAN, VISTA-LAGAN can detect duplications in any genome, not just a reference genome.

VISTA-LAGAN progressively aligns each pair of genomes, creating an “ancestral” ordering of

the alignment blocks at each step (which is not intended to be an accurate ancestral reconstruction)

to continue the alignment to further outgroup genomes.

EPO The Enredo-Pecan-Ortheus (EPO) pipeline [97, 98] is a reference-free multiple alignment

pipeline that, unlike TBA, can handle rearrangements. It is in wide use, being one of the

main multiple genome alignments available on the Ensembl genome browser [3]. The process

begins with a relatively sparse set of anchor points that are known homologies within a set

of genomes. The Enredo algorithm builds a sequence graph from these anchors, and through

various operations, attempts to remove homologies that are likely to be spurious or uninteresting.

The Pecan algorithm then fills in the gaps between the sparse anchors selected by the Enredo

algorithm. The Ortheus algorithm [98] is then optionally run to generate ancestral sequences for

all blocks, creating a genome history. While EPO is in principle reference-free, the method that

is currently used to generate its anchors is reference-biased [97].

Cactus Cactus uses an overall strategy similar in principle to the anchoring approach described

above. The notion of a cactus graph [95] is used to create a filtered, high-confidence set of

anchors. The unaligned space between anchors is then aligned using a sensitive pair-HMM to

create a final multiple alignment. The first step of the Cactus process is to take small, uncertain

local alignments captured by LASTZ [48] (which is similar to BLAST [4]), and combine them
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naively to create a multiple alignment. Given the typical evolutionary distances involved, LASTZ

is tuned to be very sensitive, but not very precise. The low precision means that the local

alignments may be spurious (a small seed happened to match, and happened to be extended,

in a region which is not truly homologous). The local alignments may also conflict—that is,

several alignments may disagree on how to align a particular region. These inconsistencies and

spurious alignments will manifest as tiny rearrangements—breaks in order and orientation—in

the alignment. Using the Cactus Alignment Filter (CAF) algorithm defined in [96], these small

rearrangements, which are unlikely to be biological, in the multiple alignment are discovered and

removed, producing an alignment that only contains rearrangements longer than a certain length.

After this process, the cactus graph contains anchors that are very likely to represent true regions

of homology, but will have unaligned regions of homology between the anchors, which local

alignment was not sensitive enough to pick up, or which were deleted in the CAF process. The

Base Alignment Refinement (BAR) process [96] fills in these unaligned but homologous regions.

progressiveCactus The version of Cactus published in 2011 [96] was highly effective at

aligning a small number of genomes in the tens to hundreds of megabases [29], but because it

scaled quadratically with the total size of all genomes in the alignment problem, it could not

efficiently create the alignments we needed, which require us to align hundreds of vertebrate-sized

genomes. Recently a progressive-alignment extension (called progressiveCactus) to the original

Cactus algorithm has been developed, which can efficiently scale to hundreds of genomes. The

progressiveCactus process works as follows (see Figure 1.3). First, the problem is decomposed

into several subproblems using an input guide tree. There is one subproblem per internal node
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in the guide tree. Each subproblem involves aligning several genomes using the traditional

Cactus process: the ingroup (children of the internal node) and outgroup (non-descendants of the

internal node) genomes for the subproblem. This subproblem alignment is then used to infer

a “reference” assembly that contains all blocks involving an ingroup. The blocks are arranged

into sequences according to an algorithm that attempts to maximize the consistency between

the order and orientation of all the sequences in the alignment [90]. The base-level sequence

for these blocks is then generated by finding the ML base for each column using the guide tree.

This assembly is a reconstruction of the ancestral genome at that node, which functions as a

consensus sequence for the ingroups below it. The reference assembly is then fed as input into

subproblems further up the guide tree.

1.2.6 Alignment formats

The fact that genome alignments include the potential for rearrangements and dupli-

cations makes representation in collinear alignment formats like aligned-FASTA impossible,

because they represent alignments as only a series of insert, delete, and substitution operations.

The most popular format for genome alignments currently is the Multiple Alignment Format

(MAF). MAF is capable of representing referenced multiple alignments with rearrangements;

however, because MAF is a column/block oriented format, it is impossible to represent complex

orthology relationships in a reference-free way (see Section 1.2.3.1) without extending the

format.

The Hierarchical Alignment Format (HAL) [49] was designed to be an efficiently

accessible format representing a genome history, including any ancestral reconstructions avail-
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able. HAL allows projection from this genome history onto any reference genome (including

ancestors), creating a multiple genome alignment showing what is orthologous (related by ∼o)

to every base in that genome. This projection can be output in a traditional format like MAF,

or simply used on-demand to visualize the alignment [89] or as part of downstream analysis

pipelines.

1.3 Discussion

1.3.1 The future of whole-genome alignment

The average evolutionary distance between sequenced species is getting much shorter

as more genomes are sequenced. In the next several years, thousands of genomes will be released

due to the efforts of projects like Genome 10K [66] and Insect 5K [108]. By necessity, many

comparative genomics projects will focus on alignment between hundreds to thousands of closely

related genomes, instead of tens of distantly related genomes. Evaluation on simulated data has

shown that while whole-genome aligners vary drastically in accuracy over long evolutionary

distances (ranging from an F-score of 0.12–0.80 in a mammal-wide simulated alignment [29]),

they all perform extremely well over closer evolutionary distances (ranging from an F-score

of 0.97–0.99 in a primate-wide alignment [29]). In some ways, then, genome alignment will

become easier because finding homologies is simpler with less evolutionary distance. However,

in other ways, it will become more difficult. Creating an alignment of thousands of large genomes

is a unique challenge, one which no aligner is currently prepared for. In addition, since the rate of

new assemblies being generated will increase, with new assemblies projected to come every few
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days or weeks rather than months, maintaining alignments at community comparative genomics

resources like Ensembl Compara [2] or the UCSC Genome Browser [46] will necessitate adding

new genomes to existing resources piecemeal, rather than regenerating alignments from scratch.

As large sequencing projects produce hundreds to thousands more assemblies in the

coming years, reference-bias in multiple genome alignments may become more of a problem.

Though reference-biased alignments will serve the genome that they are referenced on well

(usually a popular genome like human or mouse), it will certainly be cost-prohibitive to generate

a full alignment referenced on all, or even most, new assemblies. This can be a disadvantage

to researchers working on non-model organisms, who may not have the resources to run a

full alignment referenced on their genome. A reference-free alignment would be more easily

shared as a resource useful to many different communities researching many different species.

However, reference-free alignment is a substantially more difficult problem than reference-biased

alignment. In principle, a reference-free alignment should be equally good for every included

genome. However, it may be the case that for any given genome, the quality of a reference-free

alignment may be worse than if a new reference-biased alignment were generated referenced on

that genome. To live up to their potential, reference-free aligners should aim to equal the quality

of reference-biased aligners on reference genomes.

The unique challenges facing genome alignment are twofold: compared to global

alignment, the challenge is to capture rearrangements; compared to local alignment, the challenge

is to detect orthology rather than mere homology. The Alignathon [29] showed that modern

genome aligners generally capture homologies well in the presence of rearrangements. However,

orthology detection in modern genome aligners is still very simplistic, and not very accurate.
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Many aligners still operate under a single-copy restriction, which, while a useful simplification

of the alignment problem, obscures crucial aspects of genome evolution. Others, like Cactus [96]

or EPO [97], can support multiple orthology in theory, but in practice use simple heuristics which

can often lead to aligning paralogs or missing alignment to orthologs.

Determining orthology accurately, efficiently, and at genome-wide scale is possibly the

most difficult unsolved problem in genome alignment. The problem can be framed as building

phylogenetic trees for every column in the genome history, after which orthology relationships

among the column’s bases can be easily established using a reconciliation algorithm [124].

Simply applying maximum-likelihood methods such as RAxML [115] will not be sufficient, for

multiple reasons. First, these methods require near-prohibitive amounts of compute power to

apply genome-wide in large alignments: building trees from even a relatively small set of 2000

1̃000bp alignment regions among 48 avian species can take over 100 CPU-days to compute [87].

Second, and more importantly, with large numbers of genomes, the size of regions with the

same duplication content can become smaller and smaller, leading to less and less phylogenetic

information available for any given region, which could increase the chance of errors. It may be

helpful to incorporate syntenic information to try to improve the accuracy of finding orthology

relationships genome-wide, though it seems that there are still unanswered questions about

how best to solve that problem [18]. One advantage of using syntenic information to establish

orthology is that it may enable tracking of orthologous loci (sometimes called “toporthologs”

or “positional orthologs” [24]) in addition to tracking orthologous sequence. Keeping track

of orthologous loci may be useful to better track gene conversion events, which will cause

discrepancies between the toporthology and orthology of a given region.
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Figure 1.1: A diagram showing the difference between a reference-free and a reference-biased
multiple alignment. In a human-biased multiple alignment, any large regions that are deleted in
human, or inserted somewhere else in the tree, cannot be aligned.

This review has focused on inter-species comparison, but the future must include more

convergence in thinking, models and reasoning about both inter- and intra-species variation. A

key, relevant development in modeling population variation is the genome graph[99, 83], which

represents variation by encoding individual genomes as paths through a graph structure represent-

ing the combined genome alignment. This process allows for variation to be comprehensively

captured, and reduces the necessity of depending on a linear reference that does not accurately

represent haplotypes present in the population. Extending the genome alignment process to

handle graph-to-graph alignment, rather than merely sequence-to-sequence alignment, will bring

together the fields of comparative and population genomics by enabling the integration of the

analysis of inter- and intra-species variation. Such graphs also naturally fit with methods that

model uncertainty about ancestral genomes, and therefore some of the software developed for

genome graphs might be useful in modeling ancestral genome reconstructions.
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Figure 1.2: An example of how different heuristics affect a genome alignment. All panels are
dotplots: a line with positive slope indicates an alignment from the positive strand of sequence 1
to the positive strand of sequence 2, and a negative slope indicates an alignment from the positive
strand of sequence 1 to the negative strand of sequence 2. A: The true alignment between the
two sequences. B: The same alignment if a single-copy aligner perfectly recovered the true
alignment, except for the ignored duplication. C: The same alignment according to a global or
approximately-global aligner: no edit operations except insertions, deletions, and substitutions
are allowed, so substantial alignment is missing.

Reconstructed ancestor
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Figure 1.3: An example of how progressive genome alignment works, focused on aligners
like VISTA-LAGAN (SuperMap) [28] and progressiveCactus [96] that reconstruct ancestral
genomes as input for further alignment steps. A: A large guide tree (usually the species tree),
which may include many species, is divided up into smaller local alignment problems of a few
genomes each. B: A diagram of what occurs within each subproblem. Each subproblem is
focused on reconstructing a single ancestral genome, which is then used as input for subproblems
further up the tree. “Ingroup” genomes (children of the ancestor in question) and, optionally,
“outgroup” genomes (non-descendants of the ancestor) are aligned together. A plausible ancestral
reconstruction is generated for use in later subproblems.
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Program Year Description

MUMmer 1999 [82] Fast aligner relying on maximal unique
matches from a query sequence to a reference
sequence. Recent versions remove the colin-
earity restriction of the first version and im-
prove the speed.

Chains and nets 2003 [63] Combines fragmented local alignments into
larger, high-scoring "chains", which are ar-
ranged into hierarchical "nets" representing
rearrangements.

Shuffle-LAGAN 2003 [15] A "glocal" (global + local) aligner that is less
restrictive than global alignment, but still en-
forces monotonicity of the blocks relative to
one sequence.

Table 1.1: Pairwise genome alignment tools.
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Program Year Reference-bias Single-copy Description

TBA 2004 [11] X Collinear multiple aligner (using Mul-
tiZ internally) that produces a collection
of partially ordered “threaded block-
sets.”

Mugsy 2011 [5] Uses a graph-based method to segment
the alignment problem into “locally
collinear blocks”: small subregions
with no local rearrangements, which are
fed into a collinear multiple aligner.

MultiZ (autoMZ) 2004 [11] X X Multiple alignment based on pairwise
alignment from every genome to a sin-
gle reference.

ABA 2004 [104] Aligner based on the concept of A-
Bruijn graphs.

EPO 2008 [97, 98] * Graph-based aligner which allows du-
plications and optionally produces an-
cestral reconstructions.

VISTA-Lagan (SuperMap) 2009 [28] Progressive aligner based on Shuffle-
LAGAN [15].

Mauve 2004 [22] X Finds maximal unique matches present
in every input species, then attempts
to remove small matches that cause re-
arrangements which disrupt collinear-
ity.

progressiveMauve 2010 [23] X Progressive aligner that attempts to re-
move anchors causing small rearrange-
ments by optimizing a breakpoint-
weighted score.

Cactus 2011 [96] Graph-based aligner that attempts to
remove anchors representing small re-
arrangements.

Table 1.2: Popular and/or historically important multiple genome alignment tools. *: While
the core method behind EPO is reference-free, as currently applied its anchor generation is
reference-biased.
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Chapter 2

Progressive alignment with Cactus: a genome

aligner for the thousand-genome era

2.1 Preamble

The following is the main text of the progressive Cactus paper. I wrote the text of this

paper, designed all and executed nearly all of the experiments, and contributed the figures. Qi

Fang and Duo Xie contributed to the guide-tree analysis and MULTIZ comparison, respectively.

2.2 Introduction

New genome assemblies have been arriving at a rapidly increasing pace, thanks to rapid

decreases in sequencing costs and improvements in third-generation sequencing technologies [31,

119, 54]. For example, the number of vertebrate genome assemblies currently in the NCBI

database [65] has increased by over 50% in just the past year (to 1485 assemblies as of July
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2019). The Vertebrate Genome Project, Genome 10K [66], the Earth BioGenome Project [73],

the Bird 10K project [122], and the 200 Mammals project [43], among others, aim to release

hundreds of high-quality assemblies of previously unsequenced genomes in the next year, and

many thousands over the next decade.In addition to this influx of assemblies from different

species, new human de novo assemblies [53] are being produced, which enable analysis of not

just small polymorphisms, but also complex, large-scale structural differences between human

individuals and haplotypes. This coming era and its unprecedented amount of data offers the

opportunity to unlock many insights into genome evolution, but also presents challenges in

adapting our analysis methods to meet the increased scale.Often we want to make use of these

assemblies to conduct analyses like species-tree inference, comparative annotation [37, 67],

or constraint detection [50, 41]. All of these require comparing an assembly against one or

more other assemblies. This involves creating a mapping from each region of each genome to

a corresponding region in each other genome, taking into account the possibility of complex

rearrangements: this is the problem of creating a genome alignment [6].Genome aligners are one

of the most fundamental tools used in comparative genomics, but since the problem is difficult,

different aligners frequently give somewhat different results [29], and many intentionally limit

the alignments they produce to simplify the problem. Two of the most common limitations are

reference-bias, which constrains a multiple alignment to only regions present in a single reference

genome, and restricting the alignment to be single-copy, which allows only a single alignment in

any column in any given genome, causing the alignment to miss multiple-orthology relationships

created by lineage-specific duplications. Cactus [96] is a genome alignment program which has

neither of these restrictions; it is capable of generating a reference-free multiple alignment that
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allows detecting multiple-orthology relationships.The version of Cactus available at the time

performed very well in the Alignathon [29], an evaluation of genome aligners. However, the

runtime of that initial iteration of Cactus scaled quadratically with the total number of bases in

the alignment problem, making alignment of more than about ten vertebrate genomes completely

impractical. To address these difficulties, we present fundamental changes to the Cactus process

that incorporate a progressive alignment [36] strategy, which changes the runtime of the alignment

to scale linearly with the number of genomes. We show that the result is an aligner that remains

state-of-the-art in accuracy, and continues to lack reference bias, but which is tractable to use

on hundreds to thousands of large, vertebrate-sized input genomes. This new version of Cactus

has been developed over several years, and has already been successfully used as an integral

component of high-profile comparative genomics projects [45, 26, 44, 77, 70]. We describe the

many improvements to the original Cactus method that make large alignments tractable, while

also increasing the accuracy of those alignments. We demonstrate it is capable of creating useful

alignments across a wide range of evolutionary distances, from intra-species alignments useful

in population genetics [42] to inter-species alignments spanning hundreds of millions of years of

genome evolution. Because of its support for multiple-orthology relationships, it automatically

supports diploid assemblies, which are becoming more common as new technologies enable

phasing across long distances [69, 119].
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2.3 Results

2.3.1 Cactus

The new progressive Cactus pipeline is freely available and open source. The only

inputs needed are a guide tree and a FASTA file for each genome assembly.The key innovation of

the new Cactus aligner is to adapt the classic progressive strategy (used in collinear multiple align-

ment for decades [36]) to a whole-genome alignment setting. Progressive aligners use a guide

tree to recursively break a multiple alignment problem into many smaller sub-alignments, each

of which is solved independently; the resulting sub-alignments are themselves aligned together

according to the tree structure to create the final alignment. Progressive alignment has been

succesfully applied to whole-genome alignment before, for example by progressiveMauve [23]

and TBA/MULTIZ [11]. Cactus now follows a similar strategy, with the key innovation being

that Cactus implements a progressive-alignment strategy for whole-genome alignment using re-

constructed ancestral assemblies as the method for combining sub-alignments. This strategy not

only results in a much faster alignment runtime, but also produces ancestral reconstructions.As

a practical matter, Cactus also now uses the Toil [117] workflow framework to organize and

distribute its computational tasks. Because it runs on Toil and supports container execution

via Docker and Singularity [72], Cactus can be run on many different environments: single

machines (for small alignments), conventional HPC clusters, as well as the GCP, AWS, and

Azure clouds.Figure 2.1A shows the overall organization of the new Cactus process. The guide

tree, which need not be fully resolved (binary), is used to recursively split a large alignment

problem (comparing every genome to every other genome) into many small subproblems, each of
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Figure 2.1: A diagram of the progressive process within Cactus. A:A large alignment problem
is decomposed into many smaller subproblems using an input guide tree. Each subproblem
compares a set of ingroup genomes (the children of the internal node to be reconstructed) against
each other as well as a sample of outgroup genomes (non-descendants of the internal node in
question). B:This flowchart represents the phases which each subproblem alignment proceeds
through.The end result is a new genome assembly representing Cactus’s reconstruction of the
ancestral genome, as well as an alignment between this ancestral genome and its children. After
all subproblems have been completed, the parent-child alignments are combined to create the
full reference-free alignment in the HAL [49] format.
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which compares only a small number (usually 2–5) of genomes against one another. The purpose

of each subproblem is to reconstruct an ancestral assembly at each internal node in the guide

tree, as well as to generate alignments between that internal node’s children and its ancestral

reconstruction. The ancestral assemblies are then used as input genomes in subproblems further

up the tree, while the parent-child alignments are later combined to produce the full alignment.

Two sets of genomes are considered: the children of the internal node (which we call the ingroup

genomes), and a set of non-descendants of that node (the outgroup genomes). The ingroup

genomes form the core alignment relationship being established at this node. The outgroup

genomes serve to answer the question of what sequence from the ingroups is also present in

the ancestor (whether an indel among the ingroups is likely a deletion rather than an insertion),

and in how many copies (whether a duplication predates or postdates the speciation event the

node represents). The outgroups also provide information for guiding the ancestral assembly by

providing additional order-and-orientation information, as well as additional information when

generating ancestral base calls. These genome sets are used as the input to the main subproblem

workflow, which we outline below and in Figure 2.1B, and describe in detail in Section 2.5.1.Each

individual subproblem follows a procedure akin to the original Cactus process. The subproblem

procedure begins with a set of pairwise local alignments generated via LASTZ [48]. These

pairwise alignments are then filtered and combined into a cactus graph representing an initial

multiple alignment using the CAF algorithm described in our earlier work [96], though we note

important changes to the filtering in Section 2.5.1.4 and Section 2.5.1.5. The initial alignment is

refined using the BAR algorithm again described in earlier work [96] to create a more complete

alignment. The ancestral assembly is then created by ordering the blocks in this final alignment
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Figure 2.2: Results from alignments of varying numbers of simulated genomes using the
progressive mode of Cactus (“Progressive”), versus the mode without progressive decomposition
similar to originally described in [96] (“Star”). A) The total runtime of the two alignment
methods across 3 runs. The runtime is nearly identical when aligning two genomes since the
alignment problem is not further decomposed, but the linear scaling of the progressive mode
means it is much faster with large numbers of genomes than the quadratic scaling required without
progressive alignment. B) The precision, recall, and F1 score (harmonic mean of precision and
recall) of aligned pairs for each alignment compared to pairs from the true alignment produced
by the simulation.

and establishing a most-likely base call for each column in each block. The resulting ancestral

sequence is then fed into later subproblems (unless the subproblem represents the root of the

guide tree, which indicates the end of the alignment process).
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2.3.2 Evaluation on simulated data

To evaluate the improvements in quality and runtime of the alignments produced using

the new progressive alignment strategy, we simulated the evolution of 20 30-megabase genomes

using Evolver [30] along a tree of catarrhines. We ran two alignment strategies — one using a

fully-resolved binary guide tree (which takes full advantage of the new progressive mode) and

one using a fully-unresolved star guide tree (which is similar to the originally published version

of Cactus) — across variously sized subsets of these genomes (for details of the simulation

and alignments, see Section A.0.1). The alignments using the progressive strategy were much

faster, especially when aligning large numbers of genomes, as expected given its linear scaling

runtime, as opposed to the quadratic scaling of the star-tree (Figure 2.2A). The simulated

genomes have a known true alignment relating them, which is produced during the simulation

process; using this it is possible to evaluate the quality of the alignments produced by the two

strategies (Figure 2.2B). The progressive strategy is significantly more sensitive (89% recall)

than the star strategy (82% recall) when aligning all 20 genomes: this reflects the fact that the

increasing number of genomes will decrease the length of rearrangement-free regions, limiting

the effectiveness of the rearrangement-based alignment filtering method that Cactus utilizes.

Since the progressive strategy only aligns a constant number of genomes together at a time, it is

able not only to make the runtime of aligning large numbers of genomes practical, but to align

them with an accuracy unattainable by the previous versions of Cactus.
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Alignment Precision Recall F1-score CPU time

Genome added to branch 97.27% 88.40% 92.63% 11 h
Genome added to node 97.21% 88.35% 92.57% 16 h
Full realignment of entire tree & new genome 97.19% 88.33% 92.55% 176 h

Table 2.1: Results of adding a new genome to an alignment of simulated genomes. Precision,
recall, and F1-score statistics are all of aligned pairs that contain a base of the added genome.
An alignment where the genome was included initially is shown for comparison.

2.3.3 Adding new genomes to an existing alignment

Given the rate of arrival of new assembly versions and newly sequenced genomes,

adding new information to an alignment without recomputing it from scratch is valuable, espe-

cially for large alignments where recomputing the entire alignment is often cost-prohibitive.Cactus

supports adding a new genome to an existing alignment by taking advantage of the tree structure

of the progressive alignments it produces. There are three ways that a new genome can be added

to an alignment, depending on its phylogenetic position relative to the existing genomes: 1) as

outgroup to all the existing genomes in the alignment, 2) by being added as a new child of an

existing ancestral genome in the alignment, or 3) by splitting a branch in the existing alignment,

creating a new internal node and two new branches (Figure A.1). Cactus allows adding a new

genome in any of these ways, though the details differ; see Section 2.5.2. Assemblies can be

replaced with new versions by simply deleting them and adding the new assembly in as a leaf.

Adding multiple genomes is possible, either iteratively or (if the new genomes are monophyletic)

by aligning together the new genomes and adding in the ancestral clade root.We tested the effect

of adding a new genome to an existing alignment using the same set of simulated catarrhine

genomes as in Section 2.3.2. To replicate the use-case of an end-user wanting to add a genome
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Guide tree Jarvis Prum Consensus Permuted

Jarvis 1
Prum 0.9867 1
Consensus 0.9882 0.9883 1
Permuted 0.9843 0.9822 0.9836 1

Table 2.2: Comparison of alignment similarity between four alignments of the same 48 avian
genomes with different guide trees. Similarity between each pair of alignments is represented by
the F1 score (harmonic mean of precision and recall) of aligned-pair relationships in the two
alignments.

to a previously-created alignment, we generated an alignment holding out one of the 20 genomes

(the crab-eating macaque), and added that genome back into the alignment by both splitting an

existing branch (resulting in the same topology as a full alignment would), and by adding the

macaque as a new child of an existing ancestor (creating a trifurcation which did not exist in the

original tree). For details of this process, see Section A.0.2. Both methods resulted in alignments

that had accuracy nearly identical to the full alignment that included the macaque from the start:

both addition methods as well as the full alignment achieved an F1 score of 0.926 (Table 2.1).

2.3.4 Effect of the guide tree

Since Cactus uses an input guide tree to decompose the alignment problem, the guide

tree can potentially impact the resulting alignment. This could be problematic when the exact

species tree relating the input set of genomes is unknown or controversial. However, Cactus aims

to reduce any effect of the guide tree by including a great deal of outgroup information, including

multiple outgroups when possible. To quantify the effect of the guide tree on a large alignment

with an uncertain species tree, we created four alignments of a set of 48 avian species, which we

subsetted down to a single chromosome (Chromosome 1). The avian species tree is somewhat
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debated, with many different plausible hypotheses [55, 103], making birds an excellent test case

with no single clearly correct guide tree. We aligned these birds using four different guide trees:

two trees that represent two different hypotheses about the avian species tree [55, 103], one

consensus tree between the former two trees, and one tree that was randomly permuted from

the Jarvis et al. tree [55] (see Section A.0.3 for details on the alignments and Figure A.2 for a

visualization of the four guide trees). The four alignments were highly similar, with an average

of 98.5% of aligned pairs exactly identical between any two different alignments: detailed results

are shown in Table 2.2.

2.3.5 Timing duplication events

Users of a genome alignment are almost always interested in orthology, rather than

homology, between a set of sequences. For example, when comparing human and chimpanzee

KZNF genes, providing an alignment from each gene to the over-400 [51] homologous KZNF

genes in the other genome is nigh-useless; the user is likely interested in only the orthologous

copy or copies (in the case of a lineage-specific duplication) in the other genome. For this reason,

Cactus alignments are capable of representing complex orthology/paralogy relationships, with

an ability to display the alignment(s) labeled as orthologous, but also the option for a user to

request alignments to paralogs at a customizable coalescence-time threshold. This is achieved by

implicitly producing a gene tree as the alignment is built, albeit with some restrictions imposed by

the output HAL [49] format, namely that a duplication event is represented by multiple regions

in the child(ren) aligned to a single region in the parent species. This forbids the representation

of gene-tree-species-tree discordance as would occur in incomplete lineage-sorting or horizontal
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transfer, as well as the exact ordering of multiple duplication events along a single branch. The

restricted problem we solve at each subproblem step is that each block should represent all regions

orthologous to a single region of the ancestral sequence, possibly multiple per species; we make

no attempt to fully resolve the gene tree when multiple duplications take place along a single

branch. However, this still requires resolving the timing of all duplication events: duplicated

sequences whose coalescence precedes the speciation event represented in the subproblem

should be split, while those following the speciation event should be kept together.Because it is

impractical to generate maximum-likelihood trees for every block in the subproblem, Cactus

relies on heuristically filtering alignments to remove paralogs before building its cactus graph.

For this we developed two heuristics: a filter based on similarity to outgroup sequence, which

was used in the many projects which used the beta versions of progressive Cactus, and (more

recently) a method of pre-filtering alignments that only allows any given base to contribute

one “best” alignment in most cases (described in Section 2.5.1.4). Of the two methods, the

newer best-hit filtering removes many more likely-paralogous alignments, especially to closely-

related genomes, while leaving approximately the same amount of sequence covered by a single

homology. For example, in two comparison alignments of the same 12 genomes, one using the

best-hit filtering and one using the outgroup filtering, the amount of human sequence mapping to

two or more places in the chimpanzee genome was reduced from 6.1% to 2.6%, while the total

amount of human covered by chimpanzee actually increased despite the removed homologies

(see Figure 2.3A,B for an example visualization and Figure 2.3C for aggregate statistics; see

Section A.0.4.1 for details on the alignments).To confirm that these improvements were likely

caused by removal of paralogous rather than orthologous alignments, we compared phylogenetic
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trees implicit in the columns of HAL alignments to independently re-estimated approximately-

ML trees produced by FastTree [102] for the same regions Section A.0.4.3. Since HAL does

not produce a fully binarized history of duplication events, we compared the species assigned to

the most recent common ancestor (MRCA) of randomly selected pairs of sites from genomes

containing a duplication within the column.If the species assigned to the MRCA in the HAL tree

is a descendant of the species within the reconciled ML tree, that implies that there are paralogs

represented as orthologs within the HAL tree (since a duplication event must have been resolved

too early). Similarly, if the MRCA species within the HAL tree is an ancestor of that within the

reconciled ML tree, a duplication event must have been resolved too late in the HAL, implying

additional false loss / deletion events.The number of paralogous alignments (represented by

the coalescence time between duplicated sequences being too “early” in the HAL tree relative

to the ML tree) in the alignment of the 12 boreoeutherian genomes was clearly reduced (46%

in the outgroup filtering vs 26% in the best-hit filtering) (Figure 2.3D).We separately ran the

Comparative Annotation Toolkit (CAT) [37] on identical chimpanzee and gorilla assemblies in

two alignments using the outgroup and best-hit filtering methods (Section A.0.4.2). Not only

was CAT less likely to identify a human gene in multiple chimp loci using the best-hit filtering

(e.g. 6.5% vs. 9.8% multiple-mappings across all genes in chimp, and 5.9% vs. 13.8% for

the recently-duplicated KRAB zinc-finger gene family) (Figure 2.3E), but as a result orthologs

for 104 more human genes were identified in the output gene set for chimp (182 in gorilla)

(Table A.3). This is likely because tens of thousands fewer paralogous transcripts were filtered

out in the initial filtering phase of CAT (Table A.2), reducing confusion about which transcript

projection to put into the gene set.

35



Scale
chr19:

5 kb Human
52,335,000

chr19

chr7

chr19

All Genes KZNF Genes

Chimp Gorilla Chimp Gorilla

0

5

10

15

20

Species

%
 o

f h
um

an
 g

en
es

 m
ap

pi
ng

 m
or

e 
th

an
 o

nc
e

Outgroup filter

Best−hit filter

6.1

90.5

2.6

90.6

5.5

81.9

3.6

82.8

3.1

48.5

2.7

48.7

1.3

47.7

1.0

47.8

2.1

43.5

1.8

43.1

1.0

24.2

0.9

24.3

Chimp Rhesus Cat Dog Tree shrew Kangaroo rat

Outg
rou

p f
ilte

r

Bes
t−h

it f
ilte

r

Outg
rou

p f
ilte

r

Bes
t−h

it f
ilte

r

Outg
rou

p f
ilte

r

Bes
t−h

it f
ilte

r

Outg
rou

p f
ilte

r

Bes
t−h

it f
ilte

r

Outg
rou

p f
ilte

r

Bes
t−h

it f
ilte

r

Outg
rou

p f
ilte

r

Bes
t−h

it f
ilte

r
0

25

50

75

100

Alignment

Pe
rc

en
t c

ov
er

ag
e 

on
 H

um
an

Coverage type
Coverage
Multiple mappings

A

B

C

D E

0.00

0.25

0.50

0.75

1.00

Outgroup filter Best−hit filter
Alignment

Fr
ac

tio
n

Coalescence time
vs. ML gene tree

Late
Early
Identical

Figure 2.3: Results from the improved paralog-filtering method. A/B: A sample snake track [89]
within a recently duplicated region before (A) and after (B) the filtering change. Nucleotide
subsitutions are shown as red bars, and insertions are shown as thin orange bars. C: Coverage
results from two alignments of identical assemblies using the outgroup and best-hit filtering
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2.3.6 600-way amniote alignment

To demonstrate this new version of Cactus we present results from an alignment of

605 amniote genomes, relating in a reference-free manner a total of over 1 trillion bases of

DNA across hundreds of millions of years of genome evolution. The amniote-wide alignment

combines two smaller alignments: one created for the 200 Mammals project [43], representing

242 placental mammals, and one for the Bird 10K project [122], which relates 363 avians.

The overall topology is shown in Figure 2.4A. To our knowledge this represents the largest

whole-genome alignment yet created. Table 2.3 contains aggregate statistics on this alignment,

which was computed using the Amazon Web Services (AWS) cloud infrastructure (for details

on the construction, see Section A.0.6).Coverage within the 600-way alignment unsurprisingly

closely tracks phylogenetic distance and genome size, with e.g. a median coverage on human of

2.3 Gb from Euarchonta species, vs. 1.2 Gb from Laurasiatheria species and 1.0 Gb from Glires

species (Figure 2.4B,C). The ancestral reconstructions within the 600-way alignment are highly

complete, especially for conserved sequence: 86% of human coding bases are represented in

our reconstruction of the ancestor of all placental mammals, while 95% of chicken coding bases

are represented in our reconstruction of the common ancestor of avians (Figure 2.4D,E). The

ancestral assemblies consistently contain a relatively higher proportion of avian than mammal

sequence even across similar phylogenetic distance, reflecting a much more conservative mode

of genome evolution in avians as well as the lower repeat content and denser gene content of

avian genomes [123].The reference-free nature of Cactus alignments enables examining genome

evolution along all branches equally well, rather than being restricted to sequence present in
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one reference genome. In addition, the ancestral reconstructions implicitly provide a history

of substitution, indel, and rearrangement events. Though this history is by its nature only a

hypothetical reconstruction of the true history of genome evolution along the tree, it is by and

large accurate enough to be useful. To demonstrate the utility of the indel history, we examined

rates of small (≤ 20 bp) insertion and deletion events in the 600-way alignment. As expected

given previous studies [19, 45], the rate of small indels in any given branch was correlated with

the rate of nucleotide substitution (an R2 of 0.49 for insertions and 0.59 for deletions), though

remained much lower (1.3% of the substitution rate for insertions, and 1.7% of the substitution

rate for deletions) (Figure 2.5A).The ancestral assemblies also represent even difficult-to-align

regions such as transposable elements. We ran RepeatMasker [112] on several human ancestors,

focusing on the recently-emerged L1PA6 family of L1 retrotransposons. When ascending the

primate tree, approaching the origin of modern L1PA6 elements above the human-rhesus ancestor,

L1PA6 elements appear increasingly similar to their consensus sequence (Figure 2.5B).The Bird

10K species were also separately aligned using MULTIZ [11] using the chicken genome as the

reference, allowing us to make a comparison between the two resulting alignments. Cactus

aligned more total bases to chicken than MULTIZ (an average of 69.4% of the chicken genome

compared to an average of 64.9%, for an average increase of 47 Mb). Since, unlike Cactus,

MULTIZ is reference-biased, the difference is more stark when looking at the number of bases

aligned to a genome not used as the MULTIZ reference (an average of 79% of the zebra finch

covered vs. 49.2%, for an average increase of 367Mb: see Figure 2.6).
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Figure 2.5: A: Rates of micro-insertions and -deletions (micro-indels) along each branch within
the 600-way, compared to conventional substitutions/site branch length. B: Violin plot showing
the increasing similarity to consensus of L1PA6 elements within reconstructed ancestral genomes
along the path to the emergence of modern L1PA6 elements (in the human-rhesus ancestor).

Alignment # of genomes Total bases Instance-hours Core-hours Common ancestor size
200 Mammals 242 669 billion 68,166 1.9 million 1.73 Gb
Bird 10K 363 400 billion 5,302 0.2 million 1.13 Gb
Combined 605 1.07 trillion 73,692 2.1 million 181 Mb

Table 2.3: Aggregate statistics for the 600-way alignment. The increase in computational work
for the mammal alignment over the bird alignment is largely caused by the increase in the
pairwise alignment phase runtime, because it scales quadratically with the size of the genomes
being aligned.
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Figure 2.6: A comparison of coverage in the Cactus avian alignment compared to a chicken-
referenced MULTIZ [11] alignment of the same genomes. Coverage of both alignments on
chicken and zebra finch is shown to illustrate the effects of reference-bias on the completeness of
the MULTIZ alignment.
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2.4 Discussion

A few ambitious comparative genomics projects are already producing assemblies at

the scale of tens to hundreds of species, and we anticipate that this scale of data will become

much more common in the coming years. However, without a genome alignment it is impossible

to relate these assemblies, and making an accurate genome alignment that large is difficult. We

have demonstrated that Cactus can create alignments of hundreds of large genomes efficiently

by producing an alignment relating over a trillion bases total. With this new development, we

not only enable high-quality genome alignments for these projects, but also hope to set the

stage for analysis of thousands to tens-of-thousands of genomes in the near future.Furthermore,

as long-read technologies become cheaper and more widely accessible, assembly quality has

been rising. The age of having only a few high-quality vertebrate assemblies, like human or

mouse, is at its end. As more assemblies converge on the gold-standard, “reference” level

of quality displayed by GRCh38 and GRCm38, a reference-free genome alignment becomes

increasingly useful. A reference-biased alignment forces the user to view genome evolution

through the lens of a single, distant reference. As the average assembly becomes ever more

complete and accurate, this missed opportunity to analyze regions not present in the reference

grows even worse as more data is ignored and does not contribute to the alignment. For this

reason, we provide a reference-free alignment, allowing analysis of genome evolution throughout

the entire tree rather than in comparison to one anointed reference.Cactus is also useful for

comparison between assemblies of the same species, not just comparison between species. Often

a sequencing effort will produce multiple de novo assemblies from different individuals, or
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diploid assemblies from a single individual. Alignments of these assemblies are essential for

many analyses, e.g. annotation of de novo assemblies [37]. Cactus is easily capable of capturing

even the most complex structural variation, such as copy number variation, between these

assemblies.Producing a genome alignment has usually been an arcane task, where parameters

used to produce, chain, or filter the input local alignments can have an under-appreciated effect

on the result. We provide Cactus as an integrated pipeline that can be used across many different

compute environments, but especially thrives on modern cloud environments. It intelligently

adjusts alignment parameters to maximize efficiency and accuracy depending on evolutionary

distance. While genome alignment is a computationally intensive task, we have broken up the

problem into small pieces that can work in heterogeneous clusters, playing to the advantages of

both cheap CPU-rich machines and more expensive memory-rich machines.We have used Cactus

to produce a 600-way alignment, which is, to our knowledge, the largest-yet genome alignment

of vertebrates. This alignment is already proving useful for further downstream analysis. The

Bird 10K [122] and 200 Mammals [43] consortia plan to use the alignment to analyze selection

at unprecedented detail across avians and mammals, respectively.In the quest to make Cactus

more efficient, optimizing the local alignment phase would offer the most return because the

computational cost of the alignment is dominated by the generation of local alignments. Some

less-sensitive local alignment programs are naturally more efficient than LASTZ, which is

tuned for high sensitivity and long evolutionary distances. Making the local alignment phase

a “pluggable” module, in which methods of generating the local alignments, or even the initial

sequence graph, could be easily swapped out would be a fruitful avenue for experimentation.

Cactus could potentially transition between using a less sensitive local aligner for closely related
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sequence and a more sensitive aligner across long evolutionary distance, much in the same

way that we change alignment parameters based on evolutionary distance today.As alignments

become larger and more expensive to compute, it becomes much more important to be able to

update them (by e.g. adding a new genome or updating an assembly) without recomputing the

entire alignment. Cactus’s progressive alignment framework, combined with special functionality

in the HAL toolkit [49] makes it possible to make these changes very efficiently: costing only a

single subproblem’s worth of computation time, usually about 120 CPU days. However, there is

currently an appreciable amount of manual work involved in the process of adding, removing, or

updating an assembly within an existing alignment. Making this simpler and more automated

would be an interesting future direction, one that would potentially allow a very large alignment

resource to be used and updated for years, with collaborators adding in their genomes of interest

cost-effectively.

2.5 Methods

2.5.1 Cactus

The Cactus pipeline is available at https://github.com/ComparativeGenomicsToolkit/

cactus. The exact version of Cactus used for each of the analyses described above varies; the

commit used in each analysis are available in the supplementary material.
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2.5.1.1 Preliminary repeat-masking

Cactus requires input genomes to be soft-masked, but often repetitive sequence goes

unmasked due to poor masking or incomplete repeat libraries for newly-sequenced species. This

can negatively affect alignment runtimes (as alignments need to be enumerated to and from all

copies of a repetitive sequence) and impact quality. For this reason, we mask overabundant

sequence before alignment, using a strategy not based on alignment to repeat consensus libraries,

but on over-representation of alignments. We first divide each genome into small, mutually

overlapping chunks. For each chunk, we align it to itself and a configurable amount of other

randomly sampled chunks (currently 20% of the total pool). To avoid combinatorial explosion

due to unmasked repetitive sequence, we use a special mode of LASTZ [48] which stops

exploring alignments from any region early if a maximum depth is reached. We then soft-mask

any region covered by more than a certain configurable number of these alignments (currently

set to 50).

2.5.1.2 Local alignment and outgroup selection

The alignment process for each subproblem begins with a series of local alignments

generated using LASTZ [48]. The local alignments fall into two sets: a set of all-against-all

alignments among the ingroup genomes, and a set of alignments from ingroup genomes to

outgroup genomes.We have found outgroup selection to be absolutely crucial in creating an

acceptable ancestral reconstruction: any missing data or misassembly in the outgroup that causes

a true deletion in one of the ingroups to be misinterpreted as an insertion in others will mean that

the ancestor contains less sequence than it ought to. This missing sequence in turn impacts the
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alignment between the entire subtree below the reconstructed ancestor and the entire supertree

above it: the missing sequence will never be aligned between the subtree and supertree. To avoid

this we attempt to use multiple outgroup genomes in each subproblem (3 by default). Naively

aligning each ingroup against multiple outgroups would significantly increase the computation

time; to avoid this we note that in general any region already containing an outgroup alignment

benefits very little from aligning an additional outgroup. Therefore, we iteratively align each

ingroup against one outgroup at a time, pruning away any ingroup sequence already covered by

the previous outgroup alignments. In this way the computational cost is reduced to be far less

than naively aligning against the entire outgroup set, while still retaining nearly all of the benefit.

In addition, we allow the user to designate certain genomes in the input as being of particularly

high quality; these are chosen as outgroups if possible to avoid problems with missing data in

regions like mitochondrial or sex chromosomes that are often missing from some assemblies but

not others.

2.5.1.3 Ancestral genome reconstruction

The core of what makes the progressive alignment algorithm possible is the ancestral

reconstruction generated in each subproblem. This assembly serves as a summary of each

subproblem alignment; the alignable sequence between the genomes in the subtree below the

ancestor, as well as that alignable between the subtree and the supertree above the ancestor,

is all present in the ancestral reconstruction. The ancestral sequence contains a base for each

column in all blocks which contain an alignment between two ingroups and/or an ingroup and an

outgroup — any alignment purely between outgroups is discarded. The order and orientation of
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the blocks relative to one another is chosen via a previously published algorithm for ordering

a pangenome [90].The identity of the ancestral bases is inferred via maximum-likelihood on a

Jukes-Cantor model [58] of evolution using Felsenstein’s pruning algorithm [34] on the subtree

of the guide tree induced by the genomes in the subproblem. These base-calls are generated as

the alignment is being made, so they necessarily take only a part of the alignment information

into account and may be different than the ideal base-calls would be if taking into account

information across the entire alignment. However, we provide a tool, ancestorsML, distributed

as part of the HAL toolkit [49], that re-estimates ancestral base-calls after completion of the

alignment if desired.

2.5.1.4 Paralogy resolution

Previous beta versions of progressive Cactus relied on an outgroup-based heuristic

to resolve duplication timing. This heuristic, which we term “single-copy outgroup filtering”,

separated collections of ingroup regions based on their similarity to outgroup regions, ensuring

that at most one outgroup region could be present per block: the one most similar to the block’s

ingroup sequences. Assuming that the outgroup contains the proper number of copies and each

ingroup copy is indeed most similar to an orthologous outgroup copy, this should function

correctly. However, this method is very sensitive to incomplete outgroup assemblies (containing

an incorrect number of copies of a duplicated region) or variation in similarity between closely

related paralogs causing assignment to the wrong copy. As seen in Figure 2.3, this filtering

method tended to resolve duplications far too early, often causing paralogs to be called as

orthologs (for example, implicitly labeling 6.1% of human sequence as duplicated along the
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chimpanzee lineage, which is certainly an overestimate).To remedy this problem, we developed

an improved duplication-timing method, which we termed “best-hit filtering” in the earlier text.

The method assigns, for every base in every input genome, a single primary pairwise alignment

(the highest-scoring alignment involving that base, if it has been aligned) and a set of secondary

pairwise alignments (all others involving that base). All primary alignments are added to the

initial graph unconditionally, as they represent the most likely ortholog relationship (or in the

case of multiple orthology, likely a random ortholog) (Figure A.5). The set of primary alignments

represents a conservative set of alignment relationships that should include nearly no alignments

to ancient paralogs. However, in regions that have undergone many rounds of lineage-specific

duplications (which should all be aligned together in the restricted duplication-timing problem

we describe above), the set of primary alignments will often by chance not align all copies

together.For this reason, we also allow some of the secondary alignments into the initial graph,

after adding the primaries, though with additional restrictions because the secondary alignments

will inevitably contain some alignments to distant paralogs. We only allow in those secondary

alignments that would not merge two existing blocks that both contain sequences from multiple

species — this allows lineage-specific duplications to correctly land in the same block, while

avoiding merging blocks from likely-paralogous alignments.

2.5.1.5 Removing recoverable chains

Due to the insensitive and approximate nature of the input local alignments, homologies

are often missed in the input to the CAF algorithm. Alignment blocks that are “incomplete”, i.e.

contain some true homologies but miss others, can cause issues for the CAF algorithm: if these
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incomplete blocks make it into the output cactus graph, the missing homologies can never be

recovered by the BAR algorithm. This is because to preserve the structure of the cactus graph,

BAR cannot modify existing alignment blocks, only add new ones. To remedy this issue, we

developed a method to remove likely-incomplete blocks as part of the algorithm, which we term

“removing recoverable chains”. In short, this method runs as a post-processing step to the original

CAF algorithm, removing blocks which contain only homologies that could recovered by the

BAR algorithm extending from neighboring blocks. Adding this post-filtering step noticeably

increases coverage, especially for distant genomes in large trees (Figure A.4). For further detail

on the process, see Section A.0.8.

2.5.2 Adding a new genome to an existing alignment

There are three possible ways to add a genome into an existing alignment, depending

on the desired phylogenetic position of the genome. Adding a genome as an outgroup is

straightforward, since it follows the normal progressive process: the root of the existing alignment

and the new genome can be aligned together into a supertree alignment, which the existing

subtree alignment can be appended to. A genome can be added as a new child of an existing

internal node by simply aligning the new child, its siblings, and its parent together, without

inferring a new ancestral genome. Adding a genome by splitting an existing branch is the least

straightforward, but is key if the topology of the alignment or the accuracy of the ancestral

genomes is important. To add a genome to an existing alignment, two subproblems are required:

one relating the new genome and its new sibling in the target tree, constructing the ancestral

genome that will split the existing branch, and one relating this new ancestral genome, its sibling,
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and its parent.After addition of a new genome as an ingroup (by adding it to a node or a branch),

at most a single ancestral sequence is re-inferred. This prevents any information from the new

genome from propagating to the rest of the tree. While this saves significant effort in recomputing

other parts of the alignment, it also means that, occasionally, rare stretches of sequence in a

newly added genome would not be properly aligned to distant outgroups because they were

deleted or missing in the new genome’s close relatives. Re-inferring the ancestral genomes on

the path from newly added genomes to the root should address this issue if it appears.
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Chapter 3

Applications of Cactus alignments

3.1 Introduction

In this chapter I briefly survey various comparative genomics projects I was involved

in. All used Cactus in some form, though many of the earlier projects used a much earlier version

with worse alignment quality. I present these collaborations not in chronological order, but in

descending order of importance: beginning with those that had the most impact and/or where I

had the most contribution, and finishing with those where I had relatively less of a contribution

to the main thrust of the project. I omit many of those where my main contribution was running

the alignment and possibly offering advice on further analysis.

3.2 Reconstruction of the archosaur genome

One of the first applications of the alpha version of progressive Cactus was in 2014,

for the analysis of three new crocodilian assemblies (of Alligator mississippiensis, Gavialis
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gangeticus, and Crocodylus porosus). This was done in collaboration with Phase 1 of the Bird

10K project, and published in Science as a package with those papers [45]. My contribution

entailed the construction of a combined crocodilian and avian alignment as well as subsequent

analysis. I ran the entirety of the alignment and downstream analysis (described below), as well

as creating the tools to analyze micro-indel rates, synteny-break rates, and those to refine and

evaluate the ancestral reconstruction. I generated two of the six figures in the main text; however,

Dent Earl edited the figure panels and drastically improved their readability and style. Other

aspects of the analysis, not downstream of the alignment, were performed by Ed Green, Ed

Braun, and others, and are not described here. I briefly summarize my analyses below, but much

more detail is available in the appendix (Section B).

The main result of the paper was to show that the crocodilian genome evolved at

a much slower rate than their sibling archosaurs (birds). This was shown through several

sources of evidence of mutation rate (ultraconserved elements (UCE), fourfold degenerate

(4D) sites, gene synteny rates, and micro-indel rates). I contributed the analysis of 4D sites,

gene synteny, and micro-indels, all of which relied on the alignment. All sources of evidence

showed that crocodilian genomes mutated far more slowly than birds, especially in terms of

genome rearrangements, even when normalizing by branch length measured in the traditional

substitutions/site (Figure 3.1), which has been replicated in later work [107].

A secondary result of the paper was the detailed, base-level reconstruction of the

archosaur genome (the most recent common ancestor of birds and crocodilians). The reconstruc-

tion was derived from the Cactus alignment and improved using a more accurate base-caller

developed for this paper; results showing the accuracy of the base-calls as well as the preservation
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Figure 3.1: (A) Rates of substitution at 4D sites, transposable elements (TEs), and, for com-
parison, UCE-anchored loci. Scale bar denotes substitutions per site. (B) Indel rate versus
4D substitutions per site for each extant lineage. (C) Gene synteny breakage rate versus 4D
substitutions per site, each measured with respect to either alligator or chicken.
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of order-and-orientation relative to leaf genomes are shown in Figure 3.2. The improved effec-

tiveness of recent versions of Cactus compared to 2014 is particularly obvious when considering

this ancestor: while this paper described a 584 Mb assembly, newer alignments easily reach a

850 Mb reconstruction of the archosaur.

3.3 200 Mammals Project

After the progressive extensions to Cactus were proven to be highly effective for

enabling clade genomics work, examining families of perhaps a dozen closely related genomes, I

focused my work on much larger projects. I joined both the Bird 10K and 200 Mammals project,

both of which analyze the largest-ever collection of genomes in their respective clades, and have

been involved in the day-to-day analysis work of both for many years. Below, I outline the

purpose of the 200 Mammals project and my contribution.

The 29 Mammals project [78], published in 2011, aimed to sequence and assemble

new genomes from 20 previously unsequenced mammalian species, to bring the total number

of mammalian genomes then available to 29. The main purpose of the project was to then use

these 29 genomes to create a high-resolution annotation of conserved elements in the human

genome. Because of the limited power available when using only 29 genomes to detect selection,

these annotations were generated in 12-bp windows. The main analysis in this paper used a

reference-biased MultiZ [11] alignment to detect constrained elements using SiPhy [41]. The

project was able to detect 4.2% of the genome as being under negative selection [78]. Because

a reference-biased alignment was used, the constrained elements were only produced for the
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human genome and not for any of the other 28 species present in the alignment.

The 200 Mammals project (200M) is a new effort to produce even-higher-resolution

conserved-element annotations for the human genome as well as other eutherian mammals. Since

the power to detect constrained elements is effectively proportional to the total branch length

within the tree relating the aligned species [78], the way to achieve this goal is to sequence as

many previously unsequenced species as possible, especially concentrating on those in relatively

sparsely-sequenced portions of the tree. By sequencing and assembling 131 new placental

mammal genomes, the project has brought the total number of sequenced eutherians well above

200, which should provide enough statistical power to enable 1bp-resolution constrained element

annotations [78] in at least some regions of the genome. These new assemblies are all produced

using DISCOVAR de novo [1] using a single 30X coverage Illumina HiSeq library per species,

without further scaffolding. This method requires only a very small amount of DNA and is fairly

inexpensive, allowing generation of over a hundred new assemblies at very low cost, but the

resulting assemblies are highly fragmented, running from anywhere between 5kb and 350kb N50

(a median of 44.8 kb), with no scaffolding applied after the fact. Though this puts most of these

new assemblies far below the median contiguity level for eutherian assemblies on Genbank (3.4

Mb as of June 2019), the size of the contigs does not impact the analysis of constrained elements

much: as long as any given contig is long enough to be alignable and establish orthology, the

fragmentation of the assembly matters surprisingly little. Though conserved sequence is less

likely to be affected by reference-bias than unconstrained sequence, a reference-free alignment

will still produce much better conservation annotations on non-reference species. For example,

though human is a common reference with a very complete assembly, there has been a surprising
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amount of conserved sequence lost even just on the human branch [84].

The vast majority of the project’s analysis relies on cross-species comparison and

therefore requires a genome alignment. Moreover, the project aims to also conduct analyses

(such as conserved-element annotations) using multiple non-human reference genomes, so a

reference-free alignment is also necessary for consistency of the alignment when viewed from

different genomes. These reasons led the project to choose to use Cactus to produce the multiple

alignment that will be used for the comparative aspects of the project.

The 200M project has not yet published its analysis paper(s), though I have contributed

the 242-mammal Cactus alignment used for nearly all cross-species analysis as well as the

neutral models used for all conservation and acceleration analysis. I also contributed to aspects

of its marker paper which has been submitted to Nature and is currently under review [43]. Most

importantly, I also contributed an analysis of single-base-pair conserved elements, one of the

main goals of the project, which I describe below. Though the project’s embargo on releasing

cross-species results ahead of publication prevents me from presenting this analysis in the Cactus

paper or other publications until the 200M paper is published, they have kindly allowed the

results to be previewed in this thesis. The results are produced using the exact same pipeline

used for the Bird 10K conservation analysis, described in Section 4.5. That analysis will be

submitted to Nature soon and has similar findings, modulo obvious differences due to genome

size and phylogenetic position; for this reason, I only briefly summarize the main points and key

figures from the 200M work.

The 200M alignment is one of the largest genome alignments ever created, and

therefore is in a unique position to supply information about selection within placental mammals.
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I generated conservation and acceleration scores across all alignment columns projected onto

the human genome using phyloP [101], and transformed them into single-base-pair conserved

and accelerated elements at an expected false discovery rate (FDR) of 5% [10]. The resulting

conserved elements were able to cover 4.3% of the human genome at a single-base-pair resolution

— similar to the 4.2% covered by the 29 Mammals data, though with an order-of-magnitude more

resolution provided by the (nearly) order-of-magnitude larger number of species (Figure 3.3). For

a comparison of what the 200M alignment offers compared to existing best-in-class resources, I

ran the same pipeline on the 100-way conservation scores offered by the UCSC browser [46]. The

results for the 100-way were far more conservative ( 1.1% covered by 1-bp conserved elements),

demonstrating the need for truly large genome alignments. As expected, functional regions

were highly likely to contain conserved columns relative to the genome as a whole (Figure 3.4),

though notably the proportion of non-coding regions covered by conserved elements is much

larger in the 200M data than in the 100-way. This is likely due to the fact that the additional

genomes from the 200M alignment increase the power to detect weak selection (Figure 3.5).

3.4 Mouse Genomes Project

I contributed to the Mouse Genomes Project, a project that sequenced and analyzed

16 laboratory mouse strains [77], producing several alignments and evaluating assembly quality

as the project progressed and refined its assembly methods. The results from these alignments

informed assembly decisions over the years of 2014 and 2015. I continued to produce alignments

for the group even as my day-to-day involvement with the project decreased, resulting in the
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100-way alignment.
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final alignment described in the manuscript. I also created (with Ian Fiddes) the assembly hub

produced as a result of the project and available on the UCSC Genome Browser [46].

3.5 Shasta / T2T

Shasta is a new method for assembling genomes using nanopore data. The manuscript

describing Shasta is currently in preparation. I contributed to this project by aligning and

annotating (using CAT [37]) dozens of human assemblies from Shasta and competing assemblers.

These results indicate Shasta, especially post-polishing, is able to represent genic regions at an

accuracy better than, or at least competitive with, other long-read assemblers that take an order

of magnitude more runtime. My results also guided selection of parameters for MarginPolish, a
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polishing method released alongside Shasta.

I also aligned and annotated several iterations of a new CHM13 assembly being

developed by the Telomere to Telomere (T2T) consortium with the goal of creating at least one

assembly with end-to-end representation of every base in the human genome, even in centromeric,

telomeric, or otherwise highly repetitive regions. I contributed comparison to other CHM13

assemblies that will appear in the manuscript (in preparation).
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Chapter 4

Densely sampling genomes across the diversity

of birds increases power of comparative

genomics analyses

4.1 Preamble

The Bird 10K Project (B10K) [122] is an ambitious sequencing and analysis project

aiming to assemble all bird species within the next few years. The project is proceeding in

four major phases, each aimed at filling in a different one of the four major taxonomic ranks

within birds: one phase for sequencing at least one species within each order of birds, then one

phase for sequencing at least one within each family, then finally a genus phase and species

phase. Each phase will involve a roughly order-of-magnitude increase in scale from the previous,

putting B10K at the forefront of large-scale comparative genomics. This massive scale will offer

unprecedented insights into avian genome evolution.
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The first, ordinal phase sequenced 45 previously unsequenced avian species, bringing

the total number of avian assemblies available to 48. The group analyzed the resulting 48 avian

genomes and was massively successful, resulting in the release of dozens of papers revealing

details of avian evolution, including improving our understanding of the highly-controversial

avian species tree [55, 123]. The second, family phase is currently in progress. 237 species

were newly sequenced for this phase of the project, bringing the total number of species with

genomes available for analysis to 363 after including various assemblies from Genbank [65] or

those contributed from collaborators.

The remainder of this chapter is the text for the release of the assembly, annotation,

and alignment for the current phase of the Bird 10K project, which will be submitted to Nature

in the coming weeks. I am a co-first author on the paper along with Josefin Stiller, Yuan Deng,

and Shaohong Feng, and performed the entirety of the alignment and conservation analyses,

contributed the sections describing those analyses, as well as made significant edits to the rest of

the text of the paper. I have also further edited the current text of the paper to better fit into this

thesis.

4.2 Introduction

In an era of phylogenomics where large whole-genome sequencing projects are in-

creasingly populating the tree of life and characterizing genomic biodiversity [73, 66, 32], there

is high demand for establishing efficient comparative genomics workflows to deal with these

enormous and often heterogeneous datasets. Recent comparative phylogenomic efforts with
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relatively small-scale taxon sampling have demonstrated the immense biological insights that

can be obtained from comparative analysis of genomes [123, 55, 20, 78, 59]. However, sparse

sampling of a few species may confound phylogenetic inference [103] and can necessarily only

capture a fraction of the genomic diversity. Here, we report a significant step towards denser

representation of avian phylogenetic diversity by analyzing a total of 363 genomes from 92%

of bird families, including 268 newly sequenced genomes produced by family phase program

of the Bird 10,000 Genomes Project (B10K), making it the largest multi-species vertebrate

genome dataset to date. We show that a novel pipeline leveraging a reference-free whole-genome

aligner identifies orthologous regions in greater numbers and more consistently across species

than previously possible. The alignment also allows us to recognise genomic novelties specific

to particular bird lineages. This unprecedentedly dense phylogenomic sampling significantly

enhances the power to detect evolutionarily constrained positions down to individual base pairs,

resulting in a more-than-doubled estimate of the proportion of the avian genome conserved.

Our results demonstrate that increasing the diversity of genomes in comparative analyses can

unveil more shared and lineage-specific variation and can quantitatively improve the dissection

of genomic characteristics. In addition to the phylogenetic and comparative analyses of this

dataset underway by the B10K, we anticipate that these genomic resources will assist species

conservation and offer new perspectives on evolutionary processes in cross-species comparative

analyses.
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4.3 Genome release

For Phase II of the B10K (the “family phase”), we included a total of 363 species

representing 93% (218 of 236) of avian families. Samples were selected to broadly cover the

overall diversity of Aves and to subdivide the long branches (Figure 4.1). The current sampling

more than triples taxonomic span from 63 to 218 bird families, of which 155 families were

sequenced for the first time and 75 families have genomes available from multiple species.

Of the 18 missing families, eight were not represented because of poor-quality assemblies,

while 10 were lacking appropriate samples. We chose a short read sequencing strategy, which

has the important advantage of being applicable to most of museum specimens. This strategy

allowed us to sequence a broad variety of species, including old samples (the oldest collected in

1982), samples from all continents, and museum gems such as the Henderson Crake (Zapornia

atra), that occurs on a single Pacific island and of which we sequenced tissue of one of the

few vouchered specimens. We include 68 species that are listed in some category of concern

by the IUCN RedList of Threatened Species, including two Critically Endangered birds, the

Plains-wanderer (Pedionomus torquatus) and the Bali Myna (Leucopsar rothschildi), the latter

with less than 50 adults remaining in the wild.

A total of 268 genomes are newly released with 18.9 trillion base pairs (bp) of raw

data and 291 billion bp of assemblies for immediate use by the community. Of those, 236 were

species specifically chosen for the B10K (after filtering from initially 272 species). A total of 49

genomes were contributed to the B10K by individual research groups, of which 17 have already

been made available and the remaining 32 are newly released here. Together with 78 publicly
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available genomes, a final dataset of 363 species was constructed. These genomes have been

generated with a variety of methods (454/Sanger, Illumina, PacBio) and therefore show a range

of assembly contiguity. Most new genomes were sequenced to 35x-374x coverage, with 11%

having over 100x coverage and assembly qualities (average scaffold N50 = 2.25 Mb, contig

N50 = 45.32 kb) are comparable to previously published bird genomes . Genomic completeness

assessed by BUSCO [118] was high (average 95%), which shows that most genomes are well

suitable for comparative analysis.

Protein gene models across the 363 avian genomes were predicted using a homology-

based method with a uniform reference gene set including gene models from the chicken, zebra

finch, human and published transcriptome sequencing for some birds. This approach predicted

on average 15,464 protein coding genes, ranging from 9,909 in Neodrepanis coruscans to 19,174

in zebra finch. The mitochondrial genomes of 321 of 363 species were de novo assembled [25],

with 210 samples (65.42%) fully circularized and annotated [86], and 201 species (62.61%) had

the complete complement of 37 genes.

We constructed a whole-genome alignment of all 363 genomes using an updated

version of the reference-free aligner Cactus [95]. Unlike many other whole-genome aligners,

Cactus is in principle equally useful for all genomes, rather than being biased toward sequence

present in the reference genome. This gives Cactus two advantages: it can identify lineage-

specific insertions and deletions and it reconstructs ancestral sequences. It can also produce

more complete genome alignments, which were normally broken by the repeat elements in other

alignment methods. For instance, Cactus aligned 981 Mb (93.7%) of the chicken genome and

1.17 Gb (94.8%) of the zebra finch genome to at least one other species. The proportion is
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much greater for functional sequence: e.g. for chicken genes identified by BUSCO, 97.5% had

an alignment to turkey covering the majority of their bases (92.5% to ostrich). Compared to

a commonly used reference-based method MULTIZ (Blanchette et al. 2004), Cactus aligned

a similar proportion of coding regions (24.5 vs. 24.6 Mb of MULTIZ) but aligns 3% more of

intronic regions (275.3 vs. 267.0 Mb) and 4% more of intergenic regions (700.0 Mb vs. 670.8

Mb).

4.4 Increased power to detect orthologs using a whole-genome align-

ment

High quality homology is of crucial importance for comparative studies, be it for

uncovering phylogenetic relationships or for studying the genomic landscape of evolutionary

change [114]. Orthology is straightforward when there is a one-to-one relationship between the

genes of compared species that can be shown by reciprocal best hits (RBH). In Phase I of the

project, orthologs were identified with a method based on RBH [123]. However, duplication

events can lead to more complex patterns of one-to-many or many-to-many orthologs [68]. In

such cases, sequence similarity may not distinguish the original and derived copies [91]. Copies

are however often embedded into different genomic contexts, which makes positional information

valuable to obtain the pairwise relationship of one-to-many/many-to-many orthologs [47, 40, 24].

Based on these ideas, we have developed a new pipeline to identify orthologs that first locates

potential homologous regions on the Cactus whole-genome alignment and then refines ortholog

relationships by incorporating conserved gene synteny and sequence similarity. We identified
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Figure 4.1: Shown are 10,135 bird species on the mega-phylogeny that synthesizes taxonomic
and phylogenetic information [13], of which 363 species (purple highlights) now have reference
genomes available. This corresponds to 92% of all bird families now having genomes available.
Drawings illustrate select examples of species with available genomes. The grey half circle
indicates the ultra-diverse Passeriformes with 6,063 species.
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16,179 orthologs, of which 15,807 remained after removing the orthologs that were absent in

99% of the species (>359 species). The Cactus-based method consistently identified on average

8% more orthologs (n=1066) than the Phase I method in each species (Figure 4.2), and identified

genes more consistently across all species (occupancy: 82% vs. 78%). When setting all other

conditions equal, we also found that sampling more birds together with the Cactus-based method

increased the number of detected orthologous proteins by 12% compared to the earlier 48 birds

ortholog set [123]. Based on the family-phase orthologs, we obtained 129.33 Mb conserved

orthologous introns in total, 1̃2% of an average avian genome, which was 6.7 times higher than

the intronic regions identified in the earlier 48 birds.

The use of the Cactus alignment not only ensures the identification of the classical one-

to-one orthologs, but also improves the power to distinguish cases of co-orthologs (Figure 4.3).

As transcriptional factors, FoxP subfamily proteins have been proved to be the key elements for

vocal learning in birds [85]. Thus, distinguishing their co-orthology relationship could help us

to further analyze their evolutionary roles in the genetics of language, especially the function

of FoxP3 in passerines. Another advantage of Cactus alignments is that we could obtain the

ancestral sequences at each node in the phylogeny, which enables the detection of both shared

ancestry and novel specific sequences of any lineage. Thus, we introduced a pipeline to obtain

the avian pan-genome, a collection of the shared and lineage-specific diversity at the root of a set

of bird species. We executed the pipeline on Passeriformes (173 genomes) and identified 5,958

Passeriformes-specific genes, which have orthologs only within Passeriformes (though losses are

possible) and are inferred in the reconstructed ancestral “genome” of the Most Recent Common

Ancestor (MRCA) of Passeriformes. Some Passeriformes-specific genes were retained in a large
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number of species. Among the top, we found by Swissport annotation two feather keratin related

genes (retained in 100 and 104 of 173 Passeriformes, respectively) and three nuclear encoded

mitochondrial genes (retained in 131, 115 and 105 of 173 Passeriformes, respectively). Gene

DNAJC15, one of the top candidates, has many copies in bird genomes and is thought to be

associated with the biogenesis of mitochondria [109] and fertilization as a member of heat shock

proteins [121]. With the Cactus alignment, we first located a unique copy in Passeriformes

lineage at the position shown in Figure 4.4.

4.5 Single-base-pair resolution annotations of purifying selection

The diversity of species represented in the 363-species Cactus alignment also gives

much more statistical power to detect weak conservation. A slower rate of mutation than expected

in a given region between a set of species is often an indicator of purifying selection [27]. For

this reason, annotations of conserved elements are useful for investigating function within the

genome [84]. We created conservation scores using phyloP [101] for each basepair of the

363-species Cactus alignment on the chicken genome. We compared these results against phyloP

scores we derived from two similar alignments: a 77-way alignment including avians as well

as other vertebrate outgroups (the largest publicly available avian alignment, obtained from the

UCSC Genome Browser [46]) and a 53-way alignment containing only avians (a subset of the

77-way). We tailored our scoring method to account for a key factor in avian genome evolution:

the difference between the rates of evolution in micro-, macro-, and sex chromosomes. We

scaled our model of the neutral rate of mutation (which is used to evaluate the degree of the
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Figure 4.2: The novel ortholog pipeline that uses the Cactus whole-genome alignments identifies
more orthologs than the conventional RBH pipeline. The lines connect the annotations of the
same species with the two methods.
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Figure 4.3: The one-to-one ortholog relationship of three co-orthologs genes FOXP1, FOXP2
and FOXP4 in chicken and zebra finch. The first two genes in chicken can be assigned to their
respective corresponding genes in zebra finch through the ortholog pipeline used in phase 1 and
this phase, but the last gene can only be identified correctly in the Cactus-based method.
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departure from the neutral, unconstrained rate for each site) to match the neutral rate observed in

each of micro-, macro-, and sex chromosomes, and used these three models when generating the

conservation scores. We found that the neutral rate within sex chromosomes is 16% faster than

in macrochromosomes, and that the neutral rate within macrochromosomes is 9% faster than in

microchromosomes, consistent with the fast-Z [81] and fast-macro [7] hypotheses as well as our

earlier findings [123].

Though our previous comparison for 48 bird genomes detected that at least 7.5% of the

chicken genome was conserved [123] at 10bp resolution, this ratio was reached by integrating

across multiple adjacent bases, trading off a low resolution for a necessary increase in statistical

power. The statistical power to detect conserved elements is roughly proportional to the total

branch length within the tree relating aligned species [21]. Our dense sampling of avians results

in a total branch length of 16.5 expected substitutions per site, compared to 9.9 within the 77-way

and 4.3 within the 53-way. This increase in branch length causes an enormous increase in our

ability to detect negative selection, rendering for the first time a site-by-site conserved element

annotation that covers a substantial portion of the genome. We transformed the phyloP scores

described above into calls of significantly conserved single-base-pair elements at an expected

FDR [10] of 5%. Our alignment provides ample increases in the number of bases detectable as

conserved at single-base-pair resolution relative to the browser alignments that contain fewer

taxa (13.2% of the chicken genome in the 363-way vs. 3.8% in the 77-way and 2.1% in the

53-way Figure 4.6]). While the additional branch length afforded by the vertebrate outgroups in

the 77-way offered the ability to detect a larger number of constrained sites than the 53-way, it

still fell short of creating a high-coverage 1-bp resolution annotation, falling short of the 7.5%
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that we had estimated using 10-bp elements. In contrast, the denser phylogenetic sampling

allows us to not only find constrained elements covering a greater proportion of the genome than

our earlier work, but also at the highest possible resolution.

These results give insight into weakly conserved functional regions of the genome.

Though our alignment is able to detect 62.4% of bases within coding exons as conserved,

higher than the 34.3% within the 77-way and 18.6% within the 53-way, the increase is pro-

portionally much larger in non-coding regions of the genome such as lncRNAs obtained from

NONCODE [33] (16.2% vs. 4.8% and 3.2%) and untranslated exons (30.1% vs. 8.8% and 6.0%)

(Figure 4.7). These increases in the proportion of the genome under selection detectable at a

single-base level come largely from an increase in ability to detect weakly conserved sites. This

indicates that while non-coding regions are less strongly conserved than coding regions, much of

their sequence is still under some amount of constraint. The fastest-evolving columns detectable

at this level of significance evolved at 52% of the neutral rate for the 363-way alignment, com-

pared to 26% for the smaller 77-way alignment (Figure 4.8). The 53-way alignment provided

only enough power to detect conserved bases that were completely unmutated within all avians

(0% of the neutral rate).

4.6 Discussion

This dataset makes birds now a system with unparalleled genomic resources. The

genomes will serve the community both individually, to investigate species-specific traits and

to support conservation efforts of the sequenced and their relatives, but also collectively in
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cross-species comparisons to gain new perspectives on evolutionary processes and genomic

diversity. The B10K consortium’s goal is not just to merely sequence but to explore the full

information content contained in these genomes, for which we welcome new collaborations. The

B10K consortium is already analyzing this dataset pursuing its main goals:

1. Build the new timetree of birds. We are investigating how scaling up both sequence

length and the number of terminals impacts phylogenetic resolution of the notoriously

difficult to resolve early neoavian divergences, as well as more shallow branches. Dense

sampling breaks large phylogenetic distances between taxa and provides added anchors for

fossil calibrations, which will allow for new insights into the evolutionary history of birds.

Accessing more genomic sequence of different functional categories (coding, non-coding,

ultraconserved elements) will allow us to better understand the distribution of phylogenetic

conflict across the genome [105].

2. Investigate the genomic underpinnings of bird innovations in morphology, physiol-

ogy, and life history. We have built a comprehensive, expert-curated trait database that

is used to link genes and regulatory regions and lineage-specific genomic innovations

to phenotypes in cross-species comparative analyses. We will investigate evolutionary

constraint in birds with unparalleled power to identify highly conserved regions and those

under accelerated evolution.

3. Genetic diversity and demography. We are investigating historical trajectories of popu-

lation sizes across all birds during the Pleistocene era to describe their Ne dynamics, model

their strategies to adapt to previous climate change, infer the ecomorphological factors that
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influence demography, and predict future diversity trends under current climate change.
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Chapter 5

Discussion

This thesis has described an effort to scale comparative genomics up to hundreds of

genomes. The results from this work have demonstrated both the effectiveness of the approach

and the potential unlocked by such large-scale analysis. The progressive extensions to Cactus I

presented have made reference-free genome alignments at the scale of hundreds to thousands of

species possible. Cactus has been thoroughly tested and benefited from incremental scale-ups,

tested across a range of successful comparative genomics projects, ranging from alignments of

small clades of 5̃ genomes and finishing with the largest genome alignments yet created. Along

the way these alignments me to do enabled significant comparative genomics work to take place,

including analyzing the rate of evolution of the archosaur genome and generating human and

avian conserved element annotations at unprecedented resolution and sensitivity. Moreover, the

influence of this data will continue: dozens of research groups worldwide will use the Bird 10K

and 200 Mammals alignments for further analysis in the next year.

However, future work will still be necessary to continue bringing comparative genomics
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forward. Third-generation sequencing and assembly technologies [31, 53, 54, 119] are already

bringing new, more accurate genome assemblies at an impressive speed; in my opinion, a major

challenge facing comparative genomics is to scale up to actually make use of these genomes in

cross-species analysis. While the work presented in this thesis demonstrates that it is possible to

do comparative genomics at large scale, there is more to be done in order to truly catch up to the

expected rate of incoming assemblies.

First, on the alignment side, Cactus is currently fairly computationally demanding and

therefore costly (120 CPU-days per assembly and around $100–200 per assembly on the AWS

cloud). Therefore, though large alignments are possible, they are significant undertakings, requir-

ing at the least a large cluster, and in practice benefits from an autoscaling cloud environment.

The computational effort is largely expended in the local alignment stage of Cactus, which uses

the LASTZ aligner [48] and scales quadratically with genome size. The local alignment effort

could, however, be reduced for closely related genomes such as in same-species comparisons,

where divergence is so low that MinHash-based approaches are sensitive enough to be practical

replacements for BLAST[4]-esque local aligners [74, 52].

Further, though creating alignments of hundreds of species is possible, even using

large genome alignments can carry its own challenges. As one aspect, with increasing numbers

of species per alignment column, the chance that at least one entry contains an assembly or

alignment error increases. For example, many of the Bird 10K assemblies were assembled using

a version of SOAPdenovo [76] that produces many false tandem duplications; as a result of this

and the sheer number of affected assemblies, the chance that any given column happens to hit is

involved in a duplication is high. Conventional single-copy-filtering of the Bird 10K therefore
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removes far more columns than in smaller alignments. Furthermore, remote access of large

alignment files for visualization purposes remains challenging. I recently completed work (along

with Mark Diekhans) to develop a new file format which improves the speed of accessing our

reference-free indexed alignment format, HAL [49], by up to an order of magnitude. However,

remote-access alignment formats like HAL or bigMAF are still quite slow due to the large

number of network round-trips required when seeking within the file, even despite the indexed

nature of the files. One possible solution is to, rather than host a web server that merely knows

how to serve parts of files, host a “smart” server process that can parse an RPC call requesting

to view a subset of the alignment, do the required seeking and gathering of the alignment data

on local disk (which will be much lower-latency than across a network link), then return the

response to the RPC call over the network. Early tests suggest that such a strategy would reduce

runtimes for remote-access HAL queries from several minutes to mere seconds.

The advances I describe also prompt questions about the desired semantics of genome

alignment. For example, it is usually axiomatic that a genome aligner’s goal should (at least by

default) to be to align orthologous regions to one another [6]. Cactus takes it for granted that it

should align all orthologous regions to one another. However, across a great deal of evolutionary

distance, that can cause subtle problems for many use-cases. For example, even though a new

lineage-specific pseudogene in chimp would indeed be orthologous to its source gene in human,

aligning the human copy to both the orthologous gene and orthologous pseudogene in chimp

confuses and frustrates users who are not interested in pseudogenes. Most users would prefer

aligning to the clear parent of the duplication, if possible, rather than one of the daughter copies.

Applying the concept of positional orthology [24] (sometimes called toporthology) to genome

84



alignment could improve this situation. Integrating positional orthology into genome alignment

would enable separate investigation of a single orthologous locus as well as the existing behavior

of aligning all conventional orthologs.

The single-bp conservation analysis I presented in Chapter 4 demonstrates the utility

of large genome alignments for examining selection. The methods (e.g. phyloP [101]) I used in

examining conservation have remained largely unchanged for years, because they do their job

well. However, I believe that large genome alignments, spanning many clades, offer opportunities

to push for new methods to detect selection. Most importantly, across alignments that span many

hundreds of millions of years of genome evolution, a large part of conserved regions will be

conserved in only part of the tree. Furthermore, their degree of conservation may differ, resulting

in slightly different rates over time (heterotachy [79]). Detecting lineage-specific selection

automatically across the entire tree is currently somewhat difficult: the current suggested method

is to look for lineage-specific selection along a single branch at a time [101]. Though an

HMM-based method for detecting lineage-specific selection along multiple branches has been

developed, called DLESS [111], the model only allows for a single gain or loss event across the

entire tree, and a single “conserved” and “non-conserved” rate. Further pushing the boundaries

and creating methods to simultaneously estimate variation in mutation rate both among and

between sites (possibly using a model similar to the “covarion” model proposed for codon

evolution [38]) should prove very useful in the coming era as datasets of thousands or tens of

thousands of genomes become commonplace.

The work I have presented in this thesis, particularly the progressive extension to

Cactus, has pushed forward the state of the art of comparative genomics, and will continue to
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play a role in the field. My work with large genomics projects like Genome 10K, 200 Mammals,

Bird 10K, and the Vertebrate Genomes Project has convinced me that large alignment resources

pay dividends. Some parts of the 600-way alignment I describe in this thesis will undoubtedly be

used in other projects, though unfortunately some aspects remain under embargo. What is clear

is that a public vertebrate alignment resource (iteratively updated using Cactus as new assemblies

are made public) is sorely needed. The 600-way I described could be thought of as a first draft

of that effort. Results from simulated data in the Cactus paper have shown that maintaining

an alignment by iteratively updating it as new assemblies arrive is relatively inexpensive while

offering accuracy nearly as high as a full realignment would. The 200 Mammals group is already

discussing iteratively updating their alignment in at least one additional phase as new assemblies

come in, and I hope that other groups will follow the same pattern.
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Appendix A

Supplementary Information for Cactus

A.0.1 Evaluation on simulated data

20 primate genomes were simulated using Evolver [30], managed using the evolverSim-

Control (https://github.com/dentearl/evolverSimControl, commit b3236deb) pipeline.

The root genome used was derived from 30 megabases selected from the hg19 genome, and is

available at http://courtyard.gi.ucsc.edu/~jcarmstr/datastore/progressiveCactusEvolverSim.

tar.gz along with the Evolver configuration files that were used. The species tree used for the

simulation was obtained from a catarrhine subtree of the 100-way alignment tree available on

the UCSC browser. The tree used was, in Newick format:(((((((Human:0.00655,Chimp:0.

00684)anc0e:0.00122,Bonobo:0.00784)anc1e:0.003,Gorilla:0.008964)anc2e:0.00

9693,Orangutan:0.01894)anc3e:0.003471,Gibbon:0.02227)anc4e:0.01204,(((((Rh

esus:0.004991,Crab_eating_macaque:0.005991)anc5e:0.001,Sooty_mangabey:0.00

1)anc6e:0.005,Baboon:0.003042)anc7e:0.01061,(Green_monkey:0.027,Drill:0.03

)anc8e:0.002)anc9e:0.003,((Proboscis_monkey:0.0007,Angolan_colobus:0.0008)
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anc10e:0.005,(Golden_snub-nosed_monkey:0.0007,Black_snub_nosed_monkey:0.00

08)anc11e:0.004)anc12e:0.009)anc13e:0.02)anc14e:0.02183,(((Marmoset:0.03,S

quirrel_monkey:0.01035)anc15e:0.01065,White-faced_sapajou:0.009)anc16e:0.0

1,Nancy_Mas_night_monkey:0.01)anc17e:0.01)anc18e;The alignments were generated

using Cactus commit 51eb980b. The input files (the simulated genomes as well as input files

and Cactus configuration file) are available at http://courtyard.gi.ucsc.edu/~jcarmstr/

datastore/progressiveCactus.EvolverSim.CactusInput.tar.gz. A non-default config-

uration (included in the dataset) was used to change the alignment filtering in both runs to

better support the high degree of polytomy in the star-tree runs. Four sets of 2, 6, 10, and 20

genomes were used, each of which were run three times to generate runtime estimates.The

runtime statistics were gathered using the toil stats command (the overall Clock time was

used, which represents CPU time spent across all jobs). To generate the recall and precision

statistics, MAFs were exported for each run (using hal2maf with the --onlyOrthologs option

using the rhesus genome as a reference) and compared to the Evolver MAF using mafComparator

(https://github.com/dentearl/mafTools, commit 82077ac3).

A.0.2 Adding a new genome to the simulated alignment

We evaluated the accuracy of adding a genome to an existing alignment by creat-

ing a new alignment of 19 of the 20 simulated genomes described above (holding out the

“Crab_eating_macacque” genome), then adding it back in after the fact. All alignments for this

analysis were generated using Cactus commit 49e80082.To add the crab-eating macaque back in

as the child of an existing node (the add-to-node strategy), we ran a single new alignment with the
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Figure A.1: Methods of adding a genome to a Cactus alignment. The top row shows the different
ways of adding a new genome given its phylogenetic position, and the bottom row shows what
subproblems would need to be computed for the new genome to be properly merged into the
existing alignment. Green circles represent a new genome, and red circles represent newly
reconstructed genomes.

tree (Rhesus:0.006, Crab_eating_macaque:0.007, Sooty_mangabey:0.001)anc6e;. The

anc6e genome from the original, held-out alignment was used as a unreconstructed ancestral input

sequence. We set the “runMapQFiltering” option in the config file to “0” and the “alignmentFilter”

option to “singleCopyOutgroup”, since these options produce a better alignment of polytomies.

We merged the resulting HAL file into a new copy of the existing alignment via the command hal

ReplaceGenome<copyofheld-outalignment>anc6e--topAlignmentFile<held-outalig

nment>--bottomAlignmentFile<add-to-nodealignment>.To add the macaque by splitting

a branch (the add-to-branch strategy), we ran two separate alignments. We ran the first with

the tree (((Rhesus:0.004991, Crab_eating_macaque:0.005991)anc5e:0.001, Sooty_

mangabey:0.001)anc6e:0.005, Baboon:0.003042)anc7e; (with the --root anc5e op-

tion so that only a single subproblem was run), generating a newly reconstruted anc5e ances-

tor. We then ran a second alignment with the tree (anc5e:0.001, Sooty_mangabey:0.001)
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anc6e;, again providing the anc6e assembly from the original alignment rather than inferring

a new reconstruction. (We note that these two subproblems could have been run in a single

alignment invocation, resulting in the same amount of alignment work but a slightly more com-

plicated merging process.) To merge these two add-to-branch intermediate alignments into a full

alignment, we first removed the Rhesus genome from a new copy of the held-out alignment. We

then ran halAddToBranch <held-out alignment> <first add-to-branch alignment>

<second add-to-branch alignment> anc6e anc5e Rhesus Crab_eating_macaque 0.001

0.006.We evaluated the performance of these new alignments using mafComparator in the

same way as described in Section A.0.1. In the interest of narrowly determining accuracy of

alignments involving the newly added genome, we counted only aligned pairs involving the

Crab_eating_macaque genome when calculating precision, recall, and F1 scores.

A.0.3 Evaluation of the effect of the guide tree

The guide-tree analysis was performed on a set of 48 bird genomes originally published

in 2014 [55]. To reduce the amount of alignment work required, we subsetted these genomes

down to the size of only a single chromosome, chicken chromosome 1 (by removing any contig

or scaffold which had less than 20% of its sequence alignable to chicken chromosome 1). We

used Cactus commit 36304707 for all alignments in this analysis.The Prum and Jarvis topologies

were adapted from [103] and [55], respectively. The “permuted” topology was generated starting

from the Jarvis topology, via 3 randomly chosen subtree-prune-regraft operations followed

by 3 random nearest-neighbor-interchange operations. Each of these three topologies had

branch-length estimates performed using phyloFit from the PHAST package [50] based on
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Alignment URL
Jarvis https://s3.amazonaws.com/alignment-output/cactus48BIRDS_jarvis14.hal
Prum https://s3.amazonaws.com/alignment-output/cactus48BIRDS_prum15.hal
Consensus https://s3.amazonaws.com/alignment-output/cactus48BIRDS_consensus.hal
Permuted https://s3.amazonaws.com/alignment-output/cactus48BIRDS_permute.hal

Table A.1: Alignments used in the guide-tree analysis.

fourfold-degenerate sites of BUSCO orthologs. Finally, the “Consensus” tree was produced

as a strict consensus of the Jarvis and Prum trees (collapsing all groupings that were not the

same in both trees) using the ape::consensus method from the APE R package [94]. The

branch-lengths for this tree were generated from the fitted branch lengths for the two input trees,

using the consensus.edges function of the phytools R package [106]. The four final trees that

were used in the four Cactus alignments are shown in Figure A.2, and available in supplementary

data in Newick format.

A.0.4 Paralogy-filtering evaluation

A.0.4.1 Alignment of 12 Boreoeutherian genomes

We ran two versions of Cactus (commits 450da74 [best-hit filtering] and aca859f

[outgroup filtering]) using the following tree:(((((Human:0.006969,Chimp:0.009727):0.0

25291,Rhesus:0.044568):0.07,Tree_shrew:0.19):0.03,(Kangaroo_rat:0.17,(Mous

e:0.072818,Rat:0.081244):0.11):0.150342):0.02326,((Dog:0.07,Cat:0.07):0.08

7381,((Pig:0.06,Cow:0.06):0.104728,Horse:0.05):0.05):0.04);Coverage statistics

from the resulting alignments were obtained using the halCoverage tool.
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Figure A.2: Guide trees used in the guide-tree influence analysis.
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Genome
Transcript projections filtered during initial pass

Chimpanzee Gorilla

Outgroup filtering 43709 31678
Best-hit filtering 13567 15765

Table A.2: Number of transcripts filtered out in the initial pslCDnaFilter step of CAT, which
attempts to remove paralogs and processed pseudogenes.

Genome
Coding genes missing from final set Coding transcripts missing from final set

Outgroup filtering Best-hit filtering Outgroup filtering Best-hit filtering

Chimpanzee 1716 1612 6244 5872
Gorilla 1829 1647 6469 6100

Table A.3: Number of human genes / transcripts that have no assigned ortholog in the “consensus”
CAT gene set across the different alignments.

A.0.4.2 Annotation using CAT

We produced two alignments using Cactus on the UCSC hg38, panTro6, and gorGor5

assemblies using the same Cactus versions mentioned above. We ran the CAT pipeline at commit

7a8c7e24, using the GENCODE V30 gene set [39]. We projected the transcripts solely via

transMap without the use of the AUGUSTUS modes. Multiple-mapping statistics as well as the

gene composition of the final gene set were taken from the filter_tm_metrics.json file in

the CAT output.

A.0.4.3 Duplication-timing evaluation

The duplication-timing evaluation was performed using a custom pipeline (https://

github.com/joelarmstrong/treeBuildingEvaluation) designed to sample columns from

a HAL file and evaluate their trees against an independently re-estimated tree of the same region.
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For this analysis we used the the two 12-boreoeutherian alignments described above, sampling

10,000 columns from the human genome. The comparison trees were built from a context of

1000 bases around the entries in each sampled column using FastTree [102] 2.1.10 and the -gtr

-nt options. Only duplicated columns were counted in the final output (columns containing

no duplications did not count in the results). The coalescence pairs were evaluated using the

--onlySelf option, meaning that only pairs that included the sampled site were counted in

the results. To avoid weighting columns with a high number of copies per genome more than

columns with a low number of copies per genome, only a single coalescence was randomly

sampled per column.

A.0.5 Micro-indel events within the 600-way

We extracted all insertion and deletion events by running the halBranchMutations

tool on every branch in the 600-way alignment. The ungapped insertion and deletion calls

(represented by “I” and “D” respectively within the output file) were filtered so that only calls

spanning less than 20bp (in the child for insertions, and the parent for deletions) were counted.

The rate for each branch was then obtained by dividing the count of these micro-indel events by

the total amount of sequence present in the child.

A.0.6 Generation of the 600-way alignment

The 200 Mammals (200M) alignment was composed of two sets of genomes: newly

assembled DISCOVAR assemblies and Genbank assemblies. The DISCOVAR genomes were

masked with RepeatMasker [112] commit 2d947604, using Repbase [8] version 20170127
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as the repeat library and CrossMatch as the alignment engine. The pipeline used is available

at https://github.com/joelarmstrong/repeatMaskerPipeline. The guide-tree topology

was taken from the TimeTree database [71], and the branch lengths were estimated using the

least-squares-fit mode of PHYLIP [35]. The distance matrix used was largely based on distances

from the 4d site trees from the UCSC browser [46]. To add those species not present in the

UCSC tree, approximate distances estimated by Mash [93] to the closest UCSC species were

added to the distance between the two closest UCSC species. The final guide tree is embedded

in the HAL file, and available using the halStats --tree command.The 363 assemblies in the

B10K alignment comprised four sets: 236 newly sequenced species for the “family” phase of

the project, assembled using SOAPdenovo2 and AllpathsLG, 42 assemblies already sequenced

from the “order” phase of the project, 36 assemblies taken from GenBank, and 49 assemblies

contributed by other research groups. For the avian guide-tree, we used a tree that the B10K

consortium derived as preliminary data from ultraconserved elements.Both alignments were run

on the AWS cloud over the course of 3 weeks for the avians and 2 months for the mammals,

using a maximum of 240 c3.8xlarge instances and 20 r3.8xlarge instances. Because Toil’s

autoscaling mode was used, this capacity was only fully utilized during the initial phase of the

alignment, when the potential for parallelism was at its highest.The 600-way alignment was

formed by aligning the two roots of the B10K and 200M alignments, using the xenTro9 (frog),

latCha1 (coelacanth), and danRer11 (zebrafish) assemblies as outgroups. This created a “linker”

alignment connecting the roots of the two alignments. The B10K and 200M alignments were

then added to this linker alignment using the halAppendSubtree command.
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Figure A.3: Number of L1PA6 elements within ancestral genomes.

A.0.7 Repetitive elements within ancestral sequences

We ran RepeatMasker [112] on all ancestral assemblies of human within the 600-way

alignment (using RepBase [8] version 20170127, selecting the “primate” repeat library and

choosing CrossMatch as the alignment engine). We additionally ran the same pipeline against

human (as existing annotations used the “Homo_sapiens” repeat library). All ancestors up to

human-rhesus had over 78% of the human complement of L1PA6 elements (Figure A.3).

A.0.8 Removing recoverable sequence

The original CAF algorithm described in [96] was focused on removing small re-

arrangements, while retaining as much of the original alignment relationships as possible in

the filtered cactus graph. However, because the input local alignments are insensitive, the

original alignment relationships are likely to have missed certain homologies. This can result
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in what we term incomplete blocks: blocks that contain some alignment relationships but are

missing others, i.e. are proper subsets of what the corresponding “true” alignment block. In

our anchor-and-extend process, once a block becomes an anchor it can never be modified. As a

result, these incomplete blocks will remain incomplete: they prevent the true alignment relation-

ship from being found, even if an adjacent syntenic anchor block is complete and contains all

desired alignment relationships. These problematic incomplete blocks become more prevalent at

longer evolutionary distances: the local aligner will miss more true homologies at increasing

distances, causing more incomplete blocks and in turn a far worse alignment.To remove these

incomplete blocks, Cactus originally relied on a heuristic that identified blocks that were “likely”

to be incomplete, removing blocks which did not have alignment relationships between all

ingroups. However, this heuristic performed poorly in the presence of deletions or missing data:

any large deletion in one ingroup could cause huge stretches of the other ingroup(s) to be left

unaligned. To remedy this, we have developed a new alteration to the CAF algorithm, one that

now focuses on maximizing the potential size of the alignment graph after extension as opposed

to before extension. We call this addition removing recoverable chains, because it identifies

chains in the cactus graph that represent alignments which could be recovered by the extension

process.The algorithm is applied as a post-processing step after the CAF process described

in [96], which proceeds as normal. After the cactus graph is created and filtered, the algorithm

identifies recoverable blocks. Each block is composed of segments, each of which represent a

non-overlapping region of a sequence and which strand is being aligned; we briefly review the

necessary terminology, but see [95] for additional context. We call a segment a left-adjacent

to another segment b if a represents the positive strand and b comes before a in their sequence
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and there is no other segment between them. Similarly, we call a left-adjacent to b if a is on

the negative strand and a comes before b in their sequence ordering with no other intervening

segment. If a is left-adjacent to b, then b is right-adjacent to a.A block is called recoverable

if, in the case that the block were removed, all its regions would be contained entirely within a

single end alignment in the BAR extension phase. The end alignments are identified by looking

at all unaligned sequence between the adjacent segments of a single end of a block: in short, two

end alignments are created for every block, one for all sequence between each segment and its

left-adjacent segment, and similarly for the right-adjacent segments. In practice, this means that

for some block A, it is recoverable if all its segments are all left- or right-adjacent to segments

from the same block B 6= A.Whether a block is recoverable depends only on its immediate

neighboring blocks. However, it is interesting to consider the maximum set of recoverable blocks,

and, by contrast, of unrecoverable blocks — these unrecoverable blocks represent a minimal set

of anchors that can be extended from to recover the alignment relationships from the original

sequence graph as well as potential additional alignment relationships.Since the chains and nets

within the cactus graph represent a hierarchy of the rearrangements implicit in the alignment,

they are helpful for finding this a smaller set of anchors to extend from. We consider what

anchors could provide recoverability to a block: if a block A’s segments would lie within the

end alignment of B if all the recoverable blocks between B and A, including A, were destroyed,

we call A recoverable given B. The relationship is transitive: if block A is recoverable given

block B, and B is recoverable given C, then A is recoverable given C. All blocks in a chain are

recoverable given each other, since all blocks in a chain are collinear with each other, potentially

with intervening rearrangements located further down the chain/net hierarchy. Similarly, if any
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block in a chain is recoverable given another block above the chain in the chain/net hierarchy,

the entire chain is recoverable given that block. Due to this fact, in order to determine the

recoverability status of all blocks, we only have to examine the blocks at the ends of chains

and their immediate neighbors, rather than every block.Though in principle we would need to

keep only one block within even unrecoverable chains (since all other blocks within the chain

would be recoverable given that single block), to save computational effort in realignment we

only destroy or keep entire chains as a unit. In the same spirit, to avoid spending needless effort

when the chain is recoverable but very likely is not incomplete, we apply a heuristic and do

not remove chains that contain the same number of copies in all ingroups and outgroups.After

identifying and removing all recoverable blocks, some blocks previously marked unrecoverable

may become recoverable (because adjacent blocks were removed). For this reason, we run the

process of identifying and removing recoverable chains multiple times in a loop, until either no

recoverable chains are identified or a limit on the number of cycles is reached. The structure of

the cactus graph may change after removing recoverable blocks, so we recompute the cactus

graph after every removal step. The process that is followed is described in Algorithm 1.

A.0.9 Improvements from removing recoverable sequence

To quantify the effect that the process of removing recoverable chains (described

above) had on real alignments, we ran alignments on a set of 9 Euarchontoglires genomes with

the feature turned on and off. The tree used was:(((((((human:0.00877,gorilla:0.0089

64):0.009693,orang:0.01894):0.015511,rhesus:0.037601):0.07392,tarsier:0.11

14):0.034014,tree_shrew:0.19114):0.002,(kangaroo_rat:0.171759,(chinese_ham
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Algorithm 1 Recoverable-chain destruction
function REMOVERECOVERABLECHAINS(G, n)

for 1 . . . n do
cactusGraph← CreateCactusGraph(G)
RecoverableChains← /0

for chain C in cactusGraph do
if

. A single adjacent end offers the potential for recoverability
(|C.leftAdjacencies|= 1 or |C.rightAdjacencies|= 1)
. Shared adjacencies indicate a non-recoverable rearrangement
and C.leftAdjacencies∩C.rightAdjacencies = /0

. Links between chain ends indicate a non-recoverable duplication
and C.leftEnd /∈ C.rightAdjacencies

then
RecoverableChains← RecoverableChains∪{C}

end if
end for
if |RecoverableChains|= 0 then

break
else

Destroy each chain in RecoverableChains
end if

end for
end function
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Figure A.4: Coverage (on the human genome) from alignments with and without removing
recoverable chains after the CAF process. While the coverage is increased overall across all
genomes when removing recoverable chains, the increase is relatively larger in more distant
species.

ster:0.14,mouse:0.132282):0.11015):0.114051)euarchontoglires:0.020593,(cow

:0.18908,dog:0.13303):0.032898);We used Cactus commit 56874bde, with the --root

euarchontoglires option so that cow and dog were used only as outgroups. Coverage on

human increased for all genomes when recoverable chains were removed, especially for those

most distant from human (Figure A.4). This likely reflects the fact that though the losses caused

by not removing recoverable chains in any single subproblem are relatively small, they can

compound to be quite significant in large alignments, since many subproblems are involved in

creating the alignment between distant species (such as human and mouse, which are separated

by 7 internal nodes in this tree).
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Figure A.5: A visualization of the best-hit filtering method. Here, each node of the directed
graph indicates a single base, and edges represent pairwise alignment relationships (the color of
the node indicates the species the base belongs to, and higher thickness of edges represents higher
scores of the pairwise alignments). Since Cactus’s alignment columns represent the transitive
closure of the input pairwise alignment relationships, the final alignment relationships will be
represented by connected components within this graph. Taking the single best hit (so that this
graph contains at most one outgoing edge per base) results in the correct separation between
copies if orthologous copies have higher score, but some lineage-specific duplications require
secondary, non-best-hit alignments to bring together orthologs from different species.
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Appendix B

Supplementary Information for archosaur

reconstruction

B.1 Whole Genome Alignment and Ancestral Genome Reconstruc-

tion

The whole genome alignment of 23 taxa was computed using progressive-Cactus

(https://github.com/glennhickey/progressiveCactus) using its default parameters and

the phylogeny shown in Figure 3.1A. The genome assemblies used are listed in Table B.1.

The topology of the phylogeny was derived by manually merging a subtree of the UCE trees

with results from the avian phylogeny sister paper (76) along with published phylogenies for

passerine birds (77), parrots, (78), and turtles (79). We used a 512 CPU cluster for running the

local alignment jobs and a 1 terabyte shared memory machine with 64 cores for computing the

CAF and reconstruction algorithms (75, 80). Ancestral reconstruction of all internal nodes was
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performed as part of this process. To improve the ancestral base calls we used the ancestorsML

tool in the HAL tools library (https://github.com/glennhickey/hal) (81) to call bases by

maximum likelihood, using the general reversible continuous time nucleotide substitution model

implementation from the PHAST package (60). To parameterise the model and estimate branch

lengths for the topology (shown in Figure 3.1) we used the phyloFit tool (82) on conserved

fourfold degenerate sites in alligator genes, as described below. We also stored the posterior

probability of these base calls given the model, and these results were used to calculate the

expected accuracy of base calls in the archosaur genome. These results are shown in Figure 3.2A.

B.2 Whole Genome Alignment Analyses

The following gives technical definitions of the WGA analyses performed. A whole

genome alignment (WGA) is formally a partitioning of the residues within a set of genomes

into a set of aligned columns, each of which represents a set (technically an equivalence class)

of residues inferred to be homologous. Given a chosen subset of genomes X within the WGA,

a non-duplicated column for X is a column containing one or zero residues from each of the

species in X . Similarly, given a chosen subset of species X within the WGA, a single copy

column for X is a column containing exactly one residue from each of the species in X .

B.2.1 Percentage Identity

For a pair of genomes their percentage identity is the proportion of single copy columns

for the pair that do not contain a wildcard character representing either genome and in which
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the nucleotide from both genomes is identical. The percentage identity value reported therefore

includes the maximum number of columns where there is no apparent ambiguity about the

ancestry of the residues. Table B.2 shows the percentage identity between each of the three

crocodilian genomes. Near identical results were produced using Mummer (173).

B.2.2 Fourfold Degenerate Codon Substitution Rates

In the WGA, a column is conserved fourfold degenerate if the column contains a

residue that is a fourfold degenerate site in an annotated transcript in a given reference genome,

and the two previous bases (in the opposite direction to the direction of transcription) in every

leaf genome are such that each leaf genome site in the column is fourfold degenerate. Coding

transcripts in alligator were filtered to only those with all the columns in their coding exons

non-duplicated among crocodylia, chicken, zebra finch, and Carolina anole. The sites in alligator

that corresponded to conserved fourfold degenerate columns in non-duplicated alligator coding

sequences were then extracted. The program halPhyloPTrain (available in the HAL tools library)

was used on these sites to estimate substitution rates for every branch in the WGA.

To validate these branch lengths, the non-duplicated alligator coding transcripts de-

scribed above were also exported in Phylip format and further processed to remove regions that

might bias the estimation of neutral rates before analysis in RAxML version 8.0.0 (64). We

retained codons only if they were present in all taxa and did not have any internal gaps. This

was done because the WGA allowed some indels of length one or two in coding regions; this

typically occurred in regions where one or more of the sequences were poorly assembled (based

upon visual inspection). The rationale for this stringent filtering is provided below in the section
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on 4-fold degenerate sites. This resulted in a matrix of 144,733 nucleotides and no missing data.

Branch lengths were estimated for this alignment using the -f e option in RAxML with the

GTRGAMMA model and the phylogeny used for other WGA analyses (see above). The tree length

was 3.180126 and ML estimates of the parameters describing 4D site evolution were:

Γ distribution shape parameter
α 1.658157

GTR rate parameters (normalized to the G-T rate)
rate A-C 0.750544
rate A-G 4.203959
rate A-T 0.591019
rate C-G 1.387873
rate C-T 2.267481

Equilibrium base frequencies
π(A) 0.280429
π(C) 0.252743
π(G) 0.167161
π(T ) 0.299667

The resulting phylogeny with ML estimates of branch lengths is shown in Figure 3.1.

A similar analysis was conducted by after increasing the stringency of the filtering to require

that the amino acid encoded by the conserved fourfold degenerate column is itself conserved.

This reduced the length of the alignment to 114,709 nucleotides but it had a negligible impact

upon the branch length or parameter estimates. Estimates of the rates based upon 4D sites are

presented in Table B.3.

B.2.3 Transposable Element Substitution Rates

Any transposable element Y defines a nonempty subsequence xi,xi+1, . . . ,x j of a

chosen reference genome (here the common ancestral genome of the extant crocodilian genomes
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in our analysis). We call Y syntenic with respect to a subset of genomes X , if:

1. The residues in xi−m,xi−m+1, . . . ,x j+m+1 are all members of non-duplicated columns for X ,

where m is a flanking parameter (set to 2kb in this analysis; this ensures that the phylogeny

is apparently unambiguous across the element).

2. For each pair of contiguous residues in xi−m,xi−m+1, . . . ,x j+m+1, if the columns they are

contained in both contain residues from another genome in X , then those residues in the

other genome are in the same order and orientation as in the chosen reference genome

and are separated by no more than 100 bases in the other genome (this ensures that

no rearrangements other than indels less than 100bp in length and substitutions have

been observed to effect the sequences). We use the set of single-copy columns that

contain residues from syntenic transposable elements to calculate the substitution rate in

transposable elements.

To estimate rates we used the strand symmetric general reversible continuous time

substitution model implemented in the Phast package continuous time substitution model (82),

using the halPhyloPTrain program on the single-copy columns from syntenic transposable

elements in the common ancestor of Crocodylia. Table B.4 below shows the TE substitution

rates.

B.2.4 Micro Insertion and Micro Deletion Rates

For a pair of genomes A and B, a clean insertion in A with respect to B is a nonempty

subsequence xi,xi+1, . . . ,x j of a sequence in A such that:
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1. The residues in xi,xi+1, . . . ,x j are not aligned to any residues in B.

2. The residues in xi−k−1, . . . ,xi−1 and x j+1, . . . ,x j+k+1 are each aligned in single copy col-

umns for {A,B}, where k represents a number of cleanly aligned residues flanking the

insertion. This condition ensures no duplications that suggest ambiguity in the phylogeny.

After some testing, in this analysis, k = 5, though other larger values of k produce similar

results.

3. The corresponding residues in B aligned to xi−k−1, . . . ,xi−1 and x j+1, . . . ,x j+k+1 are in the

same order and orientation in B as in A. This ensures the structural change is indeed an

insertion rather than a more complex rearrangement.

4. None of the residues in the alignment columns containing xi−k−1, . . . ,x j+k+1 represent the

wildcard character. This avoids labeling scaffold gaps as insertions.

A clean insertion in A with respect to B is, reversely, a clean deletion in B with respect

to A. A clean indel (insertion or deletion) is a micro event if the inserted or deleted subsequence

is less than or equal to 10 residues in length. A clean adjacency is either a clean insertion or

deletion, or equivalent to a clean insertion or deletion in which the inserted subsequence has

zero length; a clean adjacency represents a place where there could have been a clean indel, but

potentially none was observed.

Let an induced subtree of the phylogeny connecting a chosen genome A, its sister

genome and their closest outgroup genome, be termed a three-leaf subtree for A. For a chosen

genome A with corresponding three-leaf subtree, a clean insertion, deletion or adjacency with

respect to its three-leaf subtree is a clean branch insertion, deletion or adjacency, respectively,
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in A with respect to both the sister and outgroup genomes of the three-leaf subtree. Note this

definition discounts clean insertions, deletions or adjacencies which differ between the outgroup

and sister genomes, i.e. the indel subsequence has to have the same length in both other species.

Defining events with respect to three-leaf subtrees gives confidence in the categorization of the

event as an insertion, deletion or clean adjacency.

The insertion and deletion rates reported are the ratio of clean micro insertion or

deletion events per clean adjacency. Normalising by clean adjacency proved necessary to factor

in coverage differences between assemblies. Table B.5 shows the measured rates of clean

insertions and deletions in each of the leaf taxa of the WGA.

B.2.5 Gene Synteny

For a pair of genomes A and B and pair of genes X and Y on A, we say the pair X and

Y are candidates for synteny if X and Y both:

1. map uniquely from A to B (no evidence of duplication in the other species),

2. map to the same scaffold on B,

3. map at least 90% of their sequence to B,

4. reciprocally preserve their structures to B (i.e. X and Y must be preserved from A to B, and

their images on B must be preserved back from B to A, see below for technical definition

of preservation).

If X and Y are candidates for synteny and they are in the same order and orientation

on B as on A, they are syntenic, otherwise they are broken. If X or Y are not candidates for
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synteny, they are considered invalid and the pair is neither considered syntenic nor broken. The

ratio of broken/syntenic pairs is the gene pair synteny rate. This carefully constructed analysis

was necessary to unambiguously identify orthologous pairs of gene and minimise assembly

differences impacting the results, though it is still likely to be somewhat affected by assembly

composition and errors.

B.3 Archosaur Reconstruction Analyses

Below we detail analyses used to assess the reconstructed archosaur assembly.

B.3.1 Estimating Potential Missing Sequence in the Archosaur Assembly

Due to the parsimony based simultaneous progressive alignment and reconstruction

approach used to construct the WGA, any sequence in alligator that has a homolog outside

the crocodilian lineage must have a homolog in the reconstructed archosaur. This implies

that alligator sequences without an ortholog in the archosaur do not have an ortholog outside

the crocodilian lineage. Misalignment and assembly errors will tend to reduce the quality

of the ancestral reconstruction (usually by missing sequence), and thus lower the amount of

sequence aligned. To estimate how much sequence should have been included in the archosaur

reconstruction but was not, alligator fragments that did not align to archosaur at all were aligned

against a selection of other leaf genomes (Table B.6) using LASTZ (version 1.03.52) with the

following parameters: [multiple,unmask], which ensure that any repetitive sequence will not

be unaligned due to heuristics that by default avoid the alignment of soft-masked sequence.
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While most fragments (87%) mapped to crocodile, the substantial majority do not map

to these outgroup genomes (e.g. 91% of unmapped fragments do not align to anywhere in chicken)

using LASTZ. This suggests that the reconstructed genome, despite its small size, already

approaches the maximum possible size for a reconstructed genome given current alignment

techniques. The small minority of regions that do map to out-group genomes are largely repetitive

(mapping to many places in the outgroup genomes), suggesting the reconstruction of repetitive

elements is an area of future improvement.

B.3.2 Element Categories for Archosaur Analysis

To avoid issues with double-counting elements and bases in the mapping, phyloP, and

structure-preservation analyses, the BED files for these categories were pre-processed. Gene and

chained-CDS categories were processed to select only the longest transcript where there was

overlap between multiple elements on the same strand. All other categories had their elements

merged together where overlapping to avoid multiple-counting.

The gene annotations used were as described above for the alligator and, for the

chicken, RefSeq gene annotations available from the assembly hub (see below), or at http:

//hgwdev.cse.ucsc.edu/~jcarmstr/permanent/galGal4_refSeq.bed.

B.4 Selection Analysis

The halPhyloP tool, available from the HAL tools library, was used to generate phyloP

scores for all columns in the alignment. The input branch lengths were determined by running
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phyloFit on conserved alligator fourfold degenerate sites, as described above. Using the WGA,

each column was lifted over to each genome, creating a phyloP wiggle track for each of the 23

leaf and 22 ancestral genomes in the WGA.

B.5 Order Preservation

An element, either exon, UTR, intron, etc., is defined by an interval of a genome. For

a pair of genomes A and B and element Y in A, for a pair of successive residues in Y that align to

a sequence X in B, we say their adjacency is preserved if the corresponding residues aligned in

X are in the same order and orientation and separated by less than 100bp. We say the structure of

Y is preserved if for all such pairs the adjacency is preserved and at least 25% of bases in Y align

to X , and X is the sequence in B where the majority residues in Y align without self alignment

(self duplication). This definition ensures that to have preserved structure at least a reasonable

minority of bases must align to a single sequence and be organized as in the reference genome.

If Y is a coding sequence (CDS), comprising the coding portions of a gene’s exons, it is treated

as a single element, except that residues in the interstitial introns are ignored, and introns are

allowed to change in size by up to 100kb in X .

B.6 Extant Mapping Controls

The proportion of elements and adjacencies that were preserved is shown for align-

ments between alligator to archosaur (Figure B.1), alligator to chicken (Figure S18) and chicken

to archosaur (Figure S19). These comparative controls show we get similar, but uniformly slightly
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higher results mapping chicken, rather than alligator, genes to the archosaur (presumably due to

differences in gene sets, as the evolutionary distance is expected to be greater), and substantially

higher mapping and order and orientation preservation results mapping extant annotations (either

alligator or chicken) to archosaur than mapping alligator annotations to chicken, or vice versa.

B.7 Assembly Hub

A Comparative Assembly Hub for the WGA is available for the UCSC genome browser

(174) at http://genome.ucsc.edu/cgi-bin/hgHubConnect (locate the “Croc and Bird Hub”

link). From it, it is possible to browse the genomes, annotations and alignments, and download

(via the Table Browser), portions of the WGA, the sequences of the reconstructed genome as

well as the alligator, gharial and crocodile gene sets.
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UCSC Genome ID Common name Species name

falChe1 Saker falcon Falco cherrug
falPer1 Peregrine falcon Falco peregrinus
ficAlb2 Collared flycatcher Ficedula albicollis
zonAlb1 White-throated sparrow Zonotrichia albicollis
geoFor1 Medium ground finch Geospiza fortis
taeGut2 Zebra finch Taeniopygia guttata
pseHum1 Tibetan ground jay Pseudopodoces humilis
melUnd1 Budgerigar Melopsittacus undulatus
amaVit1 Puerto Rican parrot Amazona vittata
araMac1 Scarlet macaw Ara macao
colLiv1 Rock pigeon Columbia livia
anaPla1 Mallard duck Anas platyrynchos
galGal4 Chicken Gallus gallus
melGal1 Turkey Meleagris gallopavo
strCam0 Ostrich Struthio camelus
allMis2 American alligator Alligator mississippiensis
croPor2 Crocodile Crocodylus porosus
ghaGan1 Gharial Gavialis gangeticus
cheMyd1 Green seaturtle Chelonia mydas
chrPic1 Painted turtle Chrysemys picta bellii
pelSin1 Soft-shell turtle Pelodiscus sinensis
apaSpi1 Spiny soft-shell turtle Apalone spinifera
anoCar2 Carolina anole Anolis carolinensis

Table B.1: Genome assemblies used to construct the WGA.

Genome pair Percent ID

Alligator, crocodile 92.9%
Crocodile, gharial 95.7%
Alligator, gharial 93.4%

Table B.2: Percentage identity for each pair of crocodilian genomes.
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Figure B.1: Analyzing the archosaur assembly using projected alligator annotations. a) Expected
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Figure B.2: Mapping and order-and-orientation-preserving statistics from alligator to chicken in
the alignment. A) Violin plot for the percent of an element that maps to the target genome. Blue
lines represent the average mapping for the category, and dots show inner quartiles. B) Percent
of adjacencies preserved. C) Percent of elements preserved.
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Figure B.3: Mapping and order-and-orientation-preserving statistics from chicken to archosaur
in the alignment. A) Violin plot for the percent of an element that maps to the target genome.
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Genome
4D substitution rate

Filtering strategy 1 Filtering strategy 2

Alligator 0.0263 0.0254
Crocodile 0.0221 0.0211
Gharial 0.0172 0.0167
Crocodile-gharial common ancestor 0.0147 0.0144

Table B.3: 4D site substitution rates for the branches directly above each crocodilian genome.

Genome TE substitution rate

Alligator 0.0260
Crocodile 0.0246
Gharial 0.0188
Crocodile-gharial common ancestor 0.0260

Table B.4: TE substitution rates for the branches directly above each crocodilian genome. Note
that the tree can be arbitrarily rooted between the alligator and the crocodile-gharial common
ancestor.
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Leaf genome Clean micro-insertion rate Clean micro-deletion rate

Parrot 0.000436 0.001174
Mallard duck 0.001804 0.002931
American alligator 0.000617 0.00046
Spiny soft-shell turtle 0.000533 0.001075
Scarlet macaw 0.000448 0.000999
Green sea turtle 0.000969 0.001583
Painted turtle 0.000944 0.001669
Rock pigeon 0.001239 0.002664
Crocodile 0.000567 0.001061
Saker falcon 0.000045 0.000059
Peregrine falcon 0.000057 0.000086
Collared flycatcher 0.001203 0.003072
Chicken 0.000866 0.001426
Medium ground finch 0.000616 0.0013
Gharial 0.000381 0.000692
Turkey 0.001042 0.002382
Budgerigar 0.000666 0.001691
Soft-shell turtle 0.000512 0.001147
Tibetan ground jay 0.000978 0.002045
Ostrich 0.002045 0.001801
Zebra finch 0.001048 0.002381
White-throated sparrow 0.000794 0.001956

Table B.5: Clean micro-insertion and -deletion rates for leaf genomes in the WGA. Note that
the Carolina anole does not appear in this table, since it has no three-leaf subtree.

Genome Alligator frag-
ments missing in
archosaur with >= 1
blast hit

Alligator frag-
ments missing in
archosaur with >=
10 blast hits

Alligator coding ex-
ons missing in ar-
chosaur with >=1
blast hit

Alligator coding ex-
ons missing in ar-
choaur with >= 10
blast hits

Chicken 440/5000 (8.8%) 328/5000 (6.6%) 3484/22666
(15.3%)

1556/22666 (6.9%)

Table B.6: Alligator elements that did not map to archosaur in the WGA were aligned against
multiple leaf genomes using LASTZ. Elements were restricted to >30 bp to prevent spurious
alignment, and repeat-masking was ignored in both the element and the target genomes.
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Appendix C

Supplementary Information for selection

analysis

C.1 Neutral model

To estimate the degree of conservation or acceleration within a column means evaluat-

ing the departure from a “neutral” rate of evolution — this rate is described using a neutral model.

We estimated a neutral model based on ancestral repeats using an automatic pipeline for estimat-

ing neutral models (https://github.com/joelarmstrong/neutral-model-estimator). We

extracted the ancestral genome from the alignment representing the ancestor of all birds, and

ran RepeatMasker [112] to find avian repeats present in that genome (using the species li-

brary “aves”). A random sample of 100,000 bases within these repeats was used to extract

a MAF, which was used as input to the phyloFit program from the PHAST [50] package

to create the neutral model (using a general reversible model of nucleotide substitution, REV).
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The PHAST framework allows only at most a single entry per genome per column, while

the output MAFs may contain alignments to multiple copies. To resolve this, maf_stream

(https://github.com/joelarmstrong/maf_stream) was used to combine multiple entries

per genome into a single entry (using maf_stream dup_merge consensus).

Sex-determining chromsomes are known to evolve at a slightly different rate than

autosomes (the fast-X / fast-Z hypothesis) [81, 17, 123]. Furthermore, micro- and macro-

chromosomes in birds have been shown to evolve at different rates as well [7, 123]. To remove

any potential differences in neutral rates among these chromosomes as a factor, we generated a

second set of neutral models which represent the neutral rate on these three chromosome sets

(we call this set the “3-rate model”). These models were generated by mapping the ancestral

repeat sample described above from the root ancestral genome to the chicken genome, then

separating the resulting bases into macro-, micro-, and sex-chromosome bins. For our purposes,

we defined micro-chromosomes as any autosomal chromosomes other than chr1-8. We then

scaled the ancestral-repeats model described above separately for each of the 3 bins using

phyloFit --init-model <original model> --scale-only. This 3-rate model was used

for all results and figures in the main paper, as well as those in this supplement by default unless

specifically mentioned otherwise.

C.2 Conservation/acceleration scores and significance calls

We estimated conservation and acceleration scores for the B10K alignment using

phyloP [101, 50] run with the --method LRT and --mode CONACC scoring options. We ran
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this twice using the two neutral model sets described above. When estimating the scores using

the 3-rate model we ran each chromosome separately, using the corresponding scaled model

belonging to the proper set (macro-, micro-, or sex-chromosomes). Though the HAL toolkit

contains a tool that emits phyloP scores, that tool works on the basis of alignment-wide columns,

which combine all lineage-specific duplications into a single column: this is undesirable since

some alignment-wide columns containing homologies between two or more paralogs may be

resolvable into multiple orthologous columns when viewed from chicken. Therefore, we instead

ran phyloP on a MAF export referenced on the chicken genome (using the hal2maf tool with the

--onlyOrthologs option). These MAFs were post-processed using the maf_stream command

in the same way as described in Section C.1.

We obtained the 77-way MULTIZ alignment from the UCSC Genome Browser [46] site

(http://hgdownload.soe.ucsc.edu/goldenPath/galGal6/multiz77way/maf/). Rather

than use the phyloP scores provided by the browser, which were trained on fourfold-degenerate

sites using a single neutral model, we estimated new scores using a 3-rate model in the same

manner as the 363-way. The 55-way scores were generated by simply providing the avian subtree

of the 77-way tree (using the --tree option) when fitting the neutral model. Though the resulting

scores are based on a different version of the chicken assembly than we used for the primary

analysis (galGal6 instead of galGal4), most analysis did not need assembly coordinates. For

two aspects of the analysis (the region-specific analysis and Figure C.8) we needed a common

coordinate system, so we lifted these scores to galGal4 using the liftOver tool (16.2 Mb, 1.5%

of the total, were unable to be lifted over).

The two score sets largely agreed on the direction of acceleration/conservation, with the
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values in the 363-way set being generally more extreme due to the additional power (Figure C.8).

PhyloP scores represent log-encoded p-values of acceleration. We transformed these

scores into p-values, then into q-values using the FDR-correcting method of Benjamini and

Hochberg [10]. Any site that had a q-value less than 0.05 was deemed significantly conserved or

accelerated (see Figure C.1 for proportions of accelerated/conserved regions).

We extracted the significant accelerated and conserved sites from the phyloP wiggle

files using the Wiggletools [120] command wiggletools gt <threshold> abs, where the

appropriate score threshold was taken from Table C.1.

C.3 Intersection with functional regions of the genome

We split RefSeq genes (obtained via the RefSeq gene track on the galGal4 UCSC

browser [46]) into sets of coding exons, untranslated (UTR) exons, and introns. We also

downloaded a lncRNA gene set from NONCODEv5 [33] to obtain lncRNA regions and mapped

all repeats from the root genome (mentioned in Section C.1) to chicken to get ancestral repeat

regions. All of these regions were made mutually exclusive by removing overlaps with all

other region types. Finally, 100,000 bases were randomly sampled from each of these mutually-

exclusive regions and used to extract a corresponding distribution of scores for each region from

the wiggle file. The results are shown in Figure C.2, Figure C.3, and Figure 4.7.
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C.4 Distribution of rate of alignment columns

Finding the distribution of rates of alignment columns (relative to the neutral rate) is

necessary for determining what strength of conservation is needed for significance. We sampled

10,000 sites at random from each of the galGal4 (for the 363-way) and galGal6 (for the 77-way)

assemblies. For the 363-way, a MAF was exported containing the columns for each of these sites

using hal2maf, while for the 77-way, the mafFrags program was used to obtain the columns

from the UCSC browser database. The --base-by-base mode of phyloP was used to obtain the

“scale” parameter for each column, which represents a best-fit multiplier of the neutral model

applied to all branch lengths in the tree. (For the 363-way, we divided the columns within

the MAF into three separate files according to their bin within the 3-rate model, and used the

appropriate model for each resulting MAF.) The results are shown in Figure 4.8, Figure C.5, and

Figure C.7.

C.5 Realignment of conserved sites

Our conservation and acceleration calls fundamentally rely on information from the

alignment. For this reason, errors in the alignment could potentially cause erroneous acceleration

or conservation calls.

We tested the degree to which alignment choices for a given region affect our conserva-

tion calls. We sampled 1,000 sites randomly selected from the set of conserved sites on chicken

and extracted their columns from the alignment. For each species in each column, we extracted

a 2kb region surrounding the aligned site into FASTA format, resulting in 1,000 FASTAs, one
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Score set Lowest significant score % of sites sig. conserved

55-way (3-rate model) ±2.506 2.1%
77-way (3-rate model) ±2.392 3.7%
363-way (3-rate model) ±1.957 13.2%
77-way (single neutral model) ±2.215 7.0%
363-way (single neutral model) ±1.826 18.3%

Table C.1: Significance thresholds and coverage of conserved site for expected FDR 0.05 in the
different phyloP score sets.

for each column. We then realigned these FASTAs using MAFFT [60] and used phyloP on

the resulting region to extract a new score for the column containing the chicken site that was

originally sampled. The distribution of differences in score (of the realigned score relative to the

original score) is shown in Figure C.6: 52% of scores were exactly identical, while 93% were

within a range of 1.0 from the original score value (i.e. an order of magnitude in p-value). 8.4%

of conserved sites had a realignment score that dropped below the significance threshold after

realignment; however, most of these cases were only slightly above the threshold to begin with

(median original score of 2.26, mean 2.41).
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Figure C.1: Acceleration (left) and conservation (right) within B10K alignment columns on
chicken compared to the 77-way. Similar to Figure 4.6, but includes accelerated columns.
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Figure C.2: Proportion of chicken functional regions covered by significantly accelerated/con-
served sites. Similar to Figure 4.7, but includes accelerated columns.
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Figure C.5: Larger histogram of chicken column rates (similar to Figure 4.8, but including
accelerated columns ending at a rate of 10 times the neutral rate).
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Figure C.6: Difference in phyloP scores (compared to original scores) after realignment with
MAFFT for a random sample of significantly-conserved sites.
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Figure C.7: Scatterplot of p-value vs. scale (rate of column relative to the neutral rate) in the
B10K 363-way and the browser 77-way.
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Figure C.8: Comparison of phyloP scores between the B10K 363-way and the browser 77-way
on the same set of columns.
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